Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality
<p>The damage scale of the cape gooseberries.</p> "> Figure 2
<p>The behavior of the weight loss percentage during the 12 days of evaluation in cape gooseberries coated with the treatments. Note: The superscript letter (a–d) refers to the significant differences (<span class="html-italic">p</span> < 0.05) between each treatment.</p> "> Figure 3
<p>The color index in the fruits of cape gooseberries during the 12 days of storage covered with each treatment. The superscript letter (a–d) refers to the significant differences (<span class="html-italic">p</span> < 0.05) between each treatment.</p> "> Figure 4
<p>Aerobic mesophylls count for the treatments applied to cape gooseberry. The superscript letter (a–d) refers to the significant differences (<span class="html-italic">p</span> < 0.05) between each treatment.</p> "> Figure 5
<p>Mold and yeasts count for the treatments applied to cape gooseberry. The superscript letter (a–d) refers to the significant differences (<span class="html-italic">p</span> < 0.05) between each treatment.</p> "> Figure 6
<p>The hedonistic scale of the sensory analysis on days 0 (<b>a</b>), 3 (<b>b</b>), and 6 (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Preparation of Edible Coatings
2.3. Application of Edible Coatings to Cape Gooseberries
2.4. Physicochemical Characterizations of Emulsions
2.5. Physical-Chemical Analysis of Cape Gooseberries
2.5.1. pH and Total Soluble Solids (TSS)
2.5.2. Titratable Acidity
2.5.3. Maturity Index
2.5.4. Weight Loss
2.5.5. Damage Index
2.5.6. Color Index
2.6. Microbiological Activity
2.7. Sensorial Activity
2.8. Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Emulsions
3.2. Physical-Chemical Analysis of Fruits
3.2.1. pH
3.2.2. Total Soluble Solids
3.2.3. Titratable Acidity
3.2.4. Maturity Index
3.2.5. Damage Index
3.2.6. Weight Loss Percentage
3.2.7. Color Index
3.3. Microbiological Analysis
3.3.1. Aerobic Mesophylls
3.3.2. Molds and Yeasts
3.4. Antioxidant Activity
3.4.1. DPPH
3.4.2. ABTS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Strik, B.C. Berry Crops: Worldwide Area and Production Systems. In Berry Fruit Value Added Products for Health Promotion, 1st ed.; Zhao, Y., Ed.; CRC: Boca Raton, FL, USA, 2007; Volume 1, pp. 3–49. [Google Scholar]
- Fischer, G.; Herrera, A.; Almanza, P.J. Cape gooseberry (Physalis peruviana L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier: Amsterdam, The Netherlands, 2011; pp. 374–397. [Google Scholar]
- Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 2011, 44, 1830–1836. [Google Scholar] [CrossRef]
- Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). J. Agric. Food Chem. 2001, 49, 1904–1908. [Google Scholar] [CrossRef]
- McCain, R. Goldenberry, passionfruit and white sapote: Potential fruits for cool subtropical areas. New Crop. 1993, 479–486. [Google Scholar]
- Carvalho, C.P.; Villaño, D.; Moreno, D.A.; Serrano, M.; Valero, D. Alginate Edible Coating And Cold Storage For Improving The Physicochemical Quality Of Cape Gooseberry (Physalis Peruviana L.). HSOA J. Food Sci. Nutr. 2015, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Flóres, R.; Víctor, J.; Fischer, G.; Sora, R.; Ángel, D. Producción, Poscosecha y Exportación de la Uchuva (Physalis peruviana L.); Universidad Nacional de Colombia: Bogotá, Colombia, 2000; pp. 9–22. [Google Scholar]
- Villamizar, F.; Ramírez, A.; Meneses, M. Estudio de la caracterización física, morfológica y fisiológica poscosecha de la uchuva (Physalis peruviana L.). Agro Desarro. 1993, 4, 305–320. [Google Scholar]
- Trinchero, G.D.; Sozzi, G.O.; Cerri, A.M.; Vilella, F.; Fraschina, A.A. Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biol. Technol. 1999, 16, 139–145. [Google Scholar] [CrossRef]
- Rao, V.G. A new post-harvest disease of cape-gooseberry. J. Univ. Bombay 1976, 45, 58–61. [Google Scholar]
- Sharma, N.; Khan, A.M. Fruit rots of cape gooseberry. Indian Phytopathol. 1978, 31, 513–514. [Google Scholar]
- Ahmad, M.S.; Siddiqui, M.W. Commercial Quality of Fruits: Part I. In Postharvest Quality Assurance of Fruits; Springer: Berlin, Germany, 2015; pp. 61–89. [Google Scholar]
- Palou, L.; Smilanick, J.L.; Crisosto, C.H. Evaluation of food additives as alternative or complementary chemicals To conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 2009, 72, 1037–1046. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71. [Google Scholar] [CrossRef]
- Guilbert, S.; Gontard, N.; Gorris, L.G.M. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT Food Sci. Technol. 1996, 29, 10–17. [Google Scholar] [CrossRef]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT 2018, 89, 198–209. [Google Scholar] [CrossRef]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci. Technol. 2009, 20, 438–447. [Google Scholar] [CrossRef]
- Licodiedoff, S.; Koslowski, L.A.D.; Scartazzini, L.; Monteiro, A.R.; Ninow, J.L.; Borges, C.D. Conservation of physalis by edible coating of gelatin and calcium chloride. Int. Food Res. J. 2016, 23. [Google Scholar]
- Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1220055. [Google Scholar] [CrossRef]
- Kunicka-Styczyńska, A.; Gibka, J. Antimicrobial Activity of Undecan-x-ones (x = 2–4). Pol. Tow. Mikrobiol. POLISH Soc. Microbiol. 2010, 59, 301–306. [Google Scholar] [CrossRef]
- Grande Tovar, C.D.; Delgado-Ospina, J.; Navia Porras, D.P.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, C.; Noé, M.; Mina, J.H.; Chaves López, C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Instituto Colombiano de Normas Técnicas y Certificación. Frutas Frescas. Uchuva. Especificaciones; NTC 4580; ICONTEC: Bogotá, Colombia, 1999; Volume 14. [Google Scholar]
- Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, E.M.; Grande Tovar, D.C. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- International Standards Organization. Piston-Operated Volumetric Apparatus—Part-2: Piston Pipettes; ISO: Geneva, Switzerland, 2002; Volume 11. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Lanchero, O.; Velandia, G.; Fischer, G.; Varela, N.C.; García, H. Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Rev. Corpoica-Ciencia y Tecnol. Agropecu. 2007, 8, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Ávila, J.A.; Moreno, P.; Fischer, G.; Miranda, D. Influencia de la madurez del fruto y del secado del cáliz en uchuva (Physalis peruviana L.), almacenada a 18 °C. Acta Agronómica 2006, 55, 29–38. [Google Scholar]
- Velez, C.; Alicia, B. Efecto de la radiación UV-C Sobre el Desarrollo de Rhizopus spp. y Phytophthora spp. en la Naranjilla (Solanum quitoense). Bachelor’s Thesis, Universidad Tecnológica Equinoccial, Quito, Ecuador, 2012. [Google Scholar]
- Balaguera-López, H.E.; Martínez, C.A.; Herrera-Arévalo, A. Papel del cáliz en el comportamiento poscosecha de frutos de uchuva (Physalis peruviana L.) ecotipo Colombia. Rev. Colomb. Ciencias Hortícolas 2014, 8, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Instituto Colombiano de Normas Técnicas y Certificación. Microbiología. Guía General para el Recuento de Mohos y Levaduras. In Técnica de Recuento de Colonias a 25 °C; NTC 4132; ICONTEC: Bogotá, Colombia, 1997; Volume 7. [Google Scholar]
- Instituto Colombiano de Normas Técnicas y Certificación. Microbiología de Alimentos y Productos para Alimentación Animal. In Requisitos Generales y Directrices para Análisis Microbiológicos; NTC 4092; ICONTEC: Bogotá, Colombia, 2016; Volume 95. [Google Scholar]
- International Standard Organization. Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.-Part 2: Enumeration; ISO: Geneva, Switzerland, 2013; Volume 12. [Google Scholar]
- Instituto Colombiano de Normas Técnicas y Certificación. Análisis Sensorial. In Identificación y Selección de Descriptores para Establecer un Perfil Sensorial por una Aproximación Multidimensional; NTC 3932; ICONTEC: Bogotá, Colombia, 1996; Volume 31. [Google Scholar]
- Azeredo, H.; de Britto, D.; Assis, O. Chitosan Edible Films and Coatings: A review. In Chitosan: Manufacture, Properties, and Usage; Davis, S.P., Ed.; Nova Science Publishers: Hauppage. NY, USA, 2010; pp. 179–194. [Google Scholar]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Chen, X.-G.; Park, H.-J.; Liu, C.-G.; Liu, C.-S.; Meng, X.-H.; Yu, L.-J. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 2006, 64, 60–65. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Kim, K.W.; Thomas, R.L.; Lee, C.; Park, H.J. Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan. J. Food Prot. 2003, 66, 1495–1498. [Google Scholar] [CrossRef]
- Tsai, G.; Su, W.; Chen, H.; Pan, C. Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish. Sci. 2002, 68, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Je, J.-Y.; Kim, S.-K.; Byun, H.-G.; Moon, S.-H. Antimicrobial Activity of Hetero-Chitosans and Their Oligosaccharides withDifferent Molecular Weights. J. Microbiol. Biotechnol. 2004, 14, 317–323. [Google Scholar]
- Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L. Efecto de la Composición de Recubrimientos Comestibles a Base de Hidroxipropilmetilcelulosa y Cera de Abeja en la Calidad de Ciruelas, Naranjas y Mandarinas. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2008. [Google Scholar]
- Hernandez, E. Edible coating from lipids and resins. In Edible Coatings and Films to Improve Food Quality; Technomic Publishing: Lancaster, PA, USA; Basel, Switzerland, 1994; pp. 279–303. [Google Scholar]
- Bonilla Lagos, M.J.; Atarés Huerta, L.M.; Vargas, M.; Chiralt, A. Physicochemical properties of chitosan-essential oils film-forming dispersions. Effect of homogenization treatments. Procedia Food Sci. 2011, 1, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Characterization of chitosan–oleic acid composite films. Food Hydrocoll. 2009, 23, 536–547. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Álvarez-Herrera, J.G.; Galvis, J.A.; Balaguera-López, H.E. Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agron. Colomb. 2009, 27, 253–259. [Google Scholar]
- Mahfoudhi, N.; Hamdi, S. Use of Almond Gum and Gum Arabic as Novel Edible Coating to Delay Postharvest Ripening and to Maintain Sweet Cherry (P runus avium) Quality during Storage. J. Food Process. Preserv. 2015, 39, 1499–1508. [Google Scholar] [CrossRef]
- Galvis, J.A.; Fischer, G.; Gordillo, O.P. Cosecha y poscosecha de la uchuva. In Avances en Cultivo, Poscosecha y Exportación de la Uchuva; Universidad Nacional de Colombia: Bogotá, Colombia, 2005; pp. 165–190. [Google Scholar]
- Hazrati, S.; Kashkooli, A.B.; Habibzadeh, F.; Tahmasebi-Sarvestani, Z.; Sadeghi, A.R. Evaluation of Aloe vera gel as an alternative edible coating for peach fruits during cold storage period. Gesunde Pflanz. 2017, 69, 131–137. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Sinning, A.; Bermont, D. Efecto de Recubrimientos Basados en Quitosano y Aceite Esencial de Ruda (Ruta graveolens L.) en el Control de Antracnosis Causada por Colletotrichum Gloeosporioides en Papaya maradol (Carica papaya L.). Bachelor’s Thesis, Universidad del Atlántico, Puerto Colombia, Colombia, 2019. [Google Scholar]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Quintero, R.M. Formulación de un Recubrimiento Comestible para Frutas Cítricas, Estudio de su Impacto Mediante Aproximación Metabolómica y Evaluación de la Calidad Poscosecha. Ph.D. Thesis, Universidad de Antioquia, Medellin, Colombia, 2012. [Google Scholar]
- Kariola, T.; Brader, G.; Li, J.; Palva, E.T. Chlorophyllase 1, a Damage Control Enzyme, Affects the Balance between Defense Pathways in Plants. Plant Cell 2005, 17, 282–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, S.C.A.; Baretto, T.A.; Arcanjo, N.M.O.; Madruga, M.S.; Meireles, B.; Cordeiro, Â.M.T.; Barbosa de Lima, M.A.; de Souza, E.L.; Magnani, M. Control of Rhizopus soft rot and quality responses in plums (Prunus domestica L.) coated with gum arabic, oregano and rosemary essential oils. J. Food Process. Preserv. 2017, 41, e13251. [Google Scholar] [CrossRef]
- Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. (Amst.) 2020, 262, 109074. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag. Shelf Life 2018, 16, 157–167. [Google Scholar] [CrossRef]
- Allen, M.J.; Edberg, S.C.; Reasoner, D.J. Heterotrophic plate count bacteria—What is their significance in drinking water? Int. J. Food Microbiol. 2004, 92, 265–274. [Google Scholar] [CrossRef] [Green Version]
- de La-Rotta, M.F. Enfermedades de la uchuva (Physalis peruviana L.); Centro de Edafología y Biología Aplicada del Segura: Murcia, España, 2014; p. 49. [Google Scholar]
- Kim, I.; Lee, H.; Kim, J.E.; Song, K.B.; Lee, Y.S.; Chung, D.S.; Min, S.C. Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion. J. Food Sci. 2013, 78, E1551–E1559. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chem. 2012, 131, 1037–1043. [Google Scholar] [CrossRef]
- Moharram, H.A.; Youssef, M.M. Methods for determining the antioxidant activity: A review. Alex. J. Fd. Sci. Technol. 2014, 11, 31–42. [Google Scholar]
- Ruiz Andrade, E.D. Comparación de Métodos de Análisis para la Determinación de Capacidad Antioxidante en Uvilla (Physalis peruviana). Bachelor’s Thesis, Universidad Tecnológica Equinoccial, Quito, Ecuador, 2018. [Google Scholar]
Essential Oil Content (%) | pH | Density (g/mL) | Viscosity (cP) | % Total Solids | Particle Size (μm) |
---|---|---|---|---|---|
0.0 | 4.36 ± 0.01 a | 1.0018 ± 0.01 a | 124.7 ± 0.1 d | 2.96 ± 0.02 a | N.D. |
0.5 | 4.40 ± 0.01 b | 1.0080 ± 0.01 b | 97.3 ± 0.1 c | 3.40 ± 0.01 b | 1.14 ± 0.25 b |
1.0 | 4.40 ± 0.01 b | 1.0082 ± 0.01 b | 80.3 ± 0.1 b | 3.51 ± 0.02 b | 1.69 ± 0.32 c |
1.5 | 4.44 ± 0.01 c | 1.0088 ± 0.01 c | 26.0 ± 0.2 a | 3.53 ± 0.02 b | 0.86 ± 0.12 b |
Time | Treatment | pH | TA (% Citric Acid) | TSS (°Brix) | Mature Index (%) | Damage Index (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 3.65 | ± | 0.07 a | 2.12 | ± | 0.09 a | 13.74 | ± | 0.29 a | 6.50 | ± | 0.32 a | 1.00 | ± | 0.00 a | |
CS | 3.61 | ± | 0.05 a | 2.08 | ± | 0.07 a | 13.57 | ± | 0.29 a | 6.53 | ± | 0.16 a | 1.00 | ± | 0.00 a | |
0 | CS + 0.5%RGEO | 3.64 | ± | 0.01 a | 2.12 | ± | 0.01 a | 13.58 | ± | 0.29 a | 6.40 | ± | 0.10 a | 1.00 | ± | 0.00 a |
CS + 1.0%RGEO | 3.67 | ± | 0.03 a | 2.11 | ± | 0.09 a | 13.74 | ± | 0.29 a | 6.53 | ± | 0.17 a | 1.00 | ± | 0.00 a | |
CS + 1.5%RGEO | 3.67 | ± | 0.02 a | 2.12 | ± | 0.03 a | 13.58 | ± | 0.29 a | 6.40 | ± | 0.07 a | 1.00 | ± | 0.00 a | |
Control | 3.91 | ± | 0.04 c | 1.73 | ± | 0.02 a | 14.17 | ± | 0.29 a | 8.19 | ± | 0.17 c | 1.00 | ± | 0.00 a | |
CS | 3.78 | ± | 0.02 b | 1.92 | ± | 0.01 b | 13.71 | ± | 0.29 a | 7.12 | ± | 0.14 b | 1.00 | ± | 0.00 a | |
3 | CS + 0.5%RGEO | 3.70 | ± | 0.05 a | 2.15 | ± | 0.02 d | 13.75 | ± | 0.29 a | 6.39 | ± | 0.19 a | 1.00 | ± | 0.00 a |
CS + 1.0%RGEO | 3.73 | ± | 0.03 ab | 2.06 | ± | 0.03 c | 14.07 | ± | 0.29 a | 6.84 | ± | 0.21 b | 1.00 | ± | 0.00 a | |
CS + 1.5%RGEO | 3.76 | ± | 0.04 ab | 2.03 | ± | 0.00 c | 13.89 | ± | 0.00 a | 6.84 | ± | 0.00 b | 1.00 | ± | 0.00 a | |
Control | 3.96 | ± | 0.04 c | 1.69 | ± | 0.00 a | 14.66 | ± | 0.29 b | 8.67 | ± | 0.18 c | 1.33 | ± | 0.58 a | |
CS | 3.76 | ± | 0.02 b | 1.86 | ± | 0.03 b | 14.20 | ± | 0.29 ab | 7.61 | ± | 0.11 b | 1.00 | ± | 0.00 a | |
6 | CS + 0.5%RGEO | 3.76 | ± | 0.02 a | 2.01 | ± | 0.00 d | 14.06 | ± | 0.29 a | 7.00 | ± | 0.15 a | 1.00 | ± | 0.00 a |
CS + 1.0%RGEO | 3.90 | ± | 0.04 ab | 1.92 | ± | 0.03 c | 14.37 | ± | 0.00 ab | 7.50 | ± | 0.10 b | 1.00 | ± | 0.00 a | |
CS + 1.5%RGEO | 3.86 | ± | 0.03 b | 1.92 | ± | 0.05 c | 14.20 | ± | 0.29 ab | 7.42 | ± | 0.12 b | 1.00 | ± | 0.00 a | |
Control | 3.97 | ± | 0.04 c | 1.52 | ± | 0.00 a | 14.96 | ± | 0.29 ab | 9.83 | ± | 0.20 d | 2.00 | ± | 1.00 a | |
CS | 3.91 | ± | 0.03 bc | 1.61 | ± | 0.02 b | 14.49 | ± | 0.29 ab | 8.74 | ± | 0.27 c | 1.33 | ± | 0.58 a | |
9 | CS + 0.5%RGEO | 3.83 | ± | 0.04 a | 1.67 | ± | 0.01 d | 14.19 | ± | 0.29 ab | 7.64 | ± | 0.19 a | 1.67 | ± | 1.15 a |
CS + 1.0%RGEO | 3.90 | ± | 0.06 bc | 1.56 | ± | 0.02 b | 14.66 | ± | 0.29 a | 8.67 | ± | 0.06 bc | 1.00 | ± | 0.00 a | |
CS + 1.5%RGEO | 3.84 | ± | 0.02 ab | 1.66 | ± | 0.03 c | 14.67 | ± | 0.29 b | 8.35 | ± | 0.05 b | 1.33 | ± | 0.58 a | |
Control | 4.04 | ± | 0.05 b | 1.51 | ± | 0.03 a | 15.13 | ± | 0.29 ab | 9.99 | ± | 0.33 d | 2.33 | ± | 1.53 a | |
CS | 4.00 | ± | 0.01 ab | 1.61 | ± | 0.09 abc | 14.98 | ± | 0.29 ab | 9.34 | ± | 0.54 bc | 2.00 | ± | 1.73 a | |
12 | CS + 0.5%RGEO | 3.99 | ± | 0.01 ab | 1.67 | ± | 0.01 c | 14.66 | ± | 0.29 ab | 8.76 | ± | 0.20 a | 2.00 | ± | 1.00 a |
CS + 1.0%RGEO | 3.96 | ± | 0.01 a | 1.56 | ± | 0.00 ab | 14.97 | ± | 0.29 a | 9.61 | ± | 0.20 cd | 1.33 | ± | 0.58 a | |
CS + 1.5%RGEO | 3.98 | ± | 0.01 a | 1.66 | ± | 0.09 bc | 14.82 | ± | 0.50 b | 8.94 | ± | 0.22 ab | 1.67 | ± | 1.15 a |
Day | Treatment | ABTS (%) | DPPH (%) | ||||
---|---|---|---|---|---|---|---|
Control | 63.79 | ± | 0.036 a | 73.43 | ± | 0.023 ab | |
CS | 64.71 | ± | 0.051 a | 81.21 | ± | 0.029 a | |
0 | CS + 0.5%RGEO | 61.43 | ± | 0.018 a | 64.00 | ± | 0.113 ab |
CS + 1.0%RGEO | 58.57 | ± | 0.003 a | 67.93 | ± | 0.035 ab | |
CS + 1.5%RGEO | 62.57 | ± | 0.040 a | 54.79 | ± | 0.023 b | |
Control | 51.71 | ± | 0.010 a | 51.57 | ± | 0.081 a | |
CS | 47.50 | ± | 0.008 a | 52.07 | ± | 0.018 a | |
3 | CS + 0.5%RGEO | 56.29 | ± | 0.007 a | 55.07 | ± | 0.090 a |
CS + 1.0%RGEO | 44.07 | ± | 0.054 a | 56.57 | ± | 0.014 a | |
CS + 1.5%RGEO | 51.71 | ± | 0.059 a | 61.64 | ± | 0.009 a | |
Control | 50.07 | ± | 0.015 a | 60.86 | ± | 0.055 a | |
CS | 52.36 | ± | 0.025 a | 53.86 | ± | 0.057 a | |
6 | CS + 0.5%RGEO | 54.86 | ± | 0.018 a | 50.93 | ± | 0.076 a |
CS + 1.0%RGEO | 51.79 | ± | 0.011 a | 59.07 | ± | 0.015 a | |
CS + 1.5%RGEO | 53.21 | ± | 0.026 a | 55.64 | ± | 0.080 a | |
Control | 54.36 | ± | 0.004 a | 54.07 | ± | 0.002 bc | |
CS | 47.79 | ± | 0.052 a | 57.07 | ± | 0.017 b | |
9 | CS + 0.5%RGEO | 58.00 | ± | 0.004 a | 62.50 | ± | 0.001 a |
CS + 1.0%RGEO | 49.14 | ± | 0.023 a | 50.43 | ± | 0.004 c | |
CS + 1.5%RGEO | 43.79 | ± | 0.094 a | 55.79 | ± | 0.012 b | |
Control | 17.79 | ± | 0.002 d | 23.86 | ± | 0.003 d | |
CS | 46.36 | ± | 0.008 a | 51.79 | ± | 0.019 b | |
12 | CS + 0.5%RGEO | 34.64 | ± | 0.008 c | 57.71 | ± | 0.007 a |
CS + 1.0%RGEO | 41.71 | ± | 0.010 b | 49.29 | ± | 0.010 b | |
CS + 1.5%RGEO | 44.86 | ± | 0.021 ab | 43.36 | ± | 0.001 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Locarno, M.; Maza Pautt, Y.; Albis, A.; Florez López, E.; Grande Tovar, C.D. Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality. Appl. Sci. 2020, 10, 2684. https://doi.org/10.3390/app10082684
González-Locarno M, Maza Pautt Y, Albis A, Florez López E, Grande Tovar CD. Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality. Applied Sciences. 2020; 10(8):2684. https://doi.org/10.3390/app10082684
Chicago/Turabian StyleGonzález-Locarno, María, Yarley Maza Pautt, Alberto Albis, Edwin Florez López, and Carlos David Grande Tovar. 2020. "Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality" Applied Sciences 10, no. 8: 2684. https://doi.org/10.3390/app10082684
APA StyleGonzález-Locarno, M., Maza Pautt, Y., Albis, A., Florez López, E., & Grande Tovar, C. D. (2020). Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality. Applied Sciences, 10(8), 2684. https://doi.org/10.3390/app10082684