Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3′,7-Dimethyl ether
"> Figure 1
<p>Isolated compounds from the Iraqi <span class="html-italic">R. chalepensis.</span></p> "> Figure 2
<p>Optimized structures of chalepensin (<b>10</b>) and 6-hydroxy-rutin 3′,7-dimethyl ether (<b>16</b>).</p> "> Figure 3
<p>Bonded ligands (<b>10</b> and <b>16</b>) resulting from hydrogen bonding interaction with the target molecule of MRSA.</p> "> Figure 3 Cont.
<p>Bonded ligands (<b>10</b> and <b>16</b>) resulting from hydrogen bonding interaction with the target molecule of MRSA.</p> "> Figure 4
<p>Potential target of the MRSA (target protein): (<b>a</b>) secondary structure from N to C terminal of TaP and (<b>b</b>) integrase. Blue color indicates N terminal and red color indicates C terminal. The protein is a depiction of the 3D modelled structure indicating the secondary structures in shades.</p> "> Figure 5
<p>Potential target of the MRSA (target protein): (<b>a</b>) secondary structure from N to C terminal of pyruvate kinase and (<b>b</b>) penicillin-binding protein. Blue color indicates N terminal and red color indicates C terminal. The protein is a depiction of the 3D modelled structure indicating the secondary structures in shades.</p> "> Figure 6
<p>Circos modelling of chalepensin (<b>10</b>) with its predicted bioactivity implicating its translational regulators, transportation of the small molecules, membrane proteins, energy metabolism. The important association and the activity deduce its potency as inflammatory activity. The highlighted ORF and its respective functions indicate cellular processes that are positively correlated with physiological processes contributing to the anti-MRSA activity. Different colors indicate various pivotal cellular processes shown by different letters and different gradients explain the degree of the interrelated network.</p> "> Figure 7
<p>Circos modelling of 6-hydroxy-rutin 3′,7-dimethyl ether (<b>16</b>) with its predicted bioactivity implicating chemotaxis role, associated with the DNA replication, modulators of the putative enzymes, membrane proteins and energy metabolism. The important association and the activity deduce its potency as antireplicative property and its role in the RNA processing and amino-acid biosynthesis. Different colors indicate various pivotal cellular processes shown by different letters and different gradients explain the degree of the interrelated network.</p> "> Figure 8
<p>Dock poses of chalepensin (<b>10</b>) with the penicillin-binding protein (PBPs) with an e-score of −21.6229. The interactive residues with an active pocket show the presence of all three pivotal bonds with Van der Waals interaction, hydrogen bonding and the alkyl bonding.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Plant Materials
3.3. Extraction
3.4. Initial Antimicrobial Screening
3.5. Solid-Phase Extraction (SPE)
3.6. Isolation and Identification of Compounds
3.7. Resazurin Assay with Isolated Compounds
3.8. Assessment of Anti-MRSA Activity
3.9. In Silico Studies with Two Most Active Anti-MRSA Compounds from This Plant, Chalepensin (10) and 6-Hydroxy-rutin 3′,7-dimethyl Ether (16)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Livermore, D.M. Bacterial resistance: Origins, epidemiology, and impact. Clin. Infect. Dis. 2003, 36, S11–S23. [Google Scholar] [CrossRef] [Green Version]
- Moran, M. A breakthrough in R&D for neglected diseases: New ways to get the drugs we need. PloS Med. 2005, 2, e376. [Google Scholar]
- Burroughs, T.; Najafi, M.; Lemon, S.M.; Knobler, S.L. The resistance Phenomenon in Microbes and Infectious Disease Vectors: Implications for Human Health and Strategies for Containment: Workshop Summary; National Academies Press: Washington, WA, USA, 2003; pp. 1–223. [Google Scholar]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. 2017, 6, 47. [Google Scholar] [CrossRef]
- Al-Majmaie, S.; Nahar, L.; Sharples, G.P.; Wadi, K.; Sarker, S.D. Isolation and antimicrobial activity of rutin and its derivatives from Ruta chalepensis (Rutaceae) growing in Iraq. Rec. Nat. Prod. 2019, 13, 64–70. [Google Scholar] [CrossRef]
- Al-Said, M.S.; Yahia, M.T.; Ginnawi, S.R.; Ageel, A.M. Studies on Ruta chalepensis, an ancient medicinal herb still used in traditional medicine. J. Ethnopharmacol. 1990, 23, 305–312. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Abu Ghdeib, A.I. Antifungal activity of plant extracts against dermatophytes. Mycoses 1990, 42, 665–672. [Google Scholar] [CrossRef]
- Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (Rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol. 2008, 116, 469–482. [Google Scholar] [CrossRef]
- Gibbons, S.; Udo, E.E. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res. 2000, 14, 139–140. [Google Scholar] [CrossRef]
- Alzoreky, N.; Nakahara, K. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 2003, 80, 223–230. [Google Scholar] [CrossRef]
- Priya, P.S.; Sasikumar, J.; Gowsigan, G. Antibacterial activity of methanol extract of Ruta chalapensis (L), Quercus infectoria (Oliver) and Canthium parviflorum (Lam). Anc. Sci. Life 2009, 29, 28. [Google Scholar] [PubMed]
- Babu-Kasimala, M.; Tukue, M.; Ermias, R. Phytochemical screening and antibacterial activity of two common terrestrial medicinal plants Ruta chalepensis and Rumex nervosus. Bali. Med. J. 2014, 3, 116–121. [Google Scholar] [CrossRef]
- Boyd, D.R.; Sharma, N.D.; Carroll, J.G.; Loke, P.L.; O’Dowd, C.R.; Allen, C.C.R. Biphenyl dioxygenase-catalysed cis-dihydroxylation of tricyclic azaarenes: Chemoenzymatic synthesis of arene oxide metabolites and furoquinoline alkaloids. RSC Adv. 2013, 3, 10944–10955. [Google Scholar] [CrossRef] [Green Version]
- Ulubelen, A.; Terem, B.; Tuzlaci, E.; Cheng, K.; Kong, Y. Alkaloids and coumarins from Ruta chalepensis. Phytochemistry 1986, 25, 2692–2693. [Google Scholar] [CrossRef]
- Wu, T.S.; Shi, L.S.; Wang, J.J.; Iou, S.C.; Chang, H.C.; Chen, Y.P.; Kuo, Y.H.; Chang, Y.L.; Tenge, C.M. Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. J. Chin. Chem. Soc. 2003, 50, 171–178. [Google Scholar] [CrossRef]
- Openshaw, H. Quinoline alkaloids, other than those of Cinchona. Alkaloids Chem. Physiol. 1967, 9, 223–267. [Google Scholar]
- Gaston, J.L.; Grundon, M.F.; James, K.J. Quinoline alkaloids. Part 19. Synthesis of O-methylptelefolonium iodide and (±)-dubinidine. J. Chem. Soc., Perkin Trans. 1. 1980, 24, 1136–1138. [Google Scholar] [CrossRef]
- Pal, C.; Kundu, M.K.; Bandyopadhyay, U.; Adhikari, S. Synthesis of novel heme-interacting acridone derivatives to prevent free heme-mediated protein oxidation and degradation. Bioorganic Med. Chem. Lett. 2011, 21, 3563–3567. [Google Scholar] [CrossRef]
- Um, Y.R.; Kong, C.S.; Lee, J.I.; Kim, Y.A.; Nam, T.J.; Seo, Y. Evaluation of chemical constituents from Glehnia littoralis for antiproliferative activity against HT-29 human colon cancer cells. Process. Biochem. 2010, 45, 114–119. [Google Scholar] [CrossRef]
- O’Neill, T.; Johnson, J.A.; Webster, D.; Gray, C.A. The Canadian medicinal plant Heracleum maximum contains antimycobacterial diynes and furanocoumarins. J. Ethnopharmacol. 2013, 147, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Shu Shan, D.; Zhi Wei, D.; Jing, X.; Zhu Feng, G.; Jiang Bin, F.; Kai, Y.; Li, F.; Cheng Fang, W.; Hai Yan, J.; Hai Bo, Y. Cytotoxic Constituents from the Stems of Clausena lansium (Lour.) Skeels. Molecules 2013, 18, 10768–10775. [Google Scholar]
- Richardson, J.S.M.; Sethi, G.; Lee, G.S.; Malek, S.N.A. Chalepin: Isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. Bmc. Complementary Altern. Med. 2016, 16, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandatmakuru, S.; Arava, V. Novel synthesis of graveoline and graveolinine. Synth. Commun. 2018, 48, 2635–2641. [Google Scholar] [CrossRef]
- Kamal, L.Z.M.; Mohd Hassan, N.; Taib, N.M.; Soe, M.K. Graveoline from Ruta angustifolia (L.) Pers. and its antimicrobial synergistic potential in erythromycin or vancomycin combinations. Sains Malays. 2018, 47, 2429–2435. [Google Scholar] [CrossRef]
- Sampaio, O.; Vieira, L.; Bellete, B.; King-Diaz, B.; Lotina-Hennsen, B.; Da Silva, M.; Veiga, T. Evaluation of alkaloids isolated from Ruta graveolens as photosynthesis inhibitors. Molecules 2018, 23, 2693. [Google Scholar] [CrossRef] [Green Version]
- Markham, K.R.; Sheppard, C.; Geiger, H. 13C-NMR studies of some naturally occurring amentoflavone and hinokifavone biflavonoids. Phytochemistry 1987, 26, 3335–3337. [Google Scholar] [CrossRef]
- Li, S.; Zhao, M.; Li, Y.; Sui, Y.; Yao, H.; Huang, L.; Lin, X. Preparative isolation of six anti-tumour biflavonoids from Selaginella doederleinii Hieron by high-speed counter-current chromatography. Phytochem. Anal. 2014, 25, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. 2002, 50, 788–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Huang, Y.; Huang, F.; Wang, C.W.; Ou, J. Water-soluble glycosides from Ruta graveolens. J. Nat. Prod. 2001, 64, 990–992. [Google Scholar] [CrossRef]
- Wu, P.P.; Zhang, K.; Lu, Y.J.; He, P.; Zhao, S.Q. In vitro and in vivo evaluation of the antidiabetic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2014, 80, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.G.; Ko, H.J.; Chowdhury, M.A.; Lee, D.S.; Woo, E.R. A new indole glycoside from the seeds of Raphanus sativus. Arch. Pharmacal Res. 2016, 39, 755–761. [Google Scholar] [CrossRef]
- Sarker, S.D.; Kumarasamy, Y.; Nahar, L. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Réthy, B.; Zupkó, I.; Minorics, R.; Hohmann, J.; Ocsovszki, I.; Falkay, G. Investigation of cytotoxic activity on human cancer cell lines of arborinine and furanoacridones isolated from Ruta graveolens. Planta Med. 2007, 73, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Amoa Onguéné, P.; Ntie-Kang, F.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M.A. The potential of anti-malarial compounds derived from African medicinal plants. Part I: A pharmacological evaluation of alkaloids and terpenoids. Malar. J. 2013, 12, 449. [Google Scholar] [CrossRef] [Green Version]
- Fouotsa, H.; Mbaveng, A.; Mbazoa Djama, C.; Nkengfack, A.; Farzana, S.M.; Iqbal, C.; Meyer, J.; Lall, N.; Kuete, V. Antibacterial constituents of three Cameroonian medicinal plants: Garcinia nobilis, Oricia suaveolens and Balsamocitrus camerunensis. BMC Complementary Altern. Med. 2013, 13, 81. [Google Scholar] [CrossRef] [Green Version]
- Schrodinger Suite Platform 7.0; Schrödinger: New York, NY, USA, 2021; Available online: https://www.schrodinger.com/platform (accessed on 7 February 2021).
- Kuhn, B.; Tichy, M.; Wang, L.; Robinson, S.; Martin, R.E.; Kuglstatter, A.; Benz, J.; Giroud, M.; Schirmeister, T.; Abel, R.; et al. Prospective evaluation of free energy calculations for the prioritization of cathepsin L inhibitors. J. Med. Chem. 2017, 60, 2485–2497. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marrra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Macindoe, G.; Mavridis, L.; Venkatraman, V.; Devignes, M.-D.; Ritchie, D.W. HexServer: An FFT-based protein docking server powered by graphics processors. Nucleic Acid Res. 2010, 38, W445–W449. [Google Scholar] [CrossRef]
- Srisuknimit, V.; Qiao, Y.; Schaefer, K.; Kahne, D.; Walker, S. Peptidoglycan cross-linking preferences of Staphylococcus aureus penicillin binding proteins have implications for treating MRSA infections. J. Am. Chem. Soc. 2017, 139, 9791–9794. [Google Scholar] [CrossRef] [PubMed]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef]
- Kaatz, G.W.; Seo, S.M.; Ruble, C.A. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1993, 37, 1086–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.F.; Reith, S. Characterization of a strain of methicillin-resistant Staphylococcus aureus (EMRSA-15) by conventional and molecular methods. J. Hosp. Infect. 1993, 25, 45–52. [Google Scholar] [CrossRef]
- Nurunnnabi, T.R.; Nahar, L.; Al-Majmaie, S.; Rahman, S.M.M.; Sohrab, M.H.; Billah, M.M.; Ismail, F.M.D.; Rahman, M.M.; Sharples, G.P.; Sarker, S.D. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes. Phytother. Res. 2018, 32, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacteria and Fungi | Extract | Plant Parts (MICs in mg/mL) | ||||
---|---|---|---|---|---|---|
Leaves | Stem | Fruits | Roots | |||
Gram-Negative Bacteria | E. coli | n−Hexane | 6.25 × 10−1 | 6.25 × 10−1 | 3.12 × 10−1 | N/A |
DCM | 3.12 × 10−1 | 6.25 × 10−1 | 3.12 × 10−1 | N/A | ||
Methanol | 6.25 × 10−1 | 3.12 × 10−1 | 6.25 × 10−1 | 5 | ||
P. aeruginosa | n−Hexane | 6.25 × 10−1 | 6.25 × 10−1 | 3.12 × 10−1 | N/A | |
DCM | 3.12 × 10−1 | 6.25 × 10−1 | 6.25 × 10−1 | N/A | ||
Methanol | 6.25 × 10−1 | 3.12 × 10−1 | 1.56 × 10−1 | 2.5 | ||
Gram-Positive Bacteria | M. luteus | n−Hexane | 1.56 × 10−1 | 6.25 × 10−1 | 3.12 × 10−1 | N/A |
DCM | 1.56 × 10−1 | 6.25 × 10−1 | 7.81 × 10−2 | N/A | ||
Methanol | 1.95 × 10−2 | 7.81 × 10−2 | 3.90 × 10−2 | 1.25 | ||
S. aureus | n−Hexane | 6.25 × 10−1 | 6.25 × 10−1 | 6.25 × 10−1 | N/A | |
DCM | 6.25 × 10−1 | 6.25 × 10−1 | 6.25 × 10−1 | N/A | ||
Methanol | 3.12 × 10−1 | 3.12 × 10−1 | 3.12 × 10−1 | 5 | ||
Pathogenic Fungi | C. albicans | n−Hexane | 6.25 × 10−1 | 1.95 × 10−1 | 1.56 × 10−2 | N/A |
DCM | 3.12 × 10−1 | 3.12 × 10−1 | 3.90 × 10−2 | N/A | ||
Methanol | 1.95 × 10−2 | 7.81 × 10−2 | 3.90 × 10−2 | 2.5 |
Compounds | MIC in mg/mL | ||||
---|---|---|---|---|---|
Staphylococcus aureus NCTC 12981 | Escherichia coli NCTC 12241 | Pseudomonas aeruginosa NCTC 12903 | Micrococcus luteus NCTC 7508 | Candida albicans ATCC 90028 | |
1 | N/A | N/A | N/A | 5 × 10−1 | 5 × 10−1 |
3 | 5 × 10−1 | N/A | N/A | 5 × 10−1 | 5 × 10−1 |
6 | N/A | N/A | N/A | 5 × 10−1 | 5 × 10−1 |
7 | 5 × 10−1 | N/A | N/A | 6.25 × 10−2 | 5 × 10−1 |
8 | 5 × 10−1 | N/A | N/A | 2.5 × 10−1 | 2.5 × 10−1 |
9 | 1.25 × 10−1 | 5 × 10−1 | N/A | 1.25 × 10−1 | 1.25 × 10−1 |
10 | 1.25 × 10−1 | 1.25 × 10−1 | 5 × 10−1 | 2.5 × 10−1 | 6.25 × 10−2 |
11 | 1.25 × 10−1 | N/A | 5 × 10−1 | 2.5 × 10−1 | 2.5 × 10−1 |
12 | 5 × 10−1 | N/A | N/A | 5 × 10−1 | 5 × 10−1 |
13 | 2.5 × 10−1 | N/A | 5 × 10−1 | 2.5 × 10−1 | 2.5 × 10−1 |
14 | 2.5 × 10−1 | 2.5 × 10−1 | 2.5 × 10−1 | 2.5 × 10−1 | 2.5 × 10−1 |
16 | 2.5 × 10−1 | 2.5 × 10−1 | 2.5 × 10−1 | 6.25 × 10−2 | 6.25 × 10−2 |
18 | 2.5 × 10−1 | 5 × 10−1 | 5 × 10−1 | 1.25 × 10−1 | 6.25 × 10−2 |
Ciprofloxacin | 9.76 × 10−4 | 1.55 × 10−2 | 1.95 × 10−3 | 9.76 × 10−4 | N/A |
Nystatin | N/A | N/A | N/A | N/A | 9.76 × 10−4 |
Compounds | MIC in μg/mL | |||||
---|---|---|---|---|---|---|
XU212 | ATCC25923 | SA1199B | EMRSA-15 | MRSA346702 | MRSA274819 | |
1 | − | − | − | − | − | − |
3 | − | − | − | − | − | 256 |
6 | − | − | − | − | − | − |
7 | − | − | − | − | − | − |
8 | 256 | − | 256 | − | 256 | 256 |
9 | − | 256 | 256 | − | − | 128 |
10 | 64 | 128 | − | − | 64 | 64 |
11 | 128 | − | 128 | − | 128 | 128 |
12 | − | − | − | − | − | − |
13 | − | − | − | − | − | 256 |
14 | 256 | 128 | − | − | 256 | 256 |
16 | 32 | 64 | − | − | 128 | 256 |
18 | − | 256 | − | 128 | 64 | 256 |
Norfloxacin | 16 | 2 | 32 | 1 | 64 | 64 |
Bioactivities | Pa (Probability to be Active) | Pi (Probability to be Inactive) | ||
---|---|---|---|---|
10 | 16 | 10 | 16 | |
Membrane integrity agonist | 0.954 | 0.973 | 0.003 | 0.002 |
Ubiquinol-cytochrome-c reductase inhibitor | 0.863 | − | 0.013 | − |
Fatty-acyl-CoA synthase inhibitor | 0.822 | − | 0.004 | − |
Membrane permeability inhibitor | 0.809 | 0.962 | 0.009 | 0.002 |
Free radical scavenger/antioxidant | 0.627 | 0.878 | 0.005 | 0.003 |
Alcohol dehydrogenase (NADP+) inhibitor | − | 0.927 | − | 0.002 |
Xenobiotic-transporting ATPase inhibitor | − | 0.886 | − | 0.002 |
Lipid peroxidase inhibitor | − | 0.813 | − | 0.003 |
Anticarcinogenic | − | 0.716 | − | 0.007 |
Toxicity/adverse reactions | Compound 10: itchiness and eye irritation acidosis | Compound 16: metabolic acidosis |
Anti-MRSA Compounds | Integrase | Tail-Anchored Proteins (TaPs) | Penicillin Binding proteins (PBPs) | Pyruvate Kinase |
---|---|---|---|---|
10 | −8.933 | −11.8567 | −21.6229 | −13.615 |
16 | −17.331 | −11.8148 | −9.3219 | −16.237 |
anti-MRSA Compounds | Score | Hydrogen Bonding Properties | ||
---|---|---|---|---|
Bond Attributes | Bond Energy | Bond Length (Å) | ||
Integrase | ||||
10 | −8.933 | O39-HH11-ARG-68-B H78-O-H15-108-B O53-HE21-GCN-109-B | −0.8 | 1.80 |
−3.3 | 2.09 | |||
−2.6 | 4.22 | |||
16 | −17.331 | H84-O-ASP-107-B H79-OD1-ASP-111-B O6-HH21-ARG-16-8 | −4.7 | 2.20 |
−3.7 | 2.23 | |||
−4.2 | 1.77 | |||
TaPs | ||||
10 | −11.8567 | H39-OE1-GLN-109-B O23-HE21-GLN-109-B | −4.1 | 1.99 |
−4.1 | 2.01 | |||
16 | 11.8148 | O17-HH21-ARG-68-B O16-HE21-GLN-53-B O20-HH11-ARG-68-B O20-HH21-ARG-68-B | −6.3 | 2.02 |
−2.3 | 2.32 | |||
−3.7 | 2.00 | |||
−3.5 | 2.06 | |||
PBPs | ||||
10 | −21.6229 | O1-HH21-LYS-218-B O14-H-GLN-216-B | −7.3 | 2.13 |
−7.6 | 1.70 | |||
16 | −9.3219 | O14-H-GLN-216-B H21-002-ASP-111- H21-001-ASP-111-B | −3.0 | 1.96 |
−4.6 | 2.14 | |||
−4.2 | 2.18 | |||
Pyruvate Kinase | ||||
10 | −13.615 | O16-HH21-ARG-67-B | −2.1 | 2.37 |
16 | −16.237 | O3-HE22-GLN-53-B O16-HH11-ARG-16-B O16-HH21-ARG-16-B O19-H-ALA-13-B | −4.7 | 1.96 |
−5.5 | 2.15 | |||
−6.9 | 2.12 | |||
−4.2 | 2.13 |
Compds | Silicos-IT Log Sw | Silicos-IT Solubility | Silicos IT Class | GI Absorption | BBB Permeant | PGP Substrate | CYPs Inhibitor | Log Kp (cm/s) | Lipinski Violations | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/mL | Mol/L | 1A2 | 2C19 | 2C9 | 2D6 | A4 | ||||||||
10 | −2.93 | 3.41 × 10−1 | 1.18 × 10−3 | Soluble | High | Yes | No | No | No | No | Yes | No | −6.77 | 0 |
16 | −1.70 | 3.28 | 2.00 × 10−2 | Soluble | High | No | No | No | No | No | No | No | −7.29 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Majmaie, S.; Nahar, L.; Rahman, M.M.; Nath, S.; Saha, P.; Talukdar, A.D.; Sharples, G.P.; Sarker, S.D. Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3′,7-Dimethyl ether. Molecules 2021, 26, 1114. https://doi.org/10.3390/molecules26041114
Al-Majmaie S, Nahar L, Rahman MM, Nath S, Saha P, Talukdar AD, Sharples GP, Sarker SD. Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3′,7-Dimethyl ether. Molecules. 2021; 26(4):1114. https://doi.org/10.3390/molecules26041114
Chicago/Turabian StyleAl-Majmaie, Shaymaa, Lutfun Nahar, M. Mukhlesur Rahman, Sushmita Nath, Priyanka Saha, Anupam Das Talukdar, George P. Sharples, and Satyajit D. Sarker. 2021. "Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3′,7-Dimethyl ether" Molecules 26, no. 4: 1114. https://doi.org/10.3390/molecules26041114
APA StyleAl-Majmaie, S., Nahar, L., Rahman, M. M., Nath, S., Saha, P., Talukdar, A. D., Sharples, G. P., & Sarker, S. D. (2021). Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3′,7-Dimethyl ether. Molecules, 26(4), 1114. https://doi.org/10.3390/molecules26041114