Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains
<p>Time–kill kinetics for 8.2 µg/mL of REO and fluconazole against <span class="html-italic">Candida tropicalis</span> ORL21 (<b>a</b>), <span class="html-italic">Candida tropicalis</span> ORL20 (<b>b</b>), <span class="html-italic">Candida albicans</span> ORL08 (<b>c</b>), and <span class="html-italic">Candida albicans</span> ORL03 (<b>d</b>) at 37 °C. Results are according to ANOVA test mean values and intervals based on Tukey test for treatments with 95%. Different lowercase letters (a, b, c) indicate significant differences between treatments according to the Tukey test in a confidence interval of 95%.</p> "> Figure 2
<p>Effect of REO on biofilm of <span class="html-italic">C. tropicalis</span> and <span class="html-italic">C. albicans.</span> Formation of biofilm at 37 °C for 48 h, where OD<sub>590</sub> < 0.1 = nonproducers (NP), OD<sub>590</sub> 0.1–1.0 = weak producers (WP), OD<sub>590</sub> 1.1–3.0 = moderate producers (MP), and OD<sub>590</sub> > 3.0 = strong producers (SP) (<b>a</b>), percentage of eradication of biofilm after 1 h of REO treatment (8.2 µg/mL), amphotericin B (0.5 µg/mL) for <span class="html-italic">C. albicans</span> strains, and amphotericin B (1.0 µg/mL) for <span class="html-italic">C. tropicalis</span> strains (<b>b</b>). Results are according to ANOVA test mean values and intervals based on Tukey test for treatments with 95%. Different lowercase letters (a, b, c) indicate significant differences between treatments according to the Tukey test in a confidence interval of 95%. Different uppercase letters (A, B, C) indicate significant differences between strains according to the Tukey test in a confidence interval of 95%.</p> "> Figure 2 Cont.
<p>Effect of REO on biofilm of <span class="html-italic">C. tropicalis</span> and <span class="html-italic">C. albicans.</span> Formation of biofilm at 37 °C for 48 h, where OD<sub>590</sub> < 0.1 = nonproducers (NP), OD<sub>590</sub> 0.1–1.0 = weak producers (WP), OD<sub>590</sub> 1.1–3.0 = moderate producers (MP), and OD<sub>590</sub> > 3.0 = strong producers (SP) (<b>a</b>), percentage of eradication of biofilm after 1 h of REO treatment (8.2 µg/mL), amphotericin B (0.5 µg/mL) for <span class="html-italic">C. albicans</span> strains, and amphotericin B (1.0 µg/mL) for <span class="html-italic">C. tropicalis</span> strains (<b>b</b>). Results are according to ANOVA test mean values and intervals based on Tukey test for treatments with 95%. Different lowercase letters (a, b, c) indicate significant differences between treatments according to the Tukey test in a confidence interval of 95%. Different uppercase letters (A, B, C) indicate significant differences between strains according to the Tukey test in a confidence interval of 95%.</p> "> Figure 3
<p>Effect of REO and Fluconazole on the 260 nm absorbing cell constituents release with the time. Release cell concentration of <span class="html-italic">C. Tropicalis</span> ORL21 (<b>a</b>), of <span class="html-italic">C. Tropicalis</span> ORL20 (<b>b</b>), of <span class="html-italic">C. albicans</span> ORL08 (<b>c</b>), and of <span class="html-italic">C. albicans</span> ORL03 (<b>d</b>) with the treatment at different time. The results are expressed as the absorbance of the sample (treated)–the absorbance of the control (no treated). Results are according to ANOVA test mean values and intervals based on Tukey test for time with 95%. Different lowercase letters (a, b, c) indicate significant differences between times according to the Tukey test in a confidence interval of 95%.</p> "> Figure 3 Cont.
<p>Effect of REO and Fluconazole on the 260 nm absorbing cell constituents release with the time. Release cell concentration of <span class="html-italic">C. Tropicalis</span> ORL21 (<b>a</b>), of <span class="html-italic">C. Tropicalis</span> ORL20 (<b>b</b>), of <span class="html-italic">C. albicans</span> ORL08 (<b>c</b>), and of <span class="html-italic">C. albicans</span> ORL03 (<b>d</b>) with the treatment at different time. The results are expressed as the absorbance of the sample (treated)–the absorbance of the control (no treated). Results are according to ANOVA test mean values and intervals based on Tukey test for time with 95%. Different lowercase letters (a, b, c) indicate significant differences between times according to the Tukey test in a confidence interval of 95%.</p> "> Figure 4
<p>Extracellular pH of <span class="html-italic">Candida</span> yeast treated with REO and fluconazole. <span class="html-italic">C. tropicalis</span> ORL21 (<b>a</b>), <span class="html-italic">C. tropicalis</span> ORL20 (<b>b</b>), <span class="html-italic">C. albicans</span> ORL08 (<b>c</b>), and <span class="html-italic">C. albicans</span> ORL03 (<b>d</b>) with the treatment at different times. Values are the averages of the replicates for all the analyses. Error bars are ± SD of the means. Results are according to ANOVA test mean values and intervals based on Tukey test for treatments with 95%. Different lowercase letters (a, b, c) indicate significant differences between treatments according to the Tukey test in a confidence interval of 95%.</p> "> Figure 4 Cont.
<p>Extracellular pH of <span class="html-italic">Candida</span> yeast treated with REO and fluconazole. <span class="html-italic">C. tropicalis</span> ORL21 (<b>a</b>), <span class="html-italic">C. tropicalis</span> ORL20 (<b>b</b>), <span class="html-italic">C. albicans</span> ORL08 (<b>c</b>), and <span class="html-italic">C. albicans</span> ORL03 (<b>d</b>) with the treatment at different times. Values are the averages of the replicates for all the analyses. Error bars are ± SD of the means. Results are according to ANOVA test mean values and intervals based on Tukey test for treatments with 95%. Different lowercase letters (a, b, c) indicate significant differences between treatments according to the Tukey test in a confidence interval of 95%.</p> "> Figure 5
<p>Microscopic observation (100×), of <span class="html-italic">C. tropicalis</span> (ORL21 and ORL20) and <span class="html-italic">C. albicans</span> (ORL08 and ORL3) before and after treatment with REO using Evans blue staining: (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) untreated controls and (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) cells treated with REO (8.2 µg/mL).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Reagents
2.3. Antifungal Susceptibility Testing
2.4. Determination of Minimum Fungicidal Concentration (MFC)
2.5. Synergistic Potential of REO with Antifungal Antibiotics against C. albicans and C. tropicalis
2.6. Time–Kill Kinetics
2.7. Quantitative Assessment of Biofilm Formation
2.8. Leakage of DNA and RNA through the Fungal Membrane
2.9. Measurement of Extracellular pH
2.10. Effect of the REO on the Membrane Integrity
2.11. Data Analysis
3. Results
3.1. Oil Characterization
3.2. Antifungal Susceptibility Testing
3.3. Determination of Minimum Fungicidal Concentration (MFC)
3.4. Synergistic Activity of REO with Antifungal Antibiotics
3.5. Time–Kill Kinetics (TKK)
3.6. Biofilm Reduction
3.7. Leakage of DNA and RNA through the Fungal Membrane
3.8. Extracellular pH
3.9. Cell Membrane Integrity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gajdács, M.; Dóczi, I.; Ábrók, M.; Lázár, A.; Burián, K. Epidemiology of candiduria and Candida urinary tract infections in inpatients and outpatients: Results from a 10-year retrospective survey. Cent. Eur. J. Urol. 2019, 72, 209–214. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.-C.; Hsueh, P.-R. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region. Future Microbiol. 2016, 11, 1461–1477. [Google Scholar] [CrossRef] [PubMed]
- de Repentigny, L.; Lewandowski, D.; Jolicoeur, P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin. Microbiol. Rev. 2004, 17, 729–759. [Google Scholar] [CrossRef] [Green Version]
- Delaloye, J.; Calandra, T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 2014, 5, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Verma, R.; Murari, A.; Agrawal, A. Oral candidiasis: An overview. J. Oral Maxillofac. Pathol. 2014, 18, S81–S85. [Google Scholar] [CrossRef]
- Berkow, E.L.; Lockhart, S.R. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Taei, M.; Chadeganipour, M.; Mohammadi, R. An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res. Notes 2019, 12, 779. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, G.; Ebrahimi-Rad, M.; Mousavi, S.F.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Emergence of non-Candida albicans species: Epidemiology, phylogeny and fluconazole susceptibility profile. J. Mycol. Med. 2018, 28, 51–58. [Google Scholar] [CrossRef]
- Bua, A.; Usai, D.; Donadu, M.G.; Delgado Ospina, J.; Paparella, A.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Zanetti, S.; Molicotti, P. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organisms. Nat. Prod. Res. 2018, 32, 2869–2871. [Google Scholar] [CrossRef]
- Pellegrini, M.; Ricci, A.; Serio, A.; Chaves-López, C.; Mazzarrino, G.; D’Amato, S.; Lo Sterzo, C.; Paparella, A. Characterization of essential oils obtained from Abruzzo autochthonous plants: Antioxidant and antimicrobial activities assessment for food application. Foods 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Antunes, M.D.C.; Cavaco, A.M. The use of essential oils for postharvest decay control. A review. Flavour Fragr. J. 2010, 25, 351–366. [Google Scholar] [CrossRef]
- Tampieri, M.P.; Galuppi, R.; Macchioni, F.; Carelle, M.S.; Falcioni, L.; Cioni, P.L.; Morelli, I. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia 2005, 159, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, P.N.; Pillai, G.S.; Divakaran, M. 28—Other herbs and spices: Mango ginger to wasabi. In Woodhead Publishing Series in Food Science, Technology and Nutrition, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing: Southston, UK, 2012; pp. 557–582. ISBN 978-0-85709-040-9. [Google Scholar]
- Price Masalias, L.J.; Merztal, G. Biopreparados Para el Manejo Sostenible de Plagas y Enfermedades en la Agricultura Urbana y Periurbana; Lima, 2010. [Google Scholar]
- Gómez Álvarez, L.E.; Agudelo Mesa, S.C. Cartilla para Educación Agroecológica, 2006.
- Peralta-Ruiz, Y.; Grande Tovar, C.; Sinning-Mangonez, A.; Bermont, D.; Pérez Cordero, A.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef]
- Grande Tovar, C.D.; Delgado-Ospina, J.; Navia Porras, D.P.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, C.; Noé, M.; Mina, J.H.; Chaves López, C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddouchi, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical composition and antimicrobial activity of the essential oils from four Ruta species growing in Algeria. Food Chem. 2013, 141, 253–258. [Google Scholar] [CrossRef]
- González-Locarno, M.; Maza Pautt, Y.; Albis, A.; Florez López, E.; Grande Tovar, D.C. Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality. Appl. Sci. 2020, 10, 2684. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Grande Tovar, C.; Sinning-Mangonez, A.; Coronell, E.A.; Marino, M.F.; Chaves-Lopez, C. Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto”(Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage. Polymers 2020, 12, 1822. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Grande-Tovar, C.D.; Navia Porras, D.P.; Sinning-Mangonez, A.; Delgado-Ospina, J.; González-Locarno, M.; Maza Pautt, Y.; Chaves-López, C. Packham’s Triumph Pears (Pyrus communis L.) Post-Harvest Treatment during Cold Storage Based on Chitosan and Rue Essential Oil. Molecules 2021, 26, 725. [Google Scholar] [CrossRef]
- Terlecka, J.A.; Du Cros, P.A.; Orla Morrissey, C.; Spelman, D. Rapid differentiation of Candida albicans from non-albicans species by germ tube test directly from BacTAlert blood culture bottles. Mycoses 2007, 50, 48–51. [Google Scholar] [CrossRef]
- Zuza-Alves, D.L.; Silva-Rocha, W.P.; Chaves, G.M. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front. Microbiol. 2017, 8, 1927. [Google Scholar] [CrossRef] [Green Version]
- Spengler, G.; Kincses, A.; Mosolygó, T.; Marć, M.A.; Nové, M.; Gajdács, M.; Sanmartín, C.; McNeil, H.E.; Blair, J.; Domínguez-Álvarez, E. Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides. Molecules 2019, 24, 4264. [Google Scholar] [CrossRef] [Green Version]
- Nidhi, P.; Rolta, R.; Kumar, V.; Dev, K.; Sourirajan, A. Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans. J. Ethnopharmacol. 2020, 262, 113135. [Google Scholar] [CrossRef]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium JR et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Chaves López, C.; Mazzarrino, G.; Rodríguez, A.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America. Ind. Crops Prod. 2015, 63, 79–86. [Google Scholar] [CrossRef]
- Scorneaux, B.; Angulo, D.; Borroto-Esoda, K.; Ghannoum, M.; Peel, M.; Wring, S. SCY-078 Is Fungicidal against Candida Species in Time-Kill Studies. Antimicrob. Agents Chemother. 2017, 61, e01961-16. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Serio, A.; Chaves-López, C.; Anniballi, F.; Auricchio, B.; Goffredo, E.; Cenci-Goga, B.T.; Lista, F.; Fillo, S.; Paparella, A. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018, 86, 241–248. [Google Scholar] [CrossRef]
- Chaves-López, C.; Usai, D.; Donadu, M.G.; Serio, A.; González-Mina, R.T.; Simeoni, M.C.; Molicotti, P.; Zanetti, S.; Pinna, A.; Paparella, A. Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro. Food Funct. 2018, 9, 2725–2734. [Google Scholar] [CrossRef]
- Tao, N.; OuYang, Q.; Jia, L. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control 2014, 41, 116–121. [Google Scholar] [CrossRef]
- Chaves-Lopez, C.; Nguyen, H.N.; Oliveira, R.C.; Nadres, E.T.; Paparella, A.; Rodrigues, D.F. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles. Nanoscale 2018, 10, 20702–20716. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: Effects on fungi involve in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71. [Google Scholar] [CrossRef]
- Usai, D.; Donadu, M.; Bua, A.; Molicotti, P.; Zanetti, S.; Piras, S.; Corona, P.; Ibba, R.; Carta, A. Enhancement of antimicrobial activity of pump inhibitors associating drugs. J. Infect. Dev. Ctries. 2019, 13, 162–164. [Google Scholar] [CrossRef] [Green Version]
- Barac, A.; Donadu, M.; Usai, D.; Spiric, V.T.; Mazzarello, V.; Zanetti, S.; Aleksic, E.; Stevanovic, G.; Nikolic, N.; Rubino, S. Antifungal activity of Myrtus communis against Malassezia sp. isolated from the skin of patients with pityriasis versicolor. Infection 2018, 46, 253–257. [Google Scholar] [CrossRef]
- Donadu, M.G.; Usai, D.; Marchetti, M.; Usai, M.; Mazzarello, V.; Molicotti, P.; Montesu, M.A.; Delogu, G.; Zanetti, S. Antifungal activity of oils macerates of North Sardinia plants against Candida species isolated from clinical patients with candidiasis. Nat. Prod. Res. 2020, 34, 3280–3284. [Google Scholar] [CrossRef] [PubMed]
- Le, N.T.; Donadu, M.G.; Ho, D.V.; Doan, T.Q.; Le, A.T.; Raal, A.; Usai, D.; Sanna, G.; Marchetti, M.; Usai, M. Biological activities of essential oil extracted from leaves of Atalantia sessiflora Guillauminin Vietnam. J. Infect. Dev. Ctries. 2020, 14, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Attia, E.Z.; Abd El-Baky, R.M.; Desoukey, S.Y.; El Hakeem Mohamed, M.A.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Futur. J. Pharm. Sci. 2018, 4, 254–264. [Google Scholar] [CrossRef]
- Saad, A.; Fadli, M.; Bouaziz, M.; Benharref, A.; Mezrioui, N.-E.; Hassani, L. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine 2010, 17, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- De Castro, R.D.; de Souza, T.M.P.A.; Bezerra, L.M.D.; Ferreira, G.L.S.; de Brito Costa, E.M.M.; Cavalcanti, A.L. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: An in vitro study. BMC Complement. Altern. Med. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, C.V.; Ishida, K.; Faccin, L.C.; Filho, B.P.D.; Cortez, D.A.G.; Rozental, S.; de Souza, W.; Ueda-Nakamura, T. In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Res. Microbiol. 2004, 155, 579–586. [Google Scholar] [CrossRef]
- Rajkowska, K.; Nowicka-Krawczyk, P.; Kunicka-Styczyńska, A. Effect of Clove and Thyme Essential Oils on Candida Biofilm Formation and the Oil Distribution in Yeast Cells. Molecules 2019, 24, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.K.; Long, L.; Kim, H.G.; Ghannoum, M.A. Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms. Int. J. Antimicrob. Agents 2009, 33, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Lal, P.; Pruthi, V. Prevention of Candida albicans biofilm by plant oils. Mycopathologia 2008, 165, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Altern. Med. 2010, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Fattani, M.A.; Douglas, L.J. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J. Med. Microbiol. 2006, 55, 999–1008. [Google Scholar] [CrossRef]
- Al-Fattani, M.A.; Douglas, L.J. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 2004, 48, 3291–3297. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zeng, H.; Tian, J.; Ban, X.; Ma, B.; Wang, Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J. Med. Microbiol. 2013, 62, 1175–1183. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Kumar, P.; Bhatt, R.; Manzoor, N. Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast 2011, 28, 611–617. [Google Scholar] [CrossRef]
- Rajkowska, K.; Nowak, A.; Kunicka-Styczyńska, A.; Siadura, A. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Adv. 2016, 6, 97199–97207. [Google Scholar] [CrossRef] [Green Version]
Fungi (n) | Ruta graveolens L. | Fluconazole |
---|---|---|
Range (µg/mL) | Range | |
MIC | (µg/mL) | |
C. albicans (6) | 8.2 ± 0.5 | 0.25–1 |
C. parapsilosis (6) | 16.4 ± 0.5 | 0.5–2 |
C. tropicalis (6) | 4.1 ± 0.25 | 0.5–2 |
C. glabrata (6) | 131 ± 0.5 | 8–256 |
Strains | Ruta graveolens (REO) (µg/mL) MFC | Amphotericin B (µg/mL) MFC | Fluconazole (µg/mL) MFC | Voriconazole (µg/mL) MFC | ||||
---|---|---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
C. albicans ORL02 | 8.2 ± 0.5 | 12.3 ± 0.5 | 0.5 ± 0.25 | 0.5 ± 0.25 | 0.5 ± 0.25 | 1 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. albicans ORL03 | 8.2 ± 0.5 | 8.2 ± 0.5 | 1 ± 0.5 | 0.5 ± 0.25 | 0.5 ± 0.25 | 1 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. albicans ORL05 | 8.2 ± 0.5 | 12.3 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. albicans ORL07 | 8.2 ± 0.5 | 16.4 ± 0.5 | 1 ± 0.5 | 1.5 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. albicans ORL08 | 8.2 ± 0.5 | 8.2 ± 0.5 | 0.5 ± 0.25 | 0.5 ± 0.25 | 1 ± 0.5 | 1.5 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. albicans ORL09 | 8.2 ± 0.5 | 8.2 ± 0.5 | 0.5 ± 0.25 | 0.5 ± 0.25 | 1 ± 0.5 | 1.5 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. glabrata ORL02 | 131 ± 1 | 131 ± 1 | 2 ± 0.5 | 1 ± 0.5 | 128 ± 2 | 128 ± 2 | 2 ± 0.5 | 4 ± 0.5 |
C. glabrata ORL11 | 131 ± 1 | 131 ± 1 | 2 ± 0.5 | 1 ± 0.5 | 128 ± 2 | 256 ± 2 | 2 ± 0.5 | 4 ± 0.5 |
C. glabrata ORL15 | 66 ± 1 | 131 ± 1 | 1 ± 0.5 | 1 ± 0.5 | 128 ± 2 | 128 ± 2 | 1 ± 0.5 | 2 ± 0.5 |
C. glabrata ORL20 | 131 ± 1 | 131 ± 1 | 2 ± 0.5 | 1 ± 0.5 | 128 ± 2 | 256 ± 2 | 2 ± 0.5 | 4 ± 0.5 |
C. glabrata ORL22 | 131 ± 1 | 131 ± 1 | 1 ± 0.5 | 1 ± 0.5 | 128 ± 2 | 256 ± 2 | 1 ± 0.5 | 4 ± 0.5 |
C. glabrata ORL13 | 131 ± 1 | 131 ± 1 | 2 ± 0.5 | 1 ± 0.5 | 128 ± 2 | 256 ± 2 | 2 ± 0.5 | 4 ± 0.5 |
C. tropicalis ORL18 | 4.1 ± 0.25 | 8.2 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 1 ± 0.5 | 2 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. tropicalis ORL19 | 66 ± 0.5 | 8.2 ± 0.5 | 1 ± 0.5 | 1 ± 0.5 | 1 ± 0.5 | 2 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. tropicalis ORL20 | 4.1 ± 0.25 | 8.2 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 1 ± 0.5 | 2 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. tropicalis ORL21 | 4.1 ± 0.25 | 8.2 ± 0.5 | 1 ± 0.5 | 1 ± 0.5 | 1 ± 0.5 | 2 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. tropicalis ORL22 | 4.1 ± 0.25 | 8.2 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 1 ± 0.5 | 2 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. tropicalis ORL23 | 4.1 ± 0.25 | 8.2 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 2 ± 0.5 | 2 ± 0.5 | 0.03 ± 0.005 | 0.03 ± 0.005 |
C. parapsilosis ORL25 | 16.4 ± 0.5 | 20.5 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 2 ± 0.5 | 4 ± 0.5 | 0.125 ± 0.05 | 0.250 ± 0.05 |
C. parapsilosis ORL25 | 16.4 ± 0.5 | 16.4 ± 0.5 | 1 ± 0.5 | 1 ± 0.5 | 2 ± 0.5 | 4 ± 0.5 | 0.125 ± 0.05 | 0.250 ± 0.05 |
C. parapsilosis ORL27 | 16.4 ± 0.5 | 20.5 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 2 ± 0.5 | 4 ± 0.5 | 0.125 ± 0.05 | 0.250 ± 0.05 |
C. parapsilosis ORL28 | 16.4 ± 0.5 | 16.4 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 2 ± 0.5 | 4 ± 0.5 | 0.125 ± 0.05 | 0.250 ± 0.05 |
C. parapsilosis ORL29 | 16.4 ± 0.5 | 16.4 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 2 ± 0.5 | 4 ± 0.5 | 0.125 ± 0.05 | 0.250 ± 0.05 |
C. parapsilosis ORL30 | 16.4 ± 0.5 | 20.5 ± 0.5 | 0.5 ± 0.25 | 1 ± 0.5 | 2 ± 0.5 | 4 ± 0.5 | 0.125 ± 0.05 | 0.250 ± 0.05 |
Strains | MIC Alone (µg/mL) | MIC in Combination | FICI | Effect | |||||
---|---|---|---|---|---|---|---|---|---|
REO | Flz | Amp B | REO-Flz | REO-Amp B | REO-Flz | REO-Amp B | REO-Flz | REO-Amp B | |
C. albicans ORL3 | 4.1 | 2 | 0.25 | 8.2–0.03 | 0.52–0.06 | 2.02 | 0.38 | Ant | Syn |
C. albicans ORL8 | 2.05 | 2 | 0.25 | 2.05–0.03 | 0.52–0.06 | 1.02 | 0.5 | N.I | Syn |
C. tropicalis ORL20 | 2.05 | 2 | 0.12 | 2.05–0.03 | 1.03–0.06 | 1.02 | 1.5 | N.I | N.I |
C. tropicalis ORL21 | 2.05 | 2 | 0.06 | 2.05–0.03 | 1.03–0.03 | 1.02 | 0.8 | N.I | Syn |
Strain | Growth Reduction | REO 1 |
---|---|---|
Candida tropicalis ORL21 | 50% | 0.39 |
90% | 1.57 | |
99.9% | 1.79 | |
Candida tropicalis ORL20 | 50% | 0.88 |
90% | 1.65 | |
99.9% | 2.93 | |
Candida albicans ORL08 | 50% | 4.51 |
90% | N.A. | |
99.9% | N.A. | |
Candida albicans ORL03 | 50% | 3.63 |
90% | N.A. | |
99.9% | N.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donadu, M.G.; Peralta-Ruiz, Y.; Usai, D.; Maggio, F.; Molina-Hernandez, J.B.; Rizzo, D.; Bussu, F.; Rubino, S.; Zanetti, S.; Paparella, A.; et al. Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains. J. Fungi 2021, 7, 383. https://doi.org/10.3390/jof7050383
Donadu MG, Peralta-Ruiz Y, Usai D, Maggio F, Molina-Hernandez JB, Rizzo D, Bussu F, Rubino S, Zanetti S, Paparella A, et al. Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains. Journal of Fungi. 2021; 7(5):383. https://doi.org/10.3390/jof7050383
Chicago/Turabian StyleDonadu, Matthew Gavino, Yeimmy Peralta-Ruiz, Donatella Usai, Francesca Maggio, Junior Bernando Molina-Hernandez, Davide Rizzo, Francesco Bussu, Salvatore Rubino, Stefania Zanetti, Antonello Paparella, and et al. 2021. "Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains" Journal of Fungi 7, no. 5: 383. https://doi.org/10.3390/jof7050383
APA StyleDonadu, M. G., Peralta-Ruiz, Y., Usai, D., Maggio, F., Molina-Hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-Lopez, C. (2021). Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains. Journal of Fungi, 7(5), 383. https://doi.org/10.3390/jof7050383