교번 순서-4 육각 타일링
Alternated order-4 hexagonal tiling교번 순서-4 육각 타일링 | |
---|---|
쌍곡면의 푸앵카레 디스크 모델 | |
유형 | 쌍곡선 균일 타일링 |
꼭지점 구성 | (3.4)4 |
슐레플리 기호 | h{6,4} 또는 (3,4,4) |
와이토프 기호 | 4 3 4 |
콕시터 다이어그램 | 또는 |
대칭군 | [(4,4,3)], (*443) |
이중 | 주문-4-4-3_t0 듀얼 타일링 |
특성. | 정점 변환 |
기하학에서 교대 순서-4 육각 타일링은 쌍곡면의 균일한 타일링이다. Schléfli의 (3,4,4), h{6,4}, hr{6,6}의 기호를 가지고 있다.
균일한 구조
4개의 획일적인 구조물이 있으며, 하위 구조 중 일부는 두 가지 색상의 삼각형 색상으로 볼 수 있다.
*443 | 3333 | *3232 | 3*22 |
---|---|---|---|
= | = | = = | = |
(4,4,3) = h{6,4} | hr{6,6} = h{6,4}1⁄2 |
관련 다면체 및 타일링
균일한 4차각 틸팅 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭: [6,4], (*642) ([6,6](*662), [(4,3,3)](*443), [195,3,12](*3222) 인덱스 2 하위대칭) (그리고 [(재), 3,4,3](*322) 지수 4 하위대칭) | |||||||||||
= = = | = | = = = | = | = = = | = | ||||||
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
균일 듀얼 | |||||||||||
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
교대 | |||||||||||
[1+,6,4] (*443) | [6+,4] (6*2) | [6,1+,4] (*3222) | [6,4+] (4*3) | [6,4,1+] (*662) | [(6,4,2+)] (2*32) | [6,4]+ (642) | |||||
= | = | = | = | = | = | ||||||
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | 흐르{6,4} | sr{6,4} |
균일한 육각형 틸팅 | ||||||
---|---|---|---|---|---|---|
대칭: [6,6], (*662) | ||||||
= = | = = | = = | = = | = = | = = | = = |
{6,6} = h{4,6} | t{6,6} = h2{4,6} | r{6,6} {6,4} | t{6,6} = h2{4,6} | {6,6} = h{4,6} | rr{6,6} r{6,4} | tr{6,6} t{6,4} |
균일 듀얼 | ||||||
V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 |
교대 | ||||||
[1+,6,6] (*663) | [6+,6] (6*3) | [6,1+,6] (*3232) | [6,6+] (6*3) | [6,6,1+] (*663) | [(6,6,2+)] (2*33) | [6,6]+ (662) |
= | = | = | ||||