Essential Oil Composition of Ruta graveolens L. Fruits and Hyssopus officinalis Subsp. aristatus (Godr.) Nyman Biomass as a Function of Hydrodistillation Time
<p>Plot of Distillation Time (DT) vs. the concentrations of six constituents of <span class="html-italic">R. graveolens</span> fruit along with the fitted second-order polynomial, Michaelis–Menten, and Exponential regression models. Adjusted R<sup>2</sup> is given only for the second-order polynomial model, which is linear. The fitted models are: <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>1.12</mn> <mo>+</mo> <mn>0.187</mn> <mi>D</mi> <mi>T</mi> <mo>−</mo> <mn>0.0015</mn> <mi>D</mi> <msup> <mi>T</mi> <mn>2</mn> </msup> </mrow> </semantics></math> (benzaldehyde), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mn>77.3</mn> <mi>D</mi> <mi>T</mi> </mrow> <mrow> <mn>26.8</mn> <mo>+</mo> <mi>D</mi> <mi>T</mi> </mrow> </mfrac> </mrow> </semantics></math> (2-nonanone), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>0.587</mn> <mo>+</mo> <mn>0.085</mn> <mi>D</mi> <mi>T</mi> <mo>−</mo> <mn>0.0009</mn> <mi>D</mi> <msup> <mi>T</mi> <mn>2</mn> </msup> </mrow> </semantics></math> (nonanal), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>5.56</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.027</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (terpinen-4-ol), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>7.67</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.021</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (α-terpineol), and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>0.79</mn> <mo>−</mo> <mn>0.146</mn> <mi>D</mi> <mi>T</mi> <mo>+</mo> <mn>0.004</mn> <mi>D</mi> <msup> <mi>T</mi> <mn>2</mn> </msup> </mrow> </semantics></math> (2-undecanone).</p> "> Figure 2
<p>Plot of Distillation Time (DT) vs. the concentrations of six constituents of <span class="html-italic">R. graveolens</span> fruit along with the fitted second-order polynomial and Exponential regression models. Adjusted R<sup>2</sup> is given only for the second-order polynomial model, which is linear. The fitted models are: <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>0.15</mn> <mo>−</mo> <mn>0.02</mn> <mi>D</mi> <mi>T</mi> <mo>+</mo> <mn>0.0004</mn> <mi>D</mi> <msup> <mi>T</mi> <mn>2</mn> </msup> </mrow> </semantics></math> (2-undecanol), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>0.087</mn> <mo>−</mo> <mn>0.012</mn> <mi>D</mi> <mi>T</mi> <mo>+</mo> <mn>0.0003</mn> <mi>D</mi> <msup> <mi>T</mi> <mn>2</mn> </msup> </mrow> </semantics></math> (2-dodecanone), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>6.97</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.016</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (β-caryophyllene), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>1.79</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.025</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (methyl undecanoate), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>5.11</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.03</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (α-caryophyllene), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>6.34</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.026</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (caryophyllene oxide), and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>21.4</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.038</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (eucalyptol).</p> "> Figure 3
<p>Plot of Distillation Time vs. the concentrations of eight constituents of <span class="html-italic">H. officinalis</span> subsp. <span class="html-italic">aristatus</span> along with the fitted Exponential and Power nonlinear regression models. The fitted models are: <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>6.88</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.0284</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (<span class="underline">α</span>-pinene), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>8.95</mn> <mi>E</mi> <mi>x</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.033</mn> <mi>D</mi> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (sabinene), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>88.2</mn> <mi>D</mi> <msup> <mi>T</mi> <mrow> <mo>−</mo> <mn>0.2833</mn> </mrow> </msup> </mrow> </semantics></math> (eucalyptol), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>48.4</mn> <mi>D</mi> <msup> <mi>T</mi> <mrow> <mo>−</mo> <mn>1.883</mn> </mrow> </msup> </mrow> </semantics></math> (<span class="underline">α</span>-terpinolene), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>5.22</mn> <mi>D</mi> <msup> <mi>T</mi> <mrow> <mo>−</mo> <mn>0.5801</mn> </mrow> </msup> </mrow> </semantics></math> (<span class="underline">β</span>-linalool), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>2.05</mn> <mi>D</mi> <msup> <mi>T</mi> <mrow> <mo>−</mo> <mn>0.316</mn> </mrow> </msup> </mrow> </semantics></math> (<span class="underline">β</span>-bourbonene), <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>11.4</mn> <mi>D</mi> <msup> <mi>T</mi> <mrow> <mo>−</mo> <mn>1.132</mn> </mrow> </msup> </mrow> </semantics></math> (<span class="underline">α</span>-muurolene), and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>Y</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>7.625</mn> <mi>D</mi> <msup> <mi>T</mi> <mrow> <mo>−</mo> <mn>1.266</mn> </mrow> </msup> </mrow> </semantics></math> (bicyclogermacrene).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Essential Oil (EO) Content (Yield)
2.1.1. Essential Oil (EO) Content (Yield) of Ruta graveolens Fruit in Different Distillation Timeframes (DT) Fractions
2.1.2. Essential Oil (EO) Content (Yield) of H. officinalis subsp. aristatus Aboveground Biomass EO Fractions
2.2. Essential Oil (EO) Composition of Ruta graveolens Fruits and Hyssopus officinalis subsp. aristatus Biomass
2.2.1. Essential oil (EO) Composition of R. graveolens Fruits
2.2.2. Essential Oil (EO) Composition of H. officinalis subsp. aristatus Aboveground Fresh Biomass
3. Discussion
3.1. Essential Oil Content (Yield)
3.1.1. Essential Oil Content (Yield) of Ruta graveolens Fruit
3.1.2. Essential Oil Content (Yield) of Hyssopus officinalis subsp. aristatus
3.2. Essential Oil (EO) Composition of Ruta graveolens Fruit and H. officinalis Subsp. aristatus
3.2.1. Essential Oil (EO) Composition of Ruta graveolens Fruit
3.2.2. Essential Oil (EO) Composition of Hyssopus officinalis subsp. aristatus
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Samples for EO Isolation
4.3. Essential Oil (EO) Isolation of the R. graveolens Fruit Samples and H. officinalis subsp. aristatus Biomass Samples
4.4. Gas Chromatography (GC)-Mass Spectroscopy (MS) Analyses of the EO
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviation
FAO | Food and Agriculture Organization; |
WHO | World Health Organization; |
NLIN | procedure fits nonlinear regression models and estimates the parameters by nonlinear least squares or weighted nonlinear least squares; |
GLM Procedure of SAS | The GLM procedure uses the method of least squares to fit general linear models. |
References
- Cragg, G.M.; Newman, D.J. Natural product drug discovery in the next millennium. Pharm. Biol. 2001, 39 (Suppl. 1), 8–17. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, C.C. Genus ruta, L. In Flora Europaea; Tutin, T.G., Ed.; Cambridge University Press: Cambridge, UK, 1968; Volume 2, p. 227. [Google Scholar]
- Vitkova, A. Ruta graveolens L. In Red Data Book of Bulgaria, Plants and Fungi; Peev, D., Ed.; Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences and the Bulgarian Ministry of the Environment and Water: Sofia, Bulgaria, 2015; Volume 1, Available online: http://e-ecodb.bas.bg/rdb/en/vol1/Rutgrave.html (accessed on 20 June 2019).
- Oliva, A.; Meepagala, K.M.; Wedge, D.E.; Harries, D.; Hale, A.L.; Aliotta, G.; Duke, S.O. Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. J. Agric. Food Chem. 2003, 51, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Mikhova, B.; Najdenski, H.; Tsvetkova, I.; Kostova, I. Antimicrobial and cytotoxic activity of Ruta graveolens. Fitoterapia 2005, 76, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Meepagala, K.M.; Schrader, K.K.; Wedge, D.E.; Duke, S.O. Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochemistry 2005, 66, 2689–2695. [Google Scholar] [CrossRef] [PubMed]
- Miguel, E.S. Rue in traditional Spain: Frequency and distribution of its medicinal and symbolic applications. Econ. Bot. 2003, 57, 231–244. [Google Scholar] [CrossRef]
- Kostova, I.; Ivanova, A.; Mikhova, B.; Klaiber, I. Alkaloids and coumarins from Ruta graveolens. Monatsh. Chem. 1999, 130, 703–707. [Google Scholar] [CrossRef]
- De Feo, V.; De Simone, E.; Senatore, F. Phytotial allelochemicals from the essential oil of Ruta graveolens. Phytochemistry 2002, 61, 573–578. [Google Scholar] [CrossRef]
- Oh, E.T.; Lee, J.H.; Kim, C.S.; Keum, Y.S. Alkylquinolone alkaloid profiles in Ruta graveolens. Biochem. Syst. Ecol. 2014, 57, 384–387. [Google Scholar] [CrossRef]
- Haddouchi, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical composition and antimicrobial activity of the essential oils from four Ruta species growing in Algeria. Food Chem. 2013, 141, 253–258. [Google Scholar] [CrossRef]
- Orlanda, J.F.; Nascimento, A.R. Chemical composition and antibacterial activity of Ruta graveolens L. (Rutaceae) volatile oils, from São Luís, Maranhão, Brazil. S. Afr. J. Bot. 2015, 99, 103–106. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghav, S.; Gupta, B.; Agrawal, C.; Goswami, K.; Das, H. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 2006, 104, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Ratheesh, M.; Shyni, G.; Helen, A. Methanolic extract of Ruta graveolens L. Inhibits inflammation and oxidative stress in adjuvant induced model of arthritis in rats. Inflammopharmacology 2009, 17, 100–105. [Google Scholar]
- Attia, E.Z.; El-Baky, R.M.A.; Desoukey, S.Y.; Mohamed, M.A.E.H.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Future J. Pharm. Sci. 2018, 4, 254–264. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Khoshkam, R. Phytochemistry and pharmacological properties of Ruta graveolens L. J. Med. Plants Res. 2012, 6, 3942–3949. [Google Scholar] [CrossRef]
- Tahir, M.; Khushtar, M.; Fahad, M.; Rahman, M.A. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.). J. Appl. Pharm. Sci. 2018, 8, 132–140. [Google Scholar]
- Lawles, J. The Encyclopedia of Essential Oils; Thorsons: Newyork, NY, USA, 2001. [Google Scholar]
- Lu, M.; Battinelli, L.; Daniele, C.; Melchioni, C.; Salvatore, G.; Mazzanti, G. Muscle relaxing activity of Hyssopus officinalis essential oil on isolated intestinal preparations. Planta Med. 2002, 68, 213–216. [Google Scholar] [CrossRef]
- Ma, X.; Ma, X.; Ma, Z.; Wang, J.; Sun, Z.; Yu, W.; Li, F.; Ding, J. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model. Exp. Ther. Med. 2014, 8, 1371–1374. [Google Scholar] [CrossRef]
- Anchev, M. Genus Hyssopus. In Flora in Bulgaria; Kuzmanov, B., Ed.; BAN: Sofia, Bulgaria, 1989; Volume 9, pp. 283–284. [Google Scholar]
- Černeva, J. Distribution and significance of Hyssopus officinalis (Labiatae) in Bulgaria. Bocconea 1997, 5, 637–641. [Google Scholar]
- Džamić, M.A.; Soković, D.M.; Novaković, M.; Jadranin, M.; Ristić, S.M.; Tešević, V.; Marin, P.D. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crops Prod. 2013, 51, 401–407. [Google Scholar]
- Tsankova, E.; Konaktchiev, A.; Genova, E. Chemical Composition of the Essential Oils of Two Hyssopus officinalis Taxa. J. Essent. Oil Res. 1993, 5, 609–611. [Google Scholar] [CrossRef]
- Piccaglia, R.; Pace, L.; Tammaro, F. Characterization of Essential Oils from Three Italian Ecotypes of Hyssop [Hyssopus officinalis L. subsp. aristatus (Godron) Briq.]. J. Essent. Oil Res. 1999, 11, 693–699. [Google Scholar] [CrossRef]
- Kazazi, H.; Rezaei, K.; Ghotbsharif, S.; Emamdjomeh, Z.; Yamini, Y. Supercriticial fluid extraction of flavors and fragrances from Hyssopus officinalis L. cultivated in Iran. Food Chem. 2007, 105, 805–811. [Google Scholar]
- Kazazi, H.; Rezaei, K. Effect of Various Parameters on the Selective Extraction of Main Components from Hyssop Using Supercritical Fluid Extraction (SFE). Food Sci. Technol. Res. 2009, 15, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhan, X.; Zeng, Z.; Chen, R.; Li, H.; Xie, T.; Wang, S. Recent advances on supercritical fluid extraction of essential oils. Afri. J. Pharm. Pharmacol. 2011, 5, 1196–1211. [Google Scholar] [CrossRef] [Green Version]
- Baldino, L.; Adami, R.; Reverchon, E. Concentration of Ruta graveolens active compounds using SC-CO2 extraction coupled with fractional separation. J. Supercrit. Fluid. 2018, 131, 82–86. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Shiwakoti, S.; Cantrell, C.; Zheljazkov, V.D.; Astatkie, T.; Schlegel, V.; Radoukova, T.Z. Hydrodistillation Extraction Kinetics Regression Models for essential oil yield and composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 2019, 24, 986. [Google Scholar] [CrossRef]
- Fredj, B.H.; Marzouk, B.; Chraief, I.; Boukef, K.; Marzouk, Z. Analysis of Tunisian Ruta graveolens L. oils from Jemmel Mouna. J. Food Agric. Environ. 2007, 5, 52–55. [Google Scholar]
- Malik, A.A.; Mir, S.; Ahmad, J. Ruta graveolens L. Essential oil composition under different nutritional treatments. Middle East. J. Sci. Res. 2014, 17, 885–890. [Google Scholar]
- Zheljazkov, V.D.; Astatkie, T.; Hristov, A.N. Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind. Crops Prod. 2012, 36, 222–228. [Google Scholar] [CrossRef]
- Khazaie, H.R.; Nadjafi, F.; Bannayan, M. Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). Ind. Crops Prod. 2008, 27, 315–321. [Google Scholar] [CrossRef]
- Venditti, A.; Bianco, A.; Frezza, C.; Conti, F.; Bini, L.M.; Giuliani, C.; Bramucci, M.; Quassinti, L.; Damiano, S.; Lupidi, G.; et al. Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. aristatus (Godr.) Nyman from central Italy. Ind. Crops Prod. 2015, 77, 353–363. [Google Scholar] [CrossRef]
- Pandey, V.; Verma, R.S.; Chauhan, A.; Tiwari, R. Compositional variation in the leaf, flower and stem essential oils of Hyssop (Hyssopus officinalis L.) from Western-Himalaya. J. Herb. Med. 2014, 4, 89–95. [Google Scholar] [CrossRef]
- Williams, C.G. On the constitution of the essential oil of rue. Philos. Trans. R. Soc. 1858, 148, 199–204. [Google Scholar]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Eucalyptol#section=Drug-and-Medication-Information (accessed on 31 October 2019).
- Antonious, G.F.; Dahlman, D.L.; Hawkins, L.M. Insecticidal and acaricidal performance of methyl ketones in wild tomato leaves. Bull. Environ. Contam. Toxicol. 2003, 71, 400–407. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, B.; Kiyan, H.; Ali, A.; Bernier, U.; Wedge, D.; Khan, I.; Başer, K. Repellent and larvicidal activity of Ruta graveolens essential oil and its major individual constituents against Aedes aegypti. Planta Med. 2012, 1, 78–90. [Google Scholar] [CrossRef]
- Forney, F.W.; Markovetz, A.J. The biology of methyl ketones. J. Lipid Res. 1971, 12, 383–395. [Google Scholar]
- Zupan, A.J.; Mo, S.J. Use of eucalyptol for enhancing skin permeation of bio-affecting agents. U.S. Patent 4,440,777, 3 April 1984. [Google Scholar]
- Bhowal, M.; Gopal, M. Eucalyptol: Safety and pharmacological profile. J. Pharm. Sci. 2015, 5, 125–131. [Google Scholar] [CrossRef]
- Khaleel, C.H.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavour Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Seol, G.H.; Kim, K.Y. Eucalyptol and Its role in chronic diseases. In Drug Discovery from Mother Nature Advances in Experimental Medicine and Biology; Gupta, S., Prasad, S., Aggarwal, B., Eds.; Springer: Cham, Switzerland, 2016; Volume 929, pp. 389–398. [Google Scholar]
- Numanoğlu, U.; Şen, T.; Tarimci, N.; Kartal, M.; Koo, O.M.Y.; Önyüksel, H. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: Linalool and benzyl acetate. AAPS Pharm. Sci. Tech. 2007, 8, 34–42. [Google Scholar] [Green Version]
- Virtual Herbarium. Available online: http://sweetgum. nybg.org/ih/ (accessed on 25 June 2018).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Montgomery, D.C. Design and analysis of experiments, 9th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- SAS Institute Inc. SAS/STAT® 9.4 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Bates, D.M.; Watts, D.G. Nonlinear Regression and its Applications; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
Sample Availability: Small samples of Hyssopus officinalis subsp. aristatus biomass and Ruta graveolens fruit are available from the authors. |
DT(min) | EO Yield % | DT (min) | EO Yield % |
---|---|---|---|
R. graveolens Fruits | H. officinalis subsp. aristatus Biomass | ||
0–5 | 0.04 b | 0–5 | 0.44 b |
5–10 | 0.10 b | 5–10 | 0.15 bc |
10–30 | 0.04 b | 10–20 | 0.24 bc |
30–60 | 0.12 b | 20–40 | 0.24 bc |
60–90 | 0.03 b | 40–60 | 0.05 c |
Control | 0.39 a | 60–90 | 0.20 bc |
Control | 1.12a |
DT (min) | Control (0–90) | 0–5 | 5–10 | 10–30 | 30–60 | 60–90 |
---|---|---|---|---|---|---|
Alkyl aldehyde | 0.44 | 2.72 | 3.67 | 4.67 | 3.75 | 1.07 |
aromatic aldehyde | 0.11 | 2.44 | 2.65 | 4.89 | 7.27 | 5.45 |
Monoterpenes (acyclic, phenolic, monocyclic, bicyclic) | 2.79 | 36.5 | 47.5 | 24.1 | 6.30 | 3.5 |
Alkyl ketone; ketone | 69.2 | 30.2 | 13.5 | 34.0 | 67.4 | 80.0 |
Alkyl aldehyde | 0.14 | 1.25 | 1.08 | 2.40 | 2.61 | 1.06 |
Fatty alcohol | 0.92 | 3.18 | 3.37 | 7.49 | 1.70 | 2.31 |
Sesquiterpenes (bicyclic, tricyclic, monocyclic; bicyclic sesquiterpenoid) | 8.08 | 17.8 | 19.6 | 19.0 | 8.09 | 3.64 |
Fatty acid ester | 7.56 | 1.25 | 1.74 | 0.87 | 0.22 | 0.28 |
Acyclic diterpenoids | 3.43 | 4.39 | 6.02 | 3.39 | 0.42 | 0.35 |
Straight-chain saturated hydrocarbon | 1.65 | nd | nd | nd | nd | nd |
DT (min) | Benzaldehyde | 2-Nonanone | 2-Nonanol | Nonanal | 2-Undecanone | 2-Undecanol | 2-Dodecanone | Methyl Undecanoate |
---|---|---|---|---|---|---|---|---|
0–5 | 2.41 d | 29.9 d | 2.38 b | 1.23 c | 0.00 d | 0.00 c | 0.00 d | 1.23 b |
5–10 | 2.62 d | 12.6 f | 2.07 c | 1.07 d | 0.00 d | 0.00 c | 0.00 d | 1.85 a |
10–30 | 4.80 c | 33.5 c | 4.58 a | 2.36 b | 0.00 d | 0.00 c | 0.00 d | 0.86 c |
30–60 | 7.38 a | 60.1 a | 1.51 d | 2.57 a | 6.96 c | 0.17 c | 0.21 c | 0.22 d |
60–90 | 5.38 b | 57.9 b | 0.90 e | 1.05 d | 21.1 b | 1.39 b | 1.05 b | 0.27 d |
Control | 0.11 e | 25.1 e | 0.67 f | 0.14 e | 35.0 a | 5.19 a | 2.34 a | 2.12 a |
DT (min) | Terpinen-4-ol | α-Terpineol | trans-Pinocarveol | Nopinone | Eucalyptol |
---|---|---|---|---|---|
0–5 | 4.12 b | 5.22 b | 2.04 b | 2.69 c | 14.95 b |
5–10 | 5.37 a | 8.35 a | 1.60 c | 3.03 b | 19.04 a |
10–30 | 2.05 c | 3.73 c | 3.54 a | 3.75 a | 4.65 c |
30–60 | 1.06 d | 2.02 d | 0.00 d | 0.00 d | 2.67 d |
60–90 | 0.71 e | 0.93 e | 0.00 d | 0.00 d | 1.03 e |
Control | 0.62 e | 0.57 f | 0.00 d | 0.00 d | 0.29 e |
DT (min) | α-Caryophyllene | δ-Cadinene | Caryophyllene Oxide | β-Caryophyllene | tau-Cadinol | tau-Muurolol | Manoyl Oxide |
---|---|---|---|---|---|---|---|
0–5 | 4.90 a | 1.77 c | 4.49 b | 6.81 a | 0.72 b | 0.93 c | 1.52 c |
5–10 | 3.11 b | 2.73 b | 5.95 a | 5.20 b | 0.96 a | 1.28 b | 6.48 a |
10–30 | 2.16 c | 3.74 a | 3.53 c | 4.82 c | 0.95 a | 2.02 a | 4.16 b |
30–60 | 0.84 d | 1.38 d | 0.42 d | 3.05 d | 0.00 d | 0.00 e | 1.03 cd |
60–90 | 0.60 d | 0.80 e | 0.35 d | 1.10 e | 0.00 d | 0.00 e | 0.40 d |
Control | 0.23 e | 1.06 de | 0.46 d | 0.83 e | 0.46 c | 0.45 d | 0.95 cd |
DT (min) | Control (0–90) | 0–5 | 5–10 | 10–20 | 20–40 | 40–60 | 60–90 |
---|---|---|---|---|---|---|---|
Class Compounds | |||||||
Total Monoterpenes | 84.5 | 88.2 | 93.9 | 95.1 | 91.9 | 95.3 | 96.3 |
Bicyclic monoterpenes monoterpenoids | 69.6 | 73.9 | 83.5 | 86.6 | 78.6 | 82.6 | 84.8 |
Acyclic monoterpenes | 3.70 | 3.90 | 3.57 | 3.25 | 2.39 | 0.89 | 0.65 |
Phenolic monoterpenoids | 0.58 | 0.37 | 0.15 | 0.11 | 0.92 | nd | nd |
Monocyclic monoterpenes | 10.5 | 10.0 | 6.76 | 5.14 | 9.95 | 11.9 | 10.8 |
Total Sesquiterpenes | 12 | 7.97 | 3.56 | 1.91 | 3.52 | 2.02 | 1.6 |
Monocyclic sesquiterpenes | 0.19 | 0.24 | 0.10 | nd | nd | nd | nd |
Tricyclic sesquiterpenes | 2.57 | 1.89 | 1.48 | 0.96 | 0.34 | 0.70 | 0.49 |
Bicyclic sesquiterpenes | 6.11 | 4.64 | 1.47 | 0.65 | 3.18 | 1.32 | 1.11 |
Tricyclic sesquiterpenoids | 3.1 | 1.2 | 0.51 | 0.30 | nd | nd | nd |
Straight-chain saturated hydrocarbons | 0.80 | 0.67 | nd | nd | nd | nd | nd |
DT (min) | α-Pinene | Sabinene | β-Pinene | β-Myrcene | Eucalyptol |
---|---|---|---|---|---|
0–5 | 6.28 a | 8.45 a | 7.90 d | 0.32 e | 58.6 a |
5–10 | 4.46 b | 4.79 b | 10.8 c | 1.33 c | 40.8 c |
10–20 | 3.99 bc | 5.12 b | 12.7 b | 1.72 a | 38.6 d |
20–40 | 3.56 c | 3.82 c | 15.2 a | 1.43 b | 32.9 e |
40–60 | 0.27 d | 0.00 d | 0.44 e | 0.00 f | 25.8 f |
60–90 | 0.00 d | 0.00 d | 0.00 e | 0.00 f | 26.3 f |
Control | 6.58 a | 9.07 a | 7.53 d | 0.65 d | 55.9 b |
DT (min) | α-Terpinolene | β-Linalool | trans-Pinocarveol | cis-Verbenol | Pinocarvone | cis-3-Pinanone |
---|---|---|---|---|---|---|
0–5 | 2.35 a | 2.21 a | 2.85 bc | 3.49 a | 2.91 b | 12.78 d |
5–10 | 0.53 c | 1.16 c | 1.83 d | 2.16 c | 2.46 c | 16.67 b |
10–20 | 0.32 d | 0.76 de | 1.49 e | 1.52 d | 1.80 d | 18.81 a |
20–40 | 0.15 e | 0.34 f | 1.27 e | 0.29 e | 1.24 e | 20.06 a |
40–60 | 0.00 f | 0.88 d | 3.11 b | 3.47 a | 2.70 bc | 14.09 c |
60–90 | 0.00 f | 0.64 e | 2.80 c | 3.02 b | 2.57 c | 15.81 b |
Control | 1.29 b | 1.80 b | 3.62 a | 2.37 c | 3.24 a | 8.61 e |
DT (min) | Terpinen-4-ol | Cryptone | α-Terpineol | Verbenone | trans-Carveol | cis-Carveol |
---|---|---|---|---|---|---|
0–5 | 1.49 c | 1.69 b | 2.91 bc | 0.31 d | 0.70 d | 0.37 d |
5–10 | 1.29 d | 0.98 c | 2.54 c | 0.22 de | 0.63 de | 0.24 e |
10–20 | 0.92 e | 0.42 d | 1.93 d | 0.19 e | 0.55 e | 0.16 f |
20–40 | 1.90 b | 1.65 b | 5.32 a | 0.16 e | 0.42 f | 0.11 f |
40–60 | 2.13 a | 2.24 a | 3.35 b | 3.05 a | 2.41 a | 1.63 a |
60–90 | 2.12 a | 2.23 a | 3.07 b | 2.34 b | 2.07 b | 1.11 b |
Control | 1.74 b | 2.30 a | 2.94 bc | 0.42 c | 0.86 c | 0.55 c |
DT (min) | β-Bourbonene | α-Muurolene | Bicyclogermacrene | (-)-Spathulenol | Caryophyllene Oxide |
---|---|---|---|---|---|
0–5 | 1.24 b | 1.84 b | 0.99 b | 0.96 c | 0.72 c |
5–10 | 1.02 c | 0.86 c | 0.43 c | 0.52 d | 0.68 c |
10–20 | 0.73 d | 0.41 d | 0.17 d | 0.30 d | 0.22 d |
20–40 | 0.56 de | 0.24 e | 0.09 e | 3.11 a | 1.57 a |
40–60 | 0.69 d | 0.00 f | 0.00 f | 1.31 b | 0.00 e |
60–90 | 0.48 e | 0.00 f | 0.00 f | 1.09 bc | 0.00 e |
Control | 1.57 a | 2.48 a | 2.23 a | 2.92 a | 1.14 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semerdjieva, I.B.; Burducea, M.; Astatkie, T.; Zheljazkov, V.D.; Dincheva, I. Essential Oil Composition of Ruta graveolens L. Fruits and Hyssopus officinalis Subsp. aristatus (Godr.) Nyman Biomass as a Function of Hydrodistillation Time. Molecules 2019, 24, 4047. https://doi.org/10.3390/molecules24224047
Semerdjieva IB, Burducea M, Astatkie T, Zheljazkov VD, Dincheva I. Essential Oil Composition of Ruta graveolens L. Fruits and Hyssopus officinalis Subsp. aristatus (Godr.) Nyman Biomass as a Function of Hydrodistillation Time. Molecules. 2019; 24(22):4047. https://doi.org/10.3390/molecules24224047
Chicago/Turabian StyleSemerdjieva, Ivanka B., Marian Burducea, Tess Astatkie, Valtcho D. Zheljazkov, and Ivayla Dincheva. 2019. "Essential Oil Composition of Ruta graveolens L. Fruits and Hyssopus officinalis Subsp. aristatus (Godr.) Nyman Biomass as a Function of Hydrodistillation Time" Molecules 24, no. 22: 4047. https://doi.org/10.3390/molecules24224047
APA StyleSemerdjieva, I. B., Burducea, M., Astatkie, T., Zheljazkov, V. D., & Dincheva, I. (2019). Essential Oil Composition of Ruta graveolens L. Fruits and Hyssopus officinalis Subsp. aristatus (Godr.) Nyman Biomass as a Function of Hydrodistillation Time. Molecules, 24(22), 4047. https://doi.org/10.3390/molecules24224047