Ruta Essential Oils: Composition and Bioactivities
"> Figure 1
<p>Major medicinal applications of <span class="html-italic">Ruta</span> species in traditional medicines.</p> "> Figure 2
<p>Major long-chain aliphatic ketones found in the <span class="html-italic">Ruta</span> essential oils.</p> "> Figure 3
<p>Structure of geijerene.</p> "> Figure 4
<p>Structure of 2-isopropyl-5-methylphenol.</p> "> Figure 5
<p>Structure of chalepensin.</p> ">
Abstract
:1. Introduction
2. Composition of Ruta Essential Oils
3. Bioactivities
3.1. Antimicrobial Activity
3.1.1. Antibacterial Activity
3.1.2. Antifungal Activity
3.2. Antioxidant Activity
3.3. Anti-Inflammatory Activity
3.4. Antiparasitic Activity
3.5. Cytotoxic Activity
3.6. Herbicidal Activity
3.7. Insecticidal Activity
3.8. Insect-Repellent Activity
3.9. Larvicidal Activity
3.10. Nematocidal and Anthelminitic Activity
3.11. Miscellaneous Activity
4. Ruta Essential Oils, Nanotechnology, and Chitosan
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dr Duke’s Phytochemical and Ethnobotanical Databases. Available online: https://phytochem.nal.usda.gov/phytochem/search/list (accessed on 1 July 2021).
- Miguel, E.S. Rue (Ruta L., Rutaceae) in traditional Spain: Frequency and distribution of its medicinal and symbolic applications. Econ. Bot. 2003, 57, 231–244. [Google Scholar] [CrossRef]
- Pollio, A.A.; De Natale, E.; Appetiti, G.; Aliotta, A.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (Rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol. 2008, 116, 469–481. [Google Scholar] [CrossRef]
- Coimbra, A.T.; Ferreira, S.; Duarte, A.P. Genus Ruta: A natural source of high value products with biological and pharmacological properties. J. Ethnopharmacol. 2020, 260, 113076. [Google Scholar] [CrossRef]
- Nahar, L.; Al-Majmaie, S.; Al-Gerushi, A.; Rasul, A.; Sarker, S.D. Chalepin and chalepensin: Occurrence, biosynthesis and therapeutic potential. Molecules 2021, 26, 1609. [Google Scholar] [CrossRef]
- Al-Majmaie, S.; Nahar, L.; Rahman, M.M.; Nath, S.; Saha, P.; Talukdar, A.D.; Sharples, G.P.; Sarker, S.D. Anti-MRSA constituents from Ruta chalepensis (Rutaceae) grown in Iraq, and in silico studies on two most active compounds, chalepensin and 6-hydroxy-rutin 3′,7-dimethyl ether. Molecules 2021, 26, 1114. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Nahar, L. An introduction to natural products isolation. In Natural Products Isolation, 3rd ed.; Sarker, S.D., Nahar, L., Eds.; Humana Press: Totowa, NJ, USA; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–26. [Google Scholar]
- Li, Y.; Dong, G.; Bai, X.; Aimila, A.; Bai, X.; Maiwulanjiang, M.; Aisa, H.A. Separation and qualitative study of Ruta graveolens L. essential oil components by prep-GC, GC0QTOF-MS and NMR. Nat. Prod. Res. 2020. [Google Scholar] [CrossRef]
- Ghazghazi, H.; Aouadhi, C.; Weslati, M.; Trakhna, F.; Maaroufi, A.; Hasnaoui, B. Chemical composition of Ruta chalepensis leaves essential oils and variation in biological activities between leaves, stems and roots methanolic extract. J. Essent. Oil Bear. Plants 2015, 18, 570–581. [Google Scholar] [CrossRef]
- Bouajaj, S.; Romane, A.; Benyamna, A.; Amri, I.; Hanana, M.; Hamrouni, L.; Romdhane, M. Essential oil composition, phytotoxic and antifungal activities of Ruta chalepensis L. leaves from High Atlas Mountains (Morocco). Nat. Prod. Res. 2014, 28, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
- Tedone, L.; Costa, R.; De Grazia, S.; Ragusa, S.; Mondello, L. Monodimensional (GC-FID and GC-MS) and comprehensive two-dimensional gas chromatography for the assessment of volatiles and fatty acids from Ruta chalepensis aerial parts. Phytochem. Anal. 2014, 25, 468–475. [Google Scholar] [CrossRef]
- Ortu, E.; Sanna, G.; Scala, A.; Pulina, G.; Caboni, P.; Battacone, G. In vitro anthelmintic activity of active compounds of the fringed rue Ruta chalepensis against dairy ewe gastrointestinal nematodes. J. Helmenthol. 2017, 91, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Bedini, S.; Flamini, G.; Ascrizzi, R.; Venturi, F.; Ferroni, G.; Bader, A.; Girardi, J.; Conti, B. Essential oils sensory quality and their bioactivity against the mosquito Aedes albopictus. Sci. Rep. 2018, 8, 17857. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, C.; Diaz, C.; Rojas, R. Chemical composition of essential oils from 10 Peruvian aromatic plants. Rev. Soc. Quim. Peru 2015, 81, 81–94. [Google Scholar]
- Bennaoum, Z.; Benhassini, H.; Falconieri, D.; Piras, A.; Porcedda, S. Chemical variability in essential oils from Ruta species among seasons and its taxonomic and ecological significance. Nat. Prod. Res. 2017, 31, 2329–2334. [Google Scholar] [CrossRef] [PubMed]
- Kuzovkina, I.N.; Szarka, S.; Hethelyi, E.; Lemberkovics, E.; Szoke, E. Composition of essential oil in genetically transformed roots of Ruta graveolens. Russ. J. Plant. Physiol. 2009, 56, 846–851. [Google Scholar] [CrossRef]
- Amdouni, T.; Abdallah, S.B.; Msilini, N.; Merck, F.; Chebbi, M.; Lachaal, M.; Karray-Bouraoui, N.; Ouerghi, Z.; Fernandez, X. Effect of salt stress on the antimicrobial activity of Ruta chalepensis essential oils. Acta Physiol. Plant. 2016, 38, 147. [Google Scholar] [CrossRef]
- Haddouchi, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical composition and antimicrobial activity of the essential oils from four Ruta species growing in Algeria. Food Chem. 2013, 141, 253–258. [Google Scholar] [CrossRef]
- Khadraoui, A.; Khelifa, A.; Boutoumi, H.; Hamitouche, H.; Mehdaoui, R.; Hammouti, B.; Al-Deyab, S.S. Adsorption and inhibitive properties of Ruta chalepensis L. oil as a green inhibitor of steel in 1M hydrochloric acid medium. Int. J. Electrochem. Sci. 2014, 9, 3334–3348. [Google Scholar]
- Boudjema, K.; Mouhouche, M.; Guerdouba, A.; Hali, L. Composition, physicochemical analysis, antimicrobial and anti-inflammatory activities of the essential oils obtained from Ruta chalepensis L. growing wild in northern Algeria. J. Chem. Soc. Pak. 2018, 40, 1054–1062. [Google Scholar]
- Tampe, J.; Parra, L.; Huiquil, K.; Quiroz, A. Potential repellent activity of the essential oil of Ruta chalepensis (Linnaeus) from Chile against Aegorhinus superciliosus (Guerin) (Coleoptera: Curculionidae). J. Soil Sci. Plant Nutr. 2016, 16, 48–59. [Google Scholar] [CrossRef]
- Arambula, C.I.; Diaz, C.E.; Garcia, M.I. Performance, chemical composition and antibacterial activity of the essential oil of Ruta chalepensis and Origanum Vulgare. J. Phys. Conf. Ser. 2019, 1386, 012059. [Google Scholar] [CrossRef]
- Pino, O.; Sanchez, Y.; Rojas, M.M.; Abreu, Y.; Correa, T.M.; Martinez, D.; Montes de Oca, R. Chemical composition and antibacterial activity of the essential oil from Ruta chalepensis L. Rev. Prot. Veg. 2014, 29, 220–225. [Google Scholar]
- Tzakou, O.; Couladis, M. Essential oil of Ruta chalepensis L. from Greece. J. Essent. Oil Res. 2001, 13, 258–259. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Manconi, F.; Leonti, M.; Maxia, A.; Caboni, P. Aliphatic ketones from Ruta chalepensis (Rutaceae) induce paralysis on root knot nematodes. J. Agric. Food Chem. 2011, 59, 7098–7103. [Google Scholar] [CrossRef]
- Bagchi, G.D.; Dwivedi, P.D.; Singh, A.; Haider, F.; Naqvi, A.A. Variations in essential oil constituents at different growth stages of Ruta chalepensis on cultivation at north Indian plains. J. Essent. Oil Res. 2003, 15, 262–264. [Google Scholar]
- Rustaiyan, A.; Khossravi, M.; Sultani-Lotfabadi, F.; Yari, M.; Masoudi, S.; Monfared, A. Constituents of the essential oil of Ruta chalepensis L. from Iran. J. Essent. Oil Res. 2002, 14, 378–379. [Google Scholar] [CrossRef]
- Althaher, A.R.; Oran, S.A.; Bustanii, Y.K. Phytochemical analysis, in vitro assessment of antioxidant properties and cytotoxic potential of ruta chalepensis essential oil. J. Essent. Oil Bear. Plants 2020, 23, 1409–1421. [Google Scholar] [CrossRef]
- Khoury, M.; Stien, D.; Quaini, N.; Eparvier, V.; Apostolides, N.A.; Beyrouthy, M. Chemical composition and antimicrobial activity of the essential oil of Ruta chalepensis L. growing wild in Lebabon. Chem. Biodivers. 2014, 11, 1990–1997. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.A.P.; de la Torre, Y.C.; Cirio, A.T.; de Torres, N.W.; Suarez, A.E.F.; Aranda, R.S. Essential oils from Zanthoxylum fagara Wild Lime. Ruta chalepensis L. and Thymus vulgaris L.: Composition and activity against Aedes aegypti larvae. Pak. J. Pharm. Sci. 2015, 28, 1911–1915. [Google Scholar]
- Najem, M.; Bammou, M.; Bachiri, L.; Bouiamrine, E.; Ibijbijen, J.; Nassiri, L. Ruta chalepensis L. essential oil has a biological potential for natural fight against the pest stored foodstuffs: Tribolium castaneum Herbst. Evid. Based Complement. Altern. Med. 2020, 2020, 5739786. [Google Scholar] [CrossRef] [PubMed]
- Abbad, A.; Kasrati, A.; Jamali, C.A.; Zeroual, S.; Mohamed, T.B.; Spooner-Hart, R.; Leach, D. Isecticidal properties and chemical composition of essential oils of some aromatic herbs from Morocco. Nat. Prod. Res. 2014, 28, 2338–2341. [Google Scholar] [CrossRef]
- Jaradat, N.; Adwan, L.; K’aibni, S.; Zaid, A.N.; Shtaya, M.J.Y.; Shraim, N.; Assali, M. Variability of chemical compositions and antimicrobial and antioxidant activities of Ruta chalepensis leaf essential oils from three Palestinian regions. BioMed Res. Int. 2017, 2017, 2672689. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, C.L.; Rodriguez, F.; Caldeira, M.; Camara, J.S. A powerful approach to explore the potential medicinal plants as a natural source of odor and antioxidant compounds. J. Food Sci. Technol. 2016, 53, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Miguel, H.; Jose Perez-Alonso, M.; Cristina Soria, A.; Blanco Martinez, M. Composition of essential oils of different species of “pepper” of the Piper, Pimenta, Lindera, Ruta, Schinus and Zanthoxylum genera. Bot. Complut. 2021, 44, 103–113. [Google Scholar] [CrossRef]
- Krayni, H.; Fakhfakh, N.; Kossentini, M.; Zouari, S. Fruits of Ruta chalepensis L. (Rutaceae) as a source of 2-undecanone. J. Essent. Oil Bear. Plants 2018, 21, 789–795. [Google Scholar] [CrossRef]
- Lengliz, O.; Mejri, J.; Abderrabba, M.; Khalifa, R.; Mejri, M. Ruta chalepensis L. essential oil: A new anti-sprouting agent for potatoes bioconservation. J. Chem. 2018, 2018, 8547851. [Google Scholar] [CrossRef] [Green Version]
- Akkari, H.; Ezzine, O.; Dhahri, S.; B’chir, F.; Rekik, M.; Hajaji, S.; Darghouth, M.A.; Jamaa, M.L.B.; Gharbi, M. Chemical composition, insecticidal and in vitro anthelmintic activities of Ruta chalepensis (Rutaceae) essential oils. Ind. Crop. Prod. 2015, 74, 745–751. [Google Scholar] [CrossRef]
- Krayni, H.; Zouari, S.; Chouajeb, H.; Fakhfakh, N.; Kossentini, M.; Zouari, N. Variations in the essential oil composition from different organs of Ruta chalepensis L. (Rutaceae) growing wild in Tunisia. J. Essent. Oil Bear. Plants 2015, 18, 1495–1499. [Google Scholar] [CrossRef]
- Bouabidi, W.; Hanan, M.; Gargouri, S.; Amri, I.; Fezzani, T.; Ksontini, M.; Iamoussi, B.; Hamrouni, L. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils. Nat. Prod. Res. 2015, 29, 864–868. [Google Scholar] [CrossRef]
- Khadhri, A.; Bouali, I.; Belkhir, S.; El Mokni, R.; Smiti, S.; Almeida, C.; Noggueira, J.M.F.; Araujo, M.E.M. Chemical variability of two essential oils of Tunisian Rue: Ruta montana and Ruta chalepensis. J. Essent. Oil Bear. Plants 2014, 27, 445–451. [Google Scholar] [CrossRef]
- Aouadhi, C.H.; Ghazghazi, H.; Hamrouni, S.; Hasnaoui, B.; Maaroufi, A. In vitro antifungal activity of the essential oil and the methanolic extract of Ruta chalepensis. Archives de l’Institut Pasteur de Tunis 2013, 90, 39–46. [Google Scholar] [PubMed]
- Mejri, J.; Abderrabba, M.; Mejri, M. Chemical composition of the essential oil of Ruta chalepensis L. Influence of drying, hydrodistillation duration and plant parts. Ind. Crop. Prod. 2010, 32, 671–673. [Google Scholar] [CrossRef]
- Tounsi, M.S.; Wannes, W.A.; Ouerghemmi, I.; Msaada, K.; Smaoui, A.; Marzouk, B. Variation in essential oil and fatty acid composition in different organs of cultivated and growing wild Ruta chalepensis L. Ind. Crop. Prod. 2011, 33, 617–623. [Google Scholar] [CrossRef]
- Ncibi, S.; Attia, S.; Diop, S.M.B.; Ammar, M.; Hance, T. Bio-insecticidal activity of three essential oils against Rhyzopertha dominica (Fabricius, 1792) (Coleoptera: Bostrichidae). Afr. Entomol. 2020, 28, 339–348. [Google Scholar] [CrossRef]
- Conti, B.; Leonardi, M.; Pistelli, L.; Profeti, R.; Ouerghemmi, I.; Benelli, G. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), and arbovirus vector. Parasitol. Res. 2013, 112, 991–999. [Google Scholar] [CrossRef]
- Ali, A.; Demirci, B.; Kiyan, H.T.; Bernier, U.R.; Tsikolia, M.; Wedge, D.E.; Khan, I.A.; Baser, K.H.C.; Tabanca, N. Biting deterrence, repellency, and larvicidal activity of Ruta chalepensis (Sapindales: Rutaceae) essential oil and its major individual constituents against mosquitoes. J. Med. Entomol. 2013, 50, 1267–1274. [Google Scholar] [CrossRef]
- Boudiar, T.; Labed, I.; Safaei-Ghomi, J.; Kabouche, A.; Kabouche, Z. Analysis of the essential oil of Ruta chalepensis subsp. Angustifolia from Algeria. J. Essent. Oil Bear. Plants 2011, 14, 792–795. [Google Scholar] [CrossRef]
- Dob, T.; Dahmane, D. Volatile constituents of the essential oil of Ruta chalepensis L. subsp. angustifolia (Pers.) P. Cout. J. Essent. Oil Res. 2008, 20, 306–309. [Google Scholar] [CrossRef]
- Orlanda, J.F.F.; Nascimento, A.R. Chemical composition and antibacterial activity of Ruta graveolens L. (Rutaceae) volatile oils, from Sao Luis, Maranhao, Brazil. S. Afr. J. Bot. 2015, 99, 103–106. [Google Scholar] [CrossRef]
- da Silva, F.G.E.; Mendez, F.R.D.; Assuncao, J.C.D.; Santiago, G.M.P.; Bezerra, M.A.X.; Barbosa, F.G.; Mafezoli, J.; Rocha, R.R. Seasonal variation, larvicidal and nematocidal activities of the leaf essential oil of Ruta graveolens L. J. Essent. Oil Res. 2014, 26, 204–209. [Google Scholar] [CrossRef]
- Semerdjieva, I.B.; Burducea, M.; Astatkie, T.; Zheljazkov, V.D.; Dincheva, I. Essential oils composition of Ruta graveolens L. fruits and Hyssopus officinalis subsp. Aristatus (Godr.) Nyman biomass as a function of hydrodistillation time. Molecules 2019, 24, 4047. [Google Scholar] [CrossRef] [Green Version]
- Rosado-Solano, D.N.; Restrepo-Manrique, R.; Jaramillo-Perez, V.M.; Puerto-Galvis, C.E.; Kouznetsov, V.V.; Vargas-Mendez, L.Y. Larvicidal activity of essential oils and extracts of Colombian plants against Culex quinquefasciatus (Diptera: Culicidae). Iteckne 2018, 15, 79–87. [Google Scholar] [CrossRef]
- Mahmoud, E.A.; Elansary, H.O.; El-Ansary, D.O.; Al-Mana, F.A. Elevated bioactivity of Ruta graveolens against cancer cells and microbes using seaweeds. Processes 2020, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Attia, E.Z.; El-Baky, R.M.A.; Desoukey, S.Y.; Mohamed, M.A.E.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Future J. Pharm. Sci. 2018, 4, 254–264. [Google Scholar] [CrossRef]
- Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oil. Cogent Chem. 2016, 2, 1220055. [Google Scholar] [CrossRef]
- Bohidar, S.; Thirunavoukkarasu, M. Essential oils from leaves of micropropagated Ruta Graveolens. J. Essent. Oil Bear. Plants 2012, 15, 296–299. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Laquale, S.; Candido, V.; Avato, P. Relationship between chemical composition and nematocidal activity of different essential oils. Plants 2020, 9, 1546. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Park, J.-H.; Lee, H.-S. 2-Isopropyl-5-methylphenol isolated from Ruta graveolens and its structural analogs show antibacterial activity against food borne bacteria. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 485–490. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Rodrigues, A.M.; Sena, I.; Moiteiro, C.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity of ruta graveolens and Satureja montana essential oils on Solanum tuberosum hairy roots and Solanum tuberosum hairy roots with Meloidogyne chitwoodi co-cultures. J. Agric. Food Chem. 2016, 64, 7452–7458. [Google Scholar] [CrossRef]
- Ben Chaaban, S.; Hamdi, S.H.; Mahjoubi, K.; Ben Jemaa, J.M. Composition and insecticidal activity of essential oils from Ruta graveolens, Mentha pulegium and Ocimum basilicum against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Plant. Dis. Prot. 2019, 126, 237–246. [Google Scholar] [CrossRef]
- Yosra, B.; Manef, A.; Sameh, A. Biological study from Ruta plants extracts growing in Tunisia. Iran. J. Chem. Chem. Eng. Int. Engl. Ed. 2019, 38, 85–89. [Google Scholar]
- Bejaoui, I.; Karmous, T. Tunisian Ruta graveolens essential oil: Influence of factors on its yield and composition. J. Essent. Oil Bear. Plants 2012, 15, 276–282. [Google Scholar] [CrossRef]
- Fredj, M.B.H.; Marzouk, B.; Chraief, I.; Boukef, K.; Marzouk, Z. Analysis of Tunisian Ruta graveolens L. oil from Jemmel. J. Food Agric. Environ. 2007, 5, 52–55. [Google Scholar]
- Chaftar, N.; Girardot, M.; Quellard, N.; Labanowski, J.; Ghrairi, T.; Hani, K.; Frere, J.; Imbert, C. Activity of six essential oils extracted from Tunisian plants against Legionella pneumophila. Chem. Biodivers. 2015, 12, 1565–1574. [Google Scholar] [CrossRef]
- Bozhuyuk, A.U. Herbicidal activity and chemical composition of two essential oils on seed germination and seedling growths of three weed species. J. Essent. Oil Bear. Plants 2020, 23, 821–831. [Google Scholar] [CrossRef]
- Mohammedi, H.; Mecherara-Idieri, S.; Hassani, A. Variability in essential oil composition, antioxidant and antimicrobial activities of Ruta montana L. collected from different geographical regions in Algeria. J. Essent. Oil Res. 2019, 32, 23–36. [Google Scholar] [CrossRef]
- Boutoumi, H.; Moulay, S.; Khodja, M. Essential oil from Ruta montana L. (Rutaceae): Chemical composition, insecticidal and larvicidal activities. J. Essent. Oil Bear. Plants 2009, 12, 714–721. [Google Scholar] [CrossRef]
- Kambouche, N.; Merah, B.; Bellahouel, S.; Bouaved, I.; Dicko, A.; Derdour, A.; Younos, C.; Soulimani, R. Chemical composition and antioxidant potential of Ruta montana L. essential oil from Algeria. J. Med. Food 2008, 11, 593–595. [Google Scholar] [CrossRef]
- Fekhar, N.; Moulay, S.; Asma, D.; Krea, M.; Boutoumi, H.; Benmaamar, Z. Thionation of essential oils from Algerian Artemisia herba -alba L. and Ruta montana L.: Impact on their antimicrobial and insecticidal activities. Chem. J. Mold. 2017, 12, 50–57. [Google Scholar] [CrossRef]
- Drioiche, A.; Amine, S.; Boutahiri, S.; Saidi, S.; Ailli, A.; Rhafouri, R.; Mahjoubi, M.; El Hilali, F.; Mouradi, A.; Eto, B.; et al. Antioxidant and antimicrobial activity of essential oils and phenolic extracts from the aerial parts of Ruta montana L. of the Middle Atlas Mountains—Morocco. J. Essent. Oil Bear. Plants 2020, 23, 902–917. [Google Scholar] [CrossRef]
- Benali, T.; Habbadi, K.; Khabbach, A.; Marmouzi, I.; Zengin, G.; Bouyahya, A.; Chamkhi, I.; Chtibi, H.; Anniz, T.; Achbani, E.; et al. GC-MS analysis, antioxidant and antimicrobial activities of Achillea odorata subsp. Pectinata and Ruta montana essential oils and their potential use as food preservatives. Foods 2020, 9, 668. [Google Scholar] [CrossRef]
- Hammami, I.; Smaoui, S.; Ben Hsouna, A.; Hamdi, N.; Triki, M.A. Ruta montana L. leaf essential oil and extracts: Characterization of bioactive compounds and suppression of crown gall disease. EXCLI J. 2015, 14, 83–94. [Google Scholar] [PubMed]
- Nakatsu, T.; Lupo, A.T., Jr.; Chinn, J.W., Jr.; Kang, R.K.L. Biological activity of essential oils and their constituents. Stud. Nat. Prod. Chem. 2000, 21, 571–631. [Google Scholar]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of essential oils: A review on their interaction with food components. Front. Microbiol. 2015, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Mancianti, F.; Ebani, V.V. Biological activity of essential oils. Molecules 2020, 25, 678. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.R.; Stockley, J.K.; Home, V.N. Essential oils with high antimicrobial activity for therapeutic use. Int. J. Aromather. 1998, 8, 30–40. [Google Scholar] [CrossRef]
- Nogueira, J.C.R.; Diniz, M.D.F.M.; Lima, E.O. In vitro antimicrobial activity of plants in acute otitis externa. Braz. J. Otorhinolaryngol. 2008, 74, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Morales, D.F.C.; do Amaral, F.M.M.; Rebeiro, M.N.S. Ruta graveolens L.: Phytochemistry, pharmacology and biotechnology. In Transgenesis and Secondary Metabolism; Jha, S., Ed.; Springer: Cham, Switzerland, 2017; pp. 177–204. [Google Scholar]
- Gibka, J.; Kunicka-Styczynska, A.; Glinkski, M. Antimicrobial activity of undecane-2-one, undecane-2-ol and their derivatives. J. Essent. Oil Bear. Plants 2009, 12, 605–614. [Google Scholar] [CrossRef]
- Pino-Perez, O.; Rojas-Fernandez, M.M.; Sanchez-Perez, Y.; Espinosa-Castano, I. Antibacterial activity of essential oils obtained from plants of Cuban origin against Streptococcus Suis. Rev. Salud Anim. 2018, 40, e03. [Google Scholar]
- Owlia, O.; Saderi, H.; Rasooli, I.; Sefidkom, F. Antimicrobial characteristics of some herbal oils on Pseudomonas aeruginosa with special reference to their chemical compositions. Iran. J. Pharm. Res. 2009, 8, 107–114. [Google Scholar]
- Mena-Huertas, S.J.; Garcia-Lopez, J.P.; Nicola-Benavides, S.N.; Yepez-Chamorro, M.C. Cytotoxic and mutagenic innocuousness of essential oils of Rosmarinus officinalis L. and Ruta graveolens L. as a promising complimentary treatment of Helicobacter pylori infection. Actual. Biol. 2016, 39, 37–44. [Google Scholar]
- Saksena, N.; Tripathi, H.S. Plant volatiles in relation to fungistasis. Fitoterapia 1985, 56, 243–244. [Google Scholar]
- Sephavand, A.; Eliasy, H.; Mohammadi, M.; Safarzadeh, A.; Azarbaijani, K.; Shahsavari, S.; Alizadeh, M.; Beyranvand, F. A review of the most effective medicinal plants for dermatophytosis in traditional medicine. Biomed. Res. Ther. 2018, 5, 2378–2388. [Google Scholar] [CrossRef]
- Duarte, Y.; Pino, O.; Infante, D.; Sanchez, Y.; Travieso, M.D.C.; Martinez, B. In vitro effect of essential oils on Alternaria solani Sorauer. Rev. Prot. Veg. 2013, 28, 54–59. [Google Scholar]
- Soares, C.; Morales, H.; Faris, J.; Figueiredo, A.C.; Pedro, L.G.; Venancio, A. Inhibitory effect of essential oils on growth and aflatoxins production by Aspergillus parasiticus. World Mycotoxin J. 2016, 9, 525–534. [Google Scholar] [CrossRef]
- Belem, L.F.; Lima, E.O.; Barbosa Filho, J.M.; Silva Filho, R.N.; Lima, J.R.; Casimiro, G.S. Antifungal activity of essential oils ‘in vitro’ against strains of Malassezia furfur. Rev. Bras. Plantas Med. 2003, 6, 77–83. [Google Scholar]
- Donadu, M.G.; Peralta-Ruiz, Y.; Usai, D.; Maggio, F.; Molina-Hernandez, J.B.; Rizzo, D.; Bussu, F.; Rubino, S.; Zanetti, S.; Paparella, A.; et al. Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains. J. Fungi 2021, 7, 383. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.A.; Juliatti, F.C.; Barbosa, K.A.G.; Cassemiro, T.A. Antifungal activity of vegetable oils and extracts against Sclerotinia sclerotiorum. Biosci. J. 2012, 28, 48–57. [Google Scholar]
- Knaak, N.; da Silva, L.D.; Andreis, T.F.; Fiuza, L.M. Chemical characterization and anti-fungal activity of plant extracts and essential oils on the Bipolaris oryzae and Gerlachia oryzae phytopathogens. Aust. Plant. Pathol. 2013, 42, 469–475. [Google Scholar] [CrossRef]
- Baseggio, E.R.; Giacobbo, C.L.; Galon, L.; Milanesi, P.M. Volatile compounds of essential oils in inhibition of the development of Monilinia fructicola in vitro. Rev. Cienc. Agrar. 2019, 42, 181–190. [Google Scholar]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Torres-Martinez, R.; Garcia-Rodriguez, Y.M.; Rios-Chavez, P.; Saavedra-Molina, A.; Lopez-Menza, J.E.; Ochoa-Zarzosa, A.; Garciglia, R.S. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (Moc. And Sesse ex Benth.) Briq. Pharmacogn. Mag. 2017, 13, S875–S880. [Google Scholar]
- Ahmed, S.B.; Sghaier, R.M.; Guesmi, F.; Kaabi, B.; Mejri, M.; Attia, H.; Laouini, D.; Smaali, I. Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Send (Tunisia). Nat. Prod. Res. 2011, 25, 1195–1201. [Google Scholar] [CrossRef]
- Nonnenmacher, J.L.; Mikulski, B.S.; Roman, S.S. Anti-inflammatory activity of the essential oil and hydroalcoholic extract of Ruta graveolens L. (Rue) on ear edema in mice. Perspectiva 2016, 41, 125–1340. [Google Scholar]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Guarrera, P.M. Traditional antihelmintic, antiparasitic and repellent uses of plants in Central Italy. J. Ethnopharmacol. 1999, 68, 183–192. [Google Scholar] [CrossRef]
- Castagnino, G.L.B.; Orsi, R.O. Natural products for the control of the mite Varroa destructor in Africanized bees. Pesqui. Agropecu. Bras. 2012, 47, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Quintanilla-Licea, R.; Mata-Cardenas, B.D.; Vargas-Villareal, J.; Bazaldua-Rodriguez, A.F.; Angeles-Hernanandez, I.K.; Garza-Gonzalez, J.N.; Hernandez-Garcia, M.E. Antiprotozoal activity against Entamoeba histolytica of plants used in northeast Mexican medicine. Bioactive compounds from Lippia graveolens and Ruta Chalepensis. Molecules 2014, 19, 21044–21065. [Google Scholar] [CrossRef]
- De Feo, V.; de Simone, F.; Senatore, F. Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry 2002, 61, 573–578. [Google Scholar] [CrossRef]
- Maldaner, J.; Steffen, G.P.K.; Missio, E.L.; Saldanha, C.W.; De Morais, R.M.; Steffen, R.B. Rue and Brazillian peppertree essential oils inhibit the germination and initial development of the invasive plant lovegrass. Int. J. Environ. Stud. 2020, 77, 255–263. [Google Scholar] [CrossRef]
- Mendesil, E.; Tadesse, M.; Negash, M. Efficacy of plant essential oils against two major insect pests of coffee (coffee berry borere, Hypothenemus hampei, and antestia bug, Antestiopsis intricate) and maize weevil, Sitophilus zeamais. Arch. Phytopathol. Plant. Prot. 2012, 45, 366–372. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Lee, S.-G.; Lee, H.-S. Isolation of insecticidal constituent from Ruta graveolens and structure-activity relationship studies against stored-food pests (Coleoptera). J. Food Prot. 2015, 78, 1536–1540. [Google Scholar] [CrossRef]
- Hadis, M.; Lulu, M.; Mekonnen, Y.; Asfaw, T. Field trials on the repellent activity of four plant products against mainly Mansonia population in western Ethiopia. Phytother. Res. 2003, 17, 202–205. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, B.; Kiyan, H.T.; Ali, A.; Bernier, U.R.; Wedge, D.E.; Khan, I.A.; Başer, K.H.C. Repellent and larvicidal activity of Ruta graveolens essential oil and its major individual constituents against Aedes aegypti. Planta Med. 2012, 78, 90. [Google Scholar] [CrossRef]
- Soares, S.F.; Borges, L.M.F.; Braga, R.D.; Ferreira, L.L.; Louly, C.C.B.; Tresvenzol, L.M.F.; de Paula, J.R.; Ferri, P.H. Repellent activity of plant-derived compounds against Amblyomma cajennense (Acari: Ixodidae) nymphs. Vet. Parasitol. 2010, 167, 67–73. [Google Scholar] [CrossRef]
- Bouabida, H.; Dris, D. Effect of rue (Ruta graveolens) essential oil on mortality, development, biochemical and biomarkers of Culiseta longiareolata. S. Afr. J. Bot. 2020, 133, 139–143. [Google Scholar] [CrossRef]
- Lahlou, M.; Berrada, R.; Hmamouchi, M.; Lyagoubi, M. Effect of some Moroccan medicinal plants on mosquito larvae. Therapie 2001, 56, 193–196. [Google Scholar]
- Landolt, P.J.; Hofstetter, R.W.; Biddick, L.L. Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environ. Entomol. 1999, 28, 954–960. [Google Scholar] [CrossRef]
- Bouzeraa, H.; Bessila-Bouzeraa, M.; Labed, N. Repellent and fumigant toxic potential of three essential oils against Ephestia kuehniella. Biosyst. Divers. 2019, 27, 349–353. [Google Scholar] [CrossRef]
- Kumarasingha, R.; Preston, S.; Yeo, T.-C.; Lim, D.S.L.; Tu, C.-L.; Jilian, E.A.P.; Shaw, M.; Gasser, R.B.; Boag, P.R. Anthelmintic activity of selected ethno-medicinal plant extracts on parasitic stages of Haemonchus contortus. Parasites Vectors 2016, 9, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, J.M.S.; Sena, I.; Ribeiro, B.; Rodriguez, A.M.; Maleita, C.M.N.; Abrantes, I.; Bennett, R.; Mota, M.; Figueiredo, A.C.D. First report on Meloidogyne chitwoodi hatching inhibition activity of essential oils and essential oils fractions. J. Pest. Sci. 2016, 89, 207–217. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, J.M.S.; Sena, I.; Moiteiro, C.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Nematotoxic and phytotoxic activity of Satuyreja montana and Ruta graveolens essential oils on Pinus pinaster shoot cultures and P. pinaster with Bursaphelenchus xylophilus in vitro co-culture. Ind. Crop. Prod. 2015, 77, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Laquale, S.; Candido, V.; Avato, P.; Argentieri, M.P.; D’Addabbo, T. Essential oils as soil biofumigants for the control of the root-knot nematode Meloidogyne incognita on tomato. Ann. Appl. Biol. 2015, 167, 217–224. [Google Scholar] [CrossRef]
- Drioueche, A.; Boutoumi, H.; Boucherit, A. The performance of the Ruta montana L. essential oil bisulfite adduct as mixed natural emulsifier and comparison with single tailed surfactant. J. Dispers. Sci. Technol. 2019, 41, 2159–2168. [Google Scholar] [CrossRef]
- Nahar, L.; Sarker, S.D. Nanotechnology and oral health. In Nanotechnology-Based Drug Delivery Systems; Talukdar, A.D., Sarker, S.D., Patra, J.K., Eds.; Elsevier: Berkeley, CA, USA, 2021; in press. [Google Scholar]
- Sarker, S.D.; Nahar, L. Characterization of nanoparticles. In Nanotechnology-Based Drug Delivery Systems; Talukdar, A.D., Sarker, S.D., Patra, J.K., Eds.; Elsevier: Berkeley, CA, USA, 2021; in press. [Google Scholar]
- Zhang, F.; Ramachandran, G.; Mothana, R.A.; Noman, O.M.; Alobaid, W.A.; Rajivgandhi, G.; Manoharan, N. Antibacterial activity of chitosan loaded plant essential oil against multi drug resistant K. Pneumoniae. Saudi J. Biol. Sci. 2020, 27, 3449–3455. [Google Scholar] [CrossRef]
- Barrera-Ruiz, D.G.; Cuestas-Rosas, G.C.; Sanchez-Martinez, R.I.; Alvarez-Ainza, M.L.; Moreno-Ibarra, G.M.; Lopez-Meneses, A.K.; Plascencia-Jatomea, M.; Cortez-Rocha, M.O. Antibacterial activity of essential oils encapsulated in chitosan nanoparticles. Food Sci. Technol. 2020, 40, 568–573. [Google Scholar] [CrossRef]
- Tovar, C.D.G.; Delgado-Ospina, J.; Porras, D.P.N.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, M.N.C.; Mina, J.H.; Lopez, C.C. Colletotrichum gloeosporioides inhibition in situ by chitosan-Ruta graveolens essential oil coatings: Effects on microbiological, physicochemical, and organoleptic properties of guava (Psidium guajava L.) during room temperature storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Peralta-Ruiz, Y.; Tovar, C.D.G.; Sinning-Mangonez, A.; Coronell, E.A.; Marino, M.F.; Chavez-Lopez, C. Colletotrichum gloeosporioides inhibition using chitosan-Ruta graveolens L. essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef]
- Gonzalez-Locarno, M.; Pautt, Y.M.; Albis, A.; Lopez, E.F.; Tovar, C.D.G. Assessment of chitosan-Rue (Ruta graveolens L.) essential oil-based coatings on refrigerated cape gooseberry (Physalis peruviana L.) quality. Appl. Sci. 2020, 10, 2684. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Tovar, C.D.G.; Sinning-Mangonez, A.; Coronell, E.A.; Marino, M.F.; Chavez-Lopez, C. Reduction of post-harvest quality loss and microbiological decay of tomato “Chonto” (Solanum lycopersicum L.) using chitosan-essential oil-based edible coatings under low temperature storage. Polymers 2020, 12, 1822. [Google Scholar] [CrossRef] [PubMed]
Ruta Species | Geographical Sources (Region) | Plant Parts (Yield) | Major Components | References |
---|---|---|---|---|
Ruta angustifolia Pers. | Algeria (Tlemcen) | Air-dried aerial parts (1.49%) | 2-Undecanone (82.5%) and 2-decanone (10.0%) | [18] |
Ruta chalepensis L. | Algeria (Ain-delfa) | Air-dried aerial parts (0.90%) | 2-Undecanone (67.0%), 2-decanone (9.0%), 6-(3′,5′-benzodioxyl)-2-hexanone (6.3%), and 2-dodecanone (4.0%) | [19] |
Algeria (Blida) | Air-dried aerial parts (0.40%) | 2-Undecanone (35.5%), 2-methyl-1-decanol (8.6%), and 2-dodecanone (6.9%) | [20] | |
Chile | Air- and oven-dried (20 °C) aerial parts (0.30%) | 2-Nonanone (41.7%) and 2-undecanone (40.1%) | [21] | |
Colombia (Cacota) | Shade-dried leaves (0.12%) | 2-Undecanone (39.4%), 2-nonanone (37.1%), 2-decanone (2.8%), and nonyl acetate (2.2%) | [22] | |
Cuba | Air-dried aerial parts (0.30%) | 2-Undecanone (34.9%) and 2-nonanone (25.2%) | [23] | |
Greece | Air-dried aerial parts (1.10%) | 2-Methyloctyl acetate (44.0%), β-phellandrene (10.8%), 2-nonanol (7.2%), and β-pinene (6.4%) | [24] | |
Italy (San Alessio) | Fresh flowers (0.89%) | 2-Nonanone (44.9%), 2-undecanone (44.9%), and limonene (1.8%) | [11] | |
Fresh fruits (1.40%) | 2-Nonanone (51.8%), and 2-undecanone (41.9%) | [11] | ||
Fresh leaves (1.10%) | 2-Nonanone (69.9%), 2-undecanone (15.5%), and limonene (3.1%) | [11] | ||
Fresh stems (0.97%) | 2-Nonanone (51.3%), 2-undecanone (33.0%), and limonene (3.7%) | [11] | ||
Italy (Cagliari) | Air-dried aerial parts (0.36%) | 2-Undecanone (~56.0%), 2-nonanone (~36.0%), 2-decaone (~2.5%), and 2-nonanol (~2.0%) | [25] | |
Italy (Cagliari) | Air-dried aerial parts (1.09%) | 2-nonanone (25.3%), 2-undecanone (24.0%), limonene (12.8%), octyl acetate (10.4%), geijerene (5.7%), and 2-decaone (3.7%) | [12] | |
Italy (Monte Pisano) | Air-dried aerial parts (0.79%) | 2-Nonanone (56.7%), 2-nonanol (3.5%), and limonene (2.2%) | [13] | |
India | Fresh flowers (0.69%) | 2-Undecanone (67.8%), 2-nonanone (10.3%), 2-decanone (3.1%), and 2-nonyl acetate (2.8%) | [26] | |
Fresh fruits (0.88%) | 2-Undecanone (60.0%), 2-dodecanone (11.6%), 2-nonanone (5.2%), and 2-nonyl acetate (4.4%) | [26] | ||
Fresh leaves (0.56%) | 2-Undecanone (41.3–47.7%), 2-nonanone (13.8–33.6%), 2-nonyl acetate (9.0–15.3%), 2-decanone (2.6–3.1%), and 2-dodecanone (0.7–2.2%) | [26] | ||
Iran | Air-dried aerial parts (1.3%) | 2-Undecanone (52.5%), 2-nonanone (24.1%), and nonyl acetate (9.1%) | [27] | |
Jordan | Air-dried (in the dark) aerial parts (0.83%) | 2-Cyclohexen-1-one,3-[(2,3,4,9 tetrahydro-1H-pyrido[3,4 b]indole-1-yl) methyl] (45.9%) and 2-nonanone (19.5%) | [28] | |
Lebanon | Fresh leaves and stems (0.12%) | 2-Nonanone (42.5%), 2-undecaone (41.4%), and terpen-4-ol (2.2%) | [29] | |
Fresh leaves (0.12%) | 2-Nonanone (51.7%) and 2-undecaone (36.7%) | [29] | ||
Mexico | Fresh aerial parts | 2-Undecaone (43.7%) and 2-nonanone (35.4%) | [30] | |
Morocco (Central plateau) | Shed-dried aerial parts (2.72%) | 2-Undecanone (64.4%), piperonyl piperazine (11.9%), 2-decanone (5.1%), and 2-dodecanone (4.5%) | [31] | |
Morocco (High Atlas Mountains) | Air-dried leaves (0.56%) | 2-Undecaone (49.1%), 2-nonanone (33.2%), limonene (4.2%), and 2-decanone (2.7%) | [10] | |
Morocco | Air-dried aerial parts (0.66%) | 2-Undecaone (93.1%) | [32] | |
Palestine (Jerusalem, Hebron and Jenin) | Shade-dried leaves (0.23%) | 2-Undecanone (7.7–44.3%) and 2-nonanone (8.2–43.0%) | [33] | |
Peru | Fresh aerial parts (0.22%) | 2-Undecanone (58.2%) and 2-nonanone (25.3%) | [14] | |
Poland | Shade-dried leaves (0.26%) | 2-Undecanone (50.0%), 2-nonanone (35.0%), and geijerene (9.2%) | [17] | |
Shade-dried roots (0.19%) | Octyl acetate (29.0%), methyl decanoate (22.1%), and phytyl acetate (17.2%) | [17] | ||
Shade-dried stems (0.82%) | 2-Decanone (21.2%), geijerene (19.2%), 2-nonanone (16.1%), and 2-undecaone (9.1%) | [17] | ||
Portugal (Madeira island) | Fresh leaves (0.32%) | 2-Undecanone (53.0%), (E)-2-octenal (28.0%), and 2-nonanone (10.0%) | [34] | |
Spain | Shade-dried aerial parts (0.43%) | 2-Undecanone (64.9%) | [35] | |
Tunisia (Sdira and Thoujene) | Shade-dried fruits (3.0%) | 2-Undecanone (57.5 and 58.4%), 2-nonanone (19.0 and 23.3%), and octyl acetate (3.4 and 5.1%) | [36] | |
Shade-dried leaves (1.40%) | 2-Undecanone (23.0 and 27.9%), 2-nonanone (21.1 and 16.7%), octyl acetate (26.6 and 26.8%), and chalepensin (3.0 and 2.3%) | [36] | ||
Shade-dried stems (0.31%) | 2-Undecanone (31.9 and 37.7%), 2-nonanone (23.0 and 22.1%), octyl acetate (11.0 and 12.1%), and decyl acetate (4.2 and 5.4%) | [36] | ||
Tunisia (El Fahs region) | Shade-dried aerial parts (0.30%) | 2-Undecanone (87.2%) | [37] | |
Tunisia (El Fahs) | Fresh flowers (1.75%) | 2-Undecanone (89.9%) and 2-decanone (4.2%) | [38] | |
Fresh leaves (0.69%) | 2-Undecanone (85.9%), 2-decanone (5.6%), and piperazine (3.0%) | [38] | ||
Tunisia (Thoujene) | Shade-dried fruits (2.5%) | 2-Undecanone (58.4%), 2-nonanone (19.1%), and 2-undecanol (4.1%) | [39] | |
Shade-dried leaves (0.90%) | 2-Undecanone (27.9%), 2-nonanone (16.7%), octyl acetate (26.8%), decyl acetate (9.4%), and 2-nonanol (3.8%) | [39] | ||
Shade-dried stems (0.30%) | 2-Undecanone (37.7 %), 2-nonanone (22.1%), octyl acetate (12.1%), decyl acetate (5.4%), and 2-undecanol (2.9%) | [39] | ||
Tunisia (Beja) | Air-dried leaves (0.90%) | Menthol (43.9%), linalool (42.1%), and 2-hexanal (5.8%) | [9] | |
Tunisia | Air-dried aerial parts at flowering and post-flowering stages (0.70 and 0.50%, respectively)) | 2-Undecanone (33.4–49.8%), 2-heptanol acetate (13.5–15.4%), and α-pinene (9.8–11.9%) | [40] | |
Tunisia (El Hamma) | Shade-dried leaves (0.66%) | 2-Undeconone (48.6%), 1-nonene (18.4%), and 2-nonanone (3.5%) | [41] | |
Share-dried stems (0.66%) | 2-Undeconone (50.6%), 1-nonene (10.9%), 2-nonanone (5.4%) and 1-dodecene (3.7%) | [41] | ||
Tunisia (Kef) | Air-dried leaves (0.85%) | Menthol (49.9%), linalool (31.1%), and 2-hexanal (5.2%) | [42] | |
Tunisia (El Fahs) | Shade-dried flowers (0.77%) | 2-Undecanone (100%) | [43] | |
Shade-dried leaves (0.55%) | 2-Undecanone (69.2%), camphor (2.5%), 2-decanone (2.4%) and 2-dodecanone (2.0%) | [43] | ||
Fresh leaves (0.98%) | 2-Undecanone (77.2%), 2-decanone (9.0%), and 2-dodecanone (2.4%) | [43] | ||
Shade-dried stems (0.70%) | Pulegone (32.1%) | [43] | ||
Tunisia (Mountain Traza) | Air-dried flowers (0.70–0.99%) | 2-Undecanone (44.1–60.5%), 2-nonanol (21.5–36.4%), and 2-dodecanone (0.1–2.8%) | [44] | |
Air-dried fruits (1.73%) | 2-Undecanone (0.17–41.0%), 2-nonanol (0.86–11.6%), and 2-dodecanone (5.8–80.0%) | [44] | ||
Air-dried leaves (0.39–0.57%) | 2-Undecanone (33.5–36.6%), 2-nonanol (28.1–45.1%), and 2-dodecanone (0.1–0.2%) | [44] | ||
Air-dried stems (0.49–0.66%) | 2-Undecanone (26.7–33.5%), 2-nonanol (28.1–40.5%), and 2-dodecanone (0.2–13.6%) | [44] | ||
Tunisia (Bouaouene) | Fresh aerial parts (0.39%) | 2-Undecanone (51.2%), 2-nonanone (39.2%), and 2-decanone (2.3%) | [45] | |
Tunisia (El Ala) | Air-dried aerial parts of wild plants (0.56%) | 2-Nonanone (37.4%), 2-undecanone (20.5%), and 2-methyl-octyl acetate (19.0%) | [46] | |
Tunisia (Tunisi) | Air-dried parts of cultivated plants (0.60%) | 2-Undecanone (39.3%), 2-nonanone (20.5%), and 2-methyl-octyl acetate (7.6%) | [46] | |
Turkey | Fresh aerial parts (1.10%) | 2-Undecanone (43.2%), 2-nonanone (27.9%), and 2-nonyl acetate (10.6%) | [47] | |
Ruta chalepensis subsp. angustifolia (Pers.) P. Cout. | Algeria | Shade-dried aerial parts (0.91%) | 2-Undecanone (84.7%) | [15] |
Algeria (Jijel) | Fresh aerial parts (0.80%) | 2-Undecanone (83.4%), carvacrol (4.1%), and 2-nonanone (4.0%) | [48] | |
Algeria (Boudouaou) | Air-dried aerial parts (0.27%) | 2-Undecanone (28.2%), 2-nonanone (20.0%), 2-methyloctyl acetate (12.7%), and 2-methyldecyl acetate (5.8%) | [49] | |
Ruta chalepensis var. bracteosa (DC) Boiss. | Algeria (Ain Temouchent) | Air-dried aerial parts (0.90%) | 2-Nonanone (32.8%), 2-undecanone (32.6%), 1-nonene (14.0%), α-limonene (5.3%), and 2-decanone (2.4%) | [18] |
Ruta chalepensis subsp. latifolia (Salisb.) Linds. | Algeria | Shade-dried aerial parts (0.69%) | 2-Undecanone (51.2%), 2-nonanone (20.1%), 2-octyl-methyl acetate (15.1%), and 2-dectyl acetate (3.3%) | [15] |
Ruta graveolens L. | Algeria (Anaba) | Air-dried aerial parts (0.18%) | 2-Undecanone (55.4%), 2-nonanone (21.6%), 1-nonene (4.4%), and α-limonene (4.3%) | [18] |
Brazil (Maranhão) | Fresh leaves (1.29%) | 2-Undecanone (47.2%), 2-nonanone (39.2%), octyl acetate (7.3%), and 2-decanone (2.0%) | [50] | |
Brazil (Ceara) | Fresh leaves (0.10–0.90%) | 2-Undecanone (37.0–58.2%) and 2-nonanone (17.6–53.1%) | [51] | |
Bulgaria | Shade-dried fruits (0.12%) | 2-Nonanone (60.1%), benzaldehyde (7.4%), and 2-undecanone (7.0%) | [52] | |
China | Air-dried aerial parts (0.99%) | 2-Undecanol acetate (19.2%) and 2-undecanol 2-methylbutyl ester (8.9%) | [8] | |
Colombia (Santander) | Shade-dried aerial parts (1.60%) | 2-Nonanone (35.4%), 2-undecanone (30.5%), and 2-decanone (3.4%) | [53] | |
Egypt | Air-dried leaves (0.34%) | 2-Undecanone (62.0%) and 2-nonanone (18.0%) | [54] | |
Egypt (Minia) | Fresh flowers (0.215%) | 2-Undecanone (70.2–84.6%) and 2-noanone (3.0–7.4%) | [55] | |
Fresh leaves (0.37%) | 2-Undecanone (52.5–58.1%) and 2-noanone (18.0–25.1%) | [55] | ||
India (Rayalaseema region) | Air-dried aerial parts (1.29%) | 2-Undecaone (43.7%), 2-nonanone (16.1%), 2-tridecanone (2.6%), and 2-decanone (2.6%) | [56] | |
India (Orissa) | Fresh leaves (field grown, 0.80%) | 2-Undecanone (45.4%), 2-nonanone (21.4%), 2-nonyl acetate (6.8%), and 2-dodecanone (4.1%) | [57] | |
Fresh leaves (micropropagated, 0.84%) | 2-Undecanone (48.1%), 2-nonanone (22.5%), 2-nonyl acetate (6.8%), and 2-dodecanone (4.0%) | [57] | ||
Italy | Commercial oil | 2-Undecanone (83.2%) and carvacrol (15.0%) | [58] | |
Korea | Air-dried aerial parts (0.06%) | 2-Isopropyl-5-methylphenol (31%), Pentadecanol (18.5%), 1-methyltridecyl pentanoate (12.1%), 4-hexadecanyl pivalate (6.1%), and 2-acetoxytridecane (5.6%) | [59] | |
Peru | Fresh aerial parts (0.27%) | 2-Undecanone (40.9%), 2-nonanone (29.0%), and β-caryophyllene (3.4%) | [14] | |
Portugal | Air-dried aerial parts (0.81%) | 2-Undecanone (91.0%) and 8-phenyl-2-octanone (7.0%) | [60] | |
Russia | Genetically transformed fresh roots (0.23%) | Geijerene (67.0%) | [16] | |
Tunisia (Tozeur oases) | Air-dried leaves (0.21%) | 1-Nonene (19.4%), 2-undecanone (16.2%), and 2-nonanone (11.9%) | [61] | |
Tunisia (Tunis) | Fresh aerial parts (1.67%) | 2-Undecanone (56.9%), 2-nonanone (23.6%), and 1-nonen (4.4%) | [62] | |
Tunisia (Bizerta) | Oven-dried (40–60 °C) flowers (0.25–0.43%) | 2-Undecanone (22.0–31.0%), 2-nonanone (10.5–12.3%), 2-dodecanone (9.8–12.3%), 2-tridecanone (10.3–11.7%), and limonene (5.4–8.3%) | [63] | |
Oven-dried (40–60 °C) leaves (0.57–0.78%) | 2-Undecanone (26.8–37.3%), 2-nonanone (10.5–12.8%), 2-dodecanone (3.2–5.7%), 2-tridecanone (5.1–5.3%), and limonene (2.6–5.1%) | [63] | ||
Oven-dried (40–60 °C) stems (0.42–0.63%) | α-Eudesmol (48.8–58.5%) and octanoic acid (28.1–30.5%) | [63] | ||
Tunisia (Jemmel) | Fresh leaves (0.30%) | 2-Nonanone (38.7%), 2-undecanone (27.3%), and 2-nonanol (12.3%) | [64] | |
Fresh stems (0.10%) | 2-Undecanone (40.3%), 2-nonanone (35.0%), and 2-nonanol (3.8%) | [64] | ||
Tunisia (Tunis) | Shade-dried aerial parts (0.77%) | 2-Undecanone (60.6%), borneol (12.0%), 2-dodecanol (7.9%), 2-nonanone (4.9%), and 2-dodecanone (3.7%) | [65] | |
Turkey | Flowers and leaves (1.25%) | 2-Undecanone (64.8%) and 2-nonanone (13.8%) | [66] | |
Ruta montana L. | Algeria (Blida, Bouira, Boumerdes, Djelfa, M’sila, Tipaza and Tizi ouzou) | Shade-dried aerial parts (0.38–1.45%) | 2-Undecanone (27.2–81.7%), 2-nonanone (1.9–39.5%), and 2-nonanyl acetate (trace-24.8%) | [67] |
Algeria | Shade-dried aerial parts (0.65%) | 2-Undecanone (20.9–70.1%), E-caryophyllene (5.0–9.1%), and caryophyllene oxide (2.5–3.6%) | [15] | |
Algeria (Tipaza) | Fresh aerial parts (0.97%) | 2-Undecanone (67.0%), 2-decanone (9.0%), and 2-dodecanone (4.0%) | [68] | |
Air-dried aerial parts (0.60%) | 2-Undecanone (67.4%), 2-decanone (7.6%), and 2-dodecanone (4.0%) | [68] | ||
Algeria (Oran) | Air-dried aerial parts (1.63%) | 2-Undecanone (32.8%), 2-nonanone (29.5%), nonanol-2-acetate (18.2%), and psoralen (3.5%) | [69] | |
Algeria (Hammam Melouane) | Shade-dried aerial parts (1.80%) | 2-Undecanone (71.4%), 2-tridecanone (10.5%), 2-dodecanone (8.1%), and 2-decanone (5.4%) | [70] | |
Morocco (Boulemane region) | Air-dried aerial parts (1.46%) | 2-Undecanone (82.6%), 2-undecanol (2.9%), and 2-undecanol acetate (2.1%) | [71] | |
Morocco (Taza) | Air-dried aerial parts (0.37%) | 2-Undecanone (64.9%), camphor (3.8%), and cyclopropane carboxylic acid (3.7%) | [72] | |
Tunisia (Tunis) | Fresh aerial parts (1.21%) | 2-Undecanone (88.8%) and 2-decanone (4.9%) | [62] | |
Tunisia (Sfax) | Air-dried leaves (0.26%) | 1-Butene (38.3%), 2-butene (22.6%, methylcyclopropane (15.5%), and caryophyllene oxide (8.2%) | [73] | |
Tunisia (Joumine) | Air-dried leaves (0.66%) | 2-Undeconone (52.2%), 1-nonene (13.5%), 2-nonanone (10.1%), and 2-undecanol (2.4%) | [41] | |
Air-dried stems (0.66%) | 2-Undeconone (44.9%), 1-nonene (5.8%) and 2-nonanone (3.9%) | [41] | ||
Ruta tuberculata Forssk. | Algeria (Bechar) | Air-dried aerial parts (0.11%) | Piperitone (13.6%), trans-p-menth-2-en-1-ol (13.1%), cis-piperitol (12.3%), cis-p-menth-2-en-1-ol (13.1%), trans-piperitol (4.1%), and 2-undecanone (1.6%) | [18] |
Ruta Essential Oil Source | Activity against Bacterial Species (Zones of Inhibition in mm and/or MIC in μg/mL) | References |
---|---|---|
Ruta angustifolia Pers. Aerial parts | No detectable activity against Acinetobacter baumanii, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus Active against Bacillus cereus (10 mm), Enterococcus faecalis (8 mm), and Citrobacter freundii (7 mm) | [18] |
Ruta chalepensis L. Aerial parts | Plant pathogenic bacterial species, Clavibacter michiganensis subsp. michiganensis and Xanthomonas albilineans | [23] |
Ruta chalepensis L. Aerial parts | Streptococcus suis | [81] |
Ruta chalepensis L. Aerial parts | Bacillus subtilis (24 mm), Escherichia coli (22 mm), Klebsiella pneumoniae (25 mm), and Staphylococcus aureus (24 mm) | [20] |
Ruta chalepensis L. Leaves | No detectable activity against Aeromonas hydrophila, Bacillus subtilis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, and Staphylococcus aureus | [9] |
Ruta chalepensis L. Leaves | Escherichia coli, Listeria monocytogenes, and Pseudomonas aeruginosa | [17] |
Ruta chalepensis L. Leaves | Escherichia coli (750 μg/mL), Pseudomonas aeruginosa (7000 μg/mL), Staphylococcus aureus (2500 μg/mL) and methicillin resistant Staphylococcus aureus (MRSA) (4000 μg/mL) | [33] |
Ruta chalepensis L. Leaves | Escherichia coli (15.6 μg/mL), Pseudomonas aeruginosa (125 μg/mL) and Staphylococcus aureus 15.6 μg/mL) | [22] |
Ruta chalepensis L. Leaves and stems | Escherichia coli (>512 μg/mL) and Staphylococcus aureus (>512 μg/mL) | [29] |
Ruta chalepensis L. Roots | Listeria monocytogenes and Pseudomonas aeruginosa | [17] |
Ruta chalepensis L. Stems | Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus | [17] |
Ruta chalepensis L. var. bracteosa Aerial parts | No detectable activity against Citrobacter freundii, Enterobacter cloacae, Klebsiella pneumoniae, Listeria monocytogenes, and Pseudomonas aeruginosa Active against Acinetobacter baumanii (12 mm), Bacillus cereus (12 mm), Enterococcus faecalis (10 mm), Citrobacter freundii (7 mm), Escherichia coli (7 mm), Proteus mirabilis (10 mm), Salmonella typhi (15 mm), and Staphylococcus aureus (17 mm) | [18] |
Ruta graveolens L. Aerial parts | Escherichia coli (7 mm), Klebsiella pneumoniae (no activity), Pseudomonas aeruginosa (12 mm), and Staphylococcus aureus (16 mm) | [62] |
Ruta graveolens L. Aerial parts | No activity against Pseudomonas aeruginosa | [82] |
Ruta graveolens L. Aerial parts | Helicobacter pylori | [83] |
Ruta graveolens L. Aerial parts | Legionella pneumophila (MIC < 0.02–0.40 μg/mL) | [65] |
Ruta graveolens L. Aerial parts | Acinetobacter baumannii (19 mm, MIC 1.22 μg/mL), Bacillus cereus (28 mm, MIC 1.0 μg/mL), Citrobacter freundii (16 mm, MIC 1.0 μg/mL), Enterobacter aerogenes (13 mm, MIC 72.0 μg/mL), Enterobacter cloacae (18 mm, MIC 0.89 μg/mL), Enterococcus faecalis (27 mm, MIC 1.0 μg/mL), Escherichia coli (18 mm, MIC 0.65 μg/mL), Klebsiella pneumoniae (18 mm, MIC 1.58 μg/mL), Listeria monocytogenes (18 mm, MIC 0.70 μg/mL), Micrococcus flavus (21 mm, MIC 1.48 μg/mL), Micrococcus luteus (19 mm, MIC 1.0 μg/mL), Proteus mirabilis (22 mm, MIC 0.76 μg/mL), Pseudomonas aeruginosa (15 mm, MIC 1.0 μg/mL), Salmonella typhimurium (13 mm, MIC 1.34 μg/mL), and Staphylococcus aureus (23 mm, MIC 1.0 μg/mL) | [56] |
Ruta graveolens L. Aerial parts | Food-borne bacterial species, Bacillus cereus (15 mm, MIC 75 μg/mL), Listeria monocytogenes (13 mm, MIC 75 μg/mL), Salmonella enterica (22 mm, MIC 25 μg/mL), Staphylococcus intermedius (14 mm, MIC 25 μg/mL), Shigella sonnei (14 mm, MIC 25 μg/mL), and Salmonella typhimurium (15 mm, MIC 25 μg/mL) | [59] |
Ruta graveolens L. Aerial parts | No detectable activity against Acinetobacter baumanii, Citrobacter freundii, Enterobacter cloacae, Klebsiella pneumoniae, Listeria monocytogenes, and Pseudomonas aeruginosa Active against Bacillus cereus (12 mm), Enterococcus faecalis (9 mm), Escherichia coli (7 mm), Proteus mirabilis (7 mm), Salmonella typhi (12 mm), and Staphylococcus aureus (12 mm) | [18] |
Ruta graveolens L. Leaves | Bacillus cereus (26 mm, MIC 1.0 μg/mL), Enterobacter aerogenes (13 mm, MIC 1.4 μg/mL), Escherichia coli (18 mm, MIC 1 μg/mL), Micrococcus flavus (19 mm, MIC 0.75 μg/mL), Micrococcus luteus (17 mm, MIC 0.89 μg/mL), Pseudomonas aeruginosa (8.0 mm, MIC 75.0 μg/mL), Salmonella typhi (12 mm, MIC 1.0 μg/mL), and Staphylococcus aureus (22 mm, MIC 1.0 μg/mL) | [50] |
Ruta graveolens L. Leaves | Bacillus cereus (210 μg/mL), Dickeya solani (420 μg/mL) Escherichia coli (100 μg/mL), Listeria monocytogenes (210 μg/mL), Micrococcus flavus (210 μg/mL), Pectobacterium atrosepticum (310 μg/mL), Pectobacterium carotovorum subsp. carotovorum (110 μg/mL), Pseudomonas aeruginosa (350 μg/mL), and Staphylococcus aureus (100 μg/mL) | [54] |
Ruta graveolens L. Leaves | Staphylococcus aureus (10–20 mm) | [78] |
Ruta graveolens L. Leaves and flowers | Escherichia coli (MIC 7.5–7.9 μg/mL), Klebsiella pneumoniae (MIC 4.5–5.2 μg/mL), Pseudomonas aeruginosa (MIC 5.8–6.3 μg/mL), and Staphylococcus aureus (MIC 3.5–3.9 μg/mL) | [55] |
Ruta montana L. Aerial parts | Escherichia coli (9 mm), Klebsiella pneumoniae (no activity), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (21 mm) | [62] |
Ruta montana L. Aerial parts | Not active against Escherichia coli Active against Staphylococcus aureus (18 mm) | [70] |
Ruta montana L. Aerial parts | Bacillus subtilis (10–15 mm), Enterobacter faceium (11–13 mm), Escherichia coli (10–14 mm), Klebsiella pneumoniae (10–13 mm), Pseudomonas aeruginosa (9–13 mm), and Staphylococcus aureus (12–16 mm) | [67] |
Ruta montana L. Aerial parts | Bacillus subtilis (21 mm, MIC 6250 μg/mL), Escherichia coli (not active), Listeria innocua (10 mm), and Proteus mirabilis (17 mm, MIC 6250 μg/mL), Pseudomonas aeruginosa (9 mm), and Staphylococcus aureus (12 mm, MIC > 25000 μg/mL) | [72] |
Ruta montana L. Aerial parts | Activity against Citrobacter koseri (8 mm), Corynebacterium sp. (11 mm), Enterococcus faecalis (7 mm), Enterococcus faecium (17 mm), Escherichia coli (8 mm), Klebsiella oxytoca (8 mm), Listeria sp. (11 mm), Proteus mirabilis (7 mm), Pseudomonas aeruginosa (8 mm), Salmonella sp. (11 mm), Serratia marcescens (8 mm), Staphylococcus aureus (8 mm), Staphylococcus haemolyticus (8 mm), Streptococcus acidominimus (7 mm), Streptococcus porcinus (8 mm), and Yersinia enterolitica (8 mm). No activity against Enterobacter aerogens, Enterobacter cloacae, Klebsiella pneumonie ssp. Pneumonie, Pseudomonas fluorescence, Pseudomonas putida, Shigella sp., Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus groupe | [71] |
Ruta montana L. Aerial parts | Agrobacterium tumefaciens | [73] |
Ruta tuberculata Forssk. Aerial parts | No detectable activity against Acinetobacter baumanii, Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Proteus mirabilis, and Pseudomonas aeruginosa. Active against Bacillus cereus (12 mm), Enterococcus faecalis (14 mm), Salmonella typhi (8 mm), and Staphylococcus aureus (10 mm) | [18] |
Ruta Essential Oil Source | Activity against Fungal Species (Zones of Inhibition in mm or MIC in μg/mL) | References |
---|---|---|
Ruta angustifolia Pers. Aerial parts | Alternaria alternaria (25 mm), Aspergillus flavus (25 mm), Aspergillus fumigatus (20 mm), Candida albicans (35 mm), Cladosporium herbarum (18 mm), and Fusarium oxysporum (20 mm) | [18] |
Ruta chalepensis L. var. bracteosa Aerial parts | Alternaria alternaria (10 mm), Aspergillus flavus (16 mm), Aspergillus fumigatus (23 mm), Candida albicans (15 mm), Cladosporium herbarum (35 mm), and Fusarium oxysporum (8 mm) | [18] |
Ruta chalepensis L. Aerial parts | Candida albicans (28 mm) and Saccharomyces cerevisiae (27 mm) | [20] |
Ruta chalepensis L. Aerial parts | Alternaria sp. (24 mm) and Microdochium nivale (29 mm) | [40] |
Ruta chalepensis L. Aerial parts | Alternaria solani (22 mm) | [86] |
Ruta chalepensis L. Leaves | Candida albicans (MIC 2750 μg/mL) | [33] |
Ruta chalepensis L. Leaves | Aspergillus flavus (17 mm), Aspergillus niger (15 mm), and Candida albicans (11 mm) | [42] |
Ruta chalepensis L. Leaves | Growth inhibition (100%) of Fusarium culmorum, Fusarium graminearum, Fusarium polyphialidicum, Fusarium proliferatum, and Fusarium pseudograminearum at a concentration of the essential oil at 20 μL/mL | [10] |
Ruta chalepensis L. Leaves and stems | Candida albicans (512 μg/mL) and Trichophyton rubrum (512 μg/mL) | [29] |
Ruta chalepensis L. Leaves, roots and stems | Aspergillus spp. (26 mm), Saccharomyces cerevisiae (26 mm), Streptomyces griseus (20 mm), Fusarium solani (19 mm), and Penicillium thomii (16 mm) | [17] |
Ruta graveolens L. Aerial parts | Aspergillus parasiticus (28 mm) | [87] |
Ruta graveolens L. Aerial parts | Alternaria alternata (22 mm), Aspergillus flavus (26 mm), Aspergillus fumigatus (14 mm), Candida albicans (35 mm), Cladosporium herbarum (26 mm), and Fusarium oxysporium (20 mm) | [56] |
Ruta graveolens L. Aerial parts | Melassezia furfur (30 mm) | [88] |
Ruta graveolens L. Aerial parts | Candida albicans (8.2 μg/mL), Candida parapsilopsis (16.4 μg/mL), Candida glabrata (4.1 μg/mL), and Candida tropicalis (131.0 μg/mL) | [89] |
Ruta graveolens L. Aerial parts | Alternaria alternaria (25 mm), Aspergillus flavus (22 mm), Aspergillus fumigatus (15 mm), Candida albicans (33 mm), Cladosporium herbarum (25 mm), and Fusarium oxysporum (20 mm) | [18] |
Ruta graveolens L. Aerial parts | Sclerotinia sclerotiorum (27 mm) | [90] |
Ruta graveolens L. Aerial parts | Reduced colony forming unit (CFU) of Bipolaris oryzae and Gerlachia oryzae | [91] |
Ruta graveolens L. Aerial parts | Reduced colony forming unit (CFU) of Bipolaris oryzae and Gerlachia oryzae | [92] |
Ruta graveolens L. Leaves | Monilinia fructicola (240 μg/mL) | [54] |
Ruta graveolens L. Leaves | Candida albicans (15 mm) and Candida krusei (17 nm) | [78] |
Ruta graveolens L. Leaves and flowers | Candida albicans (MIC 1.1–2.1 μg/mL), Candida albicans clinical strain (MIC 1.5–2.3 μg/mL), Candida glabrata (MIC 1.5–2.5 μg/mL), and Candida krusei (MIC 1.6–2.5 μg/mL) | [55] |
Ruta montana L. Aerial parts | Candida albicans (13–18 mm) and Saccharomyces cerevisiae (12–15 mm) | [67] |
Ruta montana L. Aerial parts | Candida albicans (>40 mm) | [70] |
Ruta montana L. Aerial parts | Candida albicans (22 mm, MIC > 25,000 μg/mL) | [72] |
Ruta montana L. Aerial parts | Aspergillus niger (12 mm), Candida albicans (32 mm), Candida dubliniensis (24 mm), Candida glabrata (17 mm), Candida sp. (13 mm), Candida tropicalis (14 mm), Cryptococcus neoformans (20 mm), Fusarium sp. (14 mm), Penicillium sp. (15 mm), Rhodotorula rubra (11 mm), Trichophyton mentagrophytes (15 mm), and Trichosporon sp. (17 mm) | [71] |
Ruta montana L. Aerial parts | Aspergillus oryzae, Botrytis cinerea, Fusarium oxysporum, Fusarium solani, and Verticillium dahlia with MICs 100–1100 μg/mL | [73] |
Ruta tuberculata Forssk. Aerial parts | Alternaria alternaria (20 mm), Aspergillus flavus (17 mm), Aspergillus fumigatus (17 mm), Candida albicans (17 mm), Cladosporium herbarum (34 mm), and Fusarium oxysporum (16 mm) | [18] |
Ruta sp. Aerial parts | Alternaria alternata (31 mm), Aspergillus fumigatus (29 mm), Aspergillus niger (24 mm), Mucor mucedo (21 mm), and Rhizopus arrhizus (28 mm) | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahar, L.; El-Seedi, H.R.; Khalifa, S.A.M.; Mohammadhosseini, M.; Sarker, S.D. Ruta Essential Oils: Composition and Bioactivities. Molecules 2021, 26, 4766. https://doi.org/10.3390/molecules26164766
Nahar L, El-Seedi HR, Khalifa SAM, Mohammadhosseini M, Sarker SD. Ruta Essential Oils: Composition and Bioactivities. Molecules. 2021; 26(16):4766. https://doi.org/10.3390/molecules26164766
Chicago/Turabian StyleNahar, Lutfun, Hesham R. El-Seedi, Shaden A. M. Khalifa, Majid Mohammadhosseini, and Satyajit D. Sarker. 2021. "Ruta Essential Oils: Composition and Bioactivities" Molecules 26, no. 16: 4766. https://doi.org/10.3390/molecules26164766
APA StyleNahar, L., El-Seedi, H. R., Khalifa, S. A. M., Mohammadhosseini, M., & Sarker, S. D. (2021). Ruta Essential Oils: Composition and Bioactivities. Molecules, 26(16), 4766. https://doi.org/10.3390/molecules26164766