Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage
<p>The damage scale of the guavas.</p> "> Figure 2
<p>Evolution of pH in guavas with CS+RGEO treatments: Control = uncoated, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5%. Mean values and intervals of Tukey’s 95% according to the ANOVA test. Different superscript letters in the same column indicate significant differences between treatments (a, b, c, d <span class="html-italic">= p</span> < 0.05).</p> "> Figure 3
<p>Evolution of the percentage of titratable acidity expressed as citric acid in guavas with CS+RGEO treatments: control, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5. Mean values and intervals of Tukey’s 95% according to the ANOVA test. Different superscript letters in the same column indicate significant differences between treatments (a, b, c, d <span class="html-italic">= p</span> < 0.05).</p> "> Figure 4
<p>Evolution of the total soluble solids content by TSS measurement in guavas with CS+RGEO treatments: control, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5. Mean values and intervals of Tukey’s 95% according to the ANOVA test. Different superscript letters in the same column indicate significant differences between treatments (a, b, c, d <span class="html-italic">= p</span> < 0.05).</p> "> Figure 5
<p>Maturity index of guavas during the storage time with CS+RGEO treatments: control, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5%. Mean values and intervals of Tukey’s 95% according to the ANOVA test. Different superscript letters in the same column indicate significant differences between treatments (a, b, c, d <span class="html-italic">= p</span> < 0.05).</p> "> Figure 6
<p>Evolution of the decay index in strawberries with chitosan (CS) and treatments of oil (TCEO): control, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5%. Mean values and intervals of Tukey’s 95% according to the ANOVA test.</p> "> Figure 7
<p>Evolution of CO<sub>2</sub> respiration rate in guavas with CS+RGEO treatments: control, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5%. Mean values and intervals of Tukey’s 95% according to the ANOVA test.</p> "> Figure 8
<p>Evolution of firmness in guava with chitosan (CS) and oil treatments (RGEO): control, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5%. Mean values and intervals of Tukey’s 95% according to the ANOVA test.</p> "> Figure 9
<p>Color evolution during 12 days of guava with CS+RGEO treatments: control, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5%. Mean values and intervals of Tukey’s 95% according to the ANOVA test. (<b>A</b>) Evolution of the L coordinate during 12 days with the CS+RGEO treatments. (<b>B</b>) Evolution of the a* coordinate during 12 days with the CS+RGEO treatments. (<b>C</b>) Evolution of the b* coordinate during 12 days with the CS+RGEO treatments.</p> "> Figure 10
<p>The hedonistic scale of guavas treated with CS+RGEO on days 0 (<b>A</b>); day 5 (<b>B</b>); and day 10 (<b>C).</b> Mean values and intervals of Tukey’s 95% according to the ANOVA test.</p> "> Figure 11
<p>Images of growth inhibition of <span class="html-italic">C. gloesporoides</span> fungi in guava in situ inoculated at the end of the storage using CS+RGEO treatments: T1 = uncoated, T2 = CS, T3 = CS+RGEO 0.5%, T4 = CS+RGEO 1.0%, and T5 = CS+RGEO 1.5%.</p> "> Figure 12
<p>Growth inhibition of <span class="html-italic">C. gloesporoides</span> fungi in guava in situ inoculated using CS+RGEO treatments: control= uncoated, T1 = CS, T2 = CS+RGEO 0.5%, T3 = CS+RGEO 1.0%, and T4 = CS+RGEO 1.5%. Mean values and intervals of Tukey’s 95% according to the ANOVA test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composition of Essential Oil of Ruta Graveolens
2.2. CS+RGEO Emulsion Preparation and Characterization
2.2.1. Particle Size
2.2.2. Viscosity Measurements
2.2.3. Total Solid Content
2.3. Treatments
2.3.1. Fruit Samples
2.3.2. Evaluation of the Coatings on the Naturally Contaminated Fruits
2.3.3. Evaluation of the Coatings on Inoculated Guavas
2.4. Quality Attributes of Guava Samples
2.4.1. pH and Total Soluble Solids (TSS)
2.4.2. Titratable Acidity
2.4.3. Maturation Index
2.4.4. Weight Loss
2.4.5. Water Activity (Aw)
2.4.6. Decay Index
2.4.7. CO2 Respiration Rate
2.4.8. Firmness Analysis
2.4.9. Color Parameters
2.5. Microbiological Analysis
2.5.1. Yeast and Molds
2.5.2. Mesophylls Aerobic Counts
2.6. Sensorial Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Essential Oil Characterization
3.2. Physicochemical Characterization of Chitosan Emulsions
3.3. Physicochemical Analysis and Mechanical Properties of Coatings on Guava
3.3.1. Changes in Titratable Acidity and pH
3.3.2. Soluble Solids Content (SSC)
3.3.3. Maturity Index
3.3.4. Weight Loss and Water Activity
3.3.5. Decay Index
3.3.6. CO2 Respiration Rate
3.3.7. Firmness Analysis
3.3.8. Color Parameters
3.4. Microbiological Analysis
3.5. Sensory Properties
3.6. Antifungal Effects In Situ
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Porat, R.; Lichter, A.; Terry, L.A.; Harker, R.; Buzby, J. Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biol. Technol. 2018, 139, 135–149. [Google Scholar] [CrossRef]
- Kitinoja, L.; Kader, A.A. Measuring postharvest losses of fresh fruits and vegetables in developing countries. Postharvest Educ. Found. 2015, 1–26. [Google Scholar]
- Singh, D.; Sharma, R.R. Postharvest diseases of fruits and vegetables and their management. In Postharvest Disinfection of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–52. [Google Scholar]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Sharma, M.; Kulshrestha, S. Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosci. Biotechnol. Res. Asia 2015, 12, 1233–1246. [Google Scholar] [CrossRef]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Pétriacq, P.; López, A.; Luna, E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? Plants 2018, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Prusky, D. Reduction of the incidence of postharvest quality losses, and future prospects. Food Secur. 2011, 3, 463–474. [Google Scholar] [CrossRef]
- Mitra, S.K.; Irenaeus, T.K.S.; Gurung, M.R.; Pathak, P.K. Taxonomy and importance of Myrtaceae. Acta Hortic. 2012, 959, 23–34. [Google Scholar] [CrossRef]
- Padilla-Ramirez, J.S.; González-Gaona, E.; Ambriz-Aguilar, J. International market of fresh and processed guava: Challenges and perspectives for the Mexican case. Acta Hortic. 2012, 959, 15–21. [Google Scholar] [CrossRef]
- Murmu, S.B.; Mishra, H.N. Post-harvest shelf-life of banana and guava: Mechanisms of common degradation problems and emerging counteracting strategies. Innov. Food Sci. Emerg. Technol. 2018, 49, 20–30. [Google Scholar] [CrossRef]
- Singh, N.; Misra, K.K.; Dongariyal, A.; Rani, A.; Nirgude, V. Response of different coating material on post-harvest life and quality of guava (Psidium guajava L.). IJCS 2018, 6, 2635–2639. [Google Scholar]
- Nasima, N.; Swaminathan, V.; Rajangam, J.; Venkatesan, K. Response of post-harvest dipping on shelf-life and quality of guava (Psidium guajava L.) fruits under cold storage. IJCS 2019, 7, 1901–1905. [Google Scholar]
- Blancas-Benitez, F.J.; González-Aguilar, G.A.; Sáyago-Ayerdi, S.G. Guava (Psidium guajava); Yahia, E.M., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 1067–1076. [Google Scholar]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. (Amsterdam) 2012, 144, 172–178. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Spadoni, A.; Neri, F.; Mari, M. Physical and chemical control of postharvest diseases. Adv. Postharvest Fruit Veg. Technol. 2015, 89–116. [Google Scholar]
- Predmore, A.; Li, J. Enhanced Removal of a Human Norovirus Surrogate from Fresh Vegetables and Fruits by a Combination of Surfactants and Sanitizers. Appl. Environ. Microbiol. 2011, 77, 4829–4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuffi, R.; Lovino, R.; Canese, S.; Cafiero, L.M.; Vitali, F.; Ferreira, C.O.; Álvarez-Martín, P.; Flórez, A.B.; Díaz, M.; Mayo, B. Effects of Exposure to Gaseous Ozone and Negative Air Ions on Control of Epiphytic Flora and the Development of Botrytis Cinerea and Penicillium Expansum During Cold Storage of Strawberries and Tomatoes. Ital. J. Food Sci. 2012, 24, 102. [Google Scholar]
- Allende, A.; Marín, A.; Buendía, B.; Tomás-Barberán, F.; Gil, M.I. Impact of combined postharvest treatments (UV-C light, gaseous O3, superatmospheric O2 and high CO2) on health promoting compounds and shelf-life of strawberries. Postharvest Biol. Technol. 2007, 46, 201–211. [Google Scholar] [CrossRef]
- Audenaert, K.; Monbaliu, S.; Deschuyffeleer, N.; Maene, P.; Vekeman, F.; Haesaert, G.; De Saeger, S.; Eeckhout, M. Neutralized electrolyzed water efficiently reduces Fusarium spp. in vitro and on wheat kernels but can trigger deoxynivalenol (DON) biosynthesis. Food Control 2012, 23, 515–521. [Google Scholar] [CrossRef]
- Najafabadi, N.S.; Sahari, M.A.; Barzegar, M.; Esfahani, Z.H. Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit. Radiat. Phys. Chem. 2017, 130, 62–68. [Google Scholar] [CrossRef]
- Chaves-López, C.; Martin-Saacute; Nchez, A.M.; Fuentes-Zaragoza, E.; Viuda-Martos, M.; Fernández-López, J.; Sendra, E.; Sayas, E.; ALlvarez, J.A.P. Role of Oregano (Origanum vulgare) Essential Oil as a Surface Fungus Inhibitor on Fermented Sausages: Evaluation of Its Effect on Microbial and Physicochemical Characteristics. J. Food Prot. 2012, 75, 104–111. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, E.M.; Grande Tovar, D.C. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecus 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Nigro, F.; Ippolito, A.; Divenere, D.; Salerno, M. Effects of pre-and postharvest chitosan treatments to control storage grey mold of table grapes. J. Food Sci. 2002, 67, 1862–1867. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. De Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: Effects on fungi involve in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Gentile, M.T.; Russo, R.; Pastorino, O.; Cioffi, S.; Barbieri, F.; Illingworth, E.A.; Grieco, M.; Chambery, A.; Colucci-D’Amato, L. Ruta graveolens water extract inhibits cell-cell network formation in human umbilical endothelial cells via MEK-ERK1/2 pathway. Exp. Cell Res. 2018, 364, 50–58. [Google Scholar] [CrossRef]
- Pavić, V.; Flačer, D.; Jakovljević, M.; Molnar, M.; Jokić, S. Assessment of Total Phenolic Content, In Vitro Antioxidant and Antibacterial Activity of Ruta graveolens L. Extracts Obtained by Choline Chloride Based Natural Deep Eutectic Solvents. Plants 2019, 8, 69. [Google Scholar] [CrossRef]
- Law, S.; Sanyal, S.; Chatterjee, R.; Law, A.; Law, A.; Chattopadhyay, S. Therapeutic management of peritoneal ascitic sarcomatosis by Ruta graveolens: A study in experimental mice. Pathol. Pract. 2018, 214, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, Z.; Zargaran, A.; Bahmani, M.; Baharvand Ahmadi, B.; Baharvand Ahmadi, S.; Saki, K.; Rafieian Kopaei, M. Ruta graveolens plant: A plant with a range of high therapeutic effect called cardiac plant. Der Pharm. Lett. 2015, 7, 172–173. [Google Scholar]
- Ratheesh, M.; Shyni, G.L.; Helen, A. Methanolic extract of Ruta graveolens L. inhibits inflammation and oxidative stress in adjuvant induced model of arthritis in rats. Inflammopharmacology 2009, 17, 100–105. [Google Scholar] [CrossRef]
- Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1220055. [Google Scholar] [CrossRef]
- Ruiz, L.D.; Valenzuela, R.B.; Ruiz, O.D.; Vega, M.S.; Flores, P.G. Chemical composition and antibacterian effect in vitro of extracts of larrea tridentata, origanum vulgare, artemisa ludoviciana and ruta graveolens. Nov. Sci. 2017, 9, 273–290. [Google Scholar] [CrossRef]
- Orlanda, J.F.F.; Nascimento, A.R. Chemical composition and antibacterial activity of Ruta graveolens L.(Rutaceae) volatile oils, from São Luís, Maranhão, Brazil. South African J. Bot. 2015, 99, 103–106. [Google Scholar] [CrossRef]
- Trovato, A.; Monforte, M.T.; Forestieri, A.M.; Pizzimenti, F. In vitro anti-mycotic activity of some medicinal plants containing flavonoids. Boll. Chim. Farm. 2000, 139, 225–227. [Google Scholar]
- Ali-Shtayeh, M.S.; Abu Ghdeib, S.I. Antifungal activity of plant extracts against dermatophytes. Mycoses 1999, 42, 665–672. [Google Scholar] [CrossRef]
- Wolters, B.; Eilert, U. Antimicrobial substances in callus cultures of Ruta graveolens. Planta Med. 1981, 43, 166–174. [Google Scholar] [CrossRef]
- Ojala, T.; Remes, S.; Haansuu, P.; Vuorela, H.; Hiltunen, R.; Haahtela, K.; Vuorela, P. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol. 2000, 73, 299–305. [Google Scholar] [CrossRef]
- Oliva, A.; Lahoz, E.; Contillo, R.; Aliotta, G. Fungistatic activity of Ruta graveolens extract and its allelochemicals. J. Chem. Ecol. 1999, 25, 519–526. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Baños, S.B.; Sivakumar, D. Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 2017, 57, 579–601. [Google Scholar] [CrossRef] [PubMed]
- El Ghaouth, A.; Arul, J.; Ponnampalam, R.; Boulet, M. Chitosan coating effect on storability and quality of fresh strawberries. J. Food Sci. 1991, 56, 1618–1620. [Google Scholar] [CrossRef]
- El Ghaouth, A.; Arul, J.; Grenier, J.; Asselin, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 1992, 82, 398–402. [Google Scholar] [CrossRef]
- Zhang, D.; Quantick, P.C. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol. Technol. 1997, 12, 195–202. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y. Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chem. 2001, 73, 139–143. [Google Scholar] [CrossRef]
- Li, H.; Yu, T. Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. J. Sci. Food Agric. 2001, 81, 269–274. [Google Scholar] [CrossRef]
- Kittur, F.S.; Saroja, N.; Tharanathan, R. Polysaccharide-based composite coating formulations for shelf-life extension of fresh banana and mango. Eur. Food Res. Technol. 2001, 213, 306–311. [Google Scholar] [CrossRef]
- de Oliveira, K.Á.R.; Berger, L.R.R.; de Araújo, S.A.; Câmara, M.P.S.; de Souza, E.L. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiol. 2017, 66, 96–103. [Google Scholar] [CrossRef]
- Bill, M.; Sivakumar, D.; Korsten, L.; Thompson, A.K. The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Prot. 2014, 64, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Correa-Pacheco, Z.N.; Bautista-Baños, S.; Valle-Marquina, M.Á.; Hernández-López, M. The Effect of Nanostructured Chitosan and Chitosan-thyme Essential Oil Coatings on Colletotrichum gloeosporioides Growth in vitro and on cv Hass Avocado and Fruit Quality. J. Phytopathol. 2017, 165, 297–305. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Thommohaway, C.; Kanlayanarat, S.; Uthairatanakij, A.; Jitareerat, P. Quality of fresh-cut guava (Psidium guajava L.) as affected by chitosan treatment. Acta Hortic. 2007, 746, 449–454. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Chaves-Lopez, C.; Viuda-Martos, M.; Serio, A.; Delgado-Ospina, J.; Perez-Alvarez, J.A.; Ospina, N.; la Tora, S.; Palmieri, S.; Paparella, A. Sub-lethal concentrations of Colombian Austroeupatorium inulifolium (H.B.K.) essential oil and its effect on fungal growth and the production of enzymes. Ind. Crops Prod. 2016, 87, 315–323. [Google Scholar] [CrossRef]
- Jones, R.M. Particle size analysis by laser diffraction: ISO 13320, standard operating procedures, and Mie theory. Am. Lab. 2003, 35, 44–47. [Google Scholar]
- Steffe, J.F. Rheological methods in food process engineering; Freeman press: East Lansing, Michigan, MI, USA, 1996; ISBN 0963203614. [Google Scholar]
- Oliveira, P.D.L.; de Oliveira, K.Á.R.; dos Santos Vieira, W.A.; Câmara, M.P.S.; de Souza, E.L. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (DC ex Nees) Stapf. essential oil. Int. J. Food Microbiol. 2018, 266, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Necha, L.L.B.; Barrera, L.J.G. Actividad antifúngica de aceites esenciales y sus compuestos sobre el crecimiento de Fusarium sp. aislado de papaya (Carica papaya). Rev. científica UDO agrícola 2008, 8, 33–41. [Google Scholar]
- Ruiz, C.; Díaz, C.; Rojas, R. Composición química de aceites esenciales de 10 plantas aromáticas peruanas. Rev. la Soc. Química del Perú 2015, 81, 81–94. [Google Scholar]
- Attia, E.Z.; El-Baky, R.M.A.; Desoukey, S.Y.; Mohamed, M.A.E.H.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Future J. Pharm. Sci. 2018, 4, 254–264. [Google Scholar] [CrossRef]
- Popova, A.A.; Koksharova, O.A.; Lipasova, V.A.; Zaitseva, J.V.; Katkova-Zhukotskaya, O.A.; Eremina, S.I.; Mironov, A.S.; Chernin, L.S.; Khmel, I.A. Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- López, C.C.; Mazzarrino, G.; Rodríguez, A.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America. Ind. Crops Prod. 2015, 63, 79–86. [Google Scholar] [CrossRef]
- Bassole, I.H.N.; Ouattara, A.S.; Nebie, R.; Ouattara, C.A.T.; Kabore, Z.I.; Traore, S.A. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry 2003, 62, 209–212. [Google Scholar] [CrossRef]
- Gutierrez, J.; Bourke, P.; Lonchamp, J.; Barry-Ryan, C. Impact of plant essential oils on microbiological, organoleptic and quality markers of minimally processed vegetables. Innov. Food Sci. Emerg. Technol. 2009, 10, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef] [PubMed]
- García-García, R.; López-Malo, A.; Palou, E. Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua. J. Food Sci. 2011, 76, M95–M100. [Google Scholar] [CrossRef] [PubMed]
- Nguefack, J.; Tamgue, O.; Dongmo, J.B.L.; Dakole, C.D.; Leth, V.; Vismer, H.F.; Zollo, P.H.A.; Nkengfack, A.E. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control 2012, 23, 377–383. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Baek, K.-H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Bauer, K.; Garbe, D.; Surburg, H. Common fragrance and flavor materials: Preparation, properties and uses; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 3527612378. [Google Scholar]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef]
- Bowles, E.J. Chemistry of Aromatherapeutic Oils; Allen & Unwin: Crows Nest, Australia, 2003; ISBN 1741152178. [Google Scholar]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Caballero, B.; Trugo, L.C.; Finglas, P.M. Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; ISBN 012227055X. [Google Scholar]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef] [PubMed]
- Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng. 2010, 110, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Mol. Biol. Rev. 1995, 59, 201–222. [Google Scholar]
- Mann, C.M.; Cox, S.D.; Markham, J.L. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett. Appl. Microbiol. 2000, 30, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; van der Zee, R.; Koets, A.P.; de Graaff, A.M.; van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J.A. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Appl. Environ. Microbiol. 2007, 73, 4484–4490. [Google Scholar] [CrossRef]
- Stević, T.; Berić, T.; Šavikin, K.; Soković, M.; Gođevac, D.; Dimkić, I.; Stanković, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crops Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Montero-Prado, P.; Rodriguez-Lafuente, A.; Nerin, C. Active label-based packaging to extend the shelf-life of “Calanda” peach fruit: Changes in fruit quality and enzymatic activity. Postharvest Biol. Technol. 2011, 60, 211–219. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- McClements, D.J. Biopolymers in food emulsions. In Modern biopolymer science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 129–166. [Google Scholar]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Use of essential oils in bioactive edible coatings: A review. Food Eng. Rev. 2011, 3, 1–16. [Google Scholar] [CrossRef]
- Soares, F.D.; Pereira, T.; Marques, M.O.M.; Monteiro, A.R. Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chem. 2007, 100, 15–21. [Google Scholar] [CrossRef]
- Beauvoit, B.; Belouah, I.; Bertin, N.; Cakpo, C.B.; Colombié, S.; Dai, Z.; Gautier, H.; Génard, M.; Moing, A.; Roch, L.; et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 2018, 122, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherian, S.; Figueroa, C.R.; Nair, H. ‘Movers and shakers’ in the regulation of fruit ripening: A cross-dissection of climacteric versus non-climacteric fruit. J. Exp. Bot. 2014, 65, 4705–4722. [Google Scholar] [CrossRef] [PubMed]
- Batista-Silva, W.; Nascimento, V.L.; Medeiros, D.B.; Nunes-Nesi, A.; Ribeiro, D.M.; Zsögön, A.; Araújo, W.L. Modifications in organic acid profiles during fruit development and ripening: Correlation or Causation? Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.B.; Silva, G.M.C.; Santana, D.B.; Salvador, A.R.; Medeiros, D.B.; Belghith, I.; da Silva, N.M.; Cordeiro, M.H.M.; Misobutsi, G.P. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem. 2018, 242, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Cheng, L.; Tan, J.; Zheng, K.; Jiang, Y. Effects of chitosan coating on quality and shelf life of peeled litchi fruit. J. Food Eng. 2004, 64, 355–358. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan-lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Rohani, M.Y.; Zaipun, M.Z.; Norhayati, M. Effect of modified atmosphere on the storage life and quality of Eksotika papaya. J. Trop. Agric. Food Sci. 1997, 25, 103–114. [Google Scholar]
- Belay, Z.A.; Caleb, O.J.; Mahajan, P.V.; Opara, U.L. Response of pomegranate arils (cv. Wonderful) to low oxygen stress under active modified atmosphere condition. J. Sci. Food Agric. 2019, 99, 1088–1097. [Google Scholar] [CrossRef]
- Kader, A.A. Modified and controlled atmosphere storage of tropical fruits. In Proceedings of the International Conference on ACIAR, Chiang Mai, Thailand, 1993; pp. 239–249. [Google Scholar]
- Nair, M.S.; Saxena, A.; Kaur, C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem. 2018, 240, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Rockland, L.B.; Nishi, S.K. Influence of water activity on food product quality and stability. Food Technol. 1980, 34, 42–59. [Google Scholar]
- Chiralt, A.; Martínez-Navarrete, N.; Martínez-Monzó, J.; Talens, P.; Moraga, G.; Ayala, A.; Fito, P. Changes in mechanical properties throughout osmotic processes: Cryoprotectant effect. J. Food Eng. 2001, 49, 129–135. [Google Scholar] [CrossRef]
- de Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Ghidelli, C.; Pérez-Gago, M.B. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2018, 58, 662–679. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N.; Viñas, I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables—A review. Trends Food Sci. Technol. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- Fagundes, C.; Moraes, K.; Pérez-Gago, M.B.; Palou, L.; Maraschin, M.; Monteiro, A.R. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol. Technol. 2015, 109, 73–81. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Li, W.; Tang, Y.; Yun, J. Effects of ascorbic acid and high oxygen modified atmosphere packaging during storage of fresh-cut eggplants. Food Sci. Technol. Int. 2014, 20, 99–108. [Google Scholar] [CrossRef]
- Teixeira, G.H.A.; Cunha Júnior, L.C.; Ferraudo, A.S.; Durigan, J.F. Quality of guava (Psidium guajava L. cv. Pedro Sato) fruit stored in low-O2 controlled atmospheres is negatively affected by increasing levels of CO2. Postharvest Biol. Technol. 2016, 111, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Gardesh, A.S.K.; Badii, F.; Hashemi, M.; Ardakani, A.Y.; Maftoonazad, N.; Gorji, A.M. Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT-Food Sci. Technol. 2016, 70, 33–40. [Google Scholar] [CrossRef]
- Eshghi, S.; Hashemi, M.; Mohammadi, A.; Badii, F.; Mohammadhoseini, Z.; Ahmadi, K. Effect of Nanochitosan-Based Coating With and Without Copper Loaded on Physicochemical and Bioactive Components of Fresh Strawberry Fruit (Fragaria x ananassa Duchesne) During Storage. Food Bioprocess Technol. 2014, 7, 2397–2409. [Google Scholar] [CrossRef]
- Gao, P.; Zhu, Z.; Zhang, P. Effects of chitosan–glucose complex coating on postharvest quality and shelf life of table grapes. Carbohydr. Polym. 2013, 95, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wu, Y.; Li, Y. Physiological responses and quality attributes of ‘Kyoho’grapes to controlled atmosphere storage. LWT-Food Sci. Technol. 2006, 39, 584–590. [Google Scholar] [CrossRef]
- Guerra, I.C.D.; de Oliveira, P.D.L.; Santos, M.M.F.; Lúcio, A.S.S.C.; Tavares, J.F.; Barbosa-Filho, J.M.; Madruga, M.S.; de Souza, E.L. The effects of composite coatings containing chitosan and Mentha (piperita L. or x villosa Huds) essential oil on postharvest mold occurrence and quality of table grape cv. Isabella. Innov. Food Sci. Emerg. Technol. 2016, 34, 112–121. [Google Scholar] [CrossRef]
- Yuan, G.; Chen, X.; Li, D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016, 89, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, B.; Liu, J.; Tian, S. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. J. Food Sci. 2014, 79, M955–M960. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, N.S.T.; Aguiar, A.J.A.A.; de Oliveira, C.E.V.; de Sales, C.V.; e Silva, S.D.M.; da Silva, R.S.; Stamford, T.C.M.; de Souza, E.L. Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiol. 2012, 32, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Martínez, P.; Bautista-Baños, S.; Berúmen-Varela, G.; Ramos-Guerrero, A.; Hernández-Ibañez, A.M. In vitro response of Colletotrichum to chitosan. Effect on incidence and quality on tropical fruit. Enzymatic expression in mango. Acta Agronómica 2017, 66, 282–289. [Google Scholar] [CrossRef]
- Obianom, C.; Romanazzi, G.; Sivakumar, D.; Obianom, C.; Romanazzi, G.; Sivakumar, D. Effects of chitosan treatment on avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase and lipoxygenase genes. Postharvest Biol. Technol. 2019, 147, 214–221. [Google Scholar] [CrossRef]
- Lima, N.B.; Lima, W.G.; Tovar-Pedraza, J.M.; Michereff, S.J.; Câmara, M.P.S. Comparative epidemiology of Colletotrichum species from mango in northeastern Brazil. Eur. J. Plant Pathol. 2015, 141, 679–688. [Google Scholar] [CrossRef]
Chemical Function | Compound | RT | Amount Relative (%) | KI |
---|---|---|---|---|
Alcohol | 2-undecanol | 31.45 | 1.1 | 1304 |
Manol | 52.46 | 0.5 | 2076 | |
2-nonanol | 23.84 | 3 | 1102 | |
1-nonanol | 26.55 | 0.1 | 1172 | |
Ketone | α-Thujone | 24.25 | 0.1 | 1113 |
2-undecanone | 31.15 | 42.6 | 1296 | |
2-octanone | 19.1 | 0.2 | 990 | |
2-decanone | 27.38 | 4 | 1193 | |
(R)-(-)-Carvone | 29.52 | 0.1 | 1251 | |
2-Dodecanone | 34.93 | 2.9 | 1396 | |
2-nonanone | 23.48 | 23.5 | 1094 | |
2-Tridecanone | 38.44 | 2.5 | 1497 | |
Ester | Octyl acetate | 27.99 | 0.2 | 1209 |
Benzyl acetate | 46.24 | 1.7 | 1782 | |
1-Methylheptyl acetate | 28.82 | 1.3 | 1232 | |
trans-farnesyl acetate | 47.73 | 0.2 | 1834 | |
Benzyl 2-hydroxybenzoate | 48.61 | 0.5 | 1887 | |
Sesquiterpene | Nonyl acetate | 31.62 | 0.7 | 1309 |
Isodecanone | 33.78 | 2.6 | 1366 | |
Geijerene | 25.65 | 0.1 | 1149 | |
lsogeijerene C | 29.98 | 0.1 | 1264 | |
Cogeijerene | 30.36 | 0.2 | 1274 | |
Tetradecane | 35.17 | <0.1 | 1402 | |
Cis-β-Caryophyllene | 35.7 | 0.1 | 1417 | |
Methyldecyl acetate | 36.09 | 0.2 | 1429 | |
trans-β-Caryophyllene | 36.28 | 0.8 | 1434 | |
(-)-Aromadendrene | 36.53 | 0.9 | 1442 | |
Sesquiterpene | Allo-aromadendrene | 36.72 | 0.2 | 1447 |
Isotridecanone | 37.2 | 0.4 | 1461 | |
α-Humulene | 37.53 | 1.1 | 1470 | |
γ-Muurolene | 38.05 | 0.3 | 1485 | |
Geijerene | 25.65 | 0.1 | 1149 | |
Valencene | 38.64 | 0.2 | 1503 | |
α-Farnescene | 38.75 | 0.2 | 1506 | |
γ-cadinene | 39.31 | 0.2 | 1525 | |
σ-cadinene | 39.41 | 0.5 | 1528 | |
α-Farnescene | 43.44 | 0.2 | 1670 | |
(+)-cubenene | 39.9 | 0.1 | 1545 | |
Sesquiterpenoid | Viridiflorol | 41.87 | 0.8 | 1611 |
β-Eudesmol | 43.52 | 0.2 | 1673 | |
Trans-Farnesol | 44.72 | 0.3 | 1719 | |
Furocoumarin | Ficusin | 47.76 | 0.2 | 1849 |
Chalepensin | 54.8 | 1.1 | 2196 | |
N.I. (M+162) | 29.76 | 0.9 | 1258 | |
N.I. (M+160) | 43.61 | 0.3 | 1676 | |
N.I. (M+186) | 43.7 | 1.1 | 1680 | |
N.I. (M+232) | 47.25 | 1 | 1826 | |
N.I. (M+248) | 51.94 | 0.4 | 2049 | |
N.I. (M+180) | 52 | 0.1 | 2052 |
Essential Oil (%) | pH | Density (g/mL) | Viscosity Brookfield (cP) | Solids (%) | Particle Size (μm) |
---|---|---|---|---|---|
0 | 4.38 ± 0.01 a | 1.0017 ± 0.01 a | 106 ± 0.1 d | 2.56 ± 0.02 a | N.D. |
0.5 | 4.40 ± 0.01 b | 1.0076 ± 0.01 a | 74 ± 0.1 c | 3.71 ± 0.01 b | 1.00 ± 0.25 a |
1.0 | 4.41 ± 0.01 c | 1.0080 ± 0.01 a | 66 ± 0.1 b | 3.87 ± 0.02 c | 1.22 ± 0.32 a |
1.5 | 4.43 ± 0.01 d | 1.0088 ± 0.01 a | 28.5 ± 0.2 a | 3.59 ± 0.02 d | 1.57 ± 0.12 a |
Days | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|
Weight loss (%) | |||||
Control | 0 | 6.47 | 12.33 | 18.49 | 21.57 |
CS+0%RGEO | 0 | 5.12 | 11.31 | 16.98 | 20.93 |
CS+0.5%RGEO | 0 | 5.11 | 10.37 | 14.47 | 18.71 |
CS+1.0%RGEO | 0 | 4.95 | 9.35 | 14.22 | 18.68 |
CS+1.5%RGEO | 0 | 4.67 | 8.59 | 13.57 | 19.49 |
Water activity | |||||
Control | 0.993 | 0.984 | 0.975 | 0.965 | 0.967 |
CS+0%RGEO | 0.975 | 0.967 | 0.965 | 0.96 | 0.951 |
CS+0.5%RGEO | 0.978 | 0.976 | 0.971 | 0.965 | 0.946 |
CS+1.0%RGEO | 0.985 | 0.97 | 0.969 | 0.963 | 0.956 |
CS+1.5%RGEO | 0.977 | 0.974 | 0.971 | 0.96 | 0.957 |
Day | 0 | 3 | 6 | 9 | 12 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mesophilic bacteria (log UFC/g) | |||||||||||||||
Control | 2.82 | ± | 0.16 a | 4.11 | ± | 0.19 a | 4.64 | ± | 0.30 a | 5.18 | ± | 0.15 a | 6.30 | ± | 0.17 a |
T1 = CS | 2.33 | ± | 0.23 b | 3.02 | ± | 0.12 b | 4.14 | ± | 0.16 b | 5.00 | ± | 0.14 b | 5.23 | ± | 0.20 b |
T2 = CS+0.5%RGEO | 1.50 | ± | 0.09 c | 2.50 | ± | 0.20 c | 3.26 | ± | 0.08 c | 3.94 | ± | 0.21 c | 4.34 | ± | 0.10 c |
T3 = CS+1.0%RGEO | 0.00 | ± | 0.00 d | 0.00 | ± | 0.00 d | 1.35 | ± | 0.12 d | 2.26 | ± | 0.14 d | 2.57 | ± | 0.13 d |
T4 = CS+1.5%RGEO | 0.00 | ± | 0.00 d | 0.00 | ± | 0.00 d | 0.00 | ± | 0.00 d | 0.00 | ± | 0.00 e | 1.35 | ± | 0.12 e |
Yeast and Molds (Log UFC/g) | |||||||||||||||
Control | 2.73 | ± | 0.13 a | 3.52 | ± | 0.16 a | 4.10 | ± | 0.12 a | 4.72 | ± | 0.13 a | 5.99 | ± | 0.27 a |
T1 = CS | 0.95 | ± | 0.12 b | 1.55 | ± | 0.10 b | 1.63 | ± | 0.23 b | 2.47 | ± | 0.17 b | 2.57 | ± | 0.14 b |
T2 = CS+0.5%RGEO | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.75 | ± | 0.12 c |
T3 = CS+1.0%RGEO | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c |
T4 = CS+1.5%RGEO | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c | 0.00 | ± | 0.00 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grande Tovar, C.D.; Delgado-Ospina, J.; Navia Porras, D.P.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Chaur Valencia, M.N.; Mina, J.H.; Chaves López, C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019, 9, 399. https://doi.org/10.3390/biom9090399
Grande Tovar CD, Delgado-Ospina J, Navia Porras DP, Peralta-Ruiz Y, Cordero AP, Castro JI, Chaur Valencia MN, Mina JH, Chaves López C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules. 2019; 9(9):399. https://doi.org/10.3390/biom9090399
Chicago/Turabian StyleGrande Tovar, Carlos David, Johannes Delgado-Ospina, Diana Paola Navia Porras, Yeimmy Peralta-Ruiz, Alexander Pérez Cordero, Jorge Iván Castro, Manuel Noé Chaur Valencia, José Hermínsul Mina, and Clemencia Chaves López. 2019. "Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage" Biomolecules 9, no. 9: 399. https://doi.org/10.3390/biom9090399
APA StyleGrande Tovar, C. D., Delgado-Ospina, J., Navia Porras, D. P., Peralta-Ruiz, Y., Cordero, A. P., Castro, J. I., Chaur Valencia, M. N., Mina, J. H., & Chaves López, C. (2019). Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules, 9(9), 399. https://doi.org/10.3390/biom9090399