Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource
<p>Total amounts (mg/g) of chrolophyll A (Cha), chlorophyll B (Chb), and carotenoids in convection-dried (CD) and freeze-dried (FD) HR cultivars’ leaf powders.</p> "> Figure 2
<p>Trolox equivalent antioxidant activity values (TE, µmol/g) of convection-dried (CD) and freeze-dried (FD) HR cultivars’ leaf powders.</p> "> Figure 3
<p>PCA score plots for antioxidant and chromatic characteristics of convection-dried (CD) and freeze-dried (FD) HR cultivars’ leaf powders.</p> "> Figure 4
<p>The dendrogram of hierarchical cluster analysis on phenolic and triterpenic compounds of convection-dried (CD) and freeze-dried (FD) HR cultivars’ leaf powders. 1–cluster composed of CD and FD samples of ‘Avgustinka’, ‘Botaniceskaja’, ‘Botaniceskaja Liubitelskaja’, and ‘Nivelena’; 2–cluster composed of CD samples of ‘Hibrid Percika’ and ‘Otradnaja’; 3-cluster composed of CD and FD samples of ‘Julia’, ‘Podarok Sadu’, ‘Trofimovskaja’, ‘Vorobjovskaja’, and FD samples of ‘Hibrid Percika’ and ‘Otradnaja’.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Chromatic Parameters in the Freeze-Dried and Convection-Dried Leaf Powders of H. rhamnoides Cultivars
2.2. Content of Chrolophyll A (Cha), Chlorophyll B (Chb), and Carotenoids in the Freeze-Dried and Convection-Dried Leaf Powders of H. rhamnoides Cultivars
2.3. Radical Scavenging and Reducing Activities of the Freeze-Dried and Convection-Dried Leaf Powders of H. rhamnoides Cultivars
2.4. Principal Component Analysis of the Freeze-Dried and Convection-Dried Leaf Powders of H. rhamnoides Cultivars
2.5. Hierarchical Cluster Analysis of Phenolic and Triterpenic Compounds
2.6. Phenolic and Triterpenic Profiles of the Freeze-Dried Leaf Powders of H. rhamnoides Cultivars
3. Materials and Methods
3.1. Plant Material and Preparation of Extracts
3.2. Chemicals
3.3. Evaluation of Chromatic CIELAB Parameters
3.4. Determination of Chlorophyll A, Chlorophyll B, and Total Carotenoid Content
3.5. HPLC Analysis
3.6. Antioxidant Activity Assays
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Parmesan, C.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot. 2015, 116, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Li, T.S.; Schroeder, W. Sea Buckthorn (Hippophae rhamnoides L.): A Multipurpose Plant. HortTechnology 1996, 6, 370–380. [Google Scholar] [CrossRef]
- Pundir, S.; Garg, P.; Dviwedi, A.; Ali, A.; Kapoor, V.; Kapoor, D.; Kulshrestha, S.; Lal, U.R.; Negi, P. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review. J. Ethnopharmacol. 2021, 266, 113434. [Google Scholar] [CrossRef] [PubMed]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.Y.; Tirpude, R.; Maheshwari, D.; Bansal, A.; Misra, K. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves in vitro. Food Chem. 2013, 141, 3443–3450. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ruan, C.; Ding, J.; Li, J.; Wang, L.; Tian, X. Diversity in sea buckthorn (Hippophae rhamnoides L.) accessions with different origins based on morphological characteristics, oil traits, and microsatellite markers. PLoS ONE 2020, 15, e0230356. [Google Scholar] [CrossRef]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced Research on the Antioxidant Activity and Mechanism of Polyphenols from Hippophae Species—A Review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, A.; Ekholm, A.; Scheewe, P.; Rumpunen, K. Changes in content of major phenolic compounds during leaf development of sea buckthorn (Hippophae rhamnoides L.). Agric. Food Sci. 2014, 23, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Cho, E.; Jung, H.; Yi, H.C.; Lee, B.; Hwang, K.T. Antioxidant activities of sea buckthorn leaf tea extracts compared with green tea extracts. Food Sci. Biotechnol. 2014, 23, 1295–1303. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Grey, C.; Widén, C.; Adlercreutz, P.; Rumpunen, K.; Duan, R.-D. Antiproliferative effects of sea buckthorn (Hippophae rhamnoides L.) extracts on human colon and liver cancer cell lines. Food Chem. 2010, 120, 1004–1010. [Google Scholar] [CrossRef]
- Patel, C.A.; Divakar, K.; Santani, D.; Solanki, H.K.; Thakkar, J.H. Remedial Prospective of Hippophae rhamnoides Linn. (Sea Buckthorn). ISRN Pharmacol. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, Y.; Ta, W.; Tang, W.; Hua, R.; Wang, J.; Wang, C.; Lu, W. Potential antiviral activity of isorhamnetin against SARS-CoV -2 spike pseudotyped virus in vitro. Drug Dev. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.-H.; Bai, H.-Y.; Han, S.; Bao, F.; Zhang, K.-X.; Sun, L.-L.; Du, H.; Yang, Z.-G. Analysis on the Constituents of Branches, Berries, and Leaves of Hippophae rhamnoides L. by UHPLC-ESI-QTOF-MS and Their Anti-Inflammatory Activities. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Raudonis, R.; Raudone, L.; Janulis, V.; Viskelis, P. Flavonoids in cultivated berries of sea buckthorn (Hippophaë rhamnoides L.). Planta Med. 2014, 80, LP24. [Google Scholar] [CrossRef]
- Cho, C.H.; Jang, H.L.; Lee, M.; Kang, H.; Heo, H.J.; Kim, D.-O. Sea Buckthorn (Hippophae rhamnoides L.) Leaf Extracts Protect Neuronal PC-12 Cells from Oxidative Stress. J. Microbiol. Biotechnol. 2017, 27, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Lakušić, B.; Ristić, M.; Slavkovska, V.; Lakušić, D.; Milenković, M. Environmental and Seasonal Impacts on the Chemical Composition of Satureja horvatii Šili? (Lamiaceae) Essential Oils. Chem. Biodivers. 2011, 8, 483–493. [Google Scholar] [CrossRef]
- Pariyani, R.; Kortesniemi, M.; Liimatainen, J.; Sinkkonen, J.; Yang, B. Untargeted metabolic fingerprinting reveals impact of growth stage and location on composition of sea buckthorn (Hippophae rhamnoides L.) leaves. J. Food Sci. 2020, 85, 364–373. [Google Scholar] [CrossRef]
- Pop, R.M.; Socaciu, C.; Pintea, A.; Buzoianu, A.D.; Sanders, M.G.; Gruppen, H.; Vincken, J.-P. UHPLC/PDA-ESI/MS Analysis of the Main Berry and Leaf Flavonol Glycosides from Different Carpathian Hippophaë rhamnoides L. Varieties. Phytochem. Anal. 2013, 24, 484–492. [Google Scholar] [CrossRef]
- Sytařová, I.; Orsavová, J.; Snopek, L.; Mlcek, J.; Byczyński, Ł.; Misurcova, L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020, 310, 125784. [Google Scholar] [CrossRef]
- Šnē, E.; Seglina, D.; Galoburda, R.; Krasnova, I. Content of Phenolic Compounds in Various Sea Buckthorn Parts. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 411–415. [Google Scholar] [CrossRef]
- Suvanto, J.; Tähtinen, P.; Valkamaa, S.; Engström, M.; Karonen, M.; Salminen, J.-P. Variability in Foliar Ellagitannins of Hippophaë rhamnoides L. and Identification of a New Ellagitannin, Hippophaenin C. J. Agric. Food Chem. 2018, 66, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.; Borge, G.; Kljak, K.; Mandić, A.; Mapelli-Brahm, P.; Olmedilla-Alonso, B.; Pintea, A.; Ravasco, F.; Šaponjac, V.T.; Sereikaitė, J.; et al. European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods 2021, 10, 912. [Google Scholar] [CrossRef]
- Vaňková, K.; Marková, I.; Jašprová, J.; Dvořák, A.; Subhanová, I.; Zelenka, J.; Novosádová, I.; Rasl, J.; Vomastek, T.; Sobotka, R.; et al. Chlorophyll-Mediated Changes in the Redox Status of Pancreatic Cancer Cells Are Associated with Its Anticancer Effects. Oxid. Med. Cell. Longev. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, D.E.; Lowe, T. Plant-Derived Compounds as Antioxidants for Health—Are They all Really Antioxidants? Plant Sci. 2009, 3, 1–12. [Google Scholar]
- Raudone, L.; Zymone, K.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V.; Janulis, V. Phenological changes in triterpenic and phenolic composition of Thymus L. species. Ind. Crops Prod. 2017, 109, 445–451. [Google Scholar] [CrossRef]
- Kukin, T.P.; Shcherbakov, D.N.; Gensh, K.V.; Tulysheva, E.A.; Salnikova, O.I.; Grazhdannikov, A.E.; Kolosova, E.A. Bioactive Components of Sea Buckthorn Hippophae rhamnoides L. Foliage. Russ. J. Bioorgan. Chem. 2017, 43, 747–751. [Google Scholar] [CrossRef]
- Rubinskienė, M.; Viskelis, P.; Dambrauskienė, E.; Viškelis, J.; Karklelienė, R. Effect of drying methods on the chemical composition and colour of peppermint (Mentha × piperita L.) leaves. Zemdirb. Agric. 2015, 102, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Arabhosseini, A.; Padhye, S.; Huisman, W.; Van Boxtel, A.; Müller, J. Effect of Drying on the Color of Tarragon (Artemisia dracunculus L.) Leaves. Food Bioprocess Technol. 2011, 4, 1281–1287. [Google Scholar] [CrossRef]
- Guan, T.T.Y.; Cenkowski, S.; Hydamaka, A. Effect of Drying on the Nutraceutical Quality of Sea Buckthorn (Hippophae rhamnoides L. ssp. sinensis) Leaves. J. Food Sci. 2006, 70, E514–E518. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.; Nawi, N.M.; Abdan, K. Color change kinetics and total carotenoid content of pumpkin as affected by drying temperature. Ital. J. Food Sci. 2017, 29, 1–18. [Google Scholar]
- George, S.D.S.; Cenkowski, S. Influence of Harvest Time on the Quality of Oil-Based Compounds in Sea Buckthorn ( Hippophae rhamnoides L. ssp. sinensis) Seed and Fruit. J. Agric. Food Chem. 2007, 55, 8054–8061. [Google Scholar] [CrossRef] [PubMed]
- Krokida, M.K.; Maroulis, Z.B.; Saravacos, G.D. The effect of the method of drying on the colour of dehydrated products. Int. J. Food Sci. Technol. 2001, 36, 53–59. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Gurak, P.D.; Marczak, L.D.F.; Tessaro, I.C. Tracking bioactive compounds with colour changes in foods—A review. Dye. Pigment. 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Rojo-Martínez, S.; Seijo, M.C. Contribution to the Chromatic Characterization of Unifloral Honeys from Galicia (NW Spain). Foods 2019, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Mikulic-Petkovsek, M.; Krska, B.; Kiprovski, B.; Veberic, R. Bioactive Components and Antioxidant Capacity of Fruits from NineSorbusGenotypes. J. Food Sci. 2017, 82, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Palta, J.P. Leaf chlorophyll content. Remote Sens. Rev. 1990, 5, 207–213. [Google Scholar] [CrossRef]
- Kumar, S.S.; Manoj, P.; Shetty, N.P.; Giridhar, P. Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L. J. Sci. Food Agric. 2014, 95, 1812–1820. [Google Scholar] [CrossRef]
- Gornas, P.; Sne, E.; Siger, A.; Seglina, D. Sea buckthorn (Hippophae rhamnoides L.) leaves as valuable source oflipophilic antioxidants: The effect of harvest time, sex, drying andextraction methods. Ind. Crops Prod 2014, 60, 1–7. [Google Scholar] [CrossRef]
- Raudonis, R.; Raudone, L.; Jakstas, V.; Janulis, V. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries. J. Chromatogr. A 2012, 1233, 8–15. [Google Scholar] [CrossRef]
- Tzachristas, A.; Pasvanka, K.; Liouni, M.; Calokerinos, A.C.; Tataridis, P.; Proestos, C. Effect of Hippophae rhamnoides L. Leaves Treatment on the Antioxidant Capacity, Total Phenol Content and Sensory Profile of Moschofilero Wines Vinified with and without Added Sulphites. Appl. Sci. 2020, 10, 3444. [Google Scholar] [CrossRef]
- Asofiei, I.; Calinescu, I.; Trifan, A.; Gavrila, A.I. A Semi-Continuous Process for Polyphenols Extraction From Sea Buckthorn Leaves. Sci. Rep. 2019, 9, 12044. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.; Li, C.; Fu, I.; Zhao, C. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J. Pharm. Biomed. Anal. 2006, 41, 714–719. [Google Scholar] [CrossRef]
- Sadowska, B.; Rywaniak, J.; Cichocka, A.; Cichocka, K.; Żuchowski, J.; Wójcik-Bojek, U.; Więckowska-Szakiel, M.; Różalska, B. Phenolic and Non-Polar Fractions of the Extracts from Fruits, Leaves, and Twigs of Elaeagnus rhamnoides (L.) A. Nelson—The Implications for Human Barrier Cells. Molecules 2020, 25, 2238. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Czaplicki, S.; Rubinskienė, M.; Szałkiewicz, M. Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. J. Am. Oil Chem. Soc. 2005, 82, 175–179. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Padureanu, S.; Deseatnicova, O.; Turculet, N.; Boestean, O.; Niculaua, M. Potential Application of Hippophae rhamnoides in Wheat Bread Production. Molecules 2020, 25, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Suo, Y.; Zhang, Q.; You, J.; Ji, Z.; Wang, A.; Han, L.; Lv, H.; Ye, Y. Rapid, Selective, and Sensitive Analysis of Triterpenic Acids in Hippophae rhamnoides L. Using HPLC with Pre-Column Fluorescent Derivatization and Identification with Post-Column APCI-MS. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 451–458. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; LE Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophaë rhamnoides L.) leaf, stem, root and seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, F.; Nie, B.; Cao, J.; Zhang, F. High throughput identification of pentacyclic triterpenes in Hippophae rhamnoides using multiple neutral loss markers scanning combined with substructure recognition (MNLSR). Talanta 2019, 205, 120011. [Google Scholar] [CrossRef]
- Yang, Z.-G.; Li, H.-R.; Wang, L.-Y.; Li, Y.-H.; Lu, S.-G.; Wen, X.-F.; Wang, J.; Daikonya, A.; Kitanaka, S. Triterpenoids from Hippophae rhamnoides L. and Their Nitric Oxide Production-Inhibitory and DPPH Radical-Scavenging Activities. Chem. Pharm. Bull. 2007, 55, 15–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasukawa, K.; Kitanaka, S.; Kawata, K.; Goto, K. Anti-tumor promoters phenolics and triterpenoid from Hippophae rhamnoides. Fitoterapia 2009, 80, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Skalski, B.; Kontek, B.; Olas, B.; Zuchowski, J.; Stochmal, A. Phenolic fraction and nonpolar fraction from sea buckthorn leaves and twigs: Chemical profile and biological activity. Future Med. Chem. 2018, 10, 2381–2394. [Google Scholar] [CrossRef]
- Sriskandarajah, S.; Lundquist, P.-O. High frequency shoot organogenesis and somatic embryogenesis in juvenile and adult tissues of seabuckthorn (Hippophae rhamnoides L.). Plant Cell Tissue Organ Cult. (PCTOC) 2009, 99, 259–268. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono—and Dicotyledonous Plants: BBCH Monograph; Meier, U., Ed.; Julius Kuhn-Institut: Quedlinburg, Germany, 2018; ISBN 978-3-95547-071-5. [Google Scholar]
- Luksiene, Z.; Paskeviciute, E. High-power pulsed light for microbial decontamination of some fruits and vegetables with different surfaces. J. Food Agric. Environ. 2012, 1010, 162–167. [Google Scholar]
- Reporting of Objective Color Measurements. Available online: https://agris.fao.org/agris-search/search.do?recordID=US9426291 (accessed on 16 June 2021).
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic Fractions from Vaccinium vitis-idaea L. and Their Antioxidant and Anticancer Activities Assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L. Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitisidaea L. Molecules 2021, 26, 1645. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Raudonė, L.; Liaudanskas, M.; Vilkickytė, G.; Kviklys, D.; Žvikas, V.; Viškelis, J.; Viškelis, P. Phenolic Profiles, Antioxidant Activity and Phenotypic Characterization of Lonicera caerulea L. Berries, Cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cultivar | Drying Method | L* | a* | b* | C | h |
---|---|---|---|---|---|---|
Avgustinka | CD | 58.76 ± 0.04 | −1.37 ± 0.05 | 19.18 ± 0.15 | 19.23 ± 0.14 | 94.08 ± 0.15 |
Botaniceskaja Liubitelskaja | CD | 55.92 ± 0.02 | −0.30 ± 0.02 | 17.82 ± 0.07 | 17.82 ± 0.07 | 90.98 ± 0.05 |
Botaniceskaja | CD | 57.76 ± 0.03 | −1.24 ± 0.11 | 19.16 ± 0.08 | 19.20 ± 0.08 | 93.70 ± 0.32 |
Hibrid Percika | CD | 59.53 ± 0.02 | −2.67 ± 0.07 | 23.38 ± 0.13 | 24.66 ± 0.11 | 108.54 ± 0.25 |
Julia | CD | 56.38 ± 0.03 | −1.47 ± 0.14 | 18.56 ± 0.24 | 18.62 ± 0.25 | 94.53 ± 0.37 |
Nivelena | CD | 57.12 ± 0.01 | −0.74 ± 0.05 | 18.95 ± 0.07 | 18.96 ± 0.08 | 92.24 ± 0.14 |
Otradnaja | CD | 55.79 ± 0.02 | −1.37 ± 0.02 | 18.47 ± 0.07 | 18.52 ± 0.07 | 94.23 ± 0.05 |
Podarok Sadu | CD | 59.84 ± 0.03 | −5.03 ± 0.05 | 22.49 ± 0.10 | 23.11 ± 0.10 | 103.27 ± 0.14 |
Trofimovskaja | CD | 60.28 ± 0.03 | −5.22 ± 0.01 | 22.49 ± 0.08 | 23.09 ± 0.07 | 103.07 ± 0.07 |
Vorobjovskaja | CD | 56.81 ± 0.02 | −7.84 ± 0.09 | 19.93 ± 0.12 | 20.11 ± 0.12 | 97.63 ± 0.16 |
Avgustinka | FD | 59.71 ± 0.02 | −7.14 ± 0.06 | 24.62 ± 0.18 | 25.64 ± 0.19 | 106.18 ± 0.10 |
Botaniceskaja Liubitelskaja | FD | 59.10 ± 0.04 | −7.61 ± 0.03 | 24.68 ± 0.11 | 25.82 ± 0.11 | 107.14 ± 0.02 |
Botaniceskaja | FD | 59.94 ± 0.03 | −8.17 ± 0.03 | 25.02 ± 0.12 | 26.32 ± 0.10 | 108.09 ± 0.12 |
Hibrid Percika | FD | 59.02 ± 0.04 | −7.84 ± 0.09 | 23.38 ± 0.13 | 24.66 ± 0.11 | 108.54 ± 0.25 |
Julia | FD | 59.18 ± 0.01 | −7.66 ± 0.07 | 23.75 ± 0.13 | 24.95 ± 0.13 | 107.89 ± 0.15 |
Nivelena | FD | 60.25 ± 0.01 | −7.56 ± 0.04 | 25.06 ± 0.04 | 26.18 ± 0.04 | 106.79 ± 0.07 |
Otradnaja | FD | 60.88 ± 0.02 | −7.98 ± 0.04 | 24.35 ± 0.09 | 25.63 ± 0.07 | 108.14 ± 0.12 |
Podarok Sadu | FD | 59.85 ± 0.04 | −6.05 ± 0.10 | 22.40 ± 0.11 | 23.21 ± 0.12 | 105.11 ± 0.21 |
Trofimovskaja | FD | 61.76 ± 0.01 | −7.31 ± 0.08 | 24.35 ± 0.16 | 25.43 ± 0.17 | 106.71 ± 0.12 |
Vorobjovskaja | FD | 58.69 ± 0.01 | −8.25 ± 0.02 | 23.30 ± 0.17 | 24.71 ± 0.17 | 109.49 ± 0.10 |
FD | Avgustinka | Botaniceskaja | Botaniceskaja Liubitelskaja | Hibrid Percika | Julia | Nivelena | Otradnaja | Podarok Sadu | Trofimovskaja | Vorobjovskaja |
---|---|---|---|---|---|---|---|---|---|---|
Catechin | 54,685.20 ± 1894.04 | 39,868.50 ± 1380.78 | 51,592.60 ± 1786.91 | 46,308.60 ± 1603.87 | 47,683.00 ± 1651.48 | 60,605.80 ± 2099.14 | 44,232.70 ± 1531.96 | 43,342.10 ± 1501.11 | 43,620.90 ± 1510.77 | 44,700.90 ± 1548.18 |
Gallic acid | 462.90 ± 15,74 | 401.70 ± 13.62 | 554,1 ± 18,9 | 376.30 ± 12.74 | 460.50 ± 15.66 | 565.90 ± 19.30 | 385.80 ± 13.07 | 421.70 ± 14.31 | 404.4 ± 13.71 | 453.20 ± 15.40 |
Protocatechuic acid | 3405.10 ± 117.65 | 2457.20 ± 84.82 | 2990.80 ± 103.30 | 2169.90 ± 74.86 | 3002.00 ± 103.69 | 1540.10 ± 53.05 | 2101.20 ± 72.48 | 2116.80 ± 73.02 | 2329.00 ± 80.37 | 2467.20 ± 85.16 |
Caftaric acid | 245.00 ± 8.20 | 162.90 ± 5.36 | 127.90 ± 4.16 | 164.10 ± 5.40 | 130.20 ± 4.24 | 164.80 ± 5.43 | 159.10 ± 5.23 | 274.10 ± 9.20 | 244.60 ± 8.18 | 206.00 ± 6.85 |
Ellagic acid | 1880.20 ± 64.83 | 2157.40 ± 74.43 | 1921.60 ± 66.26 | 1339.00 ± 46.08 | 1659.90 ± 57.20 | 1816.90 ± 62.64 | 1692.10 ± 58.31 | 1244.20 ± 42.80 | 1396.2 ± 48.06 | 1413.70 ± 48.67 |
Coumaric acid | 55.20 ± 1.69 | 52.00 ± 1.59 | 50.70 ± 1.54 | 68.50 ± 2.13 | 52.70 ± 1.61 | 72.00 ± 2.25 | 45.30 ± 1.37 | 48.50 ± 1.47 | 44.5 ± 1.34 | 41.90 ± 1.26 |
Rutin | 576.10 ± 19.66 | 343.10 ± 11.59 | 532.8 ± 18.16 | 371.40 ± 12.57 | 421.60 ± 14.31 | 386.40 ± 13.09 | 310.20 ± 10.45 | 459.20 ± 15.61 | 314.6 ± 10.61 | 360.00 ± 12.18 |
Isorhamnetin-3-rutinoside | 585.10 ± 19.97 | 542.60 ± 18.50 | 588.30 ± 20.08 | 727.60 ± 24.90 | 640.40 ± 21.88 | 479.30 ± 16.31 | 512.30 ± 17.45 | 693.20 ± 23.71 | 671.7 ± 22.97 | 746.40 ± 25.56 |
Isorhamnetin-3-glucoside | 266.40 ± 8.94 | 421.60 ± 14.31 | 287.10 ± 9.65 | 256.80 ± 8.61 | 274.30 ± 9.21 | 410.90 ± 13.94 | 301.00 ± 10.13 | 368.50 ± 12.47 | 341.5 ± 11.54 | 286.80 ± 9.64 |
Quercetin | 20.40 ± 0.66 | 23.30 ± 0.73 | 22.80 ± 0.72 | 20.00 ± 0.66 | 19.70 ± 0.65 | 20.10 ± 0.66 | 19.10 ± 0.64 | 18.10 ± 0.62 | 20 00 ± 0.66 | 17.80 ± 0.61 |
Kaempferol | 21.14 ± 0.68 | 26.74 ± 0.82 | 24.61 ± 0.76 | 20.39 ± 0.66 | 18.53 ± 0.63 | 23.82 ± 0.74 | 24.33 ± 0.75 | 20.56 ± 0.67 | 13.14 ± 0.55 | 14.24 ± 0.56 |
Tiliroside | 540.30 ± 18.42 | 253.20 ± 8.48 | 557.5 ± 19.01 | 316.80 ± 10.68 | 321.40 ± 10.84 | 338.40 ± 11.43 | 766.00 ± 26.23 | 733.7 ± 25.12 | 308.30 ± 10.39 | 370.10 ± 12.53 |
Epigallocatechin | 38,818.50 ± 1344.41 | 38,931.30 ± 1348.31 | 34,993.50 ± 1211.90 | 21,464.70 ± 743.25 | 26,194.80 ± 907.11 | 40,049.30 ± 1387.04 | 19,971.10 ± 691.51 | 29,104.40 ± 1007.90 | 24,687.20 ± 854.88 | 31,498.60 ± 1090.84 |
Isorhamnetin | 25.70 ± 0.79 | 28.70 ± 0.87 | 27.40 ± 0.83 | 28.00 ± 0.85 | 26.60 ± 0.81 | 28.20 ± 0.85 | 26.80 ± 0.82 | 27.00 ± 0.82 | 25.60 ± 0.79 | 25.50 ± 0.78 |
Myricetin | 45.70 ± 1.38 | 47.70 ± 1.45 | 47.30 ± 1.43 | 44.60 ± 1.35 | 45.00 ± 1.36 | 44.80 ± 1.35 | 44.50 ± 1.34 | 44.30 ± 1.34 | 45.00 ± 1.36 | 45.90 ± 1.39 |
Quercetin 3-O-(6′’-acetyl-glucoside) | 50.30 ± 1.53 | 26.60 ± 0.81 | 42.80 ± 1.29 | 47.40 ± 1.44 | 78,1 ± 2,46 | 40.80 ± 1.23 | 16.00 ± 0.59 | 12.90 ± 0.55 | 56.80 ± 1.74 | 57.00 ± 1.75 |
Epicatechin gallate | 272.60 ± 9.15 | 248.00 ± 830 | 308.1 ± 10.38 | 372.70 ± 12.62 | 137,9 ± 4,5 | 418.20 ± 14.19 | 183.10 ± 6.06 | 212.40 ± 7.07 | 246.30 ± 8.24 | 309.00 ± 10.41 |
Ferulic acid | 39.90 ± 1.20 | 37.80 ± 1.13 | 36.80 ± 1.10 | 36.90 ± 1.11 | 65,6 ± 2,04 | 59.50 ± 1.83 | 41.9 ± 1.26 | 31.70 ± 0.95 | 24.00 ± 0.75 | 25.10 ± 0.77 |
Caffeic acid | 62.40 ± 1.93 | 84.00 ± 2.66 | 65.4 ± 2.03 | 65.8 ± 2.04 | 50.3 ± 1.53 | 64.2 ± 1.99 | 86.00 ± 2.73 | 80.20 ± 2.53 | 64.50 ± 2.00 | 66.9 ± 2.08 |
Isoquercitrin | 190.62 ± 6.32 | 234.51 ± 7.84 | 197.73 ± 6.56 | 121.91 ± 3.95 | 155.44 ± 5.11 | 231.82 ± 7.74 | 107.17 ± 3.45 | 182.96 ± 6.06 | 149.43 ± 4.90 | 134.84 ± 4.40 |
Procyanidin B3 | 16,813.60 ± 582.13 | 16,120.70 ± 558.13 | 13,673.50 ± 473.36 | 8792.90 ± 304.29 | 9175.7 ± 317.55 | 16,470.40 ± 570.25 | 6619.20 ± 228.99 | 10,077.60 ± 348.79 | 11,734.50 ± 406.19 | 13,101.30 ± 453.54 |
Resveratrol | 86.30 ± 2.74 | 66.90 ± 2.08 | 87.50 ± 2.78 | 75.20 ± 2.36 | 74.50 ± 2.34 | 73.3 ± 2.30 | 105.30 ± 3.38 | 106.30 ± 3.42 | 75.70 ± 2.38 | 80.80 ± 2.55 |
Maslinic aicd | 176.26 ± 5.82 | 71.23 ± 2.23 | 130.25 ± 4.24 | 87.77 ± 2.79 | 146.58 ± 4.8 | 189.84 ± 6.29 | 114.39 ± 3.69 | 69.21 ± 2.16 | 43.52 ± 1.31 | 147.60 ± 4.84 |
corosolic acid | 234.20 ± 7.82 | 143.37 ± 4.69 | 184.00 ± 6.09 | 205.11 ± 6.82 | 263.05 ± 8.82 | 232.72 ± 7.77 | 84.84 ± 2.69 | 143.98 ± 4.71 | 117.73 ± 3.81 | 232,54 ± 7,77 |
Betulinic acid | 12.71 ± 0.55 | 5.65 ± 0.54 | 5.16 ± 0.55 | 9.70 ± 0.53 | 4.61 ± 0.55 | 4.46 ± 0.55 | 3.60 ± 0.56 | 4.29 ± 0.55 | 8.29 ± 0.53 | 6.68 ± 0.54 |
Oleanolic acid | 195.32 ± 6.48 | 112.16 ± 3.62 | 177.68 ± 5.87 | 148.91 ± 4.88 | 176.66 ± 5.84 | 110.53 ± 3.56 | 54.49 ± 1.67 | 95.69 ± 3.06 | 75.59 ± 2.37 | 148.49 ± 4.87 |
Ursolic acid | 657.45 ± 22.47 | 396.00 ± 13.42 | 504.12 ± 17.17 | 451.51 ± 15.34 | 523.61 ± 17.84 | 397.63 ± 13.48 | 221.53 ± 7.39 | 355.07 ± 12.01 | 248.08 ± 8.30 | 467.80 ± 15.91 |
Betulin | 212.45 ± 7.07 | 115.11 ± 3.72 | 107.06 ± 3.44 | 113.09 ± 3.65 | 116.16 ± 3.76 | 107.39 ± 3.46 | 49.58 ± 1.51 | 86.59 ± 2.75 | 57.36 ± 1.76 | 82.00 ± 2.59 |
Erythrodiol | 101.86 ± 3.27 | 35.87 ± 1.08 | 32.17 ± 0.97 | 34.60 ± 1.04 | 74.52 ± 2.34 | 67.16 ± 2.09 | 47.33 ± 1.43 | 36.15 ± 1.08 | 63.34 ± 1.96 | 36.27 ± 1.09 |
Uvaol | 207.73 ± 6.91 | 79.16 ± 2.49 | 31.07 ± 0.93 | 44.04 ± 1.33 | 174.34 ± 5.76 | 146.54 ± 4.80 | 66.66 ± 2.07 | 208.77 ± 6.95 | 116.72 ± 3.77 | 153.06 ± 5.02 |
Lupeol | 131.37 ± 4.28 | 61.24 ± 1.89 | 58.74 ± 1.81 | 81.21 ± 2.56 | 106.98 ± 3.44 | 158.43 ± 5.21 | 68.15 ± 2.12 | 45.20 ± 1.37 | 21.21 ± 0.68 | 116.5 ± 3.77 |
β-Amyrin | 145.94 ± 4.78 | 76.33 ± 2.4 | 97.88 ± 3.13 | 41.93 ± 1.26 | 54.61 ± 1.67 | 94.24 ± 3.01 | 20.1 ± 0.66 | 47.16 ± 1.43 | 22.57 ± 0.71 | 58.42 ± 1.80 |
β-Sitosterol | 373.81 ± 12.65 | 235.34 ± 7.86 | 168.92 ± 5.57 | 256.44 ± 8.59 | 132.94 ± 4.33 | 204.77 ± 6.81 | 116.14 ± 3.75 | 277.28 ± 9.31 | 138.71 ± 4.53 | 283.84 ± 9.54 |
α-Amyrin | 972.84 ± 33.40 | 498.06 ± 16.96 | 564.59 ± 19.26 | 548.5 ± 18.7 | 354.97 ± 12.00 | 690.14 ± 23.61 | 281.45 ± 9.46 | 556.35 ± 18.97 | 225.63 ± 7.53 | 727.49 ± 24.90 |
Friedelin | 182.94 ± 6.05 | 144.53 ± 4.73 | 101.86 ± 3.27 | 253.44 ± 8.49 | 274.38 ± 9.21 | 180.63 ± 5.97 | 81.07 ± 2.56 | 113.29 ± 3.66 | 60.12 ± 1.85 | 139.03 ± 4.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raudone, L.; Puzerytė, V.; Vilkickyte, G.; Niekyte, A.; Lanauskas, J.; Viskelis, J.; Viskelis, P. Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource. Molecules 2021, 26, 4765. https://doi.org/10.3390/molecules26164765
Raudone L, Puzerytė V, Vilkickyte G, Niekyte A, Lanauskas J, Viskelis J, Viskelis P. Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource. Molecules. 2021; 26(16):4765. https://doi.org/10.3390/molecules26164765
Chicago/Turabian StyleRaudone, Lina, Viktorija Puzerytė, Gabriele Vilkickyte, Aurelija Niekyte, Juozas Lanauskas, Jonas Viskelis, and Pranas Viskelis. 2021. "Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource" Molecules 26, no. 16: 4765. https://doi.org/10.3390/molecules26164765
APA StyleRaudone, L., Puzerytė, V., Vilkickyte, G., Niekyte, A., Lanauskas, J., Viskelis, J., & Viskelis, P. (2021). Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource. Molecules, 26(16), 4765. https://doi.org/10.3390/molecules26164765