Abstract
In this study an efficient and reliable method based on dynamic headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was developed to establish the volatile metabolomic pattern of Thymus vulgaris L., Rosmarinus officinalis L. and Ruta chalepensis L. medicinal plants. The HS-SPME influencing parameters were investigated and the results indicated that the best extraction capability, was obtained using DVB/CAR/PDMS coating fiber at 40 °C for 45 min. Under optimal conditions, a total of 99 volatile metabolites were identified, including 53 terpenoids, 19 carbonyl compounds, 7 esters, 6 alcohols, among others. The main volatile metabolites identified in T. vulgaris include thymol (67 %), 3-octanone (9 %) and 1-octen-3-ol (7 %), while in R. officinalis the most dominant volatiles were eucalyptol (40 %), 2-decanone (20 %) and bornyl acetate (10 %). 2-Undecanone (53 %), (E)-2-octenal (28 %) and 2-nonanone (10 %) were the most relevant volatile metabolites identified in R. chalepensis. The results suggested that the HS-SPME/GC-qMS methodology is a powerful approach to establish the volatile metabolomic fingerprint of medicinal plants and providing a reliable tool for the complete characterization of these biologically active medicinal plants.
Similar content being viewed by others
References
Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602
Bajerová P, Eisner A, Ježová V, Adam M, Ventura K (2008) Comparison of supercritical fluid and soxhlet extractions for the isolation of nitro compounds from soils. J Sep Sci 31:1408–1414
Baranauskienė R, Venskutonis PR, Viškelis P, Dambrauskienė E (2003) Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). J Agric Food Chem 51:7751–7758
Barnes J, Anderson LA, Phillipson JD (2007) Rosemary (Vol, 3rd edn. In: Herbal Medicines. Pharmaceutical Press, London
Cao J, Qi M, Fang L, Zhou S, Fu R, Zhang P (2006) Solid-phase microextraction–gas chromatographic–mass spectrometric analysis of volatile compounds from Curcuma wenyujin Y.H. Chen et C. Ling. J Pharm Biomed Anal 40:552–558
Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168
Crocoll C, Asbach J, Novak J, Gershenzon J, Degenhardt J (2010) Terpene synthases of oregano (origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol. Biol 73:587–603
Culleré L, Escudero A, Cacho J, Ferreira V (2004) Gas chromatography − olfactometry and chemical quantitative study of the aroma of six premium quality spanish aged red wines. J Agric Food Chem 52:1653–1660
Cvetković ŽS, Nikolić VD, Savić IM, Savić-Gajić IM, Nikolić LB (2015) Development and validation of an RP-HPLC method for quantification of trans-resveratrol in the plant extracts. Hemijska industrija4-4.
Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316
Galindo-Cuspinera V, Lubran MB, Rankin SA (2002) Comparison of volatile compounds in water- and oil-soluble annatto (Bixa Orellana L.) extracts. J Agric Food Chem 50:2010–2015
Gianelli MP, Flores M, Toldrá F (2002) Optimisation of solid phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. J Sci Food Agric 82:1703–1709
Gonçalves S, Gomes D, Costa P, Romano A (2013) The phenolic content and antioxidant activity of infusions from mediterranean medicinal plants. Ind Crop Prod 43:465–471
Gouveia SC, Castilho PC (2013) Artemisia annua L.: essential oil and acetone extract composition and antioxidant capacity. Ind Crop Prod 45:170–181
Grigore A, Paraschiv I, Colceru-Mihul S, Bubueanu C, Draghici E, Ichim M (2010) Chemical composition and antioxidant activity of Thymus vulgaris L. volatile oil obtained by two different methods. Rom Biotech Lett 15:5436–5443
Guedes de Pinho P, Gonçalves RF, Valentão P, Pereira DM, Seabra RM, Andrade PB, Sottomayor M (2009) Volatile composition of Catharanthus roseus (L.) G. don using solid-phase microextraction and gas chromatography/mass spectrometry. J Pharm Biomed Anal 49:674–685
Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, Wold A-B, Haffner K, Baugerød H, Andersen LF, Moskaug Ø, Jacobs DR, Blomhoff R (2002) A systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471
Ince AE, Sahin S, Sumnu G (2014) Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J Food Sci Technol 51:2776–2782
Jiang Y, Wu N, Fu Y-J, Wang W, Luo M, Zhao C-J, Zu Y-G, Liu X-L (2011) Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ Toxicol Phar 32:63–68
Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94:550–557
Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: a comparative study. Food Chem 103:1003–1008
Lin C, Yu C, Wu S, Yih K (2009) DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J Food Drug Anal 17:386–395
Lord H, Pawliszyn J (2000) Microextraction of drugs. J Chromatogr A 902:17–63
Mejri J, Abderrabba M, Mejri M (2010) Chemical composition of the essential oil of Ruta chalepensis L: influence of drying, hydro-distillation duration and plant parts. Ind Crop Prod 32:671–673
Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973
Perestrelo R, Barros AS, Rocha SM, Câmara JS (2011) Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta 85:1483–1493
Pontes M, Marques JC, Câmara JS (2009) Headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometric methodology for the establishment of the volatile composition of passiflora fruit species. Microchem J 93:1–11
Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174
Sourmaghi MHS, Kiaee G, Golfakhrabadi F, Jamalifar H, Khanavi M (2014) Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation. J Food Sci Technol 1: 1–6.
VAN DEN Dool H, Dec. Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11: 463–471.
Vaya J, Belinky PA, Aviram M (1997) Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Biol Med 23:302–313
Vázquez-Araújo L, Rodríguez-Solana R, Cortés-Diéguez SM, Domínguez JM (2013) Use of hydrodistillation and headspace solid-phase microextraction to characterize the volatile composition of different hop cultivars. J Sci Food Agric 93:2568–2574
Venkatachallam SKT, Pattekhan H, Divakar S, Kadimi US (2010) Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J Food Sci Technol 47:598–605
Yu G, Nguyen TTH, Guo Y, Schauvinhold I, Auldridge ME, Bhuiyan N, Ben-Israel I, Iijima Y, Fridman E, Noel JP, Pichersky E (2010) Enzymatic functions of wild tomato methylketone synthases 1 and 21,[W][OA]. Plant Physiol 154:67–77
Acknowledgments
The support of Fundação para a Ciência e a Tecnologia (FCT) is acknowledged through the CQM pluriannual base funding/Strategic Plan: PEst-OE/QUI/UI0674/2014 and MS Portuguese Networks RNEM (REDE/1508/REM/2011).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Perestrelo, R., Silva, C.L., Rodrigues, F. et al. A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds. J Food Sci Technol 53, 132–144 (2016). https://doi.org/10.1007/s13197-015-2022-x
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13197-015-2022-x