잘린 순서-4 헵탄형 타일링

Truncated order-4 heptagonal tiling
잘린 헵탄형 타일링
Truncated order-4 heptagonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 4.14.14
슐레플리 기호 t{7,4}
와이토프 기호 2 4 7
2 7 7
콕시터 다이어그램 CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel 노드 1.pngCDel 7.pngCDel 노드 1.pngCDel 7.pngCDel 노드 1.png 또는
대칭군 [7,4], (*742)
[7,7], (*772)
이중 순서-7 테트라키스 사각 타일링
특성. 정점 변환

기하학에서 잘린 순서-4 헵탄형 타일링쌍곡면의 균일한 타일링이다. 그것은 t{7,4}의 Schléfli 기호를 가지고 있다.

시공

이 타일링에는 두 개의 균일한 구조가 있는데, 첫째는 [7,4] 칼리도스코프에 의해, 둘째는 마지막 거울을 제거함으로써 [7,4+,1]이 [7], (*772)이 있다.

4.7.4.7의 두 개의 균일한 구조
이름 사차대각형 잘린 헵타헥스각형
이미지 Uniform tiling 74-t01.png Uniform tiling 77-t012.png
대칭 [7,4]
(*742)
CDel node c1.pngCDel 7.pngCDel node c2.pngCDel 4.pngCDel node c3.png
[7,7] = [7,4,1+]
(*772)
CDel 노드 c1.pngCDel split1-77.pngCDel nodeab c2.png = CDel 노드 c1.pngCDel 7.pngCDel 노드 c2.pngCDel 4.pngCDel 노드 h0.png
기호 t{7,4} tr{7,7}
콕시터 다이어그램 CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png

대칭

모든 거울을 제거하는 단순한 부분군[7,+7], 색인 2가 하나뿐입니다. 이 대칭은 이등분 거울을 추가하여 742 대칭으로 두 배가 될 수 있다.

[7,7]의 작은 인덱스 하위 그룹
유형 반사적 회전
색인 1 2
도표 772 symmetry 000.png 772 symmetry aaa.png
콕시터
(svifold)
[7,7] = CDel 노드 c1.pngCDel 7.pngCDel 노드 c1.pngCDel 7.pngCDel 노드 c1.png
(*772)
[7,7]+ = CDel 노드 h2.pngCDel 7.pngCDel 노드 h2.pngCDel 7.pngCDel 노드 h2.png
(772)

관련 다면체 및 타일링

*n42 잘린 틸팅의 대칭 돌연변이: 4.2n.2n
대칭
*n42
[n,4]
구면 유클리드 주 콤팩트 쌍곡선 파라콤.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
잘림
수치
Spherical square prism.png Uniform tiling 432-t12.png Uniform tiling 44-t01.png H2-5-4-trunc-dual.svg H2 tiling 246-3.png H2 tiling 247-3.png H2 tiling 248-3.png H2 tiling 24i-3.png
구성. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
n-11
수치
Spherical square bipyramid.png Spherical tetrakis hexahedron.png 1-uniform 2 dual.svg H2-5-4-kis-primal.svg Order-6 tetrakis square tiling.png Hyperbolic domains 772.png Order-8 tetrakis square tiling.png H2checkers 2ii.png
구성. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.1987.12
균일한 헵탄/제곱 틸팅
대칭: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 74-t0.png Uniform tiling 74-t01.png Uniform tiling 74-t1.png Uniform tiling 74-t12.png Uniform tiling 74-t2.png Uniform tiling 74-t02.png Uniform tiling 74-t012.png Uniform tiling 74-snub.png Uniform tiling 74-h01.png Uniform tiling 77-t0.png
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
균일 듀얼
CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 74-t2.png Hyperbolic domains 772.png Ord74 qreg rhombic til.png Order4 heptakis heptagonal til.png Uniform tiling 74-t0.png Deltoidal tetraheptagonal til.png Hyperbolic domains 742.png Uniform tiling 77-t2.png
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77
균일한 헵탄각 틸팅
대칭: [7,7], (*772) [7,7]+, (772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 11.pngCDel split2-77.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png =CDel nodes 11.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node 1.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 7.pngCDel node h.png =CDel nodes hh.pngCDel split2-77.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 7.pngCDel node h.png
Uniform tiling 77-t0.png Uniform tiling 77-t01.png Uniform tiling 77-t1.png Uniform tiling 77-t12.png Uniform tiling 77-t2.png Uniform tiling 77-t02.png Uniform tiling 77-t012.png Uniform tiling 77-snub.png
{7,7} t{7,7}
r{7,7} 2t{7,7}=t{7,7} 2r{7,7}={7,7} rr{7,7} tr{7,7} sr{7,7}
균일 듀얼
CDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 7.pngCDel node fh.png
Uniform tiling 77-t2.png Order7 heptakis heptagonal til.png Uniform tiling 74-t2.png Order7 heptakis heptagonal til.png Uniform tiling 77-t0.png Ord74 qreg rhombic til.png Hyperbolic domains 772.png
V77 V7.14.14 V7.7.7.7 V7.14.14 V77 V4.7.4.7 V4.14.14 V3.3.7.3.7

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

참고 항목

외부 링크