Relationship between Chemical Composition and Nematicidal Activity of Different Essential Oils
<p>Chemical structure of main constituents of the ten EOs.</p> "> Figure 2
<p>Mortality (%) of <span class="html-italic">M. incognita J2</span> after 4, 8 or 24 h exposure to a 0.78–100 μg mL<sup>−1</sup> range of concentrations of the ten tested EOs. Data are means of four replicates. At each exposure time, bars marked with the same letter are not significantly different (<span class="html-italic">p</span> ≤ 0.05) according to the least significant difference test.</p> "> Figure 3
<p>EOs’ aggregated effects on <span class="html-italic">J2</span> mortality (<b>A</b>), egg hatchability (<b>B</b>), <span class="html-italic">M. incognita</span> multiplication on roots (<b>C</b>) and tomato growth (<b>D</b>). Bars marked with the same letters are not significantly different according to Least Significant Difference Test (<span class="html-italic">p</span> ≤ 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of the EOs
2.2. Juvenile Mortality Assay
2.3. Egg Hatchability Bioassay
2.4. Experiment in Soil
2.5. Analysis of Aggregated Data
3. Discussion
4. Materials and Methods
4.1. Essential Oils
4.2. Chemical Analysis of the EOs
4.3. Identification and Quantitation of the EOs Components
4.4. Juvenile Mortality Bioassays
4.5. Nematode Mortality Bioassays
4.6. Egg Hatchability Bioassays
4.7. Experiment in Soil
4.8. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Ntalli, N.G.; Caboni, P. Botanical nematicides: A review. J. Agric. Food Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef] [PubMed]
- D’Addabbo, T.; Laquale, S.; Perniola, M.; Candido, V. Biostimulants for plant growth promotion and sustainable management of phytoparasitic nematodes in vegetable crops. Agronomy 2019, 9, 616. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Pavela, R.; Maggi, F.; Petrelli, R.; Nicoletti, M. Commentary: Making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J. Clust. Sci. 2017, 28, 3–10. [Google Scholar] [CrossRef]
- Avato, P.; D’Addabbo, T.; Leonetti, P.; Argentieri, M.P. Nematicidal potential of Brassicaceae. Phytochem. Rev. 2013, 12, 791–802. [Google Scholar] [CrossRef]
- Laquale, S.; Avato, P.; Argentieri, M.P.; Bellardi, M.G.; D’Addabbo, T. Nematotoxic activity of essential oils from Monarda species. J. Pest Sci. 2018, 91, 1115–1125. [Google Scholar] [CrossRef]
- Andrés, M.F.; Gonzáles-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 2013, 11, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Echeverrigaray, S.; Zacaria, J.; Beltrão, R. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Nematology 2010, 100, 199–203. [Google Scholar]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Ntalli, N.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci. 2011, 67, 341–351. [Google Scholar] [CrossRef]
- Ibrahim, S.K.; Traboulsi, A.F.; El-Haj, S. Effect of essential oilsand plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathol. Medit. 2006, 45, 238–246. [Google Scholar]
- Ntalli, N.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J. Agric. Food Chem. 2010, 58, 7856–7863. [Google Scholar] [CrossRef] [PubMed]
- Santana, O.; Andrès, M.F.; Sanz, J.; Errahmani, N.; Lamiri, A.; Gonzalez-Coloma, A. Valorization of essential oils from Moroccan aromatic plants. Nat. Prod. Commun. 2014, 9, 1109–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- Eloh, K.; Kpegba, K.; Sasanelli, N.; Koumaglo, H.K.; Caboni, P. Nematicidal activity of some essential plant oils from tropical West Africa. Int. J. Pest Manag. 2020, 66, 131–141. [Google Scholar] [CrossRef]
- Amarasinghe, L.D.; Wijesinghe, W.K.A.G.A.; Jayawardhane, B.K. Efficacy of essential oils from bark and leaf of Cinnamomum zeylanicum on root knot nematode, Meloidogyne graminicola in rice seedlings and young rice plants. J. Sci. Univ. Kelaniya 2011, 6, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.C.; Dwivedi, B.K. Comparative study of different plant extracts for their nematicidal potential. Curr. Nematol. 2000, 11, 39–43. [Google Scholar]
- Leela, N.K.; Khan, R.M.; Reddy, P.P.; Nidiry, E.S.J. Nematicidal activity of essential oil of Pelargonium graveolens against the root-knot nematode Meloidogyne incognita. Nematol. Medit. 1992, 20, 57–58. [Google Scholar]
- Da Silva, F.G.E.; Mendes, F.R.D.S.; Assunção, J.C.D.C.; Pinheiro Santiago, G.M.; Xavier Bezerra, M.A.; Barbosa, F.G.; Mafezoli, J.; Rodrigues Rocha, R. Seasonal variation, larvicidal and nematicidal activities of the leaf essential oil of Ruta graveolens L. J. Essent. Oil Res. 2014, 26, 204–209. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Sena, I.; Ribeiro, B.; Rodrigues, A.M.; Maleita, C.M.N.; Abrantes, I.; Bennett, R.; Mota, M.; da Silva Figueiredo, A.C. First report on Meloidogyne chitwoodi hatching inhibition activity of essential oils and essential oils fractions. J. Pest Sci. 2016, 89, 207–217. [Google Scholar] [CrossRef]
- Salgado, S.M.L.; Campos, V.P. Eclosão e mortalidade de Meloidogyne exigua em extratos e em produtos naturais. Fitopatol. Bras. 2003, 28, 166–170. [Google Scholar] [CrossRef]
- Laquale, S.; Sasanelli, N.; D’Addabbo, T. Biocidal activity of essential oils from Eucalyptus species on the root-knot nematode Meloidogyne incognita. In Book of Abstracts of the I National Symposium of the Italian Society of Research on Essential Oils (S.I.R.O.E.); Natural 1: Milan, Italy, 2013; p. 55. [Google Scholar]
- Laquale, S.; Candido, V.; Avato, P.; Argentieri, M.P.; D’Addabbo, T. Essential oils as soil biofumigants for the control of the root-knot nematode Meloidogyne incognita on tomato. Ann. Appl. Biol. 2015, 167, 217–224. [Google Scholar] [CrossRef]
- Park, I.K.; Kim, K.H.; Choi, K.S.; Kim, C.S.; Choi, I.H.; Park, J.Y.; Shin, S.C. Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology 2005, 7, 767–774. [Google Scholar] [CrossRef]
- Kong, J.O.; Lee, S.M.; Moon, Y.S.; Lee, S.G.; Ahn, Y.J. Nematicidal activity of cassia and cinnamon oil compounds and related compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 2007, 39, 31–36. [Google Scholar]
- El-Shennawy, M.Z.; Abo-Kora, M.S. Management of wilt disease complex caused by Meloidogyne javanica and Fusarium oxysporum f. sp. lycopersici on tomato using some plant extracts. J. Plant Prot. Pathol. 2016, 7, 797–802. [Google Scholar]
- Li, Y.Q.; Kong, D.X.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crop Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, J.; Wang, P.; Li, Q.; Yu, S.; Zhang, Y.; Wang, Y. Chemical composition and larvicidal activities of essential oil of Cinnamomum camphora (L.) leaf against Anopheles stephensi. Rev. Soc. Brasil. Medic. Trop. 2020, 53, e20190211. [Google Scholar] [CrossRef]
- Wang, Z.; Kim, H.K.; Tao, W.; Wang, M.; Ahn, Y.J. Contact and fumigant toxicity of cinnamaldehyde and cinnamic acid and related compounds to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol. 2011, 48, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, C.; Fernandes, M.X.; Câmara, J.S. Prediction of terpenoid toxicity based on a quantitative structure-activity relationship model. Foods 2019, 8, 628. [Google Scholar] [CrossRef] [Green Version]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.L.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Hassane, S.O.S.; Ghanmi, M.; Satrani, B.; Mansouri, N.; Mohamed, H.; El Hajaji, H.; Chaouch, A. Composition chimique et activités antibactériennes, antifongiques et antioxydante de l’huile essentielle de Pelargonium asperum Ehrh. ex Wilde des Comores. Acta Bot. Gallica 2011, 158, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotti, M.; Colaianna, M.; Morgese, M.G.; Tucci, P.; Schiavone, S.; Avato, P.; Trabace, L. Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules 2013, 18, 6161–6172. [Google Scholar] [CrossRef] [PubMed]
- Trabace, L.Z.M.; Morgese, M.G.; Tucci, P.; Colaianna, M.; Schiavone, S.; Avato, P.; Cuomo, V. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicol. Appl. Pharmacol. 2011, 255, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Can Baser, K.H. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Design 2008, 14, 3106–3119. [Google Scholar] [CrossRef]
- Meyer, S.L.; Lakshman, D.K.; Zasada, I.A.; Vinyard, B.T.; Chitwood, D.J. Phytotoxicity of clove oil to vegetable crop seedlings and nematotoxicity to root-knot nematodes. HortTechnology 2008, 18, 631–638. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Srivastava, S.K.; Syamsundar, K.V. Bud and leaf essential oil composition of Syzygium aromaticum from India and Madagascar. Flav. Fragr. J. 2005, 20, 51–53. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.H.; Lee, H.C.; Yap, Y.L. Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2002, 38, 403–412. [Google Scholar] [CrossRef]
- Barbosa, J.D.; Silva, V.B.; Alves, P.B.; Gumina, G.; Santos, R.L.; Sousa, D.P.; Cavalcanti, S.C. Structure–activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag. Sci. 2012, 68, 1478–1483. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, B.H.; Choi, W.; Park, B.S.; Kim, J.G.; Campbell, B.C. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the riceweevil, Sitophilus oryzae (L). Pest Manag. Sci. 2001, 57, 548–553. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- do Prado, A.; Garces, H.; Bagagli, E.; Rall, V.; Furlanetto, A.; Fernandes Junior, A.; Furtado, F. Schinus molle essential oil as a potential source of bioactive compounds: Antifungal and antibacterial properties. J. Appl. Microbiol. 2019, 126, 516–522. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Castro, S.; Andina, M.J.; Ures, X.; Munguía, B.; Llabot, J.M.; Elder, H.; Dellacassa, E.; Palma, S.; Domínguez, L. Insecticidal activity of microencapsulated Schinus molle essential oil. Ind. Crop Prod. 2014, 53, 209–216. [Google Scholar] [CrossRef]
- Rey-Valeirón, C.; Pérez, K.; Guzmán, L.; López-Vargas, J.; Valarezo, E. Acaricidal effect of Schinus molle (Anacardiaceae) essential oil on unengorged larvae and engorged adult females of Rhipicephalus sanguineus (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 76, 399–411. [Google Scholar] [CrossRef]
- Bernhard, R.A.; Shibamoto, T.; Yamaguchi, K.; White, E. The volatile constituents of Schinus molle L. J. Agric. Food Chem. 1983, 31, 463–466. [Google Scholar] [CrossRef]
- Walker, J.T.; Melin, J.B. Mentha x piperita, Mentha spicata and effects of their essential oils on Meloidogyne in soil. J. Nematol. 1996, 28, 629–635. [Google Scholar]
- Shahi, A.K.; Chandra, S.; Dutt, P.; Kaul, B.L.; Tava, A.; Avato, P. Essential oil composition of Mentha x piperita L. from different environments of north India. Flavour Fragr. J. 1999, 14, 5–8. [Google Scholar] [CrossRef]
- Saeidi, M.; Moharramipour, S.; Sefidkon, F.; Aghajanzadeh, S. Insecticidal and repellent activities of Citrus reticulata, Citrus limon and Citrus aurantium essential oils on Callosobruchus maculatus. Int. Prot. Stored Prod. IOBC/WPRS Bull. 2011, 69, 289–293. [Google Scholar]
- Zarrad, K.; Hamouda, A.B.; Chaieb, I.; Laarif, A.; Jemâa, J.M.B. Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium L. essential oils. Ind. Crop Prod. 2015, 76, 121–127. [Google Scholar] [CrossRef]
- Avato, P.; Morone-Fortunato, I.; Ruta, C.; D’Elia, R. Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Sci. 2005, 169, 29–36. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 469. [Google Scholar]
- Finney, D.J. Statistical Method in Biological Assay, 3rd ed.; Charles Griffin & Company Ltd.: High Wycombe, UK, 1978; p. 508. [Google Scholar]
- Hussey, R.S.; Barker, K.R. A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Taylor, A.L.; Sasser, J.N. Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne spp.); North Carolina State University Graphics: Raleigh, NC, USA, 1978; p. 111. [Google Scholar]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
Compounds | AI tab a | AI b | Amount% ± SD |
---|---|---|---|
C. camphora | |||
α-Pinene | 932 | 932 | 1.0 ± 0.01 |
o-Cymene | 1022 | 1023 | 16.8 ± 0.10 |
Limonene | 1024 | 1025 | 59.3 ± 2.20 |
Eucalyptol | 1026 | 1026 | 21.8 ± 2.10 |
Terpinen-4-olo | 1174 | 1175 | 0.5 ± 0.01 |
α-Terpineol | 1186 | 1186 | 0.36 ± 0.01 |
C. verum | |||
Z-Cinnamaldehyde | 1217 | 1217 | 1.8 ± 0.06 |
E-Cinnamaldehyde | 1267 | 1265 | 84.8 ± 0.29 |
Eugenol | 1356 | 1356 | 13.4 ± 0.34 |
C. aurantium | |||
α-Pinene | 932 | 932 | 0.6 ± 0.006 |
Sabinene | 969 | 969 | 0.3 ± 0.001 |
β-Pinene | 974 | 974 | 0.2 ± 0.002 |
β-Myrcene | 988 | 988 | 1.6 ± 0.002 |
Limonene | 1024 | 1025 | 94.9 ± 0.02 |
Linalool | 1095 | 1095 | 1.0 ± 0.01 |
Linalyl acetate | 1254 | 1255 | 1.5 ± 0.006 |
E. citriodora | |||
α-Pinene | 932 | 932 | 1.4 ± 0.01 |
β-Pinene | 974 | 974 | 1.0 ± 0.03 |
Eucalyptol | 1026 | 1026 | 1.0 ± 0.20 |
Isopulegol | 1145 | 1148 | 7.0 ± 0.15 |
Citronellal | 1148 | 1150 | 83.9 ± 1.50 |
Citronellol | 1223 | 1223 | 4.7 ± 1.71 |
Citronellyl formate | 1271 | 1270 | 1.0 ± 0.02 |
β-Caryophyllene | 1417 | 1417 | 1.0 ± 0.02 |
E. globulus | |||
α-Pinene | 932 | 932 | 2.5 ± 0.02 |
β-Pinene | 974 | 974 | 0.5 ± 0.02 |
β-Myrcene | 988 | 988 | 0.6 ± 0.02 |
α-Terpinene | 1014 | 1014 | 0.2 ± 0.02 |
p.Cymene | 1020 | 1021 | 3.3 ± 0.02 |
Eucalyptol | 1026 | 1026 | 91.7 ± 0.02 |
γ-Terpinene | 1054 | 1055 | 0.7 ± 0.02 |
Terpinen-4-ol-acetate | 1299 | 1298 | 0.2 ± 0.02 |
α-Terpinyl-acetate | 1346 | 1345 | 0.3 ± 0.02 |
M. piperita | |||
α-Pinene | 932 | 932 | 0.4 ± 0.01 |
β-Pinene | 974 | 974 | 0.6 ± 0.01 |
Limonene | 1024 | 1026 | 4.5 ± 0.01 |
Linalool | 1095 | 1095 | 0.4 ± 0.01 |
iso-Pulegol | 1145 | 1143 | 1.2 ± 0.03 |
Menthone | 1148 | 1148 | 20.5 ± 0.08 |
iso-Menthone | 1158 | 1156 | 11.3 ± 0.07 |
Menthol | 1167 | 1167 | 54.8 ± 0.20 |
iso-Menthol | 1179 | 1178 | 0.5 ± 0.01 |
Menthol neo-iso | 1184 | 1182 | 0.2 ± 0.02 |
α-Terpineol | 1186 | 1186 | 0.3 ± 0.04 |
Pulegone | 1233 | 1232 | 0.7 ± 0.01 |
Carvone | 1239 | 1239 | 0.6 ± 0.01 |
Menthyl-acetate | 1294 | 1292 | 4.0 ± 0.03 |
P. asperum | |||
α-Pinene | 932 | 932 | 1.0 ± 0.01 |
Eucaliptol | 1026 | 1026 | 1.8 ± 0.05 |
Linalool | 1095 | 1095 | 12.8 ± 0.27 |
cis-Rose oxide | 1106 | 1108 | 1.3 ± 0.03 |
trans-Rose oxide | 1122 | 1121 | 0.5 ± 0.02 |
Menthone | 1148 | 1148 | 1.4 ± 0.02 |
iso-Menthone | 1158 | 1156 | 5.5 ± 0.24 |
Citronellol | 1223 | 1223 | 35.0 ± 0.37 |
Geraniol | 1249 | 1249 | 22.1 ± 0.30 |
Cytronellyl formate | 1271 | 1273 | 7.0 ± 0.16 |
Geranyl formate | 1298 | 1296 | 3.8 ± 0.20 |
α-Copaene | 1374 | 1373 | 0.5 ± 0.10 |
Geranyl acetate | 1379 | 1379 | 0.5 ± 0.02 |
α-Bourbonene | 1384 | 1386 | 1.0 ± 0.03 |
β-Caryophyllene | 1417 | 1417 | 2.0 ± 0.01 |
trans-Bergamotene | 1432 | 1433 | 1.2 ± 0.04 |
trans-Murola-3,5-diene | 1451 | 1450 | 1.0 ± 0.04 |
Citronellyl tiglate | 1656 | 1655 | 1.6 ± 0.05 |
R. graveolens | |||
Eucalyptol | 1026 | 1026 | 0.4 ± 0.01 |
2-Nonanone | 1087 | 1088 | 0.5 ± 0.02 |
Camphor | 1141 | 1141 | 0.4 ± 0.01 |
2-Decanone | 1190 | 1190 | 0.5 ± 0.04 |
2-Undecanone | 1293 | 1294 | 83.2 ± 0.25 |
Carvacrol | 1298 | 1299 | 15.0 ± 0.31 |
S. molle | |||
α-Pinene | 932 | 932 | 14.8 ± 0.16 |
Sabinene | 969 | 969 | 3.4 ± 0.05 |
β-Pinene | 974 | 974 | 7.0 ± 0.10 |
β-Myrcene | 988 | 988 | 1.0 ± 0.05 |
δ-3-Carene | 1008 | 1008 | 5.5 ± 0.07 |
p.Cymene | 1021 | 1021 | 6.7 ± 0.09 |
Limonene | 1024 | 1024 | 7.6 ± 0.09 |
Eucalyptol | 1026 | 1026 | 0.3 ± 0.04 |
Linalool | 1095 | 1095 | 10.0 ± 0.17 |
Terpinene-4-ol | 1174 | 1174 | 1.2 ± 0.03 |
α-Terpineol | 1186 | 1186 | 1.0 ± 0.05 |
Linalyl acetate | 1254 | 1255 | 7.3 ± 0.16 |
Carvacrol | 1299 | 1299 | 3.7 ± 0.14 |
δ-Elemene | 1335 | 1333 | 0.5 ± 0.01 |
Eugenol | 1356 | 1356 | 12.0 ± 0.13 |
β-Caryophyllene | 1417 | 1417 | 5.4 ± 0.07 |
γ-Curcumene | 1481 | 1480 | 0.8 ± 0.003 |
Myristicin | 1517 | 1518 | 1.7 ± 0.06 |
Eugenil acetate | 1521 | 1522 | 1.3 ± 0.03 |
Cedryl acetate | 1767 | 1766 | 8.8 ± 0.39 |
S. aromaticum | |||
Eugenol | 1356 | 1356 | 89.6 ± 0.40 |
β-Caryophyllene | 1417 | 1417 | 8.0 ± 0.40 |
α-Humulene | 1452 | 1453 | 2.4 ± 0.01 |
EOs | 4 h | 8 h | 24 h | ||||||
---|---|---|---|---|---|---|---|---|---|
LD50 | 95% Fiducial CI | LD50 | 95% Fiducial CI | LD50 | 95% Fiducial CI | ||||
Lower | Upper | Lower | Upper | Lower | Upper | ||||
C. camphora | 63.3 | 34.1 | 117.6 | 53.9 | 28.7 | 101.1 | 22.9 | 13.1 | 40.0 |
C. verum | 4.9 | 2.6 | 9.5 | 1.6 | 0.7 | 3.9 | 0.1 | 0.02 | 0.4 |
C. aurantium | 1704.0 | 416.7 | 6967.4 | 1996.9 | 459.4 | 8681.7 | 447.3 | 154.1 | 1298.4 |
E. citriodora | 7.6 | 5.0 | 11.6 | 3.9 | 2.7 | 5.8 | 2.4 | 1.6 | 3.6 |
E. globulus | 264.8 | 112.5 | 623.7 | 470.6 | 141.5 | 1564.7 | 26.7 | 16.8 | 42.6 |
M. piperita | 167.7 | 76.2 | 369.4 | 44.4 | 26.2 | 75.2 | 20.7 | 13.4 | 32.0 |
P. asperum | 20.6 | 12.8 | 33.1 | 31.7 | 17.2 | 58.3 | 13.0 | 7.6 | 22.1 |
R. graveolens | 13.9 | 8.3 | 23.4 | 6.4 | 3.9 | 10.3 | 2.3 | 1.4 | 4.0 |
S. molle | 70.3 | 39.9 | 123.9 | 43.8 | 26.3 | 72.8 | 22.6 | 14.5 | 35.3 |
S. aromaticum | 11.8 | 6.9 | 20.3 | 4.4 | 2.9 | 8.4 | 1.8 | 0.9 | 3.6 |
Concentrations (μg mL−1) | Exposure Time (h) | ||
---|---|---|---|
24 | 48 | 96 | |
C. camphora | |||
250 | 93.0 ± 1.7 | 83.7 ± 0.7 | 81.7 ± 0.6 |
500 | 87.7 ± 0.8 | 82.7 ± 0.9 | 77.5 ± 1.2 |
1000 | 85.2 ± 1.4 | 81.0 ± 0.9 | 73.5 ± 1.6 |
C. verum | |||
250 | 69.5 ± 2.1 | 52.5 ± 1.6 | 42.0 ± 2.2 |
500 | 11.0 ± 0.8 | 2.7 ± 0.5 | 1.2 ± 0.2 |
1000 | 1.7 ± 0.5 | 1.2 ± 0.2 | 1.0 ± 0.4 |
C. aurantium | |||
250 | 88.5 ± 0.8 | 85.0 ± 1.3 | 80.2 ± 1.2 |
500 | 85.0 ± 1.6 | 84.0 ± 0.4 | 79.5 ± 1.9 |
1000 | 83.5 ± 1.2 | 79.2 ± 2.6 | 67.5 ± 2.2 |
E. citriodora | |||
250 | 83.7 ± 1.8 | 68.5 ± 1.7 | 63.2 ± 1.6 |
500 | 75.7 ± 0.6 | 64.0 ± 1.3 | 55.7 ± 2.2 |
1000 | 67.7 ± 1.1 | 60.5 ± 1.0 | 43.2 ± 1.2 |
E. globulus | |||
250 | 86.5 ± 0.6 | 83.5 ± 1.0 | 81.5 ± 2.2 |
500 | 84.7 ± 0.7 | 81.2 ± 1.4 | 77.2 ± 1.4 |
1000 | 84.2 ± 1.4 | 76.5 ± 1.2 | 66.7 ± 1.5 |
M. piperita | |||
250 | 93.5 ± 0.6 | 90.2 ± 0.9 | 88.5 ± 0.3 |
500 | 92.5 ± 0.9 | 89.0 ± 1.5 | 84.0 ± 1.2 |
1000 | 90.0 ± 1.9 | 85.2 ± 0.6 | 79.0 ± 1.1 |
P. asperum | |||
250 | 82.2 ± 1.3 | 76.2 ± 0.7 | 65.5 ± 2.7 |
500 | 71.2 ± 1.1 | 68.5 ± 0.9 | 54.5 ± 0.9 |
1000 | 56.2 ± 5.9 | 52.0 ± 2.2 | 39.7 ± 1.1 |
R. graveolens | |||
250 | 26.7 ± 1.7 | 20.0 ± 0.4 | 13.5 ± 0.3 |
500 | 22.7 ± 0.6 | 16.0 ± 0.7 | 7.0 ± 0.4 |
1000 | 18.5 ± 1.4 | 5.0 ± 0.7 | 3.2 ± 0.6 |
S. molle | |||
250 | 79.5 ± 1.3 | 74.0 ± 0.4 | 62.2 ± 0.8 |
500 | 70..7 ± 1.3 | 65.5 ± 1.0 | 53.7 ± 1.6 |
1000 | 65.7 ± 1.4 | 59.7 ± 0.8 | 43.2 ± 1.3 |
S. aromaticum | |||
250 | 82.5 ± 0.9 | 76.0 ± 1.2 | 68.0 ± 0.9 |
500 | 77.5 ± 0.9 | 70.0 ± 1.8 | 68.0 ± 1.6 |
1000 | 70.5 ± 1.2 | 62.5 ± 1.4 | 54.2 ± 1.1 |
Oxamyl | 86.2 ± 0.8 | 77.5 ± 0.6 | 66.2 ± 1.5 |
Tween 20 | 94.2 ± 0.6 | 92.7 ± 0.8 | 92.2 ± 0.8 |
Non treated | 93.2 ± 1.3 | 93.2 ± 1.3 | 93.2 ± 1.3 |
LSD 0.05 | 4.5 | 3.3 | 3.9 |
Dose (μg kg−1 Soil) | Nematode Infestation Parameters | Plant Fresh Weight | ||
---|---|---|---|---|
J2 and Eggs g−1 Roots | Gall Index (0–5) | Aerial Parts | Roots | |
C. camphora | ||||
50 | 23376 ± 379 | 4.2 ± 0.2 | 37.2 ± 0.2 | 9.4 ± 0.2 |
100 | 20579 ± 264 | 4.0 ± 0.0 | 40.2 ± 0.4 | 10.6 ± 0.2 |
200 | 12053 ± 179 | 2.8 ± 0.2 | 42.2 ± 0.4 | 11.0 ± 0.3 |
C. verum | ||||
50 | 12297 ± 259 | 2.4 ± 0.2 | 61.0 ± 0.5 | 10.4 ± 0.2 |
100 | 11945 ± 125 | 2.2 ± 0.2 | 70.6 ± 1.2 | 11.8 ± 0.2 |
200 | 9244 ± 198 | 2.0 ± 0.0 | 77.8 ± 2.3 | 14.2 ± 0.8 |
C. aurantium | ||||
50 | 21492 ± 244 | 5.0 ± 0.0 | 34.4 ± 0.2 | 8.8 ± 0.2 |
100 | 18685 ± 212 | 4.6 ± 0.2 | 37.4 ± 0.2 | 9.2 ± 0.2 |
200 | 16246 ± 244 | 3.8 ± 0.2 | 38.2 ± 0.5 | 9.4 ± 0.2 |
E. citriodora | ||||
50 | 15302 ± 168 | 4.0 ± 0.0 | 60.6 ± 1.4 | 13.0 ± 0.8 |
100 | 11222 ± 157 | 3.0 ± 0.0 | 72.8 ± 1.6 | 14.8 ± 0.7 |
200 | 9551 ± 209 | 2.2 ± 0.2 | 86.4 ± 3.1 | 18.4 ± 0.5 |
E. globulus | ||||
50 | 22321 ± 212 | 4.0 ± 0.0 | 40.2 ± 0.5 | 9.6 ± 0.2 |
100 | 16963 ± 219 | 3.2 ± 0.2 | 41.6 ± 0.5 | 10.6 ± 0.2 |
200 | 14938 ± 266 | 3.0 ± 0.0 | 42.2 ± 0.6 | 12.4 ± 0.2 |
M. piperita | ||||
50 | 20830 ± 484 | 3.8 ± 0.2 | 39.4 ± 0.4 | 9.8 ± 0.5 |
100 | 18137 ± 433 | 3.2 ± 0.2 | 40.4 ± 0.4 | 11.4 ± 0.2 |
200 | 14183 ± 335 | 2.4 ± 0.2 | 43.4 ± 0.2 | 12.6 ± 0.4 |
P. asperum | ||||
50 | 20197 ± 268 | 3.8 ± 0.2 | 60.2 ± 1.8 | 11.4 ± 0.2 |
100 | 15182 ± 307 | 2.6 ± 0.2 | 54.6 ± 0.9 | 10.8 ± 0.9 |
200 | 11738 ± 273 | 2.0 ± 0.0 | 47.4 ± 0.9 | 8.0 ± 0.3 |
R. graveolens | ||||
50 | 17871 ± 367 | 4.2 ± 0.4 | 53.6 ± 2.2 | 10.4 ± 0.7 |
100 | 15700 ± 458 | 2.8 ± 0.2 | 59.0 ± 2.9 | 11.6 ± 0.2 |
200 | 10126 ± 255 | 1.8 ± 0.2 | 67.4 ± 1.2 | 13.8 ± 0.2 |
S. molle | ||||
50 | 20368 ± 213 | 4.2 ± 0.4 | 43.8 ± 0.7 | 10.0 ± 0.3 |
100 | 16840 ± 203 | 3.0 ± 0.0 | 46.8 ± 0.8 | 11.0 ± 0.3 |
200 | 12419 ± 273 | 2.2 ± 0.2 | 49.8 ± 0.4 | 12.6 ± 0.2 |
S. aromaticum | ||||
50 | 12567 ± 131 | 3.0 ± 0.3 | 49.6 ± 2.2 | 9.6 ± 0.2 |
100 | 10633 ± 75 | 2.8 ± 0.4 | 61.4 ± 0.7 | 11.6 ± 0.6 |
200 | 9160 ± 94 | 2.2 ± 0.2 | 67.4 ± 1.7 | 13.4 ± 1.0 |
Oxamyl | 7832 ± 275 | 2.0 ± 0.0 | 61.8 ± 0.9 | 11.6 ± 0.2 |
Tween20 | 28550 ± 1269 | 4.8 ± 0.2 | 40.8 ± 0.4 | 9.2 ± 0.2 |
Non treated | 28318 ± 432 | 4.8 ± 0.2 | 41.0 ± 0.3 | 8.4 ± 0.4 |
Non infested | - | - | 43.6 ± 0.2 | 10.4 ± 0.4 |
LSD (p = 0.05) | 979 | 0.57 | 3.49 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Addabbo, T.; Argentieri, M.P.; Laquale, S.; Candido, V.; Avato, P. Relationship between Chemical Composition and Nematicidal Activity of Different Essential Oils. Plants 2020, 9, 1546. https://doi.org/10.3390/plants9111546
D’Addabbo T, Argentieri MP, Laquale S, Candido V, Avato P. Relationship between Chemical Composition and Nematicidal Activity of Different Essential Oils. Plants. 2020; 9(11):1546. https://doi.org/10.3390/plants9111546
Chicago/Turabian StyleD’Addabbo, Trifone, Maria Pia Argentieri, Sebastiano Laquale, Vincenzo Candido, and Pinarosa Avato. 2020. "Relationship between Chemical Composition and Nematicidal Activity of Different Essential Oils" Plants 9, no. 11: 1546. https://doi.org/10.3390/plants9111546
APA StyleD’Addabbo, T., Argentieri, M. P., Laquale, S., Candido, V., & Avato, P. (2020). Relationship between Chemical Composition and Nematicidal Activity of Different Essential Oils. Plants, 9(11), 1546. https://doi.org/10.3390/plants9111546