잘린 4각형 타일링

Truncated tetraheptagonal tiling
잘린 4각형 타일링
Truncated tetraheptagonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 4.8.14
슐레플리 기호 tr{7,4} 또는 {
와이토프 기호 2 7 4
콕시터 다이어그램 CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png
대칭군 [7,4], (*742)
이중 주문-4-7 키스롬빌 타일링
특성. 정점 변환

기하학에서 잘린 4각형 타일링쌍곡면의 균일한 타일링이다. 그것은 tr{4,7}의 Schléfli 기호를 가지고 있다.

이미지들

14-곤 중심의 푸앵카레 디스크 투영:

Uniform tiling 74-t012.png

대칭

미러 라인이 있는 잘린 4각형 타일링. CDel node c1.pngCDel 7.pngCDel node c1.pngCDel 4.pngCDel node c2.png

이 타일링에 대한 이중은 [7,4] (*742) 대칭의 기본 영역을 나타낸다. 거울 제거와 교대로 [7,4]로 구성된 3개의 작은 지수 부분군이 있다. 이러한 이미지에서 기본 도메인은 흑백으로 번갈아 가며 색상의 경계에는 거울이 존재한다.

관련 다면체 및 타일링

균일한 헵탄/제곱 틸팅
대칭: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 74-t0.png Uniform tiling 74-t01.png Uniform tiling 74-t1.png Uniform tiling 74-t12.png Uniform tiling 74-t2.png Uniform tiling 74-t02.png Uniform tiling 74-t012.png Uniform tiling 74-snub.png Uniform tiling 74-h01.png Uniform tiling 77-t0.png
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
균일 듀얼
CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 74-t2.png Hyperbolic domains 772.png Ord74 qreg rhombic til.png Order4 heptakis heptagonal til.png Uniform tiling 74-t0.png Deltoidal tetraheptagonal til.png Hyperbolic domains 742.png Uniform tiling 77-t2.png
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77
*n42 전분해 틸팅의 대칭 돌연변이: 4.8.2n
대칭
*n42
[n,4]
구면 유클리드 주 콤팩트 쌍곡선 파라콤.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
옴니트런어드
형상을 나타내다
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.png
4.8.8
H2-5-4-omnitruncated.svg
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.∞
옴니트런어드
듀얼스
Spherical octagonal bipyramid2.png
V4.8.4
Spherical disdyakis dodecahedron.png
V4.8.6
1-uniform 2 dual.svg
V4.8.8
H2-5-4-kisrhombille.svg
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.1987
*n2 전위차단 틸팅의 대칭 돌연변이: 4.2n.2n
대칭
*n2
[n,n]
구면 유클리드 주 콤팩트 쌍곡선 파라콤.
*222
[2,2]
*332
[3,3]
*442
[4,4]
*552
[5,5]
*662
[6,6]
*772
[7,7]
*882
[8,8]...
*∞∞2
[∞,∞]
피겨 Spherical square prism.png Uniform tiling 332-t012.png Uniform tiling 44-t012.png H2 tiling 255-7.png H2 tiling 266-7.png H2 tiling 277-7.png H2 tiling 288-7.png H2 tiling 2ii-7.png
구성. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
이중 Spherical square bipyramid.png Spherical tetrakis hexahedron.png 1-uniform 2 dual.svg H2checkers 245.png H2checkers 246.png H2checkers 247.png H2checkers 248.png H2checkers 24i.png
구성. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.1987.12

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

참고 항목

외부 링크