Nothing Special   »   [go: up one dir, main page]

KR102565644B1 - 형상 기억 합금 액추에이터 및 그 방법 - Google Patents

형상 기억 합금 액추에이터 및 그 방법 Download PDF

Info

Publication number
KR102565644B1
KR102565644B1 KR1020197035566A KR20197035566A KR102565644B1 KR 102565644 B1 KR102565644 B1 KR 102565644B1 KR 1020197035566 A KR1020197035566 A KR 1020197035566A KR 20197035566 A KR20197035566 A KR 20197035566A KR 102565644 B1 KR102565644 B1 KR 102565644B1
Authority
KR
South Korea
Prior art keywords
actuator
buckling
sma
bimorph
shape memory
Prior art date
Application number
KR1020197035566A
Other languages
English (en)
Other versions
KR20200003864A (ko
Inventor
마크 에이. 밀러
딘 이. 마이어스
마이클 더블유. 데이비스
나타니엘 케이. 베닝
Original Assignee
허친슨 테크놀로지 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허친슨 테크놀로지 인코포레이티드 filed Critical 허친슨 테크놀로지 인코포레이티드
Publication of KR20200003864A publication Critical patent/KR20200003864A/ko
Application granted granted Critical
Publication of KR102565644B1 publication Critical patent/KR102565644B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • F03G7/06143Wires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/50Intrinsic material properties or characteristics
    • F05B2280/5006Shape memory
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0076Driving means for the movement of one or more optical element using shape memory alloys

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

SMA 액추에이터 및 관련 방법이 설명된다. 액추에이터의 일 실시예는 베이스; 복수의 좌굴 아암; 및 복수의 좌굴 아암의 한 쌍의 좌굴 아암과 결합된 적어도 제1 형상 기억 합금 와이어를 포함한다. 액추에이터의 다른 실시예는 베이스 및 형상 기억 합금 재료를 포함하는 적어도 하나의 바이모프 액추에이터를 포함한다. 바이모프 액추에이터는 베이스에 부착된다.

Description

형상 기억 합금 액추에이터 및 그 방법
관련 출원의 상호 참조
본 출원은 2018년 5월 4일 출원된 미국 특허 출원 제15/971,995호의 우선권을 주장하고, 또한 2017년 5월 5일 출원된 미국 가특허 출원 제62/502,568호 및 2018년 3월 30일 출원된 미국 가특허 출원 제62/650,991호를 우선권 주장하며, 이들 미국 출원의 각각은 그대로 본 명세서에 참조로서 합체되어 있다.
분야
본 발명의 실시예는 형상 기억 합금 시스템의 분야에 관한 것이다. 더 구체적으로, 본 발명의 실시예는 형상 기억 합금 액추에이터 및 그에 관련된 방법의 분야에 관한 것이다.
형상 기억 합금("SMA") 시스템은 예를 들어, 오토-포커싱 드라이브(auto-focusing drive)로서 카메라 렌즈 요소와 함께 사용될 수 있는 가동 조립체 또는 구조체를 갖는다. 이들 시스템은 스크리닝 캔(screening can)과 같은 구조체 의해 에워싸일 수도 있다. 가동 조립체는 복수의 볼과 같은 베어링에 의해 지지 조립체 상에 이동을 위해 지지된다. 인청동 또는 스테인레스 강과 같은 금속으로부터 형성된 굴곡 요소는 가동 플레이트 및 굴곡부를 갖는다. 굴곡부는 가동 플레이트와 고정 지지 조립체 사이에서 연장하고, 고정 지지 조립체에 관한 가동 조립체의 이동을 가능하게 하기 위한 스프링으로서 기능한다. 볼은 가동 조립체가 적은 저항을 갖고 이동할 수 있게 한다. 가동 조립체 및 지지 조립체는 조립체들 사이에서 연장하는 4개의 형상 기억 합금(SMA) 와이어에 의해 결합된다. 각각의 SMA 와이어는 지지 조립체에 부착된 일 단부, 및 가동 조립체에 부착된 대향 단부를 갖는다. 서스펜션은 SMA 와이어에 전기 구동 신호를 인가함으로써 작동된다. 그러나, 이들 유형의 시스템은 큰 푸트프린트 및 큰 높이 유극을 필요로 하는 부피가 큰 시스템을 야기하는 시스템의 복잡성에 의해 문제를 겪는다. 또한, 현재의 시스템은 소형의 저프로파일 푸트프린트를 갖는 높은 Z-스트로크 범위를 제공하는 데 실패하였다.
- 미국 특허출원공개공보 US2013/0002933호(2013. 01. 03.) - 미국 특허출원공개공보 US2010/0027119호(2010. 02. 04.) - 미국 특허출원공개공보 US2012/0108980호(2012. 05. 03.) - 유럽 특허출원공개공보 EP2551523(2013. 01. 30.)
SMA 액추에이터 및 관련 방법이 설명된다. 액추에이터의 일 실시예는 베이스; 복수의 좌굴 아암; 및 복수의 좌굴 아암의 한 쌍의 좌굴 아암과 결합된 적어도 제1 형상 기억 합금 와이어를 포함한다. 액추에이터의 다른 실시예는 베이스 및 형상 기억 합금 재료를 포함하는 적어도 하나의 바이모프 액추에이터를 포함한다. 바이모프 액추에이터는 베이스에 부착된다.
본 발명의 실시예의 다른 특징 및 장점은 첨부 도면으로부터 그리고 이어지는 상세한 설명으로부터 명백해질 것이다.
본 발명의 실시예는 유사한 도면 부호가 유사한 요소를 지시하고 있는 첨부 도면에 한정이 아니라 예시로서 도시되어 있다.
도 1a는 실시예에 따른 좌굴 액추에이터로서 구성된 SMA 액추에이터를 포함하는 렌즈 조립체를 도시하고 있다.
도 1b는 실시예에 따른 SMA 액추에이터를 도시하고 있다.
도 2는 실시예에 따른 SMA 액추에이터를 도시하고 있다.
도 3은 실시예에 따른 SMA 와이어 액추에이터를 포함하는 오토포커스 조립체의 분해도를 도시하고 있다.
도 4는 실시예에 따른 SMA 액추에이터를 포함하는 오토포커스 조립체를 도시하고 있다.
도 5는 센서를 포함하는 실시예에 따른 SMA 액추에이터를 도시하고 있다.
도 6은 렌즈 캐리지를 구비한 실시예에 따른 좌굴 액추에이터로서 구성된 SMA 액추에이터의 평면도 및 측면도를 도시하고 있다.
도 7은 실시예에 따른 SMA 액추에이터의 섹션의 측면도를 도시하고 있다.
도 8은 좌굴 액추에이터의 실시예의 다수의 도면을 도시하고 있다.
도 9는 렌즈 캐리지를 갖는 실시예에 따른 바이모프 액추에이터를 도시하고 있다.
도 10은 실시예에 따른 SMA 액추에이터를 포함하는 오토포커스 조립체의 절결도를 도시하고 있다.
도 11a 내지 도 11c는 몇몇 실시예에 따른 바이모프 액추에이터의 도면을 도시하고 있다.
도 12는 실시예에 따른 바이모프 액추에이터의 실시예의 도면을 도시하고 있다.
도 13은 실시예에 따른 바이모프 액추에이터의 단부 패드 단면을 도시하고 있다.
도 14는 실시예에 따른 바이모프 액추에이터의 중심 공급 패드 단면을 도시하고 있다.
도 15는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 분해도를 도시하고 있다.
도 16은 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 17은 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 측면도를 도시하고 있다.
도 18은 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 측면도를 도시하고 있다.
도 19는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하는 조립체의 분해도를 도시하고 있다.
도 20은 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 21은 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 22는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 23은 실시예에 따른 2개의 좌굴 액추에이터 및 커플러를 포함하는 SMA 액추에이터를 도시하고 있다.
도 24는 실시예에 따른 라미네이트 해먹을 갖는 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 25는 실시예에 따른 라미네이트 해먹을 갖는 좌굴 액추에이터(2402)를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 26은 실시예에 따른 라미네이트 해먹을 포함하는 좌굴 액추에이터를 도시하고 있다.
도 27은 실시예에 따른 SMA 액추에이터의 라미네이트 해먹을 도시하고 있다.
도 28은 실시예에 따른 SMA 액추에이터의 라미네이트 형성된 크림프 연결부를 도시하고 있다.
도 29는 라미네이트 해먹을 갖는 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 30은 실시예에 따른 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 31은 실시예에 따른 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 32는 실시예에 따른 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 33은 실시예에 따른 SMA 액추에이터의 한 쌍의 좌굴 아암의 2개의 요크 포획 조인트를 도시하고 있다.
도 34는 좌굴 액추에이터에 SMA 와이어를 부착하는 데 사용되는 실시예에 따른 SMA 액추에이터를 위한 저항 용접 크림프를 도시하고 있다.
도 35는 2개의 요크 포획 조인트를 갖는 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 36은 실시예에 따른 SMA 바이모프 액체 렌즈를 도시하고 있다.
도 37은 실시예에 따른 SMA 바이모프 액체 렌즈의 사시도를 도시하고 있다.
도 38은 실시예에 따른 SMA 바이모프 액체 렌즈의 단면도 및 저면도를 도시하고 있다.
도 39는 실시예에 따른 바이모프 액추에이터를 갖는 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 40은 실시예에 따른 바이모프 액추에이터를 갖는 SMA 액추에이터를 도시하고 있다.
도 41은 바이모프 액추에이터의 길이 및 바이모프 액추에이터를 넘어 와이어 길이를 연장하기 위한 SMA 와이어를 위한 본딩 패드의 위치를 도시하고 있다.
도 42는 실시예에 따른 바이모프 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 43은 실시예에 따른 SMA 액추에이터의 서브섹션의 분해도를 도시하고 있다.
도 44는 실시예에 따른 SMA 액추에이터의 서브섹션을 도시하고 있다.
도 45는 실시예에 따른 5축 센서 시프트 시스템을 도시하고 있다.
도 46은 실시예에 따른 5축 센서 시프트 시스템의 분해도를 도시하고 있다.
도 47은 실시예에 따른 모든 모션을 위해 이 회로 내로 통합된 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 48은 실시예에 따른 모든 모션을 위해 이 회로 내로 통합된 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 49는 실시예에 따른 5축 센서 시프트 시스템의 단면도를 도시하고 있다.
도 50은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 도시하고 있다.
도 51은 상이한 x 및 y 위치에서 이미지 센서를 이동하는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터의 평면도를 도시하고 있다.
도 52는 박스 바이모프 오토포커스로서 구성된 실시예에 따른 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 53은 실시예에 따른 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 54는 실시예에 따른 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 55는 실시예에 따른 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 56은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 57은 2축 렌즈 시프트 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 58은 2축 렌즈 시프트 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다.
도 59는 실시예에 따른 박스 바이모프 액추에이터를 도시하고 있다.
도 60은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 61은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 62는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다.
도 63은 실시예에 따른 박스 바이모프 액추에이터를 도시하고 있다.
도 64는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 65는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 66은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 67은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 68은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 69는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA의 분해도를 도시하고 있다.
도 70은 3축 센서 시프트 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다.
도 71은 실시예에 따른 박스 바이모프 액추에이터 구성 요소를 도시하고 있다.
도 72는 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다.
도 73은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 74는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 75는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다.
도 76은 실시예에 따른 박스 바이모프 액추에이터를 도시하고 있다.
도 77은 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다.
도 78은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 79는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 80은 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다.
도 81은 실시예에 따른 박스 바이모프 액추에이터를 도시하고 있다.
도 82는 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다.
도 83은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다.
도 84는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다.
도 85는 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다.
도 86은 실시예에 따른 SMA 시스템에 사용을 위한 박스 바이모프 액추에이터를 도시하고 있다.
도 87은 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다.
도 88은 실시예에 따른 SMA 액추에이터의 바이모프 액추에이터를 위한 예시적인 치수를 도시하고 있다.
소형 푸트프린트를 포함하고 높은 작동 높이, 예를 들어, 본 명세서에서 z-스트로크라 칭하는 양의 z-축 방향(z-방향)으로 이동을 제공하는 SMA 액추에이터의 실시예가 본 명세서에 설명된다. SMA 액추에이터의 실시예는 SMA 좌굴 액추에이터 및 SMA 바이모프 액추에이터를 포함한다. SMA 액추에이터는 이들에 한정되는 것은 아니지만, 오토포커스 액추에이터로서 렌즈 조립체, 마이크로-유체 펌프, 센서 시프트, 광학 이미지 안정화부, 햅틱 피드백 센서 및 디바이스에서 통상적으로 발견되는 진동 감각을 생성하기 위해 2개의 표면을 기계적으로 타격하기 위한 광학 줌 조립체, 및 액추에이터가 사용되는 다른 시스템을 포함하는 다수의 용례에서 사용될 수도 있다. 예를 들어, 본 명세서에 설명된 액추에이터의 실시예는 사용자 경보, 통지, 경고, 터치 영역 또는 눌러진 버튼 응답을 제공하도록 구성된 휴대폰 또는 웨어러블 디바이스에 사용을 위한 햅틱 피드백 액추에이터로서 사용될 수 있다. 또한, 하나 초과의 SMA 액추에이터가 더 큰 스트로크를 달성하기 위해 시스템에 사용될 수 있다.
다양한 실시예에서, SMA 액추에이터는 0.4 밀리미터 초과인 z-스트로크를 갖는다. 또한, 다양한 실시예를 위한 SMA 액추에이터는, SMA 액추에이터가 그 초기 작동 해제 위치에 있을 때, 2.2 밀리미터 이하의 z-방향에서의 높이를 갖는다. 렌즈 조립체 내의 오토포커스 액추에이터로서 구성된 SMA 액추에이터의 다양한 실시예는 렌즈 내경("ID")보다 3 밀리미터 정도 큰 푸트프린트를 가질 수도 있다. 다양한 실시예에 따르면, SMA 액추에이터는 이들에 한정되는 것은 아니지만, 센서, 와이어, 트레이스, 및 커넥터를 포함하는 구성 요소를 수용하기 위해 일 방향에서 더 넓은 푸트프린트를 가질 수도 있다. 몇몇 실시예에 따르면, SMA 액추에이터의 푸트프린트는 일 방향에서 0.5 밀리미터 더 크고, 예를 들어 SMA 액추에이터의 길이는 폭보다 0.5 밀리미터 더 크다.
도 1a는 실시예에 따른 좌굴 액추에이터로서 구성된 SMA 액추에이터를 포함하는 렌즈 조립체를 도시하고 있다. 도 1b는 실시예에 따른 좌굴 액추에이터로서 구성된 SMA 액추에이터를 도시하고 있다. 좌굴 액추에이터(102)는 베이스(101)와 결합된다. 도 1b에 도시된 바와 같이, SMA 와이어(100)는 SMA 와이어(100)가 작동되고 수축할 때, 이것이 좌굴 액추에이터(102)가 좌굴되게 하도록 좌굴 액추에이터(102)에 부착되고, 이 좌굴은 적어도 각각의 좌굴 액추에이터(102)의 중심부(104)가 화살표(108)에 의해 지시된 바와 같이, z-스트로크 방향, 예를 들어 양의 z-방향으로 이동하게 한다. 몇몇 실시예에 따르면, SMA 와이어(100)는 전류가 크림프 구조체(106)와 같은 와이어 리테이너를 통해 와이어의 일 단부에 공급될 때 작동된다. 전류는 SMA 와이어(100)를 통해 흘러, SMA 와이어(100)가 제조되는 SMA 재료 내에 고유한 저항에 기인하여 이를 가열한다. SMA 와이어(100)의 다른 측은 SMA 와이어(100)를 접속하여 접지로의 회로를 완성하는 크림프 구조체(106)와 같은 와이어 리테이너를 갖는다. 충분한 온도로의 SMA 와이어(100)의 가열은 고유 재료 특성이 마르텐사이트로부터 오스테나이트 결정 구조로 변화하게 하는데, 이는 와이어의 길이 변화를 야기한다. 전류를 변화하는 것은 온도를 변화시키고, 따라서 와이어의 길이를 변화시키는데, 이는 적어도 z-방향에서 액추에이터의 이동을 제어하기 위해 액추에이터 작동하고 작동 해제하는데 사용된다. 통상의 기술자는 다른 기술들이 SMA 와이어에 전류를 제공하는 데 사용될 수 있다는 것을 이해할 수 있을 것이다.
도 2는 실시예에 따른 SMA 바이모프 액추에이터로서 구성된 SMA 액추에이터를 도시하고 있다. 도 2에 도시된 바와 같이, SMA 액추에이터는 베이스(204)와 결합된 바이모프 액추에이터(202)를 포함한다. 바이모프 액추에이터(202)는 SMA 리본(206)을 포함한다. 바이모프 액추에이터(202)는 SMA 리본(206)이 수축함에 따라, 적어도 바이모프 액추에이터(202)의 미고정 단부를 z-스트로크 방향(208)으로 이동시키도록 구성된다.
도 3은 실시예에 따른 SMA 액추에이터를 포함하는 오토포커스 조립체의 분해도를 도시하고 있다. 도시된 바와 같이, SMA 액추에이터(302)는 본 명세서에 설명된 실시예에 따른 좌굴 액추에이터로서 구성된다. 오토포커스 조립체는 광학 이미지 안정화부("OIS")(304), 관련 기술분야에 공지된 것들을 포함하는 기술을 사용하여 하나 이상의 광학 렌즈를 유지하도록 구성된 렌즈 캐리지(306), 복귀 스프링(308), 수직 슬라이드 베어링(310), 및 가이드 커버(312)를 또한 포함한다. 렌즈 캐리지(306)는, SMA 와이어가 작동되어 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 좌굴 액추에이터(302)를 견인 및 좌굴할 때, SMA 액추에이터(302)가 z-스트로크 방향, 예를 들어 양의 z-방향으로 이동함에 따라 수직 슬라이드 베어링(310)에 대해 슬라이드하도록 구성된다. 복귀 스프링(308)은 관련 기술분야에 공지된 것들을 포함하는 기술을 사용하여 렌즈 캐리지(306) 상에서 z-스트로크 방향의 반대 방향으로 힘을 인가하도록 구성된다. 복귀 스프링(308)은 다양한 실시예에 따르면, SMA 와이어가 작동 해제됨에 따라 SMA 와이어 내의 장력이 낮아질 때, z-스트로크 방향의 반대 방향으로 렌즈 캐리지(306)를 이동하도록 구성된다. SMA 와이어 내의 장력이 초기값으로 낮아질 때, 렌즈 캐리지(306)는 z-스트로크 방향에서 최저 높이로 이동한다. 도 4는 도 3에 도시된 실시예에 따른 SMA 와이어 액추에이터를 포함하는 오토포커스 조립체를 도시하고 있다.
도 5는 센서를 포함하는 실시예에 따른 SMA 와이어 액추에이터를 도시하고 있다. 다양한 실시예에서, 센서(502)는 z-방향에서 SMA 액추에이터의 이동 또는 관련 기술분야에 공지된 것들을 포함하는 기술을 사용하여 SMA 액추에이터가 이동하는 구성 요소의 이동을 측정하도록 구성된다. SMA 액추에이터는 본 명세서에 설명된 것들과 유사한 하나 이상의 SMA 와이어(508)를 사용하여 작동하도록 구성된 하나 이상의 좌굴 액추에이터(506)를 포함한다. 예를 들어, 도 4를 참조하여 설명된 오토포커스 조립체에서, 센서는 렌즈 캐리지(306)가 관련 기술분야에 공지된 것들을 포함하는 기술을 사용하여 초기 위치로부터 z-방향(504)으로 이동하는 이동량을 결정하도록 구성된다. 몇몇 실시예에 따르면, 센서는 터널 자기 저항("TMR") 센서이다.
도 6은 렌즈 캐리지(604)를 구비한 실시예에 따른 좌굴 액추에이터로서 구성된 SMA 액추에이터(602)의 평면도 및 측면도를 도시하고 있다. 도 7은 도 6에 도시된 실시예에 따른 SMA 액추에이터(602)의 섹션의 측면도를 도시하고 있다. 도 7에 도시된 실시예에 따르면, SMA 액추에이터(602)는 슬라이드 베이스(702)를 포함한다. 실시예에 따르면, 슬라이드 베이스(702)는 관련 기술분야에 공지된 것들을 포함하는 기술을 사용하여, 스테인레스 강과 같은 금속으로 형성된다. 그러나, 통상의 기술자는 다른 재료가 슬라이드 베이스(702)를 형성하는 데 사용될 수 있다는 것을 이해할 수 있을 것이다. 또한, 슬라이드 베이스(702)는 몇몇 실시예에 따르면, SMA 액추에이터(602)와 결합된 스프링 아암(612)을 갖는다. 다양한 실시예에 따르면, 스프링 아암(612)은 2개의 기능을 담당하도록 구성된다. 제1 기능은 물체, 예를 들어 렌즈 캐리지(604)를 가이드 커버의 수직 슬라이드 표면 내로 푸시하는 것을 돕는 것이다. 본 예에서, 스프링 아암(612)은 이 표면에 대해 렌즈 캐리지(604)를 프리로딩하여, 렌즈가 작동 중에 경사지지 않을 것을 보장한다. 몇몇 실시예에서, 수직 슬라이드 표면(708)은 가이드 커버와 정합하도록 구성된다. 스프링 아암(612)의 제2 기능은, SMA 와이어(608)가 z-스트로크 방향, 즉 양의 z-방향으로 SMA 액추에이터(602)를 이동시킨 후에, 예를 들어 음의 z-방향으로 SMA 액추에이터(602)를 다시 아래로 견인하는 것을 돕는 것이다. 따라서, SMA 와이어(608)가 작동될 때, 이들은 z-스트로크 방향에서 SMA 액추에이터(602)를 이동하도록 수축되고, SMA 와이어(608)가 작동 해제될 때, 스프링 아암(612)은 z-스트로크 방향의 반대 방향으로 SMA 액추에이터(602)를 이동시키도록 구성된다.
SMA 액추에이터(602)는 좌굴 액추에이터(710)를 또한 포함한다. 다양한 실시예에서, 좌굴 액추에이터(710)는 스테인레스 강과 같은 금속으로 형성된다. 또한, 좌굴 액추에이터(710)는 좌굴 아암(610) 및 하나 이상의 와이어 리테이너(606)를 포함한다. 도 6 및 도 7에 도시된 실시예에 따르면, 좌굴 액추에이터(710)는 4개의 와이어 리테이너(606)를 포함한다. 4개의 와이어 리테이너(606)는 SMA 와이어(608)의 단부를 수용하고 SMA 와이어(608)의 단부를 보유하여, SMA 와이어(608)가 좌굴 액추에이터(710)에 부착되게 하도록 구성된다. 다양한 실시예에서, 4개의 와이어 리테이너(606)는 와이어를 크림프에 부착하기 위해 SMA 와이어(608)의 부분을 아래로 클램핑하도록 구성된 크림프이다. 통상의 기술자는 SMA 와이어(608)가 이들에 한정되는 것은 아니지만, 접착제, 땜납, 및 기계적 부착을 포함하여 관련 기술분야에 공지된 기술을 사용하여 와이어 리테이너(606)에 부착될 수도 있다는 것을 이해할 수 있을 것이다. 스마트 기억 합금("SMA") 와이어(608)는 한 쌍의 와이어 리테이너(606) 사이에서 연장하여, 좌굴 액추에이터(710)의 좌굴 아암(610)은 SMA 와이어(608)가 작동될 때 이동하도록 구성되게 되는데, 이는 한 쌍의 와이어 리테이너(606)가 함께 더 가깝게 견인되게 한다. 다양한 실시예에 따르면, SMA 와이어(608)는 전류가 SMA 와이어(608)에 인가될 때 좌굴 아암(610)을 이동시키고 위치를 제어하도록 전기적으로 작동된다. SMA 와이어(608)는 전류가 제거되거나 임계치 미만일 때 작동 해제된다. 이는 한 쌍의 와이어 리테이너(606)를 이격 이동시키고, 좌굴 아암(610)은 SMA 와이어(608)가 작동될 때 그 반대 방향으로 이동한다. 다양한 실시예에 따르면, 좌굴 아암(610)은 SMA 와이어가 그 초기 위치에서 작동 해제될 때 슬라이드 베이스(702)에 관하여 5도의 초기 각도를 갖도록 구성된다. 그리고, 최대 스트로크 또는 SMA 와이어가 최대 작동될 때, 좌굴 아암(610)은 다양한 실시예에 따라 슬라이드 베이스(702)에 관하여 10 내지 12도의 각도를 갖도록 구성된다.
도 6 및 도 7에 도시된 실시예에 따르면, SMA 액추에이터(602)는 슬라이드 베이스(702)와 와이어 리테이너(606) 사이에 구성된 슬라이드 베어링(706)을 또한 포함한다. 슬라이드 베어링(706)은 슬라이드 베이스(702)와 좌굴 아암(610) 및/또는 와이어 리테이너(606) 사이의 임의의 마찰을 최소화하도록 구성된다. 몇몇 실시예에서 슬라이드 베어링은 슬라이드 베어링(706)에 부착된다. 다양한 실시예에 따르면, 슬라이드 베어링은 폴리옥시메틸렌("POM")으로 형성된다. 통상의 기술자는 다른 구조체가 좌굴 액추에이터와 베이스 사이의 임의의 마찰을 낮추는 데 사용될 수 있다는 것을 이해할 수 있을 것이다.
다양한 실시예에 따르면, 슬라이드 베이스(702)는 오토포커스 조립체용 오토포커스 베이스와 같은 조립체 베이스(704)와 결합하도록 구성된다. 액추에이터 베이스(704)는 몇몇 실시예에 따르면, 에칭된 심을 포함한다. 이러한 에칭된 심은 SMA 액추에이터(602)가 오토포커스 조립체와 같은 조립체의 부분일 때 와이어 및 크림프를 위한 유극을 제공하는 데 사용될 수도 있다.
도 8은 x-축, y-축, 및 z-축에 관한 좌굴 액추에이터(802)의 실시예의 다수의 도면을 도시하고 있다. 도 8에 배향되어 있는 바와 같이, 좌굴 아암(804)은 SMA 와이어가 본 명세서에 설명된 바와 같이 작동되고 작동 해제될 때 z-축에서 이동하도록 구성된다. 도 8에 도시된 실시예에 따르면, 좌굴 아암(804)은 해먹부(806)와 같은 중심부를 통해 서로 결합된다. 해먹부(806)는 다양한 실시예에 따르면, 좌굴 액추에이터에 의해 작용되는 물체의 부분, 예를 들어 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 좌굴 액추에이터에 의해 이동되는 렌즈 캐리지를 요동하도록(cradle) 구성된다. 해먹부(806)는 몇몇 실시예에 따른 작동 중에 좌굴 액추에이터에 측방향 강성을 제공하도록 구성된다. 다른 실시예에서, 좌굴 액추에이터는 해먹부(806)를 포함하지 않는다. 이들 실시예에 따르면, 좌굴 아암은 물체 상에 작용하여 그를 이동시키도록 구성된다. 예를 들어, 좌굴 아암은 렌즈 캐리지의 특징부 상에 직접 작용하여 그를 상향으로 푸시하도록 구성된다.
도 9는 실시예에 따른 SMA 바이모프 액추에이터로서 구성된 SMA 액추에이터를 도시하고 있다. SMA 바이모프 액추에이터는 본 명세서에 설명된 것들을 포함하는 바이모프 액추에이터(902)를 포함한다. 도 9에 도시된 실시예에 따르면, 각각의 바이모프 액추에이터(902)의 일 단부(906)는 베이스(908)에 부착된다. 몇몇 실시예에 따르면, 일 단부(906)는 베이스(908)에 용접된다. 그러나, 통상의 기술자는 다른 기술이 일 단부(906)를 베이스(908)에 부착하는 데 사용될 수 있다는 것을 이해할 수 있을 것이다. 도 9는 바이모프 액추에이터(902)가 작동될 때 z-방향으로 컬링하고(curl) z-방향으로 캐리지(904)를 상승시키게 구성되도록 렌즈 캐리지(904)가 배열되는 것을 또한 도시하고 있다. 몇몇 실시예에서, 복귀 스프링이 바이모프 액추에이터(902)를 초기 위치로 재차 푸시하는 데 사용된다. 복귀 스프링이 이들의 초기 작동 해제 위치로 바이모프 액추에이터를 아래로 푸시하는 것을 보조하기 위해 본 명세서에 설명된 바와 같이 구성될 수도 있다. 바이모프 액추에이터의 작은 푸트프린트에 기인하여, 현재 액추에이터 기술에 비해 감소된 푸트프린트를 갖는 SMA 액추에이터가 제조될 수 있다.
도 10은 TMR 센서와 같은 위치 센서를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 오토포커스 조립체의 절결도를 도시하고 있다. 오토포커스 조립체(1002)는 본 명세서에 설명된 것들과 같은, 가동 스프링(1006)에 부착된 위치 센서(1004), 및 SMA 액추에이터를 포함하는 오토포커스 조립체의 렌즈 캐리지(1010)에 부착된 자석(1008)을 포함한다. 위치 센서(1004)는 관련 기술분야에 공지된 것들을 포함하는 기술을 사용하여 자석(1008)이 위치 센서(1004)로부터 있는 거리에 기초하여 렌즈 캐리지(1010)가 초기 위치로부터 z-방향(1005)으로 이동한 이동량을 결정하도록 구성된다. 몇몇 실시예에 따르면, 위치 센서(1004)는 광학 이미지 안정 조립체의 가동 스프링(1006)의 스프링 아암 상의 복수의 전기 트레이스를 사용하여, 중앙 처리 유닛과 같은 프로세서 또는 제어기와 전기적으로 결합된다.
도 11a 내지 도 11c는 몇몇 실시예에 따른 바이모프 액추에이터의 도면을 도시하고 있다. 다양한 실시예에 따르면, 바이모프 액추에이터(1102)는 보(1104) 및 SMA 리본(1106b)(예를 들어, 도 11b의 실시예에 따른 SMA 리본을 포함하는 바이모프 액추에이터의 사시도에 도시되어 있는 바와 같이) 또는 SMA 와이어(1106a)(예를 들어, 도 11a의 실시예에 따른 SMA 와이어를 포함하는 바이모프 액추에이터의 단면도에 도시되어 있는 바와 같이)와 같은 하나 이상의 SMA 재료(1106)를 포함한다. SMA 재료(1106)는 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 보(1104)에 부착된다. 몇몇 실시예에 따르면, SMA 재료(1106)는 접착 필름 재료(1108)를 사용하여 보(1104)에 부착된다. SMA 재료(1106)의 단부는 다양한 실시예에서, 관련 기술분야에 공지된 것들을 포함하는 기술을 사용하여 SMA 재료(1106)에 전류를 공급하도록 구성된 접점(1110)과 전기적으로 그리고 기계적으로 결합된다. 접점(1110)(예를 들어, 도 11a 및 도 11b에 도시되어 있는 바와 같이)은 다양한 실시예에 따르면, 금 도금된 구리 패드이다. 실시예에 따르면, 예를 들어 도 11c에 도시된 바와 같이, 큰 스트로크 및 50 밀리뉴턴("mN")의 푸시력을 발생하도록 구성된 대략 1 밀리미터의 길이를 갖는 바이모프 액추에이터(1102)가 렌즈 조립체의 부분으로서 사용된다. 몇몇 실시예에 따르면, 1 밀리미터 초과의 길이를 갖는 바이모프 액추에이터(1102)의 사용이 1 밀리미터의 길이를 갖는 것보다 많은 스트로크 그러나 적은 힘을 발생할 것이다. 실시예에 있어서, 바이모프 액추에이터(1102)는 20 마이크로미터 두께 SMA 재료(1106), 폴리이미드 절연체와 같은 20 마이크로미터 두께 절연체(1112), 및 30 마이크로미터 두께 스테인레스 강 보(1104) 또는 베이스 금속을 포함한다. 다양한 실시예는 접점(1110)을 포함하는 접촉층과 SMA 재료(1106) 사이에 배치된 제2 절연체(1114)를 포함한다. 제2 절연체(1114)는 몇몇 실시예에 따르면, 접점(1110)으로서 사용되지 않은 접촉층의 부분으로부터 SMA 재료(1106)를 절연하도록 구성된다. 몇몇 실시예에서, 제2 절연체(1114)는 폴리이미드 절연체와 같은 커버코트층이다. 통상의 기술자는 다른 치수 및 재료가 원하는 디자인 특성에 부합하는 데 사용될 수 있다는 것을 이해할 수 있을 것이다.
도 12는 실시예에 따른 바이모프 액추에이터의 실시예의 도면을 도시하고 있다. 도 12에 도시된 바와 같은 실시예는 전력을 인가하기 위한 중심 공급부(1204)를 포함한다. 전력은 본 명세서에 설명된 것과 같은 SMA 재료(1202)(와이어 또는 리본)의 중심에서 공급된다. SMA 재료(1202)의 단부는 단부 패드(1203)에서 복귀 경로로서 보(1206) 또는 베이스 금속에 접지된다. 단부 패드(1203)는 접촉층(1214)의 나머지로부터 전기적으로 격리된다. 실시예에 따르면, SMA 재료(1202)의 전체 길이를 따른, SMA 와이어와 같은 SMA 재료(1202)로의 보(1206) 또는 베이스 금속의 밀접한 근접도는 전류가 턴오프될 때, 즉 바이모프 액추에이터가 작동 해제될 때 와이어의 더 고속 냉각을 제공한다. 결과는 더 고속의 와이어 비활성화 및 액추에이터 응답 시간이다. SMA 와이어 또는 리본의 열적 프로파일이 개선된다. 예를 들어, 열적 프로파일은 더 높은 총 전류가 와이어에 신뢰적으로 전달될 수 있도록 더 균일하다. 균일한 히트 싱크 없이, 중심 영역과 같은 와이어의 부분은 과열되고 손상될 수도 있어, 따라서 신뢰적으로 동작하도록 감소된 전류 및 감소된 모션을 요구한다. 중심 공급부(1204)는 더 고속의 응답 시간을 위한 SMA 재료(1202)의 더 신속한 와이어 활성화/작동(더 고속의 가열) 및 감소된 전력 소비(더 낮은 저항 경로 길이)의 이익을 제공한다. 이는 더 높은 이동 주파수에서 동작하기 위한 더 고속 액추에이터 모션 및 능력을 허용한다.
도 12에 도시된 바와 같이, 보(1206)는 중심 공급부(1204)를 형성하기 위해 보(1206)의 나머지로부터 격리된 중심 금속(1208)을 포함한다. 본 명세서에 설명된 것들과 같은 절연체(1210)가 보(1206) 위에 배치된다. 절연체(1210)는 보(1206)로의 전기적 액세스를 제공하기 위해, 예를 들어 접촉층의 접지 섹션(1214b)을 결합하기 위해, 그리고 중심 공급부(1204)를 형성하도록 중심 금속(1208)에 접촉을 제공하기 위해, 하나 이상의 개구 또는 비아(1212)를 갖도록 구성된다. 본 명세서에 설명된 것들과 같은 접촉층(1214)은 몇몇 실시예에 따르면, 전원 접점(1216) 및 접지 접점(1218)을 경유하여 바이모프 액추에이터에 작동/제어 신호를 제공하기 위해 전원 섹션(1214a) 및 접지 섹션(1214b)을 포함한다. 본 명세서에 설명된 것들과 같은 커버코트층(1220)이 전기 결합이 요구되는 접촉층(1214)의 부분(예를 들어, 하나 이상의 접점)을 제외하고 접촉층을 전기적으로 격리하도록 접촉층(1214) 위에 배치된다.
도 13은 도 12에 도시된 바와 같은 실시예에 따른 바이모프 액추에이터의 단부 패드 단면을 도시하고 있다. 전술된 바와 같이, 단부 패드(1203)는 단부 패드(1203)와 접촉층(1214) 사이에 형성된 간극(1222)을 경유하여 접촉층(1214)의 나머지로부터 전기적으로 격리된다. 간극은 몇몇 실시예에 따르면, 관련 기술분야에 공지된 것들을 포함하는 에칭 기술을 사용하여 형성된다. 단부 패드(1203)는 단부 패드(1203)를 보(1206)와 전기적으로 결합하도록 구성된 비아 섹션(1224)을 포함한다. 비아 섹션(1224)은 절연체(1210) 내에 형성된 비아(1212) 내에 형성된다. SMA 재료(1202)는 단부 패드(1213)에 전기적으로 결합된다. SMA 재료(1202)는 이들에 한정되는 것은 아니지만, 땜납, 저항 용접, 레이저 용접, 및 직접 도금을 포함하는 기술을 사용하여 단부 패드(1213)에 전기적으로 결합될 수 있다.
도 14는 도 12에 도시된 바와 같은 실시예에 따른 바이모프 액추에이터의 중심 공급부 단면을 도시하고 있다. 중심 공급부(1204)는 접촉층(1214)을 통해 전원에 전기적으로 결합되고, 절연체(1210) 내에 형성된 비아(1212) 내에 형성된 중심 공급부(1204) 내의 비아 섹션(1226)을 경유하여 중심 금속(1208)과 전기적으로 그리고 열적으로 결합된다.
본 명세서에 설명된 액추에이터는 다수의 좌굴 및/또는 다수의 바이모프 액추에이터를 사용하는 액추에이터 조립체를 형성하는 데 사용될 수 있다. 실시예에 따르면, 액추에이터는 달성될 수 있는 스트로크 거리를 증가시키기 위해 서로의 상부에 적층될 수도 있다.
도 15는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 분해도를 도시하고 있다. 2개의 좌굴 액추에이터(1302, 1304)는 본 명세서에 설명된 실시예에 따르면, 서로 대향하도록 이들의 모션을 사용하기 위해 서로에 관하여 배열된다. 다양한 실시예에서, 2개의 좌굴 액추에이터(1302, 1304)는 렌즈 캐리지(1306)를 위치설정하기 위해 서로에 관하여 역으로 이동하도록 구성된다. 예를 들어, 제1 좌굴 액추에이터(1302)는 제2 좌굴 액추에이터(1304)에 송신된 전력 신호의 역 전력 신호를 수신하도록 구성된다.
도 16은 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다. 좌굴 액추에이터(1302, 1304)는, 각각의 좌굴 액추에이터(1302, 1304)의 좌굴 아암(1310, 1312)이 서로 대면하고 각각의 좌굴 액추에이터(1302, 1304)의 슬라이드 베이스(1314, 1316)가 2개의 좌굴 액추에이터의 외부면이 되도록 구성된다. 각각의 SMA 액추에이터(1302, 1304)의 해먹부(1308)는 다양한 실시예에 따르면, 하나 이상의 좌굴 액추에이터(1302, 1304)에 의해 작용되는 물체의 부분, 예를 들어 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 좌굴 액추에이터에 의해 이동되는 렌즈 캐리지(1306)를 요동하도록 구성된다.
도 17은 양의 z 방향으로 또는 상향 방향으로 렌즈 캐리지와 같은 물체를 이동하게 하는 SMA 와이어(1318)의 방향을 도시하고 있는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 측면도를 도시하고 있다.
도 18은 음의 z 방향으로 또는 하향 방향으로 렌즈 캐리지와 같은 물체를 이동하게 하는 SMA 와이어(1318)의 방향을 도시하고 있는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 측면도를 도시하고 있다.
도 19는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하는 조립체의 분해도를 도시하고 있다. 좌굴 액추에이터(1902, 1904)는, 각각의 좌굴 액추에이터(1902, 1904)의 좌굴 아암(1910, 1912)이 2개의 좌굴 액추에이터의 외부면이 되고 각각의 좌굴 액추에이터(1902, 1904)의 슬라이드 베이스(1914, 1916)가 서로 대면하도록 구성된다. 각각의 SMA 액추에이터(1902, 1904)의 해먹부(1908)는 다양한 실시예에 따르면, 하나 이상의 좌굴 액추에이터(1902, 1904)에 의해 작용되는 물체의 부분, 예를 들어 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 좌굴 액추에이터에 의해 이동되는 렌즈 캐리지(1906)를 요동하도록 구성된다. 몇몇 실시예에서, SMA 액추에이터는 제2 좌굴 액추에이터(1904)를 수용하도록 구성된 베이스부(1918)를 포함한다. SMA 액추에이터는 커버부(1920)를 또한 포함할 수도 있다. 도 20은 베이스부 및 커버부를 포함하는 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 21은 실시예에 따른 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다. 몇몇 실시예에서, 좌굴 액추에이터(1902, 1904)는, 제1 좌굴 액추에이터(1902)의 해먹부(1908)가 제2 좌굴 액추에이터(1904)의 해먹부로부터 약 90도 회전되도록 서로에 관하여 배열된다. 90도 구성은 렌즈 캐리지(1906)와 같은 물체의 피치 및 롤 회전을 가능하게 한다. 이는 렌즈 캐리지(1906)의 이동에 대한 더 양호한 제어를 제공한다. 다양한 실시예에서, 차등 전력 신호가 각각의 좌굴 액추에이터 쌍의 SMA 와이어에 인가되는데, 이는 경사 OIS 모션을 위한 렌즈 캐리지의 피치 및 롤 회전을 제공한다.
2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 실시예는 복귀 스프링을 가질 필요성을 제거한다. 2개의 좌굴 액추에이터의 사용은 위치 피드백을 위해 SMA 와이어 저항을 사용할 때 이력을 향상/감소시킬 수 있다. 2개의 좌굴 액추에이터를 포함하는 SMA 액추에이터의 대향력은 복귀 스프링을 포함하는 것들보다 더 낮은 이력에 기인하여 더 정확한 위치 제어를 보조한다. 도 22에 도시된 실시예와 같은 몇몇 실시예에서, 2개의 좌굴 액추에이터(2202, 2204)를 포함하는 SMA 액추에이터는 각각의 좌굴 액추에이터(2202, 2204)의 좌측 및 우측 SMA 와이어(2218a, 2218b)에 차등 전력을 사용하는 2-축 경사를 제공한다. 예를 들어, 좌측 SMA 와이어(2218a)는 우측 SMA 와이어(2218b)보다 더 높은 전력으로 작동된다. 이는 렌즈 캐리지(2206)의 좌측이 아래로 이동하게 하고 우측이 위로 이동하게 한다(경사짐). 제1 좌굴 액추에이터(2202)의 SMA 와이어는 몇몇 실시예에서, 경사 모션을 야기하기 위해 SMA 와이어(2218a, 2218b)가 차등적으로 푸시하게 하기 위한 지지점으로서 작용하도록 동일한 전력에서 유지된다. SMA 와이어에 인가된 전력 신호를 역전하는 것은, 예를 들어 제2 좌굴 액추에이터(2202)의 SMA 와이어에 동일한 전력을 인가하고 제2 좌굴 액추에이터(2204)의 좌측 및 우측 SMA 와이어(2218a, 2218b)에 차등 전력을 사용하는 것은 다른 방향에서 렌즈 캐리지(2206)의 경사를 야기한다. 이는 어느 하나의 모션축에서 렌즈 캐리어와 같은 물체를 경사시키는 능력을 제공하거나 또는 양호한 동적 경사를 위해 렌즈와 센서 사이의 임의의 경사를 조절할 수 있는데, 이는 모든 화소를 가로지르는 더 양호한 화상 품질을 야기한다.
도 23은 실시예에 따른 2개의 좌굴 액추에이터 및 커플러를 포함하는 SMA 액추에이터를 도시하고 있다. SMA 액추에이터는 본 명세서에 설명된 것들과 같은 2개의 좌굴 액추에이터를 포함한다. 제1 좌굴 액추에이터(2302)가 커플러 링(2305)과 같은 커플러를 사용하여 제2 좌굴 액추에이터(2304)와 결합하도록 구성된다. 좌굴 액추에이터(2302, 2304)는, 제1 좌굴 액추에이터(2302)의 해먹부(2308)가 제2 좌굴 액추에이터(2304)의 해먹부(2309)로부터 약 90도 회전되도록 서로에 관하여 배열된다. 렌즈 또는 렌즈 조립체와 같은 이동을 위한 페이로드가 제1 좌굴 액추에이터(2302)의 슬라이드 베이스 상에 배치되도록 구성된 렌즈 캐리지(2306)에 부착된다.
다양한 실시예에서, 동일한 전력이 제1 좌굴 액추에이터(2302) 및 제2 좌굴 액추에이터(2304)의 SMA 와이어에 인가될 수 있다. 이는 양의 z-방향에서 SMA 액추에이터의 z 스트로크를 최대화하게 할 수 있다. 몇몇 실시예에서, SMA 액추에이터의 스트로크는 2개의 좌굴 액추에이터를 포함하는 다른 SMA 액추에이터의 스트로크와 동일하거나 2배 초과인 z 스트로크를 가질 수 있다. 몇몇 실시예에서, 부가의 스프링이 2개의 좌굴기가 푸시되게 하기 위해 추가되어 전력 신호가 SMA 액추에이터로부터 제거될 때 액추에이터 조립체 및 페이로드를 재차 아래로 푸시하는 것을 보조할 수 있다. 동일한 대향하는 전력 신호가 제1 좌굴 액추에이터(2302) 및 제2 좌굴 액추에이터(2304)의 SMA 와이어에 인가될 수 있다. 이는 SMA 액추에이터가 좌굴 액추에이터에 의해 양의 z-방향으로 이동되고 좌굴 액추에이터에 의해 음의 z-방향으로 이동되는 것을 가능하게 하는데, 이는 SMA 액추에이터의 위치의 정확한 제어를 가능하게 한다. 또한, 동일한 대향 전력 신호(차등 전력 신호)가 제1 좌굴 액추에이터(2302) 및 제2 좌굴 액추에이터(2304)의 좌측 및 우측 SMA 와이어에 인가되어 2개의 축 중 적어도 하나의 방향으로 렌즈 캐리지(2306)와 같은 물체를 경사지게 할 수 있다.
도 23에 도시된 것과 같은 2개의 좌굴 액추에이터 및 커플러를 포함하는 SMA 액추에이터의 실시예는 부가의 좌굴 액추에이터 및 좌굴 액추에이터의 쌍과 결합되어 단일의 SMA 액추에이터의 것보다 큰 원하는 스트로크를 달성할 수 있다.
도 24는 실시예에 따른 라미네이트 해먹을 갖는 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 본 명세서에 설명된 바와 같이, SMA 시스템은 몇몇 실시예에서, 오토포커싱 드라이브로서 하나 이상의 카메라 렌즈 요소와 함께 사용되도록 구성된다. 도 24에 도시된 바와 같이, SMA 시스템은 다양한 실시예에 따르면, SMA 와이어가 작동 해제됨에 따라 SMA 와이어(2408) 내의 장력이 낮아질 때, z-스트로크 방향의 반대 방향으로 렌즈 캐리지(2406)를 이동하도록 구성된 복귀 스프링(2403)을 포함한다. 몇몇 실시예에서 SMA 시스템은 복귀 스프링(2403)을 수용하고 z-스트로크 방향으로 렌즈 캐리지를 안내하기 위해 슬라이드 베어링에 작용하도록 구성된 하우징(2409)을 포함한다. 하우징(2409)은 또한 좌굴 액추에이터(2402) 상에 배치되도록 구성된다. 좌굴 액추에이터(2402)는 본 명세서에 설명된 것들과 유사한 슬라이드 베이스(2401)를 포함한다. 좌굴 액추에이터(2402)는 라미네이트로 형성된 적층된 해먹(2406)과 같은 해먹부와 결합된 좌굴 아암(2404)을 포함한다. 좌굴 액추에이터(2402)는 라미네이트 형성된 크림프 연결부(2412)와 같은 SMA 와이어 부착 구조체를 또한 포함한다.
도 24에 도시된 바와 같이, 슬라이드 베이스(2401)는 선택적 어댑터 플레이트(2414) 상에 배치된다. 어댑터 플레이트는 OIS, 부가의 SMA 시스템, 또는 다른 구성 요소와 같은 다른 시스템에 SMA 시스템 또는 좌굴 액추에이터(2402)를 정합하도록 구성된다. 도 25는 실시예에 따른 라미네이트 해먹을 갖는 좌굴 액추에이터(2402)를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템(2501)을 도시하고 있다.
도 26은 실시예에 따른 라미네이트 해먹을 포함하는 좌굴 액추에이터를 도시하고 있다. 좌굴 액추에이터(2402)는 좌굴 아암(2404)을 포함한다. 좌굴 아암(2404)은 SMA 와이어(2412)가 본 명세서에 설명된 바와 같이 작동되고 작동 해제될 때 z-축에서 이동하도록 구성된다. SMA 와이어(2408)는 라미네이트 형성된 크림프 연결부(2412)를 사용하여 좌굴 액추에이터에 부착된다. 도 26에 도시된 실시예에 따르면, 좌굴 아암(2404)은 라미네이트 해먹(2406)과 같은 중심부를 통해 서로 결합된다. 라미네이트 해먹(2406)은 다양한 실시예에 따르면, 좌굴 액추에이터에 의해 작용되는 물체의 부분, 예를 들어 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 좌굴 액추에이터에 의해 이동되는 렌즈 캐리지를 요동하도록 구성된다.
도 27은 실시예에 따른 SMA 액추에이터의 라미네이트 해먹을 도시하고 있다. 몇몇 실시예에서, 라미네이트 해먹(2406) 재료는 저강성 재료이고 따라서 이는 작동 모션에 저항하지 않는다. 예를 들어, 라미네이트 해먹(2406)은 제2 폴리이미드층이 구리 상에 배치되어 있는 상태로 제1 폴리이미드층 상에 배치된 구리층을 사용하여 형성된다. 몇몇 실시예에서, 라미네이트 해먹(2406)은 관련 기술분야에 공지된 것들을 포함하는 증착 및 에칭 기술을 사용하여 좌굴 아암(2404) 상에 형성된다. 다른 실시예에서, 라미네이트 해먹(2406)은 좌굴 아암(2404)과는 별도로 형성되어 용접, 접착, 및 관련 기술분야에 공지된 다른 기술을 포함하는 기술을 사용하여 좌굴 아암(2404)에 부착된다. 다양한 실시예에서, 아교 또는 다른 접착제가 렌즈 캐리지에 대해 제 위치에 좌굴 아암(2404)이 체류하는 것을 보장하기 위해 라미네이트 해먹(2406) 상에 사용된다.
도 28은 실시예에 따른 SMA 액추에이터의 라미네이트 형성된 크림프 연결부를 도시하고 있다. 라미네이트 형성된 크림프 연결부(2412)는 SMA 와이어(2408)를 좌굴 액추에이터에 부착하고 SMA 와이어(2408)와 전기 회로 조인트를 생성하도록 구성된다. 다양한 실시예에서, 라미네이트 형성된 크림프 연결부(2412)는 절연체의 하나 이상의 층 및 크림프 상에 형성된 도전층의 하나 이상의 층으로 형성된 라미네이트를 포함한다.
예를 들어, 폴리이미드층이 스테인레스 강 부분의 적어도 일부 상에 배치되어 크림프(2413)를 형성한다. 구리와 같은 도전층이 이어서 좌굴 액추에이터 상에 배치된 하나 이상의 신호 트레이스(2415)와 전기적으로 결합된 폴리이미드층 상에 배치된다. 그 내의 SMA 와이어와 접촉하게 되도록 크림프를 변형하는 것은 또한 SMA 와이어를 도전층과 전기 접촉하게 한다. 따라서, 하나 이상의 신호 트레이스와 결합된 도전층은 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 SMA 와이어에 전력 신호를 인가하는 데 사용된다. 몇몇 실시예에서, 제2 폴리이미드층이 도전층이 SMA 와이어와 접촉하지 않게 될 영역에서 도전층 위에 형성된다. 몇몇 실시예에서, 라미네이트 형성된 크림프 연결부(2412)는 관련 기술분야에 공지된 것들을 포함하는 증착 및 에칭 기술을 사용하여 크림프(2413) 상에 형성된다. 다른 실시예에서, 라미네이트 형성된 크림프 연결부(2412) 및 하나 이상의 전기 트레이스는 크림프(2413) 및 좌굴 액추에이터와는 별도로 형성되어 용접, 접착, 및 관련 기술분야에 공지된 다른 기술을 포함하는 기술을 사용하여 크림프(2412) 및 좌굴 액추에이터에 부착된다.
도 29는 라미네이트 해먹을 갖는 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다. 도 29에 도시된 바와 같이, 전력 신호가 인가될 때, SMA 와이어는 수축하거나 단축되어 양의 z-방향으로 좌굴 아암 및 라미네이트 해먹을 이동시킨다. 물체와 접촉하고 있는 라미네이트 해먹은 이어서 렌즈 캐리지와 같은 그 물체를 양의 z-방향으로 이동시킨다. 전력 신호가 감소되거나 제거될 때, SMA 와이어는 연장되어 좌굴 아암 및 라미네이트 해먹을 음의 z-방향으로 이동시킨다.
도 30은 실시예에 따른 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 본 명세서에 설명된 바와 같이, SMA 시스템은 몇몇 실시예에서, 오토포커싱 드라이브로서 하나 이상의 카메라 렌즈 요소와 함께 사용되도록 구성된다. 도 30에 도시된 바와 같이, SMA 시스템은 다양한 실시예에 따르면, SMA 와이어가 작동 해제됨에 따라 SMA 와이어(3008) 내의 장력이 낮아질 때, z-스트로크 방향의 반대 방향으로 렌즈 캐리지(3005)를 이동하도록 구성된 복귀 스프링(3003)을 포함한다. SMA 시스템은 몇몇 실시예에서 복귀 스프링(3003) 상에 배치된 보강재(3000)를 포함한다. 몇몇 실시예에서 SMA 시스템은 복귀 스프링(3003)을 수용하고 z-스트로크 방향으로 렌즈 캐리지를 안내하기 위해 슬라이드 베어링에 작용하도록 구성된 2개의 부분으로 형성된 하우징(3009)을 포함한다. 하우징(3009)은 또한 좌굴 액추에이터(3002) 상에 배치되도록 구성된다. 좌굴 액추에이터(3002)는 2개의 부분으로 형성된 본 명세서에 설명된 것들과 유사한 슬라이드 베이스(3001)를 포함한다. 슬라이드 베이스(3001)는, 몇몇 실시예에 따르면, 전류가 슬라이드 베이스(3001) 부분을 통해 와이어로 흐르기 때문에, 2개의 측면을 전기적으로 격리하도록 분할된다(예를 들어, 1개의 측면은 접지이고, 다른 측면은 전원임).
좌굴 액추에이터(3002)는 좌굴 아암(3004)을 포함한다. 좌굴 액추에이터(3002)의 각각의 쌍은 좌굴 액추에이터(3002)의 개별 부분 상에 형성된다. 좌굴 액추에이터(3002)는 저항 용접 와이어 크림프(3012)와 같은 SMA 와이어 부착 구조체를 또한 포함한다. SMA 시스템은 하나 이상의 제어 회로에 SMA 와이어(3008)를 전기적으로 결합하기 위한 플렉스 회로(3020)를 선택적으로 포함한다.
도 30에 도시된 바와 같이, 슬라이드 베이스(3001)는 선택적 어댑터 플레이트(3014) 상에 배치된다. 어댑터 플레이트는 OIS, 부가의 SMA 시스템, 또는 다른 구성 요소와 같은 다른 시스템에 SMA 시스템 또는 좌굴 액추에이터(3002)를 정합하도록 구성된다. 도 31은 실시예에 따른 좌굴 액추에이터(3002)를 포함하는 SMA 액추에이터를 포함하는 SMA 시스템(3101)을 도시하고 있다.
도 32는 실시예에 따른 좌굴 액추에이터를 포함하는 SMA 액추에이터를 포함하고 있다. 좌굴 액추에이터(3002)는 좌굴 아암(3004)을 포함한다. 좌굴 아암(3004)은 SMA 와이어(3012)가 본 명세서에 설명된 바와 같이 작동되고 작동 해제될 때 z-축에서 이동하도록 구성된다. SMA 와이어(2408)는 저항 용접 와이어 크림프(3012)에 부착된다. 도 32에 도시된 실시예에 따르면, 좌굴 아암(3004)은 2개의 요크 포획 조인트를 사용하는 중심부 없이, 렌즈 캐리지와 같은 물체와 정합하도록 구성된다.
도 33은 실시예에 따른 SMA 액추에이터의 한 쌍의 좌굴 아암의 2개의 요크 포획 조인트를 도시하고 있다. 도 33은 슬라이딩 베이스에 선택적 플렉스 회로를 부착하는 데 사용된 도금 패드를 또한 도시하고 있다. 몇몇 실시예에서, 도금 패드는 금을 사용하여 형성된다. 도 34는 좌굴 액추에이터에 SMA 와이어를 부착하는 데 사용되는 실시예에 따른 SMA 액추에이터를 위한 저항 용접 크림프를 도시하고 있다. 몇몇 실시예에서, 아교 또는 접착제가 또한 기계적 강도를 보조하고 동작 및 충격 로딩 중에 피로 스트레인 릴리프로서 작용하도록 용접부의 상부에 배치될 수 있다.
도 35는 2개의 요크 포획 조인트를 갖는 좌굴 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다. 도 35에 도시된 바와 같이, 전력 신호가 인가될 때, SMA 와이어는 수축하거나 단축되어 양의 z-방향으로 좌굴 아암을 이동시킨다. 물체와 접촉하고 있는 2개의 요크 포획 조인트는 이어서 렌즈 캐리지와 같은 그 물체를 양의 z-방향으로 이동시킨다. 전력 신호가 감소되거나 제거될 때, SMA 와이어는 연장되어 좌굴 아암을 음의 z-방향으로 이동시킨다. 요크 포획 특징부는 렌즈 캐리지에 대해 정확한 위치에 좌굴 아암이 체류하는 것을 보장한다.
도 36은 실시예에 따른 SMA 바이모프 액체 렌즈를 도시하고 있다. SMA 바이모프 액체 렌즈(3501)는 액체 렌즈 서브조립체(3502), 하우징(3504), 및 SMA 액추에이터(3506)를 갖는 회로를 포함한다. 다양한 실시예에서, SMA 액추에이터는 본 명세서에 설명된 실시예와 같은, 4개의 바이모프 액추에이터(3508)를 포함한다. 바이모프 액추에이터(3508)는 가요성 멤브레인(3512) 상에 위치된 성형 링(3510)을 푸시하도록 구성된다. 링이 멤브레인(3512)/액체(3514)를 감싸서 멤브레인(3512)/액체(3514)를 통한 광 경로를 변경한다. 액체 수납 링(3516)이 멤브레인(3512)과 렌즈(3518) 사이에 액체(3514)를 수납하는 데 사용된다. 바이모프 액추에이터로부터의 동일한 힘이 Z 방향에서(렌즈에 수직임) 이미지의 초점을 변경시키는데, 이는 오토포커스로서 작용하게 한다. 바이모프 액추에이터(3508)로부터의 차등 힘이 X, Y 축 방향에서 광선을 이동하게 할 수 있는데, 이는 몇몇 실시예에 따른 광학 이미지 안정화기로서 작용하게 한다. OIS 및 AF 기능의 모두는 각각의 액추에이터에 대한 적절한 제어로 동시에 달성될 수 있다. 몇몇 실시예에서, 3개의 액추에이터가 사용된다. SMA 액추에이터(3506)를 갖는 회로는 SMA 액추에이터를 작동하기 위해 제어 신호를 위한 하나 이상의 접점(3520)을 포함한다. 4개의 SMA 액추에이터를 포함하는 몇몇 실시예에 따르면, SMA 액추에이터(3506)를 갖는 회로는 각각의 SMA 액추에이터를 위한 4개의 전력 회로 제어 접점 및 공통 복귀 접점을 포함한다.
도 37은 실시예에 따른 SMA 바이모프 액체 렌즈의 사시도를 도시하고 있다. 도 38은 실시예에 따른 SMA 바이모프 액체 렌즈의 단면도 및 저면도를 도시하고 있다.
도 39는 실시예에 따른 바이모프 액추에이터를 갖는 SMA 액추에이터(3902)를 포함하는 SMA 시스템을 도시하고 있다. SMA 액추에이터(3902)는 본 명세서에 설명된 기술을 사용하는 4개의 바이모프 액추에이터를 포함한다. 2개의 바이모프 액추에이터는 양의 z-스트로크 액추에이터(3904)로서 구성되고, 2개는 도 40에 도시된 바와 같이 음의 z-스트로크 액추에이터(3906)로서 구성되고, 실시예에 따른 바이모프 액추에이터를 갖는 SMA 액추에이터(3902)를 도시하고 있다. 대향하는 액추에이터(3906, 3904)는 전체 스트로크 범위에 걸쳐 양 방향에서 모션을 제어하도록 구성된다. 이는 경사를 보상하기 위해 제어 코드를 조절하는 능력을 제공한다. 다양한 실시예에서, 구성 요소의 상부에 부착된 2개의 SMA 와이어(3908)는 양의 z-스트로크 변위를 가능하게 한다. 구성 요소의 하부에 부착된 2개의 SMA 와이어는 음의 z-스트로크 변위를 가능하게 한다. 몇몇 실시예에서, 각각의 바이모프 액추에이터는 물체를 결합하기 위한 탭을 사용하여, 렌즈 캐리지(3910)와 같은 물체에 부착된다. SMA 시스템은 z-스트로크 축에 수직인 축들에서, 예를 들어, x축 및 y축의 방향에서, 렌즈 캐리지(3910)의 안정성을 제공하도록 구성된 상부 스프링(3912)을 포함한다. 또한, 상부 스페이서(3914)가 상부 스프링(3912)과 SMA 액추에이터(3902) 사이에 배열되도록 구성된다. 하부 스페이서(3916)가 SMA 액추에이터(3902)와 하부 스프링(3918) 사이에 배열된다. 하부 스프링(3918)은 z-스트로크 축에 수직인 축들에서, 예를 들어, x축 및 y축의 방향에서, 렌즈 캐리지(3910)의 안정성을 제공하도록 구성된다. 하부 스프링(3918)은 본 명세서에 설명된 것들과 같은 베이스(3920) 상에 배치되도록 구성된다.
도 41은 바이모프 액추에이터(4103)의 길이(4102) 및 바이모프 액추에이터를 넘어 와이어 길이를 연장하기 위한 SMA 와이어(4206)를 위한 본딩 패드(4104)의 위치를 도시하고 있다. 바이모프 액추에이터보다 더 긴 와이어가 스트로크 및 힘을 증가시키는 데 사용된다. 따라서, 바이모프 액추에이터(4103)를 넘는 그 SMA 와이어(4206)의 연장 길이(4108)가 바이모프 액추에이터(4103)를 위한 스트로크 및 힘을 설정하는 데 사용된다.
도 42는 실시예에 따른 SMA 바이모프 액추에이터(4202)를 포함하는 SMA 시스템의 분해도를 도시하고 있다. SMA 시스템은 다양한 실시예에 따르면, SMA 와이어에 독립적으로 급전하기 위해 하나 이상의 전기 회로를 생성하기 위해 개별 금속 재료 및 비도전성 접착제를 사용하도록 구성된다. 몇몇 실시예는 AF 크기 영향을 받지 않고, 본 명세서에 설명된 것들과 같은 4개의 바이모프 액추에이터를 포함한다. 2개의 바이모프 액추에이터는 양의 z 스트로크 액추에이터로서 구성되고, 2개는 음의 z 스트로크 액추에이터로서 구성된다. 도 43은 실시예에 따른 SMA 액추에이터의 서브섹션의 분해도를 도시하고 있다. 서브섹션은 음의 액추에이터 신호 접속부(4302), 바이모프 액추에이터(4306)를 갖는 베이스(4304)를 포함한다. 음의 액추에이터 신호 접속부(4302)는 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 바이모프 액추에이터(4306)의 SMA 와이어를 접속하기 위한 와이어 본드 패드(4308)를 포함한다. 음의 액추에이터 신호 접속부(4302)가 접착층(4310)을 사용하여 베이스(4304)에 부착된다. 서브섹션은 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 바이모프 액추에이터(4306)의 SMA 와이어(4312)를 접속하기 위한 와이어 본드 패드(4316)를 갖는 양의 액추에이터 신호 접속부(4314)를 또한 포함한다. 양의 액추에이터 신호 접속부(4314)가 접착층(4318)을 사용하여 베이스(4304)에 부착된다. 베이스(4304), 음의 액추에이터 신호 접속부(4302), 및 양의 액추에이터 신호 접속부(4314)의 각각은 금속, 예를 들어 스테인레스 강으로 형성된다. 베이스(4304), 음의 액추에이터 신호 접속부(4302), 및 양의 액추에이터 신호 접속부(4314)의 각각 상의 접속 패드(4322)는 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 제어 신호를 전기적으로 결합하고 바이모프 액추에이터(4306)를 작동하기 위해 접지하도록 구성된다. 몇몇 실시예에서, 접속 패드(4322)는 금 도금된다. 도 44는 실시예에 따른 SMA 액추에이터의 서브섹션을 도시하고 있다. 몇몇 실시예에서, 금 도금된 패드가 땜납 본딩 또는 다른 공지의 전기 결선 방법을 위해 스테인레스 강 층 상에 형성된다. 또한, 형성된 와이어 본드 패드는 전력 신호를 위한 SMA 와이어를 전기적으로 결합하기 위해 신호 조인트를 위해 사용된다.
도 45는 실시예에 따른 5축 센서 시프트 시스템을 도시하고 있다. 5축 센서 시프트 시스템은 하나 이상의 렌즈에 대한 5축에서 이미지 센서와 같은 물체를 이동시키도록 구성된다. 이는 X/Y/Z축 병진 및 피치/롤 경사를 포함한다. 선택적으로, 시스템은 Z 모션을 행하기 위해 상부에 개별 AF와 함께 X/Y축 병진 및 피치/롤 경사를 갖는 단지 4축만을 사용하도록 구성된다. 다른 실시예는 이미지 센서에 대해 하나 이상의 렌즈를 이동시키도록 구성된 5축 센서 시프트 시스템을 포함한다. 정적 렌즈 스택이 상부 커버 상에 장착되고 몇몇 실시예에서 (캐리지 내부에서 이동하는 오렌지에 접촉하지 않고) ID 내부에 삽입된다.
도 46은 실시예에 따른 5축 센서 시프트 시스템의 분해도를 도시하고 있다. 5축 센서 시프트 시스템은 2개의 회로 구성 요소; 플렉서블 센서 회로(4602), 바이모프 액추에이터 회로(4604)를 포함하고; 8개 내지 12개의 바이모프 액추에이터(4606)가 본 명세서에 설명된 것들을 포함하는 기술을 사용하여 바이모프 회로 구성 요소 상에 구성된다. 5축 센서 시프트 시스템은 하나 이상의 렌즈 및 외부 하우징(4610)을 유지하도록 구성된 가동 캐리지(4608)를 포함한다. 바이모프 액추에이터 회로(4604)는 실시예에 따르면, 본 명세서에 설명된 것들과 같은 8개 내지 12개의 SMA 액추에이터를 포함한다. SMA 액추에이터는 본 명세서에 설명된 다른 5축 시스템에 유사하게 x-방향, y-방향, z-방향, 피치, 및 롤에서와 같이 5축에서 가동 캐리지(4608)를 이동하도록 구성된다.
도 47은 실시예에 따른 모든 모션을 위해 이 회로 내로 통합된 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다. SMA 액추에이터의 실시예는 8개 내지 12개의 바이모프 액추에이터(4606)를 포함할 수 있다. 그러나, 다른 실시예는 더 많거나 더 적은 것을 포함할 수 있다. 도 48은 대응하는 외부 하우징(4804)의 내부에 장착되도록 부분적으로 형성된 실시예에 따른 모든 모션을 위해 이 회로 내로 통합된 바이모프 액추에이터를 포함하는 SMA 액추에이터(4802)를 도시하고 있다. 도 49는 실시예에 따른 5축 센서 시프트 시스템의 단면도를 도시하고 있다.
도 50은 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터(5002)를 도시하고 있다. SMA 액추에이터(5002)는 x 및 y 방향에서 이미지 센서, 렌즈, 또는 다른 다양한 페이로드를 이동하기 위해 4개의 측면 장착된 SMA 바이모프 액추에이터(5004)를 사용하도록 구성된다. 도 51은 상이한 x 및 y 위치에서 이미지 센서, 렌즈, 또는 다른 다양한 페이로드를 이동하는 바이모프 액추에이터를 포함하는 SMA 액추에이터의 평면도를 도시하고 있다.
도 52는 박스 바이모프 오토포커스로서 구성된 실시예에 따른 바이모프 액추에이터(5202)를 포함하는 SMA 액추에이터를 도시하고 있다. 본 명세서에 설명된 것들과 같은 4개의 상부 및 하부 장착된 SMA 바이모프 액추에이터는 오토포커스 모션을 위한 z-스트로크 방향에서의 이동을 생성하도록 함께 이동하도록 구성된다. 도 53은 실시예에 따른 바이모프 액추에이터를 포함하고 2개의 상부 장착된 바이모프 액추에이터(5302)가 하나 이상의 렌즈를 하향 푸시하도록 구성되어 있는 SMA 액추에이터를 도시하고 있다. 도 54는 실시예에 따른 바이모프 액추에이터를 포함하고 2개의 하부 장착된 바이모프 액추에이터(5402)가 하나 이상의 렌즈를 상향 푸시하도록 구성되어 있는 SMA 액추에이터를 도시하고 있다. 도 55는 본 명세서에 설명된 것들과 같은 4개의 상부 및 하부 장착된 SMA 바이모프 액추에이터(5502)가 경사 모션을 생성하도록 하나 이상의 렌즈를 이동시키는 데 사용되는 것을 도시하고 있는 실시예에 따른 바이모프 액추에이터를 포함하는 SMA 액추에이터를 도시하고 있다.
도 56은 2축 렌즈 시프트 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다. 몇몇 실시예에서, 2축 렌즈 시프트 OIS가 X/Y 축에서 렌즈를 이동시키도록 구성된다. 몇몇 실시예에서, Z축 이동은 본 명세서에 설명된 것들과 같은 개별 AF로부터 온다. 4개의 바이모프 액추에이터가 OIS 모션을 위해 오토포커스의 측면을 푸시한다. 도 57은 2축 렌즈 시프트 OIS로서 구성된 바이모프 액추에이터(5806)를 포함하는 실시예에 따른 SMA 액추에이터(5802)를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 도 58은 2축 렌즈 시프트 OIS로서 구성된 바이모프 액추에이터(5806)를 포함하는 실시예에 따른 SMA 액추에이터(5802)를 포함하는 SMA 시스템의 단면도를 도시하고 있다. 도 59는 시스템 내에 장착되도록 성형되기 전에 제조된 상태로 2축 렌즈 시프트 OIS로서 구성된 SMA 시스템에 사용을 위한 실시예에 따른 박스 바이모프 액추에이터(5802)를 도시하고 있다. 이러한 시스템은 높은 OIS 스트로크 OIS(예를 들어, +/- 200 um 이상)를 갖도록 구성될 수 있다. 또한, 이러한 실시예는 넓은 범위의 모션 및 POM 슬라이드 베어링과 같은 4개의 슬라이드 베어링을 사용하는 양호한 OIS 동적 경사를 갖도록 구성된다. 실시예는 AF 디자인(예를 들어, VCM 또는 SMA)과 용이하게 통합하도록 구성된다.
도 60은 5축 렌즈 시프트 OIS 및 오토포커스로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다. 몇몇 실시예에서, 5축 렌즈 시프트 OIS 및 오토포커스가 X/Y/Z 축에서 렌즈를 이동시키도록 구성된다. 몇몇 실시예에서, 피치 및 요 축 모션은 동적 경사 조절 능력을 위한 것이다. 8개의 바이모프 액추에이터가 본 명세서에 설명된 기술을 사용하여 오토포커스 및 OIS를 위한 모션을 제공하는 데 사용된다. 도 61은 5축 렌즈 시프트 OIS 및 오토포커스로서 구성된 실시예에 따른 바이모프 액추에이터(6204)를 포함하는 실시예에 따른 SMA 액추에이터(6202)를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 도 62는 5축 렌즈 시프트 OIS 및 오토포커스로서 구성된 바이모프 액추에이터(6204)를 포함하는 실시예에 따른 SMA 액추에이터(6202)를 포함하는 SMA 시스템의 단면도를 도시하고 있다. 도 63은 시스템 내에 장착되도록 성형되기 전에 제조된 상태로 5축 렌즈 시프트 OIS 및 오토포커스로서 구성된 SMA 시스템에 사용을 위한 실시예에 따른 박스 바이모프 액추에이터(6202)를 도시하고 있다. 이러한 시스템은 높은 OIS 스트로크 OIS(예를 들어, +/- 200 um 이상) 및 높은 오토포커스 스트로크(예를 들어, 400 um 이상)를 갖도록 구성될 수 있다. 또한, 이러한 실시예는 임의의 경사를 조절하고 개별 오토포커스 조립체를 위한 요구를 제거하는 것을 가능하게 한다.
도 64는 외향 푸시 박스로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다. 몇몇 실시예에서, 바이모프 액추에이터 조립체는 렌즈 캐리지와 같은 물체를 감싸도록 구성된다. 회로 조립체는 렌즈 캐리지와 함께 이동하기 때문에, 낮은 X/Y/Z 강성을 위한 가요성 부분이다. 회로의 테일 패드는 정적이다. 외향 푸시 박스는 4개 또는 8개의 바이모프 액추에이터의 모두에 대해 구성될 수 있다. 따라서, 외향 푸시 박스는 X 및 Y축에서의 이동을 갖고 OIS를 위한 측면에 4개의 바이모프 액추에이터로서 구성될 수 있다. 외향 푸시 박스는 z 축에서의 이동을 갖고 오토포커스를 위한 상부 및 하부의 4개의 바이모프 액추에이터로서 구성될 수 있다. 외향 푸시 박스는 x, y, 및 z 축에서의 이동을 갖고 3축 경사(피치/롤/요)가 가능한 OIS 및 오토포커스를 위한 상부, 하부 및 측면 상의 8개의 바이모프 액추에이터로서 구성될 수 있다. 도 65는 외향 푸시 박스로서 구성된 바이모프 액추에이터(6604)를 포함하는 실시예에 따른 SMA 액추에이터(6602)를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 따라서, SMA 액추에이터는 바이모프 액추에이터가 외부 하우징(6504) 상에 작용하여 본 명세서에 설명된 기술을 사용하여 렌즈 캐리지(6506)를 이동하도록 구성된다. 도 66은 렌즈 캐리지(6604)를 수용하도록 부분적으로 성형된 외향 푸시 박스로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터(6602)를 포함하는 SMA 시스템을 도시하고 있다. 도 67은 시스템 내에 장착되도록 성형되기 전에 제조된 상태로서 외향 푸시 박스로서 구성된 실시예에 따른 바이모프 액추에이터(6604)를 포함하는 SMA 액추에이터(6602)를 포함하는 SMA 시스템을 도시하고 있다.
도 68은 3축 센서 시프트 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터(6802)를 포함하는 SMA 시스템을 도시하고 있다. 몇몇 실시예에서, z축 이동은 개별 오토포커스 시스템으로부터 온다. 4개의 바이모프 액추에이터가 본 명세서에 설명된 기술을 사용하여 OIS를 위한 모션을 제공하도록 센서 캐리지(6804)의 측면을 푸시하도록 구성된다. 도 69는 3축 센서 시프트 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터(6802)를 포함하는 SMA의 분해도를 도시하고 있다. 도 70은 3축 센서 시프트 OIS로서 구성된 바이모프 액추에이터(6806)를 포함하는 실시예에 따른 SMA 액추에이터(6802)를 포함하는 SMA 시스템의 단면도를 도시하고 있다. 도 71은 시스템 내에 장착되도록 성형되기 전에 제조된 상태로 3축 센서 시프트 OIS로서 구성된 SMA 시스템에 사용을 위한 실시예에 따른 박스 바이모프 액추에이터(6802) 구성 요소를 도시하고 있다. 도 72는 3축 센서 시프트 OIS로서 구성된 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다. 이러한 시스템은 높은 OIS 스트로크 OIS(예를 들어, +/- 200 um 이상) 및 높은 오토포커스 스트로크(예를 들어, 400 um 이상)를 갖도록 구성될 수 있다. 또한, 이러한 실시예는 넓은 범위의 2축 모션 및 POM 슬라이드 베어링과 같은 4개의 슬라이드 베어링을 사용하는 양호한 OIS 동적 경사를 갖도록 구성된다. 실시예는 AF 디자인(예를 들어, VCM 또는 SMA)과 용이하게 통합하도록 구성된다.
도 73은 6축 센서 시프트 OIS 및 오토포커스로서 구성된 바이모프 액추에이터(7304)를 포함하는 실시예에 따른 SMA 액추에이터(7302)를 포함하는 SMA 시스템을 도시하고 있다. 몇몇 실시예에서, 6축 센서 시프트 OIS 및 오토포커스가 X/Y/Z/피치/요/롤 축에서 렌즈를 이동시키도록 구성된다. 몇몇 실시예에서, 피치 및 요 축 모션은 동적 경사 조절 능력을 위한 것이다. 8개의 바이모프 액추에이터가 본 명세서에 설명된 기술을 사용하여 오토포커스 및 OIS를 위한 모션을 제공하는 데 사용된다. 도 74는 6축 센서 시프트 OIS 및 오토포커스로서 구성된 바이모프 액추에이터(7404)를 포함하는 실시예에 따른 SMA 액추에이터(7402)를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 도 75는 6축 센서 시프트 OIS 및 오토포커스로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터(7402)를 포함하는 SMA 시스템의 단면도를 도시하고 있다. 도 76은 시스템 내에 장착되도록 성형되기 전에 제조된 상태로 6축 센서 시프트 OIS 및 오토포커스로서 구성된 SMA 시스템에 사용을 위한 실시예에 따른 박스 바이모프 액추에이터(7402)를 도시하고 있다. 도 77은 3축 센서 시프트 OIS로서 구성된 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다. 이러한 시스템은 높은 OIS 스트로크 OIS(예를 들어, +/- 200 um 이상) 및 높은 오토포커스 스트로크(예를 들어, 400 um 이상)를 갖도록 구성될 수 있다. 또한, 이러한 실시예는 임의의 경사를 조절하고 개별 오토포커스 조립체를 위한 요구를 제거하는 것을 가능하게 한다.
도 78은 2축 카메라 경사 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템을 도시하고 있다. 몇몇 실시예에서, 2축 카메라 경사 OIS가 피치/요 축에서 카메라를 이동시키도록 구성된다. 4개의 바이모프 액추에이터가 본 명세서에 설명된 기술을 사용하여 OIS 피치 및 요 모션을 위한 전체 카메라 모션을 위해 오토포커스의 상부 및 하부를 푸시하는 데 사용된다. 도 79는 2축 카메라 경사 OIS로서 구성된 바이모프 액추에이터(7904)를 포함하는 실시예에 따른 SMA 액추에이터(7902)를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 도 80은 2축 카메라 경사 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다. 도 81은 시스템 내에 장착되도록 성형되기 전에 제조된 상태로 2축 카메라 경사 OIS로서 구성된 SMA 시스템에 사용을 위한 실시예에 따른 박스 바이모프 액추에이터를 도시하고 있다. 도 82는 2축 카메라 경사 OIS로서 구성된 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다. 이러한 시스템은 높은 OIS 스트로크 OIS(예를 들어, 플러스/마이너스 3도 이상)를 갖도록 구성될 수 있다. 실시예는 오토포커스("AF") 디자인(예를 들어, VCM 또는 SMA)과 용이하게 통합하도록 구성된다.
도 83은 3축 카메라 경사 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다. 몇몇 실시예에서, 2축 카메라 경사 OIS가 피치/요/롤 축에서 카메라를 이동시키도록 구성된다. 4개의 바이모프 액추에이터가 본 명세서에 설명된 기술을 사용하여 OIS 피치 및 요 모션을 위한 전체 카메라 모션을 위해 오토포커스의 상부 및 하부를 푸시하는 데 사용되고, 4개의 바이모프 액추에이터가 본 명세서에 설명된 기술을 사용하여 OIS 롤 모션을 위한 전체 카메라 모션을 위해 오토포커스의 측면을 푸시하는 데 사용된다. 도 84는 3축 카메라 경사 OIS로서 구성된 바이모프 액추에이터(8404)를 포함하는 실시예에 따른 SMA 액추에이터(8402)를 포함하는 SMA 시스템의 분해도를 도시하고 있다. 도 85는 3축 카메라 경사 OIS로서 구성된 바이모프 액추에이터를 포함하는 실시예에 따른 SMA 액추에이터를 포함하는 SMA 시스템의 단면도를 도시하고 있다. 도 86은 시스템 내에 장착되도록 성형되기 전에 제조된 상태로 3축 카메라 경사 OIS로서 구성된 실시예에 따른 SMA 시스템에 사용을 위한 박스 바이모프 액추에이터를 도시하고 있다. 도 87은 3축 카메라 경사 OIS로서 구성된 실시예에 따른 SMA 시스템에 사용을 위한 플렉서블 센서 회로를 도시하고 있다. 이러한 시스템은 높은 OIS 스트로크 OIS(예를 들어, 플러스/마이너스 3도 이상)를 갖도록 구성될 수 있다. 실시예는 AF 디자인(예를 들어, VCM 또는 SMA)과 용이하게 통합하도록 구성된다.
도 88은 실시예에 따른 SMA 액추에이터의 바이모프 액추에이터를 위한 예시적인 치수를 도시하고 있다. 치수는 바람직한 실시예이지만, 통상의 기술자는 다른 치수가 SMA 액추에이터를 위한 원하는 특성에 기초하여 사용될 수 있다는 것을 이해할 수 있을 것이다.
"상부", "하부", "위", "아래", 및 x-방향, y-방향, 및 z-방향과 같은 용어는 임의의 특정 공간적 또는 중력 배향보다는 서로에 대한 부분의 공간 관계를 나타내는 편의적 용어로서 본 명세서에 사용된다는 것이 이해될 수 있을 것이다. 따라서, 용어들은 조립체가 도면에 도시되고 명세서에 설명된 특정 배향으로 배향되는지, 그 배향으로부터 상하 전복되는지, 또는 임의의 다른 회전 변형인지에 무관하게, 구성 요소부의 조립체를 포함하도록 의도된다.
용어 "본 발명"은 본 명세서에 사용될 때, 단지 단일의 필수 요소 또는 요소의 그룹을 갖는 단일의 발명이 제공되는 것을 의미하도록 해석되어서는 안된다는 것이 이해될 수 있을 것이다. 유사하게, 용어 "본 발명"은 개별 발명으로 각각 고려될 수 있는 다수의 개별 혁신을 포함한다는 것이 또한 이해될 수 있을 것이다. 본 발명이 바람직한 실시예 및 그 도면에 관하여 상세히 설명되었지만, 본 발명의 실시예의 다양한 개조 및 수정이 본 발명의 사상 및 범주로부터 벗어나지 않고 달성될 수도 있다는 것이 통상의 기술자에게 명백할 것이다. 부가적으로, 본 명세서에 설명된 기술은 2개, 3개, 4개, 5개, 6개, 또는 그 초과 일반적으로 n개의 바이모프 액추에이터 및 좌굴 액추에이터를 갖는 디바이스를 제조하는 데 사용될 수 있다. 이에 따라, 전술된 바와 같은 상세한 설명 및 첨부 도면은 이하의 청구범위 및 이들의 적절하게 해석된 법적 등가물로부터만 추론되어야 하는 본 발명의 폭을 한정하도록 의도된 것은 아니라는 것이 이해되어야 한다.

Claims (39)

  1. 액추에이터이며,
    베이스;
    복수의 좌굴 아암; 및
    상기 복수의 좌굴 아암의 한 쌍의 좌굴 아암과 상기 한 쌍의 좌굴 아암의 대향 단부에서 결합된 적어도 제1 형상 기억 합금 와이어를 포함하며,
    상기 한 쌍의 좌굴 아암의 상기 대향 단부 각각은 상기 베이스에 결합되고,
    상기 한 쌍의 좌굴 아암에서 각 좌굴 아암의 상기 대향 단부의 반대쪽 단부는 이동하도록 구성되고,
    상기 복수의 좌굴 아암의 상기 한 쌍의 좌굴 아암은 중심부에 함께 결합되고,
    상기 중심부는 렌즈 캐리지의 부분을 수용하도록 구성되는, 액추에이터.
  2. 삭제
  3. 제1항에 있어서, 상기 한 쌍의 좌굴 아암은 형상 합금 와이어가 작동될 때 양의 z-방향으로 이동하도록 구성되는, 액추에이터.
  4. 제1항에 있어서, 상기 형상 기억 합금 와이어의 제1 단부는 상기 한 쌍의 좌굴 아암의 제1 좌굴 아암에 부착되고, 상기 형상 기억 합금 와이어의 제2 단부는 제2 좌굴 아암에 부착되는, 액추에이터.
  5. 제4항에 있어서, 상기 형상 기억 합금 와이어는 제1 크림프에 의해 상기 제1 좌굴 아암에 부착되고 제2 크림프에 의해 상기 제2 좌굴 아암에 부착되는, 액추에이터.
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 액추에이터이며,
    베이스; 및
    적어도 하나의 바이모프 액추에이터를 포함하고,
    적어도 하나의 바이모프 액추에이터는 형상 기억 합금 재료와 보를 포함하며, 상기 보의 제1 단부에서 상기 베이스에 부착되고,
    상기 제1 단부의 반대쪽인 상기 보의 제2 단부는 고정되지 않도록 구성되고,
    상기 형상 기억 합금 재료는 양 단부가 상기 보의 상기 제1 단부 및 상기 제2 단부 사이에 위치하도록 상기 보에 부착되며 상기 보와 전기적으로 결합됨으로써 상기 형상 기억 합금 재료가 상기 형상 기억 합금 재료를 작동시키는 전류를 받고 상기 형상 기억 합금 재료가 상기 전류에 의해 작동될 때 상기 보의 상기 제2 단부를 z-방향으로 이동하도록 구성되는, 액추에이터.
  12. 삭제
  13. 삭제
  14. 제11항에 있어서, 상기 형상 기억 합금 재료는 형상 기억 합금 와이어인, 액추에이터.
  15. 제11항에 있어서, 상기 형상 기억 합금 재료는 형상 기억 합금 리본인, 액추에이터.
  16. 제1항 또는 제11항에 있어서, 오토포커스 시스템 내에 포함되는, 액추에이터.
  17. 제1항 또는 제11항에 있어서, 마이크로-유체 펌프로서 구성되는, 액추에이터.
  18. 제1항 또는 제11항에 따른 하나 초과의 액추에이터를 포함하는, 오토포커스 시스템.
  19. 제1항 또는 제11항에 따른 하나 초과의 액추에이터를 포함하는, 마이크로-유체 펌프.
  20. 액추에이터이며,
    보;
    상기 보에 전기적으로 결합된 제1 단부 패드;
    상기 보에 전기적으로 결합된 제2 단부 패드;
    상기 제1 단부 패드와 상기 제2 단부 패드 사이에 배열된 중심 공급부; 및
    상기 제1 단부 패드, 상기 제2 단부 패드, 및 상기 중심 공급부와 결합된 형상 기억 합금 재료로서, 상기 중심 공급부는 상기 보로부터 전기적으로 격리되고 접촉층에 전기적으로 결합되도록 구성되는, 형상 기업 합금 재료를 포함하는, 액추에이터.
  21. 액추에이터이며,
    제1 좌굴 액추에이터;
    제2 좌굴 액추에이터; 및
    렌즈 캐리지를 포함하고,
    상기 제1 좌굴 액추에이터는 제1 베이스를 포함하고, 상기 제2 좌굴 액추에이터는 제2 베이스를 포함하고, 상기 제1 좌굴 액추에이터는 상기 제1 베이스에 부착된 제1 쌍의 좌굴 아암 및 제2 쌍의 좌굴 아암을 포함하고, 상기 제2 좌굴 액추에이터는 제3 쌍의 좌굴 아암 및 제4 쌍의 좌굴 아암을 포함하는, 액추에이터.
  22. 제21항에 있어서, 상기 제1 좌굴 액추에이터는 음의 z-방향으로 상기 렌즈 캐리지를 이동시키도록 구성되는, 액추에이터.
  23. 제22항에 있어서, 상기 제2 좌굴 액추에이터는 양의 z-방향으로 상기 렌즈 캐리지를 이동시키도록 구성되는, 액추에이터.
  24. 삭제
  25. 제21항에 있어서, 상기 렌즈 캐리지는 상기 제1 좌굴 액추에이터와 상기 제2 좌굴 액추에이터 사이에 배열되는, 액추에이터.
  26. 제25항에 있어서, 상기 제1 베이스 및 상기 제2 베이스는 서로를 향해 대면하는, 액추에이터.
  27. 제26항에 있어서, 상기 제1 좌굴 액추에이터 및 상기 제2 좌굴 액추에이터는 축에 관하여 상기 렌즈 캐리지를 경사시키도록 구성되는, 액추에이터.
  28. 제1항에 있어서, 상기 중심부는 라미네이트 해먹인, 액추에이터.
  29. 액체 렌즈이며,
    적어도 하나의 형상 기억 합금 액추에이터를 포함하는 회로;
    성형 링;
    가요성 멤브레인;
    렌즈, 및
    액체 보유 링으로서, 상기 렌즈는 상기 가요성 멤브레인에 대향하여 상기 액체 보유 링의 측면 상에 구성되고, 상기 액체 보유 링은 상기 렌즈와 상기 멤브레인 사이에 액체를 보유하도록 구성되고, 상기 형상 기억 합금 액추에이터는 상기 가요성 멤브레인 상에 위치된 성형 링을 푸시하여 상기 멤브레인의 형상을 변경하여 액체를 성형하도록 구성되는, 액체 보유 링을 포함하는, 액체 렌즈.
  30. 제29항에 있어서, 상기 형상 기억 합금 액추에이터는 형상 기억 합금 와이어를 포함하는, 액체 렌즈.
  31. 제29항에 있어서, 상기 형상 기억 합금은 형상 기억 합금 리본을 포함하는, 액체 렌즈.
  32. 제11항에 있어서, 적어도 4개의 바이모프 액추에이터를 포함하고, 2개의 바이모프 액추에이터는 음의 z-방향으로 물체를 이동시키도록 구성되고, 2개의 바이모프 액추에이터는 양의 z-방향으로 물체를 이동시키도록 구성되는, 액추에이터.
  33. 제11항에 있어서, 적어도 8개의 바이모프 액추에이터를 포함하고, 상기 8개의 바이모프 액추에이터는 5축의 방향으로 물체를 이동시키도록 구성되는, 액추에이터.
  34. 제33항에 있어서, 12개의 바이모프 액추에이터를 포함하는, 액추에이터.
  35. 제33항에 있어서, x 방향 및 y 방향으로 물체를 이동시키기 위한 4 측면 장착된 바이모프 액추에이터를 포함하는, 액추에이터.
  36. 제33항에 있어서, 박스 바이모프 오토포커스로서 구성되는, 액추에이터.
  37. 제35항에 있어서, 2개의 상부 장착된 바이모프 액추에이터 및 2개의 하부 장착된 바이모프 액추에이터를 포함하는, 액추에이터.
  38. 제35항에 있어서, 4개의 상부 장착된 바이모프 액추에이터 및 4개의 하부 장착된 바이모프 액추에이터를 포함하는, 액추에이터.
  39. 제11항에 있어서, 적어도 4개의 바이모프 액추에이터를 포함하고, 2개의 바이모프 액추에이터는 x-방향으로 물체를 이동시키도록 구성되고, 2개의 바이모프 액추에이터는 y-방향으로 물체를 이동시키도록 구성되는, 액추에이터.
KR1020197035566A 2017-05-05 2018-05-04 형상 기억 합금 액추에이터 및 그 방법 KR102565644B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762502568P 2017-05-05 2017-05-05
US62/502,568 2017-05-05
US201862650991P 2018-03-30 2018-03-30
US62/650,991 2018-03-30
US15/971,995 2018-05-04
PCT/US2018/031256 WO2018204888A1 (en) 2017-05-05 2018-05-04 Shape memory alloy actuators and methods thereof
US15/971,995 US10920755B2 (en) 2017-05-05 2018-05-04 Shape memory alloy actuators and methods thereof

Publications (2)

Publication Number Publication Date
KR20200003864A KR20200003864A (ko) 2020-01-10
KR102565644B1 true KR102565644B1 (ko) 2023-08-10

Family

ID=64016754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197035566A KR102565644B1 (ko) 2017-05-05 2018-05-04 형상 기억 합금 액추에이터 및 그 방법

Country Status (4)

Country Link
US (5) US10920755B2 (ko)
KR (1) KR102565644B1 (ko)
GB (1) GB2602950B (ko)
WO (1) WO2018204888A1 (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815794B2 (en) 2017-05-05 2023-11-14 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
US11333134B2 (en) 2017-05-05 2022-05-17 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
US11448853B2 (en) 2017-05-05 2022-09-20 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
US11306706B2 (en) 2017-05-05 2022-04-19 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
KR102565644B1 (ko) 2017-05-05 2023-08-10 허친슨 테크놀로지 인코포레이티드 형상 기억 합금 액추에이터 및 그 방법
US11105319B2 (en) 2017-05-05 2021-08-31 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
EP3625455A1 (en) * 2017-05-17 2020-03-25 Cambridge Mechatronics Limited Electrical connections for sma actuators
US11226469B2 (en) * 2017-10-30 2022-01-18 Tdk Taiwan Corp. Optical driving mechanism
WO2019119454A1 (en) * 2017-12-23 2019-06-27 Huawei Technologies Co., Ltd. Lens position adjustment device, camera module, information device, and camera driving method
CN111587321A (zh) * 2018-01-22 2020-08-25 剑桥机电有限公司 形状记忆合金致动装置
GB2576173A (en) * 2018-08-07 2020-02-12 Cambridge Mechatronics Ltd Tuneable fluid lens
KR102589379B1 (ko) * 2018-08-27 2023-10-16 엘지이노텍 주식회사 센서 구동 장치 및 카메라 모듈
GB201816544D0 (en) * 2018-10-10 2018-11-28 Cambridge Mechatronics Ltd Sma actuators for optical image stabilisation
CN109748233B (zh) * 2019-01-03 2020-07-14 西北工业大学 高精度反对称式双晶片结构的形状记忆合金及制备方法
KR20210143285A (ko) * 2019-03-29 2021-11-26 허친슨 테크놀로지 인코포레이티드 형상 기억 합금 액추에이터 및 그 방법
GB201907018D0 (en) * 2019-05-17 2019-07-03 Cambridge Mechatronics Ltd Actuator assembly
US11258951B2 (en) * 2019-06-27 2022-02-22 Motorola Mobility Llc Miniature camera device for stabilized video using shape memory alloy actuators
CN114127607B (zh) * 2019-07-01 2023-02-03 华为技术有限公司 用于摄像头模块的线性执行器
CN112698462A (zh) * 2019-10-18 2021-04-23 新思考电机有限公司 光学部件驱动装置、照相机装置以及电子设备
CN110749971A (zh) * 2019-11-22 2020-02-04 东莞市亚登电子有限公司 Sma致动器、摄像模块和电子设备
CN213843646U (zh) * 2019-12-06 2021-07-30 台湾东电化股份有限公司 光学元件驱动机构
GB2593681A (en) * 2020-03-26 2021-10-06 Cambridge Mechatronics Ltd A shape memory actuator
GB2610532B (en) * 2020-06-09 2024-05-08 Hutchinson Technology Shape memory alloy actuators and methods thereof
JP2023532673A (ja) * 2020-06-25 2023-07-31 ハッチンソン テクノロジー インコーポレイテッド 形状記憶合金アクチュエータ及びその方法
WO2022022800A1 (en) * 2020-07-27 2022-02-03 Mt Mechatronics Gmbh Electro-mechanical linear drive unit for precise positioning e.g. of a large reflector used in radio astronomy or of a communication antenna
WO2022043717A1 (en) * 2020-08-31 2022-03-03 Cambridge Mechatronics Limited Actuator assembly
GB2607269A (en) * 2021-04-14 2022-12-07 Cambridge Mechatronics Ltd SMA actuator assembly
US11859598B2 (en) 2021-06-10 2024-01-02 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
KR20240073993A (ko) * 2021-07-21 2024-05-27 코어포토닉스 리미티드 팝-아웃 모바일 카메라 및 액추에이터
US20230275530A1 (en) * 2022-02-25 2023-08-31 Tdk Taiwan Corp. Optical element driving mechanism
WO2023166320A1 (en) * 2022-03-03 2023-09-07 Cambridge Mechatronics Limited Sma actuator assembly
US11982263B1 (en) 2023-05-02 2024-05-14 Hutchinson Technology Incorporated Shape metal alloy (SMA) bimorph actuators with reduced wire exit angle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027119A1 (en) * 2008-07-29 2010-02-04 Gm Global Technology Operations, Inc. Receiver/emitter cover utilizing active material actuation
US20120108980A1 (en) * 2010-10-22 2012-05-03 Gore Enterprise Holdings, Inc. Catheter with shape memory alloy actuator
US20130002933A1 (en) * 2010-02-26 2013-01-03 Cambridge Mechatronics Limited Sma actuation apparatus

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456950A1 (en) 1990-05-16 1991-11-21 CONTRAVES ITALIANA S.p.A. Actuator for restraint/release (R/R) devices, particularly for space applications
JPH04337222A (ja) 1991-05-15 1992-11-25 Asmo Co Ltd サーモスイッチ
US5588295A (en) * 1992-07-30 1996-12-31 Brotz; Gregory R. Tri-strip memory metal actuator
US6682174B2 (en) 1998-03-25 2004-01-27 Silverbrook Research Pty Ltd Ink jet nozzle arrangement configuration
JPH11324896A (ja) 1998-03-13 1999-11-26 Minolta Co Ltd 形状記憶合金を使用した駆動機構
JP2000137155A (ja) 1998-11-02 2000-05-16 Fuji Photo Film Co Ltd 固定焦点型カメラ
BR9917232A (pt) 1999-03-26 2002-02-19 R Sjhon Minners Processo para fabricar um comutador biestável, e, comutador biestável
US6384514B1 (en) 1999-07-28 2002-05-07 Technology Commercialization Corp. Reversible piezoelectric positioning device and a disk drive using same
AU772107B2 (en) 1999-08-12 2004-04-08 Perihelian, Llc Shape-memory alloy actuators and control methods
US6624730B2 (en) 2000-03-28 2003-09-23 Tini Alloy Company Thin film shape memory alloy actuated microrelay
US7256518B2 (en) 2000-05-08 2007-08-14 Gummin Mark A Shape memory alloy actuators
US6367252B1 (en) 2000-07-05 2002-04-09 Jds Uniphase Corporation Microelectromechanical actuators including sinuous beam structures
US7646544B2 (en) * 2005-05-14 2010-01-12 Batchko Robert G Fluidic optical devices
DE10114563A1 (de) * 2001-03-24 2002-10-24 Conti Temic Microelectronic Stellelement, insbesondere als Teil eines Stellantriebs für eine Bildaufnahmeeinrichtung
US6698201B1 (en) 2001-08-16 2004-03-02 Zyvex Corporation Cascaded bimorph rotary actuator
SE0301637D0 (sv) 2003-06-06 2003-06-06 Wouter Van Der Wijngaart Royal a micromachined knife gate valve for high-flow pressure regulation applications
FR2859542B1 (fr) 2003-09-08 2005-11-04 Commissariat Energie Atomique Micro-miroir oscillant a actionnement bimorphe
GB0328054D0 (en) 2003-12-04 2004-01-07 Council Cent Lab Res Councils Fluid probe
US7372348B2 (en) * 2004-08-20 2008-05-13 Palo Alto Research Center Incorporated Stressed material and shape memory material MEMS devices and methods for manufacturing
WO2007001392A2 (en) 2004-10-01 2007-01-04 The Regents Of The University Of Michigan Manufacture of shape-memory alloy cellular meterials and structures by transient-liquid reactive joining
KR100584424B1 (ko) * 2004-11-04 2006-05-26 삼성전자주식회사 카메라 렌즈 어셈블리의 손떨림 보정 장치
US7444812B2 (en) 2005-01-27 2008-11-04 Scott Ryan Kirkpatirck Shape memory alloy MEMS heat engine
US7349236B2 (en) 2005-06-24 2008-03-25 Xerox Corporation Electromechanical memory cell with torsional movement
US7464548B2 (en) 2005-11-30 2008-12-16 The Boeing Company Shape memory alloy linear actuator
US7773119B2 (en) 2006-04-28 2010-08-10 Konica Minolta Opto, Inc. Drive apparatus, image pickup unit and image pickup apparatus
US8175449B2 (en) * 2006-05-30 2012-05-08 Konica Minolta Opto, Inc. Driving device, driving mechanism, and image sensing apparatus
ATE503928T1 (de) 2007-02-12 2011-04-15 Cambridge Mechatronics Ltd Auslösungsvorrichtung für formgedächtnislegierung
US8073320B2 (en) * 2007-02-12 2011-12-06 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
JP2008203402A (ja) * 2007-02-19 2008-09-04 Konica Minolta Opto Inc センサ装置、および撮像装置
US7953319B2 (en) 2007-04-04 2011-05-31 Konica Minolta Opto, Inc. Position controller, driving mechanism and image pickup system
US8761846B2 (en) 2007-04-04 2014-06-24 Motorola Mobility Llc Method and apparatus for controlling a skin texture surface on a device
JP2008268404A (ja) 2007-04-18 2008-11-06 Tricore Corp ボイスコイル型のレンズ駆動装置
US20080302024A1 (en) 2007-06-05 2008-12-11 Gm Global Technology Operations, Inc. Tunable impedance load-bearing structures
KR101309795B1 (ko) 2007-10-15 2013-09-23 삼성전자주식회사 가변 초점 광학 장치
JP5296086B2 (ja) 2007-10-30 2013-09-25 ケンブリッジ メカトロニクス リミテッド 形状記憶合金駆動装置
WO2009072748A1 (en) 2007-12-04 2009-06-11 Hysonic.Co., Ltd. Camera module using polymer metal composite
US20090159354A1 (en) * 2007-12-25 2009-06-25 Wenfeng Jiang Battery system having interconnected battery packs each having multiple electrochemical storage cells
TW200928098A (en) 2007-12-31 2009-07-01 Chicony Electronics Co Ltd Actuation device with shape memory alloy
US8077411B2 (en) * 2008-01-24 2011-12-13 E-Pin Optical Industry Co., Ltd. Lens displacement mechanism using shaped memory alloy
JP4544331B2 (ja) 2008-04-04 2010-09-15 ソニー株式会社 コンバージョンレンズ装置、及び撮像装置
WO2009125728A1 (ja) * 2008-04-08 2009-10-15 コニカミノルタホールディングス株式会社 アクチュエータアレイシート
KR100984333B1 (ko) 2008-07-18 2010-09-30 국방과학연구소 전기 기계 변환기 및 그 제작방법
US8588598B2 (en) * 2008-07-30 2013-11-19 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
KR20110074979A (ko) * 2008-09-12 2011-07-05 캠브리지 메카트로닉스 리미티드 형상기억합금 액츄에이터를 포함한 광 이미지 안정화
EP2394425B1 (en) 2009-02-09 2017-05-31 Cambridge Mechatronics Limited Optical image stabilisation
WO2010110122A1 (ja) 2009-03-25 2010-09-30 コニカミノルタオプト株式会社 アクチュエータ、駆動装置、および撮像装置
US8282004B2 (en) 2009-04-29 2012-10-09 Hand Held Products, Inc. Focusing apparatus and terminal comprising variable focus lens assembly
JP4804564B2 (ja) 2009-07-14 2011-11-02 キヤノン株式会社 振れ補正装置を有する光学機器
KR101044140B1 (ko) * 2009-09-11 2011-06-24 삼성전기주식회사 렌즈 구동 모듈
JP5211015B2 (ja) 2009-11-04 2013-06-12 日立マクセル株式会社 撮像装置
US20110217031A1 (en) 2010-03-03 2011-09-08 Nokia Corporation Method And Apparatus For Shape Memory Alloy Bender Actuator
KR101893229B1 (ko) 2010-08-09 2018-08-29 캠브리지 메카트로닉스 리미티드 카메라 장치
US8803256B2 (en) 2010-11-15 2014-08-12 DigitalOptics Corporation MEMS Linearly deployed actuators
US20120174571A1 (en) 2010-12-10 2012-07-12 Villanueva Alexis A Shape memory alloy (sma) actuators and devices including bio-inspired shape memory alloy composite (bismac) actuators
JP5817175B2 (ja) 2011-03-29 2015-11-18 ソニー株式会社 レンズモジュール、撮像装置、および電子機器
JP2013020105A (ja) 2011-07-12 2013-01-31 Japan Display East Co Ltd 表示装置
EP2551523A1 (en) 2011-07-29 2013-01-30 Debiotech S.A. Method and device for accurate and low-consumption mems micropump actuation
KR20130065003A (ko) 2011-12-09 2013-06-19 엘지이노텍 주식회사 카메라 모듈
US8707694B2 (en) 2011-12-23 2014-04-29 GM Global Technology Operations LLC Shape memory alloy actuator
GB2514071B (en) 2012-02-16 2015-09-16 Cambridge Mechatronics Ltd Shape memory alloy actuation apparatus
GB201205394D0 (en) 2012-03-27 2012-05-09 Adlens Ltd Improvements in or relating to deformable non-round membrane assemblies
KR101338137B1 (ko) 2012-07-05 2013-12-06 한국과학기술연구원 형상기억합금 액츄에이터
TWI548929B (zh) * 2012-07-30 2016-09-11 鴻海精密工業股份有限公司 影像穩定器及取像裝置
JP5967366B2 (ja) 2012-09-11 2016-08-10 Smk株式会社 平型形状記憶ケーブル体及びそれを使用した駆動装置
ITMI20121988A1 (it) 2012-11-22 2014-05-23 Getters Spa Elemento attuatore con migliorata resistenza a fatica fatto di una lega a memoria di forma
FI124970B (fi) 2013-02-22 2015-04-15 Synoste Oy Aktuaattori ja menetelmä aktuaattorin parantamiseksi
WO2014138049A2 (en) 2013-03-04 2014-09-12 Syracuse University Reversible shape memory polymers exhibiting ambient actuation triggering
US9309903B2 (en) 2013-09-30 2016-04-12 The Boeing Company Vortex generators
US9744055B2 (en) 2014-04-10 2017-08-29 The University Of Akron Antagonistically actuated shape memory alloy manipulator
EP3194768A1 (en) 2014-09-15 2017-07-26 Koninklijke Philips N.V. Heat sensitive actuator device
US10270959B1 (en) 2014-11-03 2019-04-23 Alarm.Com Incorporated Creating preview images for controlling pan and tilt cameras
KR20160081243A (ko) 2014-12-31 2016-07-08 삼성전기주식회사 카메라 모듈
US9664183B2 (en) 2015-01-09 2017-05-30 The Boeing Company Integrated high thermal conductive fiber as cooling fin for SMA actuator with expandable sleeve
WO2016178152A1 (en) 2015-05-05 2016-11-10 Actuator Solutions GmbH Tilt module subassembly and optical image stabilizer comprising it
KR102007379B1 (ko) 2015-05-28 2019-08-05 코어포토닉스 리미티드 이중-조리개 디지털 카메라의 광학식 손떨림 방지 및 자동-초점을 위한 양-방향성 강성
US9786831B1 (en) 2016-01-27 2017-10-10 Magnecomp Corporation Suspension having a stacked D33 mode PZT actuator with constraint layer
US10032711B2 (en) 2016-07-25 2018-07-24 International Business Machines Corporation Integrating metal-insulator-metal capacitors with air gap process flow
CN114562435A (zh) 2016-09-14 2022-05-31 智能合金有限公司 具有应变计传感器和位置估计的形状记忆合金致动器及其制造方法
WO2018080465A1 (en) 2016-10-26 2018-05-03 Massachusetts Institute Of Technology Multidirectional artificial muscles from nylon
US11199182B2 (en) 2016-12-16 2021-12-14 Hutchinson Technology Incorporated Sensor shift structures in optical image stabilization suspensions
US10427934B1 (en) 2017-03-23 2019-10-01 United States Of America As Represented By The Secretary Of The Air Force Thermal management using microelectromechanical systems bimorph cantilever beams
US11815794B2 (en) 2017-05-05 2023-11-14 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
KR102565644B1 (ko) 2017-05-05 2023-08-10 허친슨 테크놀로지 인코포레이티드 형상 기억 합금 액추에이터 및 그 방법
US11306706B2 (en) 2017-05-05 2022-04-19 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
US11448853B2 (en) 2017-05-05 2022-09-20 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
CN113589544B (zh) 2017-05-05 2023-06-16 哈钦森技术股份有限公司 形状记忆合金致动器及其方法
US11333134B2 (en) 2017-05-05 2022-05-17 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
US11105319B2 (en) 2017-05-05 2021-08-31 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof
US20200150443A1 (en) 2018-11-13 2020-05-14 Facebook Technologies, Llc Pupil steering: combiner actuation systems
KR20210143285A (ko) 2019-03-29 2021-11-26 허친슨 테크놀로지 인코포레이티드 형상 기억 합금 액추에이터 및 그 방법
US11859598B2 (en) 2021-06-10 2024-01-02 Hutchinson Technology Incorporated Shape memory alloy actuators and methods thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027119A1 (en) * 2008-07-29 2010-02-04 Gm Global Technology Operations, Inc. Receiver/emitter cover utilizing active material actuation
US20130002933A1 (en) * 2010-02-26 2013-01-03 Cambridge Mechatronics Limited Sma actuation apparatus
US20120108980A1 (en) * 2010-10-22 2012-05-03 Gore Enterprise Holdings, Inc. Catheter with shape memory alloy actuator

Also Published As

Publication number Publication date
US20240077782A1 (en) 2024-03-07
GB202206304D0 (en) 2022-06-15
US10920755B2 (en) 2021-02-16
WO2018204888A1 (en) 2018-11-08
GB2602950A (en) 2022-07-20
US20210131405A1 (en) 2021-05-06
US20220106942A1 (en) 2022-04-07
US20190136839A1 (en) 2019-05-09
GB2602950B (en) 2022-10-26
US20200256323A1 (en) 2020-08-13
US11867160B2 (en) 2024-01-09
US11199183B2 (en) 2021-12-14
KR20200003864A (ko) 2020-01-10

Similar Documents

Publication Publication Date Title
KR102565644B1 (ko) 형상 기억 합금 액추에이터 및 그 방법
US11105319B2 (en) Shape memory alloy actuators and methods thereof
US11686294B2 (en) Shape memory alloy actuators and methods thereof
CN113589544B (zh) 形状记忆合金致动器及其方法
US11815794B2 (en) Shape memory alloy actuators and methods thereof
US11668288B2 (en) Shape memory alloy actuators and methods thereof
JP2022527469A (ja) 形状記憶合金アクチュエータ及びその方法
KR20240019260A (ko) 형상 기억 합금 액추에이터 및 그 방법
CN216342609U (zh) 压电双晶片致动器和致动器
KR20230027266A (ko) 형상 기억 합금 액추에이터 및 그 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant