Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage
"> Figure 1
<p>Preparation of film-forming emulsions, (<b>a</b>) A schematic view of the different steps emulsions preparation process, (<b>b</b>) a detailed picture of the emulsion preparation setup.</p> "> Figure 2
<p>Design dip-coating cell, (<b>a</b>) A schematic view of the tomatoes dip-coating process, (<b>b</b>) a detailed picture of the cell.</p> "> Figure 3
<p>Hedonistic damage scale used for scale of the tomato, where (<b>a</b>) no damage (0% damage), (<b>b</b>) mild damage (10–15% damage), (<b>c</b>) moderate damage (25–50% damage), and (<b>d</b>) severe damage (>50% damage).</p> "> Figure 4
<p>Decay index in <span class="html-italic">S. lycopersicum</span> with CS + RGEO coatings stored for 12 days at 4 ± 2 °C. F1 = Control; F2 = CS; F3 = CS + RGEO 0.5%; F4 = CS + RGEO 1.0%; F5 = CS + RGEO 1.5%. Mean values and intervals of LSD 95% according to the ANOVA test. The superscript letter (a–b) refers to the significant differences (<span class="html-italic">p</span> < 0.05) between each treatment.</p> "> Figure 5
<p>Disease damage incidence <span class="html-italic">S. lycopersicum</span> with CS + RGEO coatings stored for 12 days at 4.0 ± 2 °C. F1 = Control; F2 = CS; F3 = CS + RGEO 0.5%; F4 = CS + RGEO 1.0%; F5 = CS + RGEO 1.5%. Mean values and intervals of LSD 95% according to the ANOVA test. The superscript letter (a–b) refers to the significant differences (<span class="html-italic">p</span> < 0.05) between each treatment.</p> "> Figure 6
<p>The hedonistic scale of the sensory analysis on days 0 (<b>a</b>), 5 (<b>b</b>), and 10 (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Preparation of Edible Coatings
2.3. Application of Edible Coatings to Tomatoes
2.3.1. Design Immersion Cell
2.4. Physical–Chemical Properties of the FFE
2.5. Postharvest Quality Properties of Tomatoes
2.5.1. pH and Soluble Solids (SS)
2.5.2. Titratable Acidity (TA)
2.5.3. Maturity Index (MI)
2.5.4. Weight Loss Percentage
2.5.5. Color Analysis
2.5.6. Firmness Analysis
2.6. Antimicrobial Assay
2.6.1. Decay Index (DI)
2.6.2. Disease Damage Incidence
2.7. Sensorial Activity
2.8. Statistical Analysis
3. Results
3.1. Characterization of the Film Forming Emulsions (FFE)
3.2. Physical–Chemical Analysis of Fruits
3.2.1. pH Analysis
3.2.2. Soluble Solids (SS)
3.2.3. Titratable Acidity (TA)
3.2.4. Mature Index (MI)
3.2.5. Weight Loss Percentage
3.2.6. Color Parameters Analysis
3.2.7. Firmness Analysis
3.3. Antimicrobial Assay
3.3.1. Decay Index (DI)
3.3.2. Disease Damage Incidence
3.4. Sensorial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tripathy, B.; Mallikarjunarao, K. Variability in tomato (Solanum lycopersicum L.): A review. J. Pharmacogn. Phytochem. 2020, 9, 383–388. [Google Scholar]
- Arah, I.K.; Ahorbo, G.K.; Anku, E.K.; Kumah, E.K.; Amaglo, H. Postharvest handling practices and treatment methods for tomato handlers in developing countries: A mini-review. Adv. Agric. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arah, I.K.; Kumah, E.K.; Anku, E.K.; Amaglo, H. An overview of post-harvest losses in tomato production in Africa: Causes and possible prevention strategies. J. Biol. Agric. Healthc. 2015, 5, 78–88. [Google Scholar]
- Muhammad, R.H.; Bamisheyi, E.; Olayemi, E.F. The effect of stage of ripening on the shelf life of tomatoes (Lycopersicon esculentum) stored in the evaporative cooling system (ECS). J. Dairy Foods Home Sci. 2011, 30, 299–301. [Google Scholar]
- Hahn, F.; Lopez, I.; Hernandez, G. Spectral detection and neural network discrimination of Rhizopus stolonifer spores on red tomatoes. Biosyst. Eng. 2004, 89, 93–99. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Sipes, B.S.; Alvarez, A.M. Postharvest diseases of tomato and natural products for disease management. Afr. J. Agric. Res. 2017, 12, 684–691. [Google Scholar] [CrossRef] [Green Version]
- Prusky, D. Reduction of the incidence of postharvest quality losses, and future prospects. Food Secur. 2011, 3, 463–474. [Google Scholar] [CrossRef]
- Mohácsi-Farkas, C.; Nyirő-Fekete, B.; Daood, H.; Dalmadi, I.; Kiskó, G. Improving microbiological safety and maintaining sensory and nutritional quality of pre-cut tomato and carrot by gamma irradiation. Radiat. Phys. Chem. 2014, 99, 79–85. [Google Scholar] [CrossRef]
- McKenzie, T.J.; Singh-Peterson, L.; Underhill, S.J.R. Quantifying postharvest loss and the implication of market-based decisions: A case study of two commercial domestic tomato supply chains in Queensland, Australia. Horticulturae 2017, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Pardo-De la Hoz, C.J.; Calderón, C.; Rincón, A.M.; Cárdenas, M.; Danies, G.; López-Kleine, L.; Restrepo, S.; Jiménez, P. Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathol. 2016, 65, 227–237. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Crisosto, C.H. Evaluation of food additives as alternative or complementary chemicals To conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 2009, 72, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Sapers, G.M. Washing and sanitizing treatments for fruits and vegetables BT-Microbiology of fruits and vegetables. In Microbiology of Fruits and Vegetables; ASM Press: Washington, DC, USA, 2005; pp. 391–416. [Google Scholar]
- Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: Effects on fungi involve in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71. [Google Scholar] [CrossRef]
- Yang, L.; Paulson, A.T. Mechanical and water vapour barrier properties of edible gellan films. Food Res. Int. 2000, 33, 563–570. [Google Scholar] [CrossRef]
- Grande Tovar, C.D.; Delgado-Ospina, J.; Navia Porras, D.P.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, C.; Noé, M.; Mina, J.H.; Chaves López, C. Colletotrichum gloesporioides inhibition in situ by chitosan-Ruta graveolens essential oil coatings: Effect on microbiological, physicochemical, and organoleptic properties of guava (Psidium guajava L.) during room temperature storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jianglian, D.; Shaoying, Z. Application of chitosan-based coating in fruit and vegetable preservation: A review. J. Food Process. Technol. 2013, 4, 227. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Chen, X.; Li, D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016, 89, 117–128. [Google Scholar] [CrossRef]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Ramos-García, M.; Bosquez-Molina, E.; Hernández-Romano, J.; Zavala-Padilla, G.; Terrés-Rojas, E.; Alia-Tejacal, I.; Barrera-Necha, L.; Hernández-López, M.; Bautista-Baños, S. Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Prot. 2012, 38, 1–6. [Google Scholar] [CrossRef]
- Perdones, Á.; Tur, N.; Chiralt, A.; Vargas, M. Effect on tomato plant and fruit of the application of biopolymer–oregano essential oil coatings. J. Sci. Food Agric. 2016, 96, 4505–4513. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kader, M.M.; El-Mougy, N.S.; Lashin, S.M. Biological and chemical resistance inducers approaches for controlling foliar diseases of some vegetables under protected cultivation system. J. Plant Pathol. Microbiol. 2013, 4, 200. [Google Scholar] [CrossRef] [Green Version]
- Barreto, T.A.; Andrade, S.C.A.; Maciel, J.F.; Arcanjo, N.M.O.; Madruga, M.S.; Meireles, B.; Cordeiro, Â.M.T.; Souza, E.L.; Magnani, M. A chitosan coating containing essential oil from Origanum vulgare L. to control postharvest mold infections and keep the quality of cherry tomato fruit. Front. Microbiol. 2016, 7, 1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athayde, A.J.A.A.; de Oliveira, P.D.L.; Guerra, I.C.D.; da Conceição, M.L.; de Lima, M.A.B.; Arcanjo, N.M.O.; Madruga, M.S.; Berger, L.R.R.; de Souza, E.L. A coating composed of chitosan and Cymbopogon citratus (Dc. Ex Nees) essential oil to control Rhizopus soft rot and quality in tomato fruit stored at room temperature. J. Hortic. Sci. Biotechnol. 2016, 91, 582–591. [Google Scholar] [CrossRef]
- Migliori, C.A.; Salvati, L.; Di Cesare, L.F.; Lo Scalzo, R.; Parisi, M. Effects of preharvest applications of natural antimicrobial products on tomato fruit decay and quality during long-term storage. Sci. Hortic. (Amst.) 2017, 222, 193–202. [Google Scholar] [CrossRef]
- Araújo, J.M.S.; de Siqueira, A.C.P.; Blank, A.F.; Narain, N.; de Aquino Santana, L.C.L. A cassava starch–chitosan edible coating enriched with lippia sidoides cham. essential oil and pomegranate peel extract for preservation of italian tomatoes (lycopersicon esculentum mill.) stored at room temperature. Food Bioprocess Technol. 2018, 11, 1750–1760. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol. 2020, 152, 154–170. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C. Techniques for Nanoencapsulation of Food Ingredients; Springer: New York, NY, USA, 2014; ISBN 1461493870. [Google Scholar]
- Horison, R.; Sulaiman, F.O.; Alfredo, D.; Wardana, A.A. Physical characteristics of nanoemulsion from chitosan/nutmeg seed oil and evaluation of its coating against microbial growth on strawberry. Food Res. 2019, 3, 821–827. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80. [Google Scholar] [CrossRef]
- Correa-Pacheco, Z.N.; Bautista-Baños, S.; Valle-Marquina, M.Á.; Hernández-López, M. The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv hass avocado and fruit quality. J. Phytopathol. 2017, 165, 297–305. [Google Scholar] [CrossRef]
- Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Song, K.B.; Min, S.C. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT 2017, 75, 742–750. [Google Scholar] [CrossRef]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef] [PubMed]
- González-Locarno, M.; Maza Pautt, Y.; Albis, A.; Florez López, E.; Grande Tovar, D.C. Assessment of chitosan-rue (Ruta graveolens L.) essential oil-based coatings on refrigerated cape gooseberry (Physalis peruviana L.) quality. Appl. Sci. 2020, 10, 2684. [Google Scholar] [CrossRef]
- Sinning, A.; Bermont, D. Efecto de Recubrimientos Basados en Quitosano y Aceite Esencial de Ruda (Ruta graveolens L.) en el Control de Antracnosis Causada por Colletotrichum Gloeosporioides en Papaya Maradol (Carica papaya L.); Universidad del Atlántico: Atlántico, Colombia, 2019. [Google Scholar]
- Peralta-Ruiz, Y.; Grande Tovar, C.G.; Sinning-Mangonez, A.; Bermont, D.; Pérez Cordero, A.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L. essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef]
- USDA United States Standard for Grades of Fresh Market Tomatoes; United States Deparment of Agriculture: Washington, DC, USA, 1976.
- Niño Pacheco, W.D.; López, F.R.J. Tomato classification according to organoleptic maturity (coloration) using machine learning algorithms K-NN, MLP, and K-Means Clustering. In Proceedings of the 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Bucaramanga, Colombia, 24–26 April 2019; pp. 1–5. [Google Scholar]
- Tang, X.; Yan, X. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol. 2017, 81, 378–404. [Google Scholar] [CrossRef]
- International Standards Organization Piston-operated Volumetric Apparatus—Part-2: Piston Pipettes; International Organization for Standarization: Geneva, Switzerland, 2002; p. 11.
- Horwitz, W. Agricultural chemicals, contaminants, drugs. In Official Methods of Analysis of AOAC International; Horwitz, W., Ed.; Aoac Intl: Rockville, MD, USA, 2010; Volume I, ISBN 0935584676. [Google Scholar]
- Min, S.; Zhang, Q.H. Effects of commercial-scale pulsed electric field processing on flavor and color of tomato juice. J. Food Sci. 2003, 68, 1600–1606. [Google Scholar] [CrossRef]
- López Camelo, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, E.M.; Grande Tovar, D.C. The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria x ananassa) during cold storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Rabea, E.I. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol. Technol. 2009, 51, 110–117. [Google Scholar] [CrossRef]
- Standard, I.S. Sensory Analysis. Identification and Selection of Descriptors for Establishing a Sensory Profile by a Multidimensional Approach; AOAC International: Rockville, MD, USA, 1994; p. 11035. [Google Scholar]
- Sánchez-González, L.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr. Polym. 2010, 82, 277–283. [Google Scholar] [CrossRef]
- Wu, S.; Lu, M.; Wang, S. Effect of oligosaccharides derived from Laminaria japonica-incorporated pullulan coatings on preservation of cherry tomatoes. FOOD Chem. 2016, 199, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Cao, B.; Xu, F.; Xie, S.; Yu, D.; Wang, H. Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biol. Technol. 2015, 99, 37–43. [Google Scholar] [CrossRef]
- Freitas, R.; Nero, L.A.; Carvalho, A.F. Enumeration of mesophilic aerobes in milk: Evaluation of standard official protocols and Petrifilm aerobic count plates. J. Dairy Sci. 2009, 92, 3069–3073. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.S.; Siddiqui, M.W. Postharvest Quality Assurance of Fruits; Springer International Publishing: Cham, Switzerland, 2015; ISBN 331921196X. [Google Scholar]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374. [Google Scholar] [CrossRef]
- Meepagala, K.M.; Schrader, K.K.; Wedge, D.E.; Duke, S.O. Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochemistry 2005, 66, 2689–2695. [Google Scholar] [CrossRef]
- Haddouchi, F.; Belkaid, A.B.; Sek, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical composition and antimicrobial activity of the essential oils from four Ruta species growing in Algeria. Food Chem. 2013, 14, 253–258. [Google Scholar] [CrossRef]
- Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1220055. [Google Scholar] [CrossRef]
- Grande Tovar, D.C.; Castro, I.J.; Valencia Llano, H.C.; Navia Porras, P.D.; Delgado Ospina, J.; Valencia Zapata, E.M.; Herminsul Mina Hernandez, J.; Chaur, N.M. Synthesis, characterization, and histological evaluation of chitosan-Ruta graveolens essential oil films. Molecule 2020, 25, 1688. [Google Scholar] [CrossRef] [Green Version]
- Bonilla Lagos, M.J.; Atarés Huerta, L.M.; Vargas, M.; Chiralt, A. Physicochemical properties of chitosan-essential oils film-forming dispersions. Effect of homogenization treatments. Procedia Food Sci. 2011, 1, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Roland, I.; Piel, G.; Delattre, L.; Evrard, B. Systematic characterization of oil-in-water emulsions for formulation design. Int. J. Pharm. 2003, 263, 85–94. [Google Scholar] [CrossRef]
- Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Characterization of chitosan–oleic acid composite films. Food Hydrocoll. 2009, 23, 536–547. [Google Scholar] [CrossRef]
- Shokri, S.; Parastouei, K.; Taghdir, M.; Abbaszadeh, S. Application an edible active coating based on chitosan-Ferulago angulata essential oil nanoemulsion to shelf life extension of Rainbow trout fillets stored at 4 C. Int. J. Biol. Macromol. 2020, 153, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Hernandez, F.J.; Carrique, F.; Ruiz-Reina, E. The primary electroviscous effect in colloidal suspensions. Adv. Colloid Interface Sci. 2004, 107, 51–60. [Google Scholar] [CrossRef]
- García, M.; Casariego, A.; Diaz, R.; Roblejo, L. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emir. J. Food Agric. 2014, 26, 238–246. [Google Scholar] [CrossRef]
- Dovale-Rosabal, G.; Casariego, A.; Forbes-Hernandez, T.Y.; García, M.A. Effect of chitosan-olive oil emulsion coating on quality of tomatoes during storage at ambient conditions. J. Berry Res. 2015, 5, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Buck, J.S.; Kubota, C.; Wu, M. Effects of nutrient solution EC, plant microclimate and cultivars on fruit quality and yield of hydroponic tomatoes (Lycopersicon esculentum). In Proceedings of the VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition 659, Kissimmee, FL, USA, 25 November 2004; pp. 541–547. [Google Scholar]
- Claussen, W.; Brückner, B.; Krumbein, A.; Lenz, F. Long-term response of tomato plants to changing nutrient concentration in the root environment—The role of proline as an indicator of sensory fruit quality. Plant Sci. 2006, 171, 323–331. [Google Scholar] [CrossRef]
- Krauss, S.; Schnitzler, W.H.; Grassmann, J.; Woitke, M. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 2006, 54, 441–448. [Google Scholar] [CrossRef]
- Wu, M.; Kubota, C. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hortic. (Amst.) 2008, 116, 122–129. [Google Scholar] [CrossRef]
- Guerra, I.C.D.; de Oliveira, P.D.L.; de Souza Pontes, A.L.; Lúcio, A.S.S.C.; Tavares, J.F.; Barbosa-Filho, J.M.; Madruga, M.S.; de Souza, E.L. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. Int. J. Food Microbiol. 2015, 214, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, G.; Mohamed, M.T.M.; Ali, A.; Ding, P.; Ghazali, H.M. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low-temperature storage. Sci. Hortic. (Amsterdam) 2015, 190, 187–194. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Sivakumar, D. Chitosan, a Biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. Front. Microbiol. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Xu, Q.; Li, X.; Chen, C.; Ma, L.; Li, S.; Che, Z.; Lin, H. Chitosan-based coating with antimicrobial agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int. J. Polym. Sci. 2016, 2016, 4851730. [Google Scholar] [CrossRef] [Green Version]
- Veloso, R.A.; Pereira, T.; Ferreira, D.S.; Debona, D.; Wagner, R.; Aguiar, D.S. Enzymatic activity in essential oil-treated and pathogen-inoculated corn plants. J. Agric. Sci. 2018, 10, 171–177. [Google Scholar] [CrossRef]
- Tian, S.; Qin, G.; Li, B. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol. Biol. 2013, 82, 593–602. [Google Scholar] [CrossRef]
- de Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [Google Scholar] [CrossRef]
- Olivas, G.I.; Barbosa-Cánovas, V.G. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670. [Google Scholar] [CrossRef]
- Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y.S. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int. J. Biol. Macromol. 2018, 112, 523–529. [Google Scholar] [CrossRef]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. J. Food Sci. 2014, 79, M955–M960. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. (Amsterdam) 2012, 144, 172–178. [Google Scholar] [CrossRef]
- Ilahy, R.; Tlili, I.; Siddiqui, M.W.; Hdider, C.; Lenucci, M.S. Inside and beyond color: Comparative overview of functional quality of tomato and watermelon fruits. Front. Plant Sci. 2019, 10, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the shelf life of cherry tomatoes by pullulan coating with ethanol extract of propolis during refrigerated storage. Food Bioprocess Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- El-Katatny, M.; Emam, A.S. Control of postharvest rot by spore suspension and antifungal metabolites of Trichoderma harzanium. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1505–1528. [Google Scholar]
- Janisiewicz, W.J.; Conway, W.S. Combining Biological Control with Physical and Chemical Treatments to Control Fruit Decay after Harvest; United States Deparment of Agricultural: Washington, DC, USA, 2010.
- Cao, Z.; Sun, Y. Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems. J. Biomed. Mater. Res. Part A 2009, 89, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Attia, E.Z.; Abd El-Baky, R.M.; Desoukey, S.Y.; El Hakeem Mohamed, M.A.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Future J. Pharm. Sci. 2018, 4, 254–264. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
Essential Oil Content (%) | pH | ρ (kg/m3) | ηap (100s−1) (Pa·s) | % Total Solids | Particle Size (μm) |
---|---|---|---|---|---|
0.0 | 4.42 ± 0.01 a | 1009.47 ± 0.17 d | 0.106 ± 0.001 d | 3.50 ± 0.02 a | N.D. |
0.5 | 4.44 ± 0.01 b | 1006.80 ± 0.005 c | 0.074 ± 0.005 c | 3.71 ± 0.01 b | 1.29 ± 0.25 a |
1.0 | 4.44 ± 0.01 b | 1002.43 ± 0.09 b | 0.066 ± 0.003 b | 3.87 ± 0.02 c | 1.43 ± 0.32 a |
1.5 | 4.45 ± 0.01 c | 1000.97 ± 0.102 a | 0.029 ± 0.019 a | 3.59 ± 0.02 a | 1.56 ± 0.12 a |
Day | Treatment | pH | TA (% Citric Acid) | SS (%) | Mature Index (%) |
---|---|---|---|---|---|
F1 | 4.53 ± 0.07 a | 0.46 ± 0.01 a | 3.33 ± 0.29 a | 7.23 ± 0.01 a | |
F2 | 4.61 ± 0.06 a | 0.44 ± 0.01 a | 3.17 ± 0.29 a | 7.19 ± 0.39 a | |
0 | F3 | 4.70 ± 0.11 a | 0.39 ± 0.02 a | 3.00 ± 0.0029 a | 7.71 ± 0.76 a |
F4 | 4.68 ± 0.09 a | 0.42 ± 0.003 a | 3.00 ± 0.0029 a | 7.22 ± 0.95 a | |
F5 | 4.56 ± 0.12 a | 0.44 ± 0.01 a | 3.17 ± 0.0029 a | 7.28 ± 0.80 a | |
F1 | 4.62 ± 0.16 a | 0.42 ± 0.07 a | 3.83 ± 0.29 b | 9.18 ± 0.02 b | |
F2 | 4.65 ± 0.07 a | 0.42 ± 0.07 a | 3.33 ± 0.29 ab | 7.89 ± 1.0 a,b | |
3 | F3 | 4.65 ± 0.13 a | 0.41 ± 0.001 a | 3.00 ± 0.003 a | 7.34 ± 0.41 a |
F4 | 4.60 ± 0.06 a | 0.40 ± 0.01 a | 3.00 ± 0.003 a | 7.52 ± 0.93 a | |
F5 | 4.62 ± 0.10 a | 0.42 ± 0.06 a | 3.50 ± 0.005 ab | 8.37 ± 1.4 a,b | |
F1 | 4.92 ± 0.05 a | 0.35 ± 0.02 a | 3.83 ± 0.76 a | 10.95 ± 0.09 b | |
F2 | 4.83 ± 0.23 a | 0.42 ± 0.07 a | 3.83 ± 0.29 a | 9.11 ± 0.89 a,b | |
6 | F3 | 4.69 ± 0.10 a | 0.42 ± 0.01 a | 3.50 ± 0.005 a | 8.29 ± 1.5 a |
F4 | 4.69 ± 0.14 a | 0.42 ± 0.04 a | 3.70 ± 0.003 a | 8.87 ± 1.2 a,b | |
F5 | 4.85 ± 0.09 a | 0.42 ± 0.06 a | 4.17 ± 0.0029 a | 10.02 ± 0.28 a,b | |
F1 | 4.88 ± 0.23 a | 0.36 ± 0.01 a | 4.33 ± 0.29 a | 11.99 ± 0.04 b | |
F2 | 4.89 ± 0.20 a | 0.40 ± 0.01 a | 4.17 ± 0.29 a | 10.34 ± 1.1 a,b | |
9 | F3 | 4.80 ± 0.15 a | 0.38 ± 0.08 a | 4.00 ± 0.006 a | 10.46 ± 1.7 a,b |
F4 | 4.83 ± 0.08 a | 0.42 ± 0.001 a | 4.00 ± 0.005 a | 9.57 ± 1.0 a | |
F5 | 4.96 ± 0.10 a | 0.41 ± 0.05 a | 4.33 ± 0.0029 a | 10.48 ± 1.26 a,b | |
F1 | 5.07 ± 0.06 b | 0.38 ± 0.02 a | 4.83 ± 0.29 a | 12.65 ± 0.03 b | |
F2 | 5.09 ± 0.06 b | 0.39 ± 0.03 a | 4.67 ± 0.29 a | 12.00 ± 0.57 a,b | |
12 | F3 | 5.00 ± 0.05 b | 0.36 ± 0.12 a | 4.00 ± 0.003 a | 11.04 ± 0.96 a,b |
F4 | 4.94 ± 0.08 a | 0.39 ± 0.07 a | 4.00 ± 0.008 a | 10.21 ± 2.0 a | |
F5 | 4.99 ± 0.09 ab | 0.40 ± 0.08 a | 4.67 ± 0.0029 a | 11.81 ± 0.92 ab |
Day | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|
Formulation | |||||
F1 | 0 | 13.5 ± 0.2 b | 21.7 ± 0.2 c | 24.3 ± 0.3 c | 29.8 ± 0.2 c |
F2 | 0 | 8.6 ± 0.4 a | 11.4 ± 0.1 a,b | 20.0 ± 0.5 c | 20.0 ± 0.3 b |
F3 | 0 | 8.3 ± 0.3 a | 11.7 ± 0.2 b | 13.3 ± 0.4 a | 16.7 ± 0.4 a |
F4 | 0 | 9.1 ± 0.2 a | 10.9 ± 0.2 a | 13.6 ± 0.5 a | 18.2 ± 0.2 a,b |
F5 | 0 | 8.3 ± 0.4 a | 10.0 ± 0.3 a | 12.5 ± 0.2 a | 16.7 ± 0.1 a |
Time | Treatment | L | a * | b * | a */b * | ΔE |
---|---|---|---|---|---|---|
0 | F1 | 52.33 a | 18.83 b | 27.83 e | 0.68 | |
F2 | 49.00 a | 22.33 d | 21.50 c | 1.04 | ||
F3 | 48.83 a | 17.50 a | 25.00 d | 0.70 | ||
F4 | 46.83 a | 20.50 c | 19.33 b | 1.06 | ||
F5 | 46.50 a | 22.33 d | 22.66 a | 0.99 | ||
3 | F1 | 48.66 b | 31.66 c | 42.33 e | 0.75 | 19.71 |
F2 | 44.66 a,b | 33.00 d | 37.50 c | 0.88 | 19.72 | |
F3 | 43.83 a,b | 29.00 a | 39.50 d | 0.73 | 19.17 | |
F4 | 42.16 a,b | 31.5 b | 37.00 a | 0.85 | 21.33 | |
F5 | 41.00 a | 34.16 e | 39.83 b | 0.86 | 21.56 | |
6 | F1 | 45.50 a | 39.50 b | 59.16 e | 0.67 | 38.15 |
F2 | 40.50 a | 44.66 d | 58.33 c | 0.77 | 43.90 | |
F3 | 41.33 a | 39.33 a | 58.50 d | 0.67 | 40.68 | |
F4 | 41.66 a | 44.83 e | 57.00 a | 0.79 | 45.14 | |
F5 | 40.66 a | 43.00 b | 61.00 b | 0.70 | 43.95 | |
9 | F1 | 27.5 a | 42.16 c | 56.66 d | 0.74 | 44.63 |
F2 | 22.16 a | 44.33 d | 48.83 b | 0.91 | 44.17 | |
F3 | 24.83 a | 35.33 b | 56.0 c | 0.63 | 43.07 | |
F4 | 25.33 a | 45.50 e | 56.83 a | 0.80 | 49.93 | |
F5 | 25.33 a | 34.16 a | 51.33 e | 0.67 | 37.55 | |
12 | F1 | 18.00 a | 46.16 d | 58.66 d | 0.79 | 53.63 |
F2 | 17.16 a | 49.50 e | 59.66 e | 0.83 | 56.64 | |
F3 | 17.33 a | 37.16 a | 54.16 c | 0.69 | 47.21 | |
F4 | 17.00 a | 43.00 c | 52.16 a | 0.82 | 49.74 | |
F5 | 17.00 a | 40.50 b | 55.50 b | 0.73 | 47.74 |
Day | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|
Formulation | |||||
F1 | 108.2 ± 1.8 a | 10.0 ± 1.6 a | 2.5 ± 0.7 a | 1.6 ± 0.9 a | 1.6 ± 2.3 a |
F2 | 110.0 ± 4.4 a | 27.3 ± 3.5 ab | 22.4 ± 6.7 b | 14.4 ± 5.5 a,b | 10.3 ± 3.5 a |
F3 | 108.7 ± 2.1 a | 40.9 ± 6.5 b | 41.2 ± 4.6 c | 19.9 ± 1.8 b | 15.7 ± 4.2 a |
F4 | 110.2 ± 3.2 a | 69.5 ± 9.0 c | 60.0 ± 3.0 d | 52.5 ± 5.8 c | 39.2 ± 3.2 b |
F5 | 115.1 ± 5.5 a | 112.6 ± 7.2 d | 83.5 ± 1.2 e | 61.0 ± 4.9 c | 43.8 ± 5.1 b |
Day | 0 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|
Mesophilic bacteria (log UFC/g) | |||||
F1 | 3.14 ± 0.15 c | 4.86 ± 0.10 c | 5.80 ± 0.13 c | 6.01 ± 0.22 c | 6.96 ± 0.44 d |
F2 | 2.70 ± 0.18 c | 4.60 ± 0.16 c | 5.22 ± 0.13 c | 5.65 ± 0.45 c | 6.73 ± 0.25 d |
F3 | 1.34 ± 0.12 b | 2.99 ± 0.14 b | 3.63 ± 0.29 b | 4.03 ± 0.15 b | 4.33 ± 0.10 c |
F4 | N.D | 1.71 ± 0.21 a | 1.86 ± 0.18 a | 2.34 ± 0.18 a | 2.88 ± 0.09 b |
F5 | N.D | 1.34 ± 0.12 a | 1.49 ± 0.08 a | 1.54 ± 0.16 a | 1.73 ± 0.10 a |
Molds (Log UFC/g) | |||||
F1 | 2.73 ± 0.12 c | 3.25 ± 0.08 c | 4.61 ± 0.19 c | 5.52 ± 0.06 d | 5.66 ± 0.04 d |
F2 | 1.48 ± 0.21 b | 2.51 ± 0.16 b | 3.48 ± 0.27 b | 4.06 ± 0.18 c | 5.31 ± 0.10 c |
F3 | N.D | N.D | N.D | 2.53 ± 0.14 b | 3.77 ± 0.10 b |
F4 | N.D | N.D | N.D | N.D | N.D |
F5 | N.D | N.D | N.D | N.D | N.D |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peralta-Ruiz, Y.; Tovar, C.D.G.; Sinning-Mangonez, A.; Coronell, E.A.; Marino, M.F.; Chaves-Lopez, C. Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage. Polymers 2020, 12, 1822. https://doi.org/10.3390/polym12081822
Peralta-Ruiz Y, Tovar CDG, Sinning-Mangonez A, Coronell EA, Marino MF, Chaves-Lopez C. Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage. Polymers. 2020; 12(8):1822. https://doi.org/10.3390/polym12081822
Chicago/Turabian StylePeralta-Ruiz, Yeimmy, Carlos David Grande Tovar, Angie Sinning-Mangonez, Edgar A. Coronell, Marcos F. Marino, and Clemencia Chaves-Lopez. 2020. "Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage" Polymers 12, no. 8: 1822. https://doi.org/10.3390/polym12081822
APA StylePeralta-Ruiz, Y., Tovar, C. D. G., Sinning-Mangonez, A., Coronell, E. A., Marino, M. F., & Chaves-Lopez, C. (2020). Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage. Polymers, 12(8), 1822. https://doi.org/10.3390/polym12081822