주문-7제곱 타일링

Order-7 square tiling
주문-7제곱 타일링
Order-7 square tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 정규 타일링
꼭지점 구성 47
슐레플리 기호 {4,7}
와이토프 기호 7 4 2
콕시터 다이어그램 CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png
대칭군 [7,4], (*742)
이중 순서-4 헵탄형 타일링
특성. 정점-변환, 에지-변환, 얼굴-변환

기하학에서 순서 7 정사각형 타일링쌍곡면규칙적인 타일링이다. 그것은 {4,7}의 Schléfli 기호를 가지고 있다.

관련 다면체 및 타일링

이 타일링은 정규 다면체 및 꼭지점 그림(4n)이 있는 기울기의 일부로서 위상학적으로 관련이 있다.

*n42 일반 틸팅의 대칭 돌연변이: {4,n}
구면 유클리드 주 콤팩트 쌍곡선 파라콤팩트
Uniform tiling 432-t0.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H2-5-4-primal.svg
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 246-4.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 247-4.png
{4,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 248-4.png
{4,8}...
CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
H2 tiling 24i-4.png
{4,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
균일한 헵탄/제곱 틸팅
대칭: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 74-t0.png Uniform tiling 74-t01.png Uniform tiling 74-t1.png Uniform tiling 74-t12.png Uniform tiling 74-t2.png Uniform tiling 74-t02.png Uniform tiling 74-t012.png Uniform tiling 74-snub.png Uniform tiling 74-h01.png Uniform tiling 77-t0.png
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
균일 듀얼
CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 74-t2.png Hyperbolic domains 772.png Ord74 qreg rhombic til.png Order4 heptakis heptagonal til.png Uniform tiling 74-t0.png Deltoidal tetraheptagonal til.png Hyperbolic domains 742.png Uniform tiling 77-t2.png
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라우스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

참고 항목

외부 링크