ES2162823T5 - Inmunoglobulinas desprovistas de cadenas ligeras. - Google Patents
Inmunoglobulinas desprovistas de cadenas ligeras. Download PDFInfo
- Publication number
- ES2162823T5 ES2162823T5 ES93919098T ES93919098T ES2162823T5 ES 2162823 T5 ES2162823 T5 ES 2162823T5 ES 93919098 T ES93919098 T ES 93919098T ES 93919098 T ES93919098 T ES 93919098T ES 2162823 T5 ES2162823 T5 ES 2162823T5
- Authority
- ES
- Spain
- Prior art keywords
- immunoglobulin
- immunoglobulins
- sequence
- cells
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/20—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans from protozoa
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/22—Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/567—Framework region [FR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/64—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/866—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving immunoglobulin or antibody fragment, e.g. fab', fab, fv, fc, heavy chain or light chain
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
EL INVENTO SE REFIERE A INMUNOGLOBULINA AISLADA CARACTERIZADA EN QUE COMPRENDEN DOS CADENAS DE POLIPEPTIDOS PESADOS SUFICIENTES PARA LA FORMACION DE UN LUGAR DE ENLACE ANTIGEN COMPLETO O LUGARES DE ENLACE DE ANTIGENO DIVERSO, ESTANDO ADEMAS ESTA INMUNOGLOBULINA DESPROVISTA DE CADENAS POLIPEPTIDAS LIGERAS.
Description
Inmunoglobulinas desprovistas de cadenas
ligeras.
La invención se refiere a nuevas
inmunoglobulinas aisladas que están desprovistas de cadenas
polipeptídicas ligeras. Estas inmunoglobulinas no consisten en los
productos de degradación de las inmunoglobulinas compuestas tanto
de cadenas polipeptídicas pesadas como de cadenas polipeptídicas
ligeras, sino que por el contrario, la invención define un nuevo
miembro de la familia de las inmunoglobulinas, especialmente un
nuevo tipo de moléculas capaces de estar implicadas en el
reconocimiento inmune. Tales inmunoglobulinas pueden usarse para
varios propósitos, especialmente para propósitos de diagnóstico o
terapéuticos, incluyendo la protección frente a los agentes
patológicos o la regulación de la expresión o la actividad de las
proteínas.
Hasta ahora, la estructura propuesta para las
inmunoglobulinas consiste en un modelo de cuatro cadenas que se
refiere a la presencia de dos cadenas polipeptídicas ligeras
idénticas (cadenas ligeras) y dos cadenas polipeptídicas pesadas
idénticas (cadenas pesadas) unidas mediante puentes disulfuro para
formar macromoléculas con forma de Y o de T. Estas cadenas están
compuestas por una región constante y una región variable, estando
la región constante subdividida en varios dominios. Las dos cadenas
polipeptídicas pesadas se unen normalmente mediante puentes
disulfuro en una denominada "región bisagra" situada entre el
primer y segundo dominios de la región constante.
Entre las proteínas que forman la clase de las
inmunoglobulinas, la mayoría de ellas son anticuerpos y en
consecuencia, presentan un sitio de unión al antígeno o varios
sitios de unión al antígeno.
Según el modelo de cuatro cadenas, el sitio de
unión al antígeno de un anticuerpo se localiza en los dominios
variables de cada una de las cadenas pesada y ligera y requiere la
asociación de los dominios variables de las cadenas pesada y
ligera.
Para la definición de estas inmunoglobulinas de
modelo de cuatro cadenas, se hace referencia a Roit. I et
al. (Immunology-second-Edition
Gower Medical Publishing USA, 1989). La referencia se hace
especialmente a la parte concerniente a la definición de las
inmunoglobulinas de cuatro cadenas, a sus estructuras polipeptídicas
y genéticas, a la definición de sus regiones variables y constantes
y a la obtención de los fragmentos producidos por la degradación
enzimática según técnicas bien conocidas.
Los inventores han establecido sorprendentemente
que pueden aislarse moléculas diferentes a partir de animales que
las producen naturalmente, moléculas que tienen propiedades
funcionales de inmunoglobulinas, estando esas funciones
relacionadas en algunos casos con elementos estructurales que son
distintos de los implicados en la función de las inmunoglobulinas
de cuatro cadenas debido, por ejemplo, a la ausencia de cadenas
ligeras.
La invención se refiere a inmunoglobulinas del
modelo de dos cadenas que no corresponden ni con los fragmentos
obtenidos por ejemplo mediante la degradación, en particular la
degradación enzimática, de una inmunoglobulina del modelo de cuatro
cadenas, ni corresponde con la expresión en las células huésped del
ADN que codifica para la región constante o la variable de una
inmunoglobulina natural del modelo de cuatro cadenas o con una
parte de estas regiones, ni corresponde con los anticuerpos
producidos en las linfopatías, por ejemplo, en ratones, ratones,
ratas o humanos.
E.S. Ward et al. (1) ha descrito algunos
experimentos realizados en los dominios variables de las cadenas
polipeptídicas pesadas (V_{H}) o/y en las cadenas polipeptídicas
ligeras (V\kappa/F_{V}) para probar la capacidad de estos
dominios variables para unir antígenos específicos. Para este
propósito, se preparó una librería de genes V_{H} a partir del
ADN genómico del bazo del ratón inmunizado previamente con estos
antígenos específicos.
Ward et al han descrito en su publicación
que los dominios V_{H} son relativamente adhesivos,
presumiblemente debido a la superficie hidrofóbica expuesta,
normalmente tapada por los dominios V_{\kappa} o V_{\lambda}.
Por consiguiente, ellos se imaginaron que debería ser posible
diseñar dominios V_{H} que tuvieran propiedades mejoradas y
además, que los dominios V_{H} con actividades de unión pudieran
servir como los componentes básicos para fabricar fragmentos
variables (fragmentos F_{V}) o anticuerpos completos.
La publicación de Blier P.R. et al (The
Journal of Immunology, vol. 139, 3996-4006, nº 12,
15 de diciembre de 1987) da a conocer las secuencias de nucleótidos
incompletas obtenidas a partir del hibridoma.
La invención no parte de la idea de que los
diferentes fragmentos (cadenas ligeras y pesadas) y los diferentes
dominios de estos fragmentos de la inmunoglobulina del modelo de
cuatro cadenas pueda modificarse para definir sitios de unión al
antígeno nuevos o mejorados o una inmunoglobulina del modelo de
cuatro cadenas.
Los inventores han determinado que las
inmunoglobulinas pueden tener una estructura diferente al modelo
conocido de cuatro cadenas y que tales inmunoglobulinas diferentes
ofrecen nuevos medios para la preparación de reactivos de
diagnóstico, agentes terapéuticos o cualquier otro reactivo para su
uso en investigación o para propósitos industriales.
Por tanto, la invención proporciona nuevas
inmunoglobulinas que son capaces de mostrar propiedades funcionales
de las inmunoglobulinas del modelo de cuatro cadenas, aunque su
estructura parezca ser más apropiada en muchas circunstancias para
su uso, su preparación y en algunos casos, para su modificación.
Además, estas moléculas pueden considerarse como estructuras
principales para la modificación de otras inmunoglobulinas. Las
ventajas proporcionadas por estas inmunoglobulinas comprenden la
posibilidad de prepararlas con una mayor facilidad.
La invención se refiere a una inmunoglobulina
caracterizada porque es obtenible de camélidos y porque comprende
dos cadenas polipeptídicas pesadas suficientes para la formación de
un sitio completo de unión al antígeno o de varios sitios de unión
al antígeno, en la que las cadenas polipeptídicas pesadas están
desprovistas de un denominado primer dominio en su región constante
(CH1), estando esta inmunoglobulina desprovista de cadenas
polipeptídicas ligeras.
En una realización particular de la invención,
estas inmunoglobulinas se caracterizan además por el hecho de que
son el producto de la expresión en una célula huésped procariótica o
eucariótica, de un ADN o de un ADNc que tiene la secuencia de una
inmunoglobulina desprovista de cadenas ligeras, obtenible a partir
de linfocitos o de otras células de camélidos.
Las inmunoglobulinas de la invención pueden
obtenerse, por ejemplo, a partir de las secuencias que se describen
en la figura 7.
Las inmunoglobulinas de la invención, que están
desprovistas de cadenas ligeras, están de manera que los dominios
variables de sus cadenas pesadas tengan propiedades que difieren de
las de los V_{H} de la inmunoglobulina de cuatro cadenas. El
dominio variable de una inmunoglobulina de cadena pesada de la
invención no tiene sitios de interacción normales con el dominio
V_{L} ni con el C_{H}l que no existe en las inmunoglobulinas de
cadena pesada. Por lo tanto, es un fragmento novedoso en muchas de
sus propiedades, tal como la solubilidad y la posición del sitio de
unión. Por razones de claridad, lo llamaremos V_{HH} en este texto
para distinguirlo de los V_{H} clásicos de las inmunoglobulinas
de cuatro cadenas.
Por "un sitio de unión al antígeno
completo" se quiere decir, de acuerdo con la invención, un sitio
que permitirá por sí solo el reconocimiento y la unión completa de
un antígeno. Esto podría verificarse mediante cualquier método
conocido con respecto a los ensayos de la afinidad de la unión.
Estas inmunoglobulinas, que pueden prepararse
mediante la técnica del ADN recombinante, o aislarse a partir de
animales, se denominarán en ocasiones en las páginas siguientes
"inmunoglobulinas de cadena pesada". En una realización
preferida de la invención, estas inmunoglobulinas están en una forma
pura.
En una primera realización, las inmunoglobulinas
de la invención son obtenibles en las células procarióticas,
especialmente en las células de E. coli mediante un proceso
que comprende las etapas de:
- a)
- clonar en un vector Bluescript de una secuencia de ADN o de ADNc que codifica para el dominio V_{HH} de una inmunoglobulina desprovista de cadena ligera obtenible, por ejemplo, a partir de los linfocitos de los camélidos,
- b)
- recuperar el fragmento clonado tras la amplificación usando un cebador 5' que contiene un sitio Xho y un cebador 3' que contiene un sitio Spe que tiene la secuencia siguiente
- TC TTA ACT AGT GAG GAG ACG GTG ACC TG,
- c)
- clonar el fragmento recuperado en fase en el vector inmuno PBS tras la digestión del vector con las enzimas de restricción Xho y Spe,
- d)
- transformar las células huésped, especialmente E. coli, mediante transfección con el vector recombinante inmuno PBS de la etapa c,
- e)
- recuperar el producto de la expresión de la secuencia que codifica para V_{HH}, por ejemplo mediante la utilización de anticuerpos surgidos contra el dominio V_{HH} del dromedario
\vskip1.000000\baselineskip
En otra realización, las inmunoglobulinas son
inmunoglobulinas heteroespecíficas obtenibles mediante un proceso
que comprende las etapas de:
- -
- obtener una primera secuencia de ADN o de ADNc que codifique para un dominio V_{HH} o para una parte del mismo, que tenga una especificidad determinada frente a un antígeno dado y que esté comprendida entre los sitios Xho y Spe,
- -
- obtener una segunda secuencia de ADN o ADNc que codifique para un dominio V_{HH} o para una parte del mismo, que tenga una especificidad determinada diferente de la especificidad de la primera secuencia de ADN o ADNc y que esté comprendida entre los sitios Spe y EcoRI,
- -
- digerir un vector inmuno PBS con las enzimas de restricción EcoRI y XhoI,
\newpage
- -
- ligar las secuencias obtenidas de ADN o de ADNc que codifican para los dominios V_{HH}, de manera que las secuencias de ADN o de ADNc se clonen en serie en el vector,
- -
- transformar una célula huésped, especialmente la célula E. coli, mediante transfección y recuperar las inmunoglobulinas obtenidas.
\vskip1.000000\baselineskip
En otra realización, las inmunoglobulinas son
obtenibles mediante un proceso que comprende las etapas de:
- -
- obtener una secuencia de ADN o de ADNc que codifique para un dominio V_{HH} o para una parte del mismo, que tenga un determinado sitio específico de unión al antígeno,
- -
- amplificar el ADN o el ADNc obtenido usando un cebador 5' que contenga un codón de iniciación y un sitio HindIII, y un cebador 3' que contenga un codón de terminación que tenga un sitio XhoI,
- -
- recombinar el ADN o el ADNc amplificado en los sitios HindIII (posición 2650) y XhoI (posición 4067) de un plásmido pMM984,
- -
- transfectar las células permisivas, especialmente las células NB-E, con el plásmido recombinante,
- -
- recuperar los productos obtenidos.
\vskip1.000000\baselineskip
La expresión correcta puede verificarse con
anticuerpos dirigidos contra una región de un dominio V_{HH},
especialmente mediante un ensayo ELISA.
De acuerdo con otra realización particular de
este proceso, las inmunoglobulinas se clonan en un parvovirus.
En otro ejemplo, estas inmunoglobulinas son
obtenibles mediante un proceso que comprende la clonación adicional
de una segunda secuencia de ADN o de ADNc que tiene otro sitio
determinado de unión al antígeno, en el plásmido pMM984.
Tal inmunoglobulina puede caracterizarse además
porque es obtenible mediante un proceso en el que el vector es Yep
52 y la célula recombinante transformada es una levadura,
especialmente S. cerevisiae.
Una inmunoglobulina particular se caracteriza
porque tiene una actividad catalítica, especialmente porque está
dirigida contra un antígeno que imita un estado activado de un
sustrato dado. Estos anticuerpos catalíticos pueden modificarse en
el nivel de su sitio de unión, mediante mutagénesis al azar o
dirigida, con el fin de incrementar o modificar su función
catalítica. Puede hacerse referencia a la publicación de Lerner
et al (TIBS, noviembre de 1987, 427-430)
para la técnica general para la preparación de tales
inmunoglobulinas catalíticas.
De acuerdo con una realización preferida, las
inmunoglobulinas de la invención se caracterizan porque sus
regiones variables contienen, en la posición 45, un aminoácido que
es diferente de un residuo de leucina, prolina o glutamina.
Además, las inmunoglobulinas de cadena pesada no
son productos característicos de los linfocitos de los animales ni
de los linfocitos de un paciente humano que sufre de linfopatías.
Tales inmunoglobulinas producidas en las linfopatías son
monoclonales en su origen y resultan de mutaciones patogénicas en el
nivel genómico. Aparentemente no tienen sitio de unión al
antígeno.
Las dos cadenas polipeptídicas pesadas de estas
inmunoglobulinas pueden unirse mediante una región bisagra, de
acuerdo con la definición de Roitt et al.
En una realización particular de la invención,
las inmunoglobulinas correspondientes a las moléculas definidas
anteriormente son capaces de actuar como anticuerpos.
El sitio(s) de unión al antígeno de las
inmunoglobulinas de la invención se localizan en la región variable
de la cadena pesada.
En un grupo particular de estas
inmunoglobulinas, cada cadena polipeptídica pesada contiene un sitio
de unión al antígeno en su región variable, y estos sitios
corresponden con la misma secuencia de aminoácidos.
En una realización adicional de la invención,
las inmunoglobulinas se caracterizan porque sus cadenas
polipeptídicas pesadas contienen una región variable (V_{HH}) y
una región constante (C_{H}), de acuerdo con la definición de
Roitt et al, pero están desprovistas del primer dominio de su
región constante. Este primer dominio de la región constante se
denomina C_{H}1.
Estas inmunoglobulinas que no tienen el dominio
C_{H}1 están de manera que la región variable de sus cadenas se
una directamente a la región bisagra en la parte
C-terminal de la región variable.
Las inmunoglobulinas del tipo descrito
anteriormente en este documento pueden comprender las
inmunoglobulinas de tipo G y especialmente, las inmunoglobulinas
que se definen como inmunoglobulinas de clase 2 (IgG2) o
inmunoglobulinas de clase 3 (IgG3).
La ausencia de cadena ligera y del primer
dominio constante conduce a una modificación de la nomenclatura de
los fragmentos de inmunoglobulinas obtenidos por digestión
enzimática, de acuerdo con Roitt et al.
Los términos Fc y pFc por una parte, y Fc' y
pFc' por la otra, correspondientes respectivamente a los fragmentos
de la digestión de papaína y pepsina, se mantienen.
Los términos Fab, F(ab)_{2},
F(ab')_{2}, Fabc, Fd y Fv ya no son aplicables en su
sentido original, ya que estos fragmentos tienen, o bien una cadena
ligera, la parte variable de la cadena ligera o el dominio
C_{H}1.
Los fragmentos obtenidos por la digestión de
papaína y compuestos por el dominio V_{HH} de la región bisagra,
se denominarán FV_{HH}h o F(V_{HH}h)_{2},
dependiendo de si permanecen o no unidos mediante puentes
disulfuro.
En otra realización de la invención, las
inmunoglobulinas que responden a las definiciones dadas
anteriormente en este documento pueden originarse a partir de
animales, especialmente a partir de animales de la familia de los
camélidos. Los inventores han encontrado que las inmunoglobulinas de
cadena pesada que están presentes en los camélidos no están
asociadas con una situación patológica que induciría a la producción
de anticuerpos anormales con respecto a las inmunoglobulinas de
cuatro cadenas. Partiendo de la base de un estudio comparativo de
camélidos del viejo mundo (Camelus bactrianus y Camelus
dromedarius) y de camélidos del nuevo mundo (por ejemplo
Lama Paccos, Lama Glama y Lama Vicugna), los
inventores han mostrado que las inmunoglobulinas de la invención,
que están desprovistas de cadenas polipeptídicas ligeras, se
encuentran en todas las especies. No obstante, las diferencias
pueden ser evidentes en el peso molecular de estas inmunoglobulinas,
dependiendo de los animales. En especial, el peso molecular de una
cadena pesada contenida en estas inmunoglobulinas puede ser desde
aproximadamente 43 kd hasta aproximadamente 47 kd, en particular, 45
kd.
Ventajosamente, las inmunoglobulinas de cadena
pesada de la invención se secretan en la sangre de los
camélidos.
Las inmunoglobulinas de acuerdo con esta
realización particular de la invención son obtenibles mediante
purificación a partir de suero de camélidos, y un proceso para la
purificación se describe en detalle en los ejemplos. En el caso en
el que las inmunoglobulinas se obtienen a partir de los Camélidos,
la invención se refiere a las inmunoglobulinas que no están en su
entorno biológico natural.
De acuerdo con la invención, la inmunoglobulina
IgG2 como obtenible mediante purificación a partir del suero de los
camélidos puede caracterizarse porque:
- -
- no se adsorbe mediante cromatografía en columna de Sepharosa Proteína G
- -
- se adsorbe mediante cromatografía en columna de Sepharosa Proteína A
- -
- tiene un peso molecular de alrededor de 100 kd tras la elución con un tampón de pH 4,5 (NaCl 0,15M, ácido acético al 0,58% ajustado a pH 4,5 mediante NaOH),
- -
- consiste en cadenas polipeptídicas pesadas \gamma2 de un peso molecular de alrededor de 46 kd, preferiblemente de 45 tras reducción.
\vskip1.000000\baselineskip
De acuerdo con una realización adicional de la
invención, otro grupo de inmunoglobulinas correspondientes a IgG3,
obtenibles mediante purificación a partir del suero de los
Camélidos, se caracteriza porque la inmunoglobulina:
- -
- se adsorbe mediante cromatografía en una columna de Sepharosa Proteína A,
- -
- tiene un peso molecular de alrededor de 100 kd tras la elución con un tampón de pH 3,5 (NaCl 0,15 M, ácido acético al 0,58%),
- -
- se adsorbe mediante cromatografía en una columna de Sepharosa Proteína G y se eluye con un tampón a pH 3,5 (NaCl 0,15M, ácido acético al 0,58%),
- -
- consiste en cadenas polipeptídicas pesadas \gamma3 de un peso molecular de alrededor de 45 kd, en particular entre 43 y 47 kd tras reducción.
\vskip1.000000\baselineskip
Las inmunoglobulinas de la invención que están
desprovistas de cadenas ligeras, comprenden no obstante en sus
cadenas pesadas, una región constante y una región variable. La
región constante comprende diferentes dominios.
\newpage
La región variable de las inmunoglobulinas de la
invención comprende estructuras (FW) y regiones que determinan la
complementaridad (CDR), especialmente 4 estructuras y 3 regiones de
complementaridad. Se distingue de las inmunoglobulinas de cuatro
cadenas, especialmente por el hecho de que esta región variable
puede contener por sí misma uno o varios sitios de unión al
antígeno, sin contribución de la región variable de una cadena
ligera que está ausente.
Las secuencias de aminoácidos de las estructuras
1 y 4 comprenden, entre otros, secuencias de aminoácidos
respectivamente que pueden seleccionarse de los siguientes:
\newpage
\global\parskip0.900000\baselineskip
Tal como se ha afirmado anteriormente, las
inmunoglobulinas de la invención están preferiblemente desprovistas
de la totalidad de su dominio C_{H}1.
Tales inmunoglobulinas comprenden los dominios
C_{H}2 y C_{H}3 en la región C-terminal con
respecto a la región bisagra.
De acuerdo con una realización particular de la
invención, la región constante de las inmunoglobulinas comprende
los dominios C_{H}2 y C_{H}3 que comprenden una secuencia de
aminoácidos seleccionada de las siguientes:
Resulta interesante que los inventores han
demostrado que la región bisagra de las inmunoglobulinas de la
invención puede presentar longitudes variables. Cuando estas
inmunoglobulinas actúen como anticuerpos, la longitud de la región
bisagra participará de la determinación de la distancia separando
los sitios de unión al antígeno.
Preferiblemente, una inmunoglobulina de acuerdo
con la invención se caracteriza porque su región bisagra comprende
desde 0 hasta 50 aminoácidos.
Las secuencias particulares de la región bisagra
de las inmunoglobulinas de la invención son las siguientes:
- GTNEVCKCPKCP
o,
- EPKIPQPQPKPQPQPQPQPKPQPKPEPECTCPKCP
\vskip1.000000\baselineskip
La región bisagra corta corresponde a una
molécula de IgG3 y la secuencia bisagra larga corresponde a una
molécula IgG2.
Los V_{HH} aislados derivados de las
inmunoglobulinas de cadena pesada o de las librerías de V_{HH}
correspondientes a las inmunoglobulinas de cadena pesada, pueden
distinguirse de la clonación de los V_{HH} de las inmunoglobulinas
modelo de cuatro cadenas partiendo de la base de las
características de la secuencia que caracteriza las inmunoglobulinas
de cadena pesada.
La región V_{HH} de la inmunoglobulina de
cadena pesada del camello muestra varias diferencias con las
regiones V_{HH} derivadas de las inmunoglobulinas de 4 cadenas de
todas las especies examinadas. A los niveles de los residuos
implicados en las interacciones V_{HH}/V_{L}, se observa una
diferencia importante a nivel de la posición 45 (FW) que es leucina
prácticamente siempre en las inmunoglobulinas de 4 cadenas (98%),
siendo los otros aminoácidos en esta posición prolina (1%) o
glutamina (1%).
En la inmunoglobulina de cadena pesada del
camello, en las secuencias examinadas en la actualidad, la leucina
en la posición 45 sólo se encuentra una vez. Podría originarse a
partir de una inmunoglobulina de cuatro cadenas. En otros casos, se
sustituye por un residuo de arginina, cisteína o ácido glutámico. La
presencia de aminoácidos cargados en esta posición debe contribuir
a hacer que el V_{HH} sea más soluble.
La sustitución por residuos específicos del
camélido, tales como aquellos de la posición 45, parece ser
interesante para la construcción de las regiones V_{HH} diseñadas
derivadas del repertorio de V_{HH} de las inmunoglobulinas de 4
cadenas.
Una segunda característica específica del
dominio V_{HH} del camélido es la presencia frecuente de una
cisteína en la región CDR_{3} asociada con una cisteína en la
posición 31 ó 33 del CDR_{1} o la región FW_{2} en la posición
45. La posibilidad de establecer un puente disulfuro entre la región
CDR_{3} y el resto del dominio variable contribuiría a la
estabilidad y la colocación del sitio de unión.
Con la excepción de una proteína única del
mieloma patogénico (DAW), tal puente disulfuro nunca se ha
encontrado en las regiones V de la inmunoglobulina derivada de las
inmunoglobulinas de 4 cadenas.
Las inmunoglobulinas de cadena pesada de la
invención tienen la ventaja particular adicional de no ser
adhesivas. De acuerdo con esto, estas inmunoglobulinas que están
presentes en el suero, se agregan mucho menos que las cadenas
pesadas aisladas de una inmunoglobulina de cuatro cadenas. Las
inmunoglobulinas de la invención son solubles a una concentración
superior a 0,5 mg/ml, preferiblemente superior a 1 mg/ml y más
ventajosamente por encima de 2 mg/ml.
Estas inmunoglobulinas llevan además un amplio
repertorio de unión al antígeno y sufren maduración de afinidad y
especificidad in vivo. De acuerdo con esto, permiten el
aislamiento y la preparación de anticuerpos que tienen
especificidad definida por lo que se refiere a antígenos
determinados.
Otra propiedad interesante de las
inmunoglobulinas de la invención es que pueden modificarse y
adaptarse especialmente a los humanos. Especialmente, es posible
sustituir toda o parte de la región constante de estas
inmunoglobulinas mediante toda o parte de una región constante de
un anticuerpo humano. Por ejemplo, los dominios C_{H}2 y/o
C_{H}3 de la inmunoglobulina podrían sustituirse por los dominios
C_{H}2 y/o C_{H}3 de la inmunoglobulina IgG \gamma3
humana.
En tales anticuerpos adaptados a los humanos,
también es posible sustituir una parte de la secuencia variable,
particularmente uno o más de los residuos de estructura que no
intervienen en el sitio de unión, por residuos humanos de
estructura, o por una parte de un anticuerpo humano.
A la inversa, las características (especialmente
los fragmentos peptídicos) de las regiones V_{HH} de la
inmunoglobulina de cadena pesada podrían introducirse en las
regiones V_{H} o V_{L} derivadas de las inmunoglobulinas de
cuatro cadenas con, por ejemplo, la finalidad de lograr una mayor
solubilidad de las inmunoglobulinas.
La invención se refiere además a un fragmento de
una inmunoglobulina que se ha descrito anteriormente en este
documento y especialmente a un fragmento seleccionado del grupo
siguiente:
- -
- un fragmento que es una cadena polipeptídica pesada de una inmunoglobulina de acuerdo con la invención o un fragmento que es la región variable de una cadena pesada de una inmunoglobulina de acuerdo con la invención, conteniendo ambos fragmentos un residuo de aminoácido en la posición 45 de dicha cadena pesada que es un aminoácido cargado o un residuo de cisteína, formando dicho fragmento un sitio de unión al antígeno determinado.
- -
- los fragmentos obtenidos por la digestión enzimática de las inmunoglobulinas de la invención, que conduce al fragmento FV_{HH}h (que contiene los sitios de unión al antígeno de las cadenas pesadas) o su dímero F(V_{HH}H)_{2},
- -
- los fragmentos homólogos obtenidos con otras enzimas proteolíticas,
\vskip1.000000\baselineskip
Los fragmentos pueden obtenerse por degradación
enzimática de las inmunoglobulinas. También pueden obtenerse por la
expresión en células u organismos de la secuencia de nucleótidos que
codifica para las inmunoglobulinas, o pueden sintetizarse
químicamente.
La invención también se refiere a anticuerpos
anti-idiotipo que pertenecen a las clases de
inmunoglobulina de cadena pesada. Tales
anti-idiotipos pueden producirse frente a idiotipos
humanos o animales. Una particularidad de estos
anti-idiotipos es que pueden usarse como vacunas
idiotípicas, en particular para la vacunación frente a
glicoproteínas o glicolípidos y donde el carbohidrato determina el
epítopo.
La invención también se refiere a
anti-idiotipos capaces de reconocer idiotipos de
inmunoglobulinas de cadena pesada.
Tales anticuerpos anti-idiotipo
pueden ser anticuerpos singeneicos o alogénicos o xenogeneicos.
La invención también concierne a secuencias de
nucleótidos que codifican para toda o parte de una proteína cuya
secuencia de aminoácidos comprende una secuencia peptídica
seleccionada de las siguientes:
\global\parskip1.000000\baselineskip
Tales secuencias de nucleótidos pueden deducirse
de las secuencias de aminoácidos, teniendo en cuenta la degeneración
del código genético. Pueden sintetizarse o aislarse a partir de las
células que producen las inmunoglobulinas de la invención.
Un procedimiento para la obtención de tales
secuencias de ADN se describe en los ejemplos.
La invención también contempla el ARN,
especialmente las secuencias de ARNm que corresponden a esas
secuencias de ADN y que también corresponden a las secuencias de
ADNc.
Las secuencias de nucleótidos de la invención
pueden usarse además para la preparación de cebadores apropiados
para la detección en las células o la selección de las librerías de
ADN o ADNc para aislar las secuencias de nucleótidos que codifican
para las inmunoglobulinas de la invención.
Tales secuencias de nucleótidos pueden usarse
para la preparación de vectores recombinantes y la expresión de
estas secuencias contenidas en los vectores por células huéspedes,
especialmente células procarióticas como las bacterias, o también
células eucarióticas y, por ejemplo, células CHO, células de
insectos, células de simios como las células Vero, o cualquier otra
célula de mamífero. Especialmente, el hecho de que las
inmunoglobulinas de la invención estén desprovistas de cadenas
ligeras, permite secretarlas en las células eucarióticas, puesto
que no hay necesidad de tener recursos para la etapa que consiste en
la formación de la proteína BIP que se requiere en las
inmunoglobulinas de cuatro cadenas.
Las inadecuaciones de los métodos conocidos para
producir anticuerpos monoclonales o inmunoglobulinas mediante
tecnología de ADN recombinante vienen de la necesidad, en la inmensa
mayoría de los casos, de clonar simultáneamente los dominios
V_{H} y V_{L} que corresponden a los sitios de unión específicos
de las inmunoglobulinas de 4 cadenas. Los animales, y especialmente
los camélidos, que producen inmunoglobulinas de cadena pesada de
acuerdo con la invención, y posiblemente otras especies de
vertebrados, son capaces de producir inmunoglobulinas de cadena
pesada de las cuales, el sitio de unión se localiza exclusivamente
en el domino V_{HH}. A diferencia de las pocas inmunoglobulinas
de cadena pesada producidas en otras especies mediante separación de
cadenas o mediante clonación directa, las inmunoglobulinas de
cadena pesada de los camélidos han sufrido una amplia maduración
in vivo. Además, su región V ha evolucionado naturalmente
para funcionar en ausencia de la V_{L}. Por tanto, son ideales
para producir anticuerpos monoclonales mediante tecnología de ADN
recombinante. Como la obtención de los clones específicos de unión
al antígeno no depende de un proceso estocástico que necesite un
gran número de células recombinantes, esto permite también un examen
mucho más amplio del repertorio.
Esto puede hacerse a nivel del repertorio de
V_{HH} no reconfigurado, usando ADN derivado de un tejido o
célula tipo escogidos arbitrariamente, o a nivel del repertorio de
V_{HH} no reconfigurado, usando ADN obtenido a partir de los
linfocitos B. Sin embargo, resulta más interesante transcribir el
ARNm a partir de las células que producen anticuerpos y clonar el
ADNc con o sin amplificación anterior en un vector adecuado. Esto
dará como resultado la obtención de anticuerpos que ya han sufrido
maduración de afinidad.
El examen de un gran repertorio debe demostrar
que es particularmente útil en la búsqueda de anticuerpos con
actividades catalíticas.
Por tanto, la invención proporciona librerías
que pueden generarse en una forma que incluya parte de la secuencia
bisagra. La identificación es simple ya que la bisagra está unida
directamente al dominio V_{HH}.
Estas librerías pueden obtenerse mediante
clonación del ADNc a partir de células linfoides con o sin
amplificación anterior por PCR. Los cebadores de PCR se localizan
en las secuencias promotora, líder o de estructura del V_{HH}
para el cebador 5' y en la región no traducida bisagra, CH_{2},
CH_{3} y 3' o cola de poliA para el cebador 3'. Una selección del
tamaño del material amplificado permite la construcción de una
librería limitada a las inmunoglobulinas de cadena pesada.
\newpage
\global\parskip0.900000\baselineskip
En un ejemplo particular, el siguiente cebador
3' en el que se ha construido un sitio KpnI y que corresponde
a los aminoácidos 313 a 319 (CGC CAT CAA GGT AAC AGT TGA) se
utiliza conjuntamente con los cebadores V_{HH} de ratón descritos
por Sestry et al y que contienen un sitio Xho
Estos cebadores producen una librería de
inmunoglobulinas de cadena pesada de camélido que comprenden la
región V_{HH} (relacionada con el subgrupo III de ratón o de
humano), la bisagra y una sección del CH_{2}.
En otro ejemplo, el ADNc se poliadenila en su
extremo 5' y los cebadores de V_{HH} específicos de ratón se
sustituyen por un cebador de poliT con un sitio XhoI no
construido, al nivel del nucleótido 12.
- CTCGACT_{12}.
Se utiliza el mismo cebador 3' con un sitio
KpnI.
Este método genera una librería que contiene
todos los subgrupos de inmunoglobulinas.
Parte del interés en clonar una región que
abarca la unión bisagra-CH_{2}, es que tanto en
\gamma2 como en \gamma3, está presente un sitio Sac
inmediatamente después de la bisagra. Este sitio permite injertar
la secuencia que codifica para el V_{HH} y la bisagra dentro de la
región Fc de otras inmunoglobulinas, en particular la IgG_{1} y
la IgG_{3} humanas que tienen la misma secuencia de aminoácidos en
este sitio (Glu_{246} Leu_{247}).
Como un ejemplo, la invención contempla una
librería de ADNc compuesto por secuencias de nucleótidos que
codifican para una inmunoglobulina de cadena pesada, tal como la
obtenida realizando las etapas siguientes:
- a)
- tratar una muestra que contiene células linfoides, especialmente linfocitos periféricos, células del bazo, ganglios linfáticos u otro tejido linfoide procedente de un animal sano, especialmente seleccionado a partir de los Camélidos, con el fin de separar las células linfoides,
- b)
- separar el ARN poliadenilado de otros ácidos nucleicos y componentes de las células,
- c)
- hacer reaccionar el ARN obtenido con una transcriptasa inversa, con el fin de obtener el ADNc correspon- diente,
- d)
- poner en contacto el ADNc de la etapa c) con los cebadores 5' correspondientes al dominio V_{H} del ratón de las inmunoglobulinas de cuatro cadenas, cebador que contiene un sitio de restricción determinado, por ejemplo un sitio XhoI y con los cebadores 3' que corresponden a la parte N-terminal de un dominio C_{H}2 que contiene un sitio KpnI,
- e)
- amplificar el ADN,
- f)
- clonar la secuencia amplificada en un vector, especialmente en un vector Bluescript,
- g)
- recuperar los clones hibridando con una sonda correspondiente a la secuencia que codifica para un dominio constante a partir de una inmunoglobulina aislada de cadena pesada.
Esta clonación da origen a clones que contienen
secuencias de ADN, incluyendo la secuencia que codifica para la
bisagra. Por tanto, permite la caracterización de la subclase de
inmunoglobulinas y el sitio SacI útil para injertar el
FV_{HH}h en la región Fc.
La recuperación de las secuencias que codifican
para las inmunoglobulinas de cadena pesada también puede lograrse
mediante la selección de los clones que contienen secuencias de ADN
que tienen un tamaño compatible con la falta de dominio
C_{H}l.
Es posible, de acuerdo con otra realización de
la invención, añadir las siguientes etapas entre las etapas c) y d)
del procedimiento anterior:
- en presencia de una ADN polimerasa y de
trifosfatos de desoxirribonucleótidos, poner en contacto dicho ADNc
con cebadores degenerados de oligonucleótido, cuyas secuencias son
capaces de codificar para la región bisagra y el dominio V_{HH}
N-terminal de una inmunoglobulina, siendo capaces
los cebadores de hibridar con el ADNc y capaces de iniciar la
extensión de una secuencia de ADN complementaria al ADNc usado como
molde,
- recuperar el ADN amplificado.
Los clones pueden expresarse en varios tipos de
vectores de expresión. Como un ejemplo que usa un vector Immuno PBS
disponible comercialmente (Huse et al: Science (1989) 246,
1275), los clones producidos en Bluescript® de acuerdo con el
procedimiento descrito anteriormente, se recuperan por PCR usando el
mismo XhoI que contiene el cebador 5' y un nuevo cebador 3',
que corresponde a los residuos 113-103 en la
estructura de las inmunoglobulinas, en que se ha construido un
sitio Spe: TC TTA ACT AGT GAG GAG ACG GTG ACC TG. Este
procedimiento permite la clonación del V_{HH} en el sitio
Xho/Spe del vector Immuno PBS. Sin embargo, el extremo 3' del
gen no está en fase con el "marcador" de identificación y el
codón de terminación del vector. Para lograr esto, el constructo se
corta con Spe y los salientes de 4 bases se completan, usando
el fragmento Klenow, tras lo cual se vuelve a ligar el vector. Un
perfeccionamiento adicional consiste en sustituir el marcador con
una poli-histidina, de manera que pueda llevarse a
cabo la purificación metálica del V_{HH} clonado. Para lograr eso,
se construye primero un oligonucleótido de doble hebra
Spe/EcoRI que codifica para 6 histidinas y para un codón de
terminación, mediante la síntesis de ambas hebras seguida por
calentamiento y templado:
El vector que contiene el inserto se digiere
entonces con SpeI y EcoRI para eliminar la secuencia
marcadora residente que puede sustituirse por la secuencia
poli-His/terminación. El V_{HH} producido puede
detectarse igualmente usando anticuerpos surgidos contra las
regiones V_{HH} del dromedario. Bajo condiciones de laboratorio,
las regiones V_{HH} se producen en el vector Immuno PBS en
cantidades de mg por litro.
La invención también se refiere a una librería
de ADN compuesta de secuencias de nucleótidos que codifican para
una inmunoglobulina de cadena pesada, tal como la obtenida a partir
de las células con genes reconfigurados de inmunoglobulina.
En una realización preferida de la invención, la
librería se prepara a partir de células de un animal previamente
inmunizado contra un antígeno determinado. Esto permite la selección
de anticuerpos que tengan una especificidad preseleccionada para el
antígeno usado para la inmunización.
En otra realización de la invención, la
amplificación del ADNc no se realiza antes de clonar el ADNc.
La cadena pesada de las inmunoglobulinas de
cuatro cadenas permanece secuestrada en la célula por una proteína
chaperonina (BIP) hasta que se ha combinado con una cadena ligera.
El sitio de unión para la proteína chaperonina es el dominio
C_{H}1. Puesto que este dominio está ausente de las
inmunoglobulinas de cadena pesada, su secreción es independiente de
la presencia de la proteína BIP o de la cadena ligera. Además, los
inventores han demostrados que las inmunoglobulinas obtenidas no
son adhesivas y de acuerdo con eso, no se agregarán
anormalmente.
La invención también se refiere a un proceso
para la preparación de un anticuerpo monoclonal dirigido contra un
antígeno determinado, consistiendo el sitio de unión al antígeno del
anticuerpo en cadenas polipeptídicas pesadas y anticuerpo que está
además desprovisto de cadenas polipeptídicas ligeras, proceso que
comprende:
- -
- la inmortalización de los linfocitos, obtenidos por ejemplo de la sangre periférica de los Camélidos previamente inmunizados con un antígeno determinado, con una célula inmortal y preferiblemente con células de mieloma, con el fin de formar un hibridoma,
- -
- el cultivo de las células inmortalizadas (hibridoma) formadas y la recuperación de las células que producen los anticuerpos que tienen la especificidad deseada.
\vskip1.000000\baselineskip
La preparación de los anticuerpos también puede
llevarse a cabo sin una inmunización previa de los Camélidos.
Según otro proceso para la preparación de
anticuerpos, no se requiere el recurso de la técnica de la célula
hibridoma.
Según tal proceso, los anticuerpos se preparan
in vitro y pueden obtenerse mediante procesos que comprenden
las etapas de:
- -
- clonar en vectores, especialmente en fagos y más particularmente en bacteriofagos filamentosos, las secuencias de ADN o de ADNc obtenidas a partir de los linfocitos, especialmente los PBL de los Camélidos previamente inmunizados con determinados antígenos,
- -
- transformar las células procarióticas con los vectores anteriores en condiciones que permitan la producción de anticuerpos,
- -
- seleccionar los anticuerpos por su estructura de cadena pesada y adicionalmente sometiéndolos a la selección por afinidad al antígeno,
- -
- recuperar los anticuerpos que tienen la especificidad deseada.
\vskip1.000000\baselineskip
En otra realización de la invención, la
clonación se realiza en vectores, especialmente en plásmidos que
codifican para proteínas de membranas bacterianas. Las células
procarióticas se transforman entonces con los vectores anteriores
en condiciones que permiten la expresión de anticuerpos en su
membrana.
Las células positivas se seleccionan
adicionalmente mediante selección de afinidad al antígeno.
Los anticuerpos de cadena pesada que no
contienen el dominio C_{H}1 presentan una clara ventaja a este
respecto. En efecto, el dominio C_{H}1 se une a las proteínas
acompañantes de tipo BIP presentes dentro de los vectores
eucarióticos y las cadenas pesadas no se transportan fuera del
retículo endoplasmático a menos que las cadenas ligeras estén
presentes. Esto significa que en las células eucariótica, la
clonación eficaz de las inmunoglobulinas de 4 cadenas en células no
mamíferas, tales como células de levaduras, puede depender de las
propiedades de la acompañante residente de tipo BIP y por tanto,
puede ser muy difícil de lograr. A este respecto, los anticuerpos
de cadena pesada de la invención que carecen de dominio CH_{1}
presentan una ventaja distintiva.
En una realización preferida de la invención, la
clonación puede realizarse en levaduras, o bien para la producción
de anticuerpos, o para la modificación del metabolismo de la
levadura. Como ejemplo, puede utilizarse el vector Yep 52.
Este vector tiene el origen de replicación (ORI) 2 \mu de la
levadura junto con un marcador de selección Leu 2.
El gen clonado está bajo el control del promotor
de la bilis y por consiguiente es inducible por galactosa. Además
la expresión puede estar reprimida por la glucosa, lo que permite la
obtención de concentración muy elevada de células antes de la
inducción.
La clonación entre los sitios BamHi y
SalI usando la misma estrategia de producción de genes
mediante PCR que la descrita anteriormente, permite la clonación de
los genes de la inmunoglobulina de camélido en E. coli. Como
ejemplo de modulación metabólica que puede obtenerse mediante
anticuerpos y propuesta para la levadura, se puede situar la
clonación de anticuerpos dirigida contra las ciclinas, que son
proteínas implicadas en la regulación del ciclo celular de la
levadura (TIBS 16 430 J.D. Mc Kinney, N. Heintz 1991). Otro
ejemplo es la introducción mediante ingeniería genética de un
anticuerpo dirigido contra el CD_{28}, anticuerpo que sería
inducible (por ejemplo, mediante bilis), dentro del genoma de la
levadura. El CD_{28} está implicado en el nivel de la iniciación
de la división celular y, por tanto, la expresión de anticuerpos
contra esta molécula permitiría un control eficaz de la
multiplicación de las células y la optimización de los métodos para
la producción en biorreactores o mediante medios de células
inmovilizadas.
Todavía en otra realización de la invención, el
vector de clonación es un plásmido o un vector eucariótico de virus
y las células que han de transformarse son células eucarióticas,
especialmente células de levaduras, células de mamíferos, por
ejemplo las células CHO, o células de simios tales como las células
Vero, células de insectos, células de plantas o células de
protozoos.
Para más detalles con respecto al procedimiento
que ha de aplicarse en cada caso, se hace referencia a la
publicación de Marks et al, J. Mol. Biol.. 1991,
222:581-597.
Además, a partir de las inmunoglobulinas de la
invención, o a partir de fragmentos de las mismas, pueden prepararse
nuevas inmunoglobulinas o derivados.
De acuerdo con esto, pueden prepararse
inmunoglobulinas que respondan a las definiciones facilitadas
anteriormente, contra determinados antígenos. En especial, la
invención proporciona anticuerpos monoclonales o policlonales
desprovistos de cadenas polipeptídicas ligeras o antisuero que
contiene tales anticuerpos y dirigidos contra determinados
antígenos y, por ejemplo, contra los antígenos de agentes
patológicos, tales como las bacterias, los virus o los parásitos.
Como ejemplo de antígenos o de determinantes antigénicos contra los
que pueden prepararse anticuerpos, pueden citarse las
glicoproteínas de la cubierta de los virus o los péptidos de las
mismas, tal como la glicoproteína de la cubierta externa de un virus
VIH o el antígeno de superficie del virus de la hepatitis B.
Las inmunoglobulinas de la invención también
puede dirigirse contra una proteína, hapteno, carbohidrato o ácido
nucleico.
Anticuerpos particulares de acuerdo con la
invención se dirigen contra el epítopo galactosil
\alpha-1-3-galactosa.
Las inmunoglobulinas de la invención permiten
además la preparación de productos combinados, tal como la
combinación de la inmunoglobulina de cadena pesada o de un
fragmento de la misma, con una toxina, una enzima, un fármaco o una
hormona.
Como ejemplo, puede prepararse la combinación de
una inmunoglobulina de cadena pesada que lleve un sitio de unión al
antígeno que reconozca un epítopo de inmunoglobulina de mieloma con
la toxina abrina o la de lectina del muérdago. Tal constructo
tendría sus usos en la terapia específica del paciente.
Otra combinación ventajosa es la que puede
prepararse entre inmunoglobulinas de cadena pesada que reconocen un
antígeno intestinal de los insectos con una toxina específica para
los insectos, tal como las toxinas de los distintos serotipos del
Bacillus thuringiensis o del Bacillus sphaericus. Tal
constructo clonado en las plantas puede usarse para incrementar la
especificidad o la variedad de huéspedes de las toxinas bacterianas
existentes.
La invención también propone anticuerpos que
tienen diferentes especificidades en cada cadena polipeptídica
pesada. Estos anticuerpos multifuncionales, especialmente
bifuncionales, podrían prepararse por combinación de dos cadenas
pesadas de las inmunoglobulinas de la invención o una cadena pesada
de una inmunoglobulina de la invención con un fragmento de una
inmunoglobulina modelo de cuatro cadenas.
La invención también proporciona anticuerpos
heteroespecíficos que pueden usarse para la selección de la diana
de fármacos o de cualquier sustancia biológica, como las hormonas.
En particular, pueden usarse para seleccionar selectivamente la
diana de hormonas o citoquinas para una categoría limitada de
células. Los ejemplos son una combinación de un anticuerpo murino o
humano surgido contra la interleuquina 2 (IL_{2}) y un anticuerpo
de cadena pesada surgido contra las células CD_{4}. Esto podría
usarse para reactivar las células CD_{4} que han perdido su
receptor de la IL_{2}.
Las inmunoglobulinas de cadena pesada de la
invención también pueden usarse para la preparación de anticuerpos
heteroespecíficos. Estos pueden lograrse, o bien de acuerdo con el
método descrito anteriormente mediante la reducción de los puentes
entre las diferentes cadenas y la reoxidación, de acuerdo con las
técnicas usuales, de dos anticuerpos que tienen especificidades
diferentes, pero también puede lograrse por clonación seriada de
dos anticuerpos, por ejemplo, en el vector Immuno pBS.
En tal caso, se prepara un primer gen
correspondiente al dominio V_{HH} comprendido entre el sitio
Xho y el sitio Spe, tal como se ha descrito
anteriormente. Un segundo gen se prepara después mediante una forma
análoga, usando como extremidad 5' un cebador que tienen el sitio
Spe y como extremidad 3' un cebador que contiene un codón de
terminación y un sitio EcoRI. El vector se digiere entonces
con EcoRI y XhoI y además, ambos genes V_{HH} se
digieren respectivamente por Xho/Spe y Spe/EcoRI.
Tras la unión, ambos genes de la inmunoglobulina
se clonan seriadamente. La separación entre ambos genes puede
aumentarse por la introducción de codones de adición dentro del
cebador 5' SpeI.
En una realización particular de la invención,
la región bisagra de las inmunoglobulinas IgG2 de acuerdo con la
invención es semirrígida y por tanto, es apropiada para acoplarse a
las proteínas. En tal aplicación, las proteínas o los péptidos
pueden unirse a diversas sustancias, especialmente a ligandos, a
través de la región bisagra usada como espaciadora. Ventajosamente,
el fragmento comprende al menos 6 aminoácidos.
De acuerdo con la invención, es interesante usar
una secuencia que comprenda una secuencia repetida
Pro-X, siendo X cualquier aminoácido y
preferiblemente, Gln, Lys o Glu, especialmente un fragmento
compuesto por al menos una repetición de 3 veces y preferiblemente,
por una repetición de 12 veces, para acoplar las proteínas al
ligando o para ensamblar diferentes dominios de proteínas.
La región bisagra o un fragmento del mismo
también puede usarse para acoplar proteínas a ligandos o para
ensamblar diferentes dominios de proteínas.
Las técnicas usuales para el acoplamiento son
apropiadas y puede hacerse referencia especial a la técnica de
ingeniería de proteínas mediante el ensamblaje de secuencias
clonadas.
Los anticuerpos de acuerdo con esta invención
podrían usarse como reactivos para el diagnóstico in vitro o
mediante técnicas de imagen. Las inmunoglobulinas de la invención
podrían marcarse con radioisótopos, marcadores químicos o
enzimáticos o marcadores quimioluminiscentes.
Como ejemplo, y especialmente en el caso de la
detección o la observación de inmunoglobulinas mediante técnicas de
imagen, un marcador como el tecnecio, especialmente el tecnecio al
99%, es ventajoso. Este marcador puede usarse para el marcaje
directo mediante un procedimiento de acoplamiento con las
inmunoglobulinas o con fragmentos de los mismos, o por marcaje
indirecto tras una etapa de preparación de un complejo con el
tecnecio.
Otros marcadores radiactivos interesantes son,
por ejemplo, el indio y especialmente el indio 111, o el yodo,
especialmente el I^{121}, I^{125} e I^{123}.
Para la descripción de estas técnicas, se hace
referencia a la solicitud de patente FR publicada con el número
2649488.
En estas aplicaciones, el pequeño tamaño del
fragmento V_{HH} es una ventaja definitiva para la penetración
dentro del tejido.
La invención también se refiere a los
anticuerpos monoclonales que reaccionan con los antiidiotipos de los
anticuerpos descritos anteriormente.
La invención no humana también se refiere a las
células o a los organismos no humanos en los que se han clonado las
inmunoglobulinas de cadena pesada. Tales células u organismos pueden
usarse para el propósito de producir inmunoglobulinas de cadena
pesada que tengan una especificidad deseada preseleccionada, o que
correspondan a un repertorio particular. También pueden producirse
para el propósito de modificación del metabolismo de la célula que
las expresa. En el caso de la modificación del metabolismo de las
células transformadas con las secuencias que codifican para las
inmunoglobulinas de cadena pesada, estas inmunoglobulinas producidas
de cadena pesada se usan como ADN antisentido. El ADN antisentido
está implicado normalmente en el bloqueo de la expresión de ciertos
genes, tal como por ejemplo, en el antígeno de superficie variable
de los tripanosomas o de otros patógenos. Asimismo, la producción
de la actividad de ciertas proteínas o enzimas podría inhibirse
mediante los anticuerpos que se expresan contra esta proteína o
enzima dentro de la misma célula.
La invención también se refiere a una
inmunoglobulina modificada de 4 cadenas o a fragmentos de los
mismos, cuyas regiones V_{H} se han sustituido parcialmente por
secuencias específicas o aminoácidos de inmunoglobulinas de cadena
pesada, especialmente por secuencias del dominio V_{HH}. Un
dominio V_{H} particular y modificado de una inmunoglobulina de
cuatro cadenas, se caracteriza porque la leucina, la prolina o la
glutamina de la posición 45 de las regiones V_{H} se ha
sustituido por otros aminoácidos y preferiblemente por arginina,
ácido glutámico o cisteína.
Un dominio V_{H} o V_{L} adicional
modificado de una inmunoglobulina de cuatro cadenas se caracteriza
por la unión de los bucles CDR o de las regiones FK mediante la
introducción de cisteínas apareadas, seleccionándose la región CDR
entre la CDR_{1} y la CDR_{3}, siendo la región FW la región
FW_{2} y, especialmente, porque una de las cisteínas introducidas
está en la posición 31, 33 de la FR_{2} o en la 45 de la CDR_{2}
y la otra en la CDR_{3}.
Especialmente, la introducción de cisteínas
apareadas es de manera que el bucle del CDR_{3} esté unido al
dominio FW2 o al CDR1 y más especialmente, la cisteína del CDR3 del
V_{H} está unida a una cisteína en la posición 31 ó 33 del FW2 o
en la posición 45 del CDR2.
En otra realización de la invención, células de
plantas pueden modificarse mediante las inmunoglobulinas de cadena
pesada de acuerdo con la invención, con el fin de que adquieran
nuevas propiedades o propiedades incrementadas.
Las inmunoglobulinas de cadena pesada de la
invención pueden usarse para la terapia genética del cáncer, por
ejemplo mediante la utilización de anticuerpos dirigidos contra las
proteínas presentes en las células tumorales.
En tal caso, la expresión de uno o dos genes
V_{HH} puede obtenerse mediante la utilización de vectores
derivados de parvovirus o adenovirus. Los parvovirus se caracterizan
por el hecho de que están desprovistos de patogenicidad o casi no
son patogénicos para las células humanas normales y por el hecho de
que son capaces de multiplicarse fácilmente en las células
cancerígenas (Russel S.J. 1990, Immunol. Today II.
196-200).
Las inmunoglobulinas de cadena pesada se clonan,
por ejemplo, dentro de los sitios HindIII/XbaI del
plásmido infeccioso del virus MVM murino (pMM984). (Merchlinsky
et al, 1983, J. Virol. 47, 227-232) y luego
se sitúan bajo el control del promotor MVM38.
El gen del dominio V_{HH} se amplifica por PCR
mediante el uso de un cebador 5' que contiene un codón de
iniciación y un sitio HindIII, el cebador 3' que contiene un
codón de terminación y un sitio XbaI.
El constructo se inserta entonces entre las
posiciones 2650 (HindIII) y 4067 (XbaI) dentro del
plásmido.
La eficacia de la clonación puede comprobarse
mediante transfección. El vector que contiene el anticuerpo se
introduce entonces en las células permisivas (NB-E)
mediante transfección.
Las células se recuperan tras dos días y la
presencia de regiones V_{HH} se determina con un ensayo ELISA
usando antisuero de conejo que reacciona con la parte V_{HH}.
La invención permite además la preparación de
anticuerpos catalíticos mediante formas diferentes. La producción
de anticuerpos dirigidos contra los componentes que imitan los
estados activados de los sustratos (como ejemplo, el vanadato como
componente que imita el estado activado del fosfato con el fin de
producir sus actividades fosfoesterasas, el fosfato como compuesto
que imita la unión peptídica para producir proteasas) permite
obtener anticuerpos que tienen una función catalítica. Otra forma
de obtener tales anticuerpos consiste en realizar una mutagénesis
aleatoria en los clones de anticuerpos, por ejemplo mediante PCR,
introduciendo bases anormales durante la amplificación de los
clones. Estos fragmentos amplificados obtenidos por PCR se
introducen entonces dentro de un vector apropiado para clonación.
Su expresión en la superficie de la bacteria permite la detección
por el sustrato de los clones que tienen la actividad enzimática.
Naturalmente, estos dos enfoques pueden combinarse. Finalmente,
partiendo de la base de los datos disponibles sobre la estructura,
por ejemplo los datos obtenidos por cristalografía de rayos X o
RMN, las modificaciones pueden dirigirse. Estas modificaciones
pueden realizarse mediante técnicas usuales de ingeniería genética o
mediante síntesis completa. Una ventaja del V_{HH} de las
inmunoglobulinas de cadena pesada de la invención es el hecho de que
son suficientemente solubles.
Las inmunoglobulinas de cadena pesada de la
invención pueden producirse además en células de plantas,
especialmente en plantas transgénicas. Como ejemplo, las
inmunoglobulinas de cadena pesada pueden producirse en plantas
usando el plásmido pMon530 (Roger et al. Meth Enzym 153 1566
1987), vector de expresión constitutivo de plantas, tal como se ha
descrito para los anticuerpos clásicos de cuatro cadenas (Hiat et
al. Nature 342 76-78, 1989) usando una vez más
los cebadores apropiados de PCR, tal como se ha descrito
anteriormente, para generar un fragmento de ADN en la fase
correcta.
Otras ventajas y características de la invención
se harán evidentes en los ejemplos y figuras siguientes.
\global\parskip1.000000\baselineskip
Figura 1: Caracterización y purificación de
la IgG del camello mediante cromatografía de afinidad en Sepharosa
Proteína A y Proteína G (Pharmacia)
(A) muestra, tras la reducción, el perfil de
proteínas de SDS-PAGE de las fracciones adsorbidas y
no adsorbidas del suero de Camelus dromedarius. La fracción
adsorbida en la Proteína A y eluída con NaCl 0,15 M, ácido acético
al 0,58%, muestra bajo reducción (carril c) tres componentes de
cadena pesada de 50, 46 y 43 Kd, respectivamente, y la cadena
ligera (IgG del conejo en el carril a). Las fracciones adsorbidas en
un derivado de Sepharosa Proteína G (Pharmacia), que se ha diseñado
para suprimir la región de unión a la albúmina (carril e) y eluído
con gly HCl 0,1 M, pH 2,7, carecen de la cadena pesada de 46 Kd que
se recupera en la fracción no adsorbida (carril f). Ninguno de
estos componentes está presente en la fracción no adsorbida en la
Proteína A (carril d). El carril b contiene los marcadores de peso
molecular.
(B) y (C). Mediante elusión diferencial, las
fracciones de inmunoglobulinas que contienen la cadena pesada de 50
y 43 Kd, pueden separarse. Se adsorben 5 ml del suero de C.
dromedarius en una columna de Sepharosa Proteína G de 5 ml y la
columna se lava exhaustivamente con tampón fosfato 20 mM, pH 7,0.
Bajo elución con tampón a pH 3,5 (NaCl 0,15 M, ácido acético al
0,58%), se eluye un componente de 100 Kd que da, bajo reducción,
una cadena pesada de 43 Kd, (carril 1). Una vez que la absorbancia
del eluente de la columna ha caído hasta el nivel previo, puede
eluirse un segundo componente de la inmunoglobulina de 170 Kd con
tampón a pH 2,7 (glicina HCl al 0,1 M). Esta fracción, bajo
reducción, da una cadena pesada de 50 Kd y una amplia banda de
cadena ligera (carril 2).
La fracción no adsorbida sobre la Proteína G se
lleva entonces sobre una columna de Sepharosa Proteína A de 5 ml.
Tras lavar y eluir con tampón a pH 3,5 (NaCl 0,15 M, ácido acético
al 0,58%), se obtiene una tercera inmunoglobulina de 100 Kd que
consta únicamente de las cadenas pesadas de 46 Kd (carril 3).
Figura 2: Inmunoglobulinas de Camelus
bactrianus, Lama vicugna, Lama glama y Lama pacos a la
Proteína A (carriles A) y a la Proteína G (carriles G) analizadas
sobre SDS-PAGE antes (A) y después (B) de la
reducción
Se añadieron 10 \mul de suero obtenido a
partir de diferentes especies a tubos Eppendorf® que contenían 10
mg de Sepharosa Proteína A o Proteína G suspendidos en 400 \mul de
tampón de inmunoprecipitación a pH 8,3 (NaCl 0,2 M, Tris 0,01 M;
EDTA 0,01 M, Triton X100 al 1%, ovoalbúmina al 0,1%). Los tubos se
hicieron girar lentamente durante 2 horas a 4ºC. Tras la
centrifugación, se lavaron los aglomerados 3 veces en el tampón y
una vez en el tampón en el que se han suprimido el Triton y la
ovoalbúmina. Los aglomerados se resuspendieron entonces en la
disolución de la muestra de SDS-PAGE, 70 \mul por
aglomerado, con o sin ditiotreitol como reductor. Tras hervir
durante 3 minutos a 100ºC, los tubos se centrifugaron y se
analizaron los sobrenadantes.
En todas las especies examinadas, las fracciones
(A) no reducidas contienen además de moléculas de aproximadamente
170 Kd, también componentes principales más pequeños de
aproximadamente 100 Kd. En la muestra (B) reducida, se detectan el
constituyente pesado y las cadenas ligeras. En todas las especies,
un componente de cadena pesada (marcado por un asterisco *) está
presente en el material eluído a partir de la Proteína A, pero
ausente en el material eluído a partir de la Proteína G.
Figura 3: La IgG_{1}, IgG_{2} e
IgG_{3} se prepararon a partir del suero obtenido de Camelus
dromedarius sano o infectado por Trypanosoma evansi
(título CATT 1/160 (3) y analizado por radioinmunoprecipitación o
Western Blotting para la actividad
anti-tripanosoma
(A) Se añadió lisado de antígenos de
Trypanosoma evansi marcado con ^{35}S metionina (recuento
de 500.000) a tubos Eppendorf que contenían 10 \mul de suero o 20
\mug de IgG_{1}, IgG_{2} o IgG_{3} en 200 \mul de tampón
de inmunoprecipitación a pH 8,3 que contenía TLCK 0,1 M como
inhibidor de proteinasa y se hicieron girar lentamente a 4ºC
durante una hora. Los tubos se suplementaron entonces con 10 mg de
Sepharosa Proteína A suspendida en 200 \mul del mismo tampón a pH
8,3 y se incubaron a 4ºC durante una hora adicional.
Tras el lavado y la centrifugación a 15.000 rpm
durante 12 s, cada aglomerado se resuspendió en 75 \mul de
disolución de la muestra de SDE-PAGE que contenía
DTT y se calentó durante 3 min a 100ºC. Tras la centrifugación en
una minifuga Eppendorf a 15.000 rpm durante 30 s, se rescataron 5
\mul del sobrenadante para determinación de la radiactividad y el
resto se analizó mediante SDS-PAGE y fluorografía.
Se inscribieron para cada carril los recuentos/5 \mul de
muestra.
(B) Se separaron 20 \mug de IgG_{1},
IgG_{2} o IgG_{3} de animales sanos e infectados por tripanosoma
mediante SDS-PAGE sin reducción ni calentamiento
previos. Las muestras separadas se electrotransfirieron entonces a
una membrana de nitrocelulosa, una parte de la membrana se tiñó con
Rojo de Ponceau para localizar el material proteico, y el resto se
incubó con ovoalbúmina al 1% en el tampón TST (Tris 10 mM, NaCl 150
mM, Tween 0,05%) para bloquear los sitios de unión a la
proteína.
Tras el bloqueo, la membrana se lavó
exhaustivamente con el tampón TST y se incubó durante 2 horas con el
antígeno de tripanosoma marcado con ^{35}S. Tras el lavado
exhaustivo, la membrana se secó y se analizó mediante
autorradiografía. Para evitar la unión previa e inespecífica, el
lisado marcado de tripanosoma se filtró a través de un filtro
millipore de 45 \mu y se incubó con inmunoglobulina y ovoalbúmina
de camello sano adsorbida sobre una membrana de nitrocelulosa.
Figura 4: La IgG3 purificada del camello por
cromatografía de afinidad en Sepharosa Proteína A, se digiere
parcialmente con papaína y se separa en Sepharosa Proteína
A.
Se disolvieron 14 mg de IgG3 purificada en
tampón fosfato 0,1 M a pH 7,0 que contenía EDTA 2 mM. Se digirieron
mediante 1 hora de incubación a 37ºC con mercuriopapaína (enzima al
1% en proporción de proteína) activada mediante cisteína
5.10^{4}M. La digestión se bloqueó por la adición de yodoacetamida
en exceso (4.10^{2}M) (13). Tras la centrifugación del digerido
en una centrífuga Eppendorf durante 5 min a 15.000 rpm, los
fragmentos de papaína se separaron en una columna de Sepharosa
Proteína A en las fracciones de unión (B) y de no unión (NB). La
fracción de unión se eluyó de la columna con tampón glicina HCl 0,1
M a pH 1,7.
Figura 5: Presentación esquemática de un
modelo para las moléculas de IgG3 desprovistas de cadenas
ligeras.
Figura 6: Representación esquemática de
inmunoglobulinas que tienen cadenas polipeptídicas pesadas y están
desprovistas de cadenas ligeras, con respecto a la inmunoglobulina
convencional del modelo de cuatro cadenas.
Representación de una sección
bisagra.
Figura 7: Alineación de 17 secuencias de ADN
de V_{HH} de las inmunoglobulinas de cadena pesada de
camello.
Figura 8: Expresión y purificación de la
proteína V_{HH}21 del camello a partir de E. coli
\vskip1.000000\baselineskip
Cuando se adsorbe el suero de Camelus
dromedarius en Sepharosa Proteína G, una cantidad apreciable
(25-35%) de inmunoglobulinas (Ig) permanece en
disolución que puede entonces recuperarse mediante cromatografía de
afinidad en Sepharosa Proteína A (fig. 1A). La fracción adsorbida en
la Proteína G puede eluirse diferencialmente en una fracción de
unión estrecha (25%) que consta de moléculas de un peso molecular
(PM) aparente no reducido de 170 Kd, y en una fracción de unión más
débil (30-45%) que tiene un peso molecular aparente
de 100 Kd (fig. 1B). El componente de 170 Kd, cuando se reduce, da
cadenas pesadas de 50 Kd y cadenas ligeras grandes de 30 Kd. La
fracción de 100 Kd está totalmente desprovista de cadenas ligeras y
parece estar compuesta únicamente por cadenas pesadas que, tras la
reducción, tienen un PM aparente de 43 Kd (Fig. 1C). La fracción que
no se une a la Proteína G puede purificarse por afinidad y eluirse
de una columna de Proteína A como un segundo componente de 100 Kd
que, tras la reducción, parece estar compuesto únicamente por
cadenas pesadas de 46 Kd.
Las inmunoglobulinas de cadenas pesadas
desprovistas de cadenas ligeras hasta un 75% en total de las
moléculas que se unen a la Proteína A.
Como las tres inmunoglobulinas se unen a la
Proteína A, nos referiremos a ellas como IgG: particularmente,
IgG_{1} (cadena ligera y cadena pesada \gamma1 (50 Kd) que se
unen a la Proteína G), IgG_{2} (cadena pesada \gamma2 (46 Kd)
que no se une a la proteína G) e IgG_{3} (cadena pesada \gamma3
(43 Kd) que se une a la proteína G). Hay una posibilidad de que
estas tres sub(clases) pueden subdividirse
adicionalmente.
Un estudio comparativo de los camélidos del
viejo mundo (Camelus bactrianus y Camelus dromedarius)
y de los camélidos del nuevo mundo (Lama pacos, Lama glama, Lama
vicugna) mostraron que las inmunoglobulinas de cadena pesada se
encontraron en todas las especies examinadas, a pesar de con
diferencias menores en el peso molecular aparente y en la
proporción. Los camélidos del nuevo mundo difieren de los camélidos
del viejo mundo en que tienen una molécula más grande de IgG_{3}
(inmunoglobulina de cadena pesada que se une a la Proteína G) en
que las cadenas pesadas constituyentes tienen un peso molecular
aparente de 47 Kd (fig. 2).
La abundancia de inmunoglobulinas de cadena
pesada en el suero de los camélidos hace plantearse la pregunta de
cuál es su papel en la respuesta inmune y en particular, si llevan
especificidad de unión al antígeno y si es así, cómo es de amplio
su repertorio. Esta pregunta podría responderse examinando las
inmunoglobulinas de los camellos infectados por Tripanosoma
evansi (Camelus dromedarius).
Para este propósito, las fracciones
correspondientes de IgG_{1}, IgG_{2}, IgG_{3} se prepararon a
partir del suero de un camello sano y a partir del suero de
camellos con un título elevado de antitripanosoma, medido mediante
el Ensayo de Aglutinación (3). En radioinmunoprecipitación, se
demostró que la IgG_{1}, la IgG_{2}, y la IgG_{3} derivadas
del camello infectado, que indican amplia heterogeneidad y
complejidad de repertorio (Fig. 3A), se unen a un gran número de
antígenos presentes en un lisado de tripanosoma marcado por ^{35}S
metionina.
En los experimentos de inmunotransferencia, el
lisado de tripanosoma marcado con ^{35}S metionina se une a
IgG_{1}, IgG_{2}, IgG_{3} separadas por
SDS-PAGE, obtenidas a partir de animales infectados
(Fig. 3B).
\newpage
Esto lleva a concluir que las cadenas pesadas
del camélido IgG_{2} e IgG_{3} son auténticos anticuerpos que
unen antígenos.
Un paradigma inmunológico establece que un
repertorio amplio de anticuerpos se genera por la combinación de
los repertorios de la región variable V de la cadena ligera y la
cadena pesada (6). Las inmunoglobulinas de cadena pesada del
camello parecen contradecir este paradigma.
Las inmunoglobulinas se caracterizan por un
patrón complejo de IEF (isoelectroenfoque) que refleja su
heterogeneidad extrema. Para determinar si las dos cadenas pesadas
que constituyen la IgG_{2} y la IgG_{3} son o no idénticas, se
observó el patrón de isoelectroenfoque (I.E.F) antes y después de la
separación de la cadena mediante reducción y alquilación usando
yodoacetamida como agente alquilante.
Como este agente alquilante no introduce cargas
adicionales en la molécula, los monómeros resultantes de la
reducción y la alquilación de una cadena homodímera pesada tendrá
prácticamente el mismo punto isoeléctrico que el dímero, mientras
que si se derivan de un heterodímero de cadena pesada, en la mayoría
de los casos los monómeros diferirán suficientemente en el punto
isoeléctrico para generar un patrón diferente en I.E.F.
Bajo reducción y alquilación por yodoacetamida,
el patrón observado no está modificado para la IgG_{2} y la
IgG_{3} de Camelus dromedarius, indicando que estas
moléculas están compuestas de dos cadenas pesadas idénticas que
migran a la misma posición que la molécula no reducida a partir de
la que se han originado.
Por el contrario, el patrón de I.E.F. de la
IgG_{1} se modifica completamente tras la reducción, ya que el
punto isoeléctrico de cada molécula se determina por la combinación
de los puntos isoeléctricos de las cadenas ligera y pesada, que
tras la separación, migrarán a posiciones diferentes.
Estos hallazgos indican que las cadenas pesadas
solas pueden generar un amplio repertorio y cuestionan la
contribución de la cadena ligera al repertorio útil del anticuerpo.
Si esta necesidad se anula, ¿qué otro papel desempeña la cadena
ligera?.
Normalmente, la cadena pesada aislada de las
inmunoglobulinas de mamífero tienden a agregarse considerablemente,
pero sólo se solubilizan mediante las cadenas ligeras (8, 9) que se
unen al dominio C_{H}1 de la cadena pesada.
En humanos y ratones, varios mielomas
espontáneos o inducidos producen una inmunoglobulina patológica
compuesta únicamente por cadenas pesadas (enfermedad de la cadena
pesada). Estas cadenas pesadas proteicas del mieloma llevan
deleciones en los dominios C_{H}1 y V_{HH} (10). La razón por la
que las cadenas pesadas de longitud completa no dan lugar a cadenas
pesadas secretadas en tales inmunoglobulinas patológicas, parece
provenir del hecho de que la síntesis de Ig implica una proteína
chaperonina, la proteína de unión a la cadena pesada de la
inmunoglobulina o BIP (11), que normalmente está sustituida por la
cadena ligera (12). Es posible que el papel primordial de la cadena
ligera en las inmunoglobulinas del modelo de cuatro cadenas es el de
un acompañante asignado a la cadena pesada y que la aparición de
los repertorios de cadena ligera sólo ha sido una ventaja
evolutiva.
Las cadenas \gamma2 y \gamma3 de camélidos
son considerablemente más cortas que la cadena \gamma normal de
mamífero. Esto sugeriría que se han producido deleciones en el
dominio C_{H}1. Las diferencias en los tamaños de las
inmunoglobulinas \gamma2 y \gamma3 de los camélidos del viejo y
del nuevo mundo, sugieren que las deleciones se produjeron en
varias etapas evolutivas, especialmente en el dominio C_{H}1.
\vskip1.000000\baselineskip
La estrategia seguida para investigar la
estructura primaria de la inmunoglobulina de cadena pesada es una
combinación de proteína y secuenciación de ADNc; la secuenciación de
la proteína es necesaria para identificar las flexibilidades de
secuencia características de cada inmunoglobulina. El extremo
N-terminal de la inmunoglobulina que se deriva del
repertorio de la región variable de la cadena pesada sólo da
información sobre los subgrupos de V_{HH} (región variable de la
cadena pesada) y no puede usarse para la identificación de clase o
de subclase. Esto significa que los datos de la secuencia han de
obtenerse a partir de los sitios internos de división enzimática o
química.
Una combinación de digestión de papaína y
cromatografía de afinidad a la Proteína A permitieron la separación
de varios fragmentos que dan información sobre la estructura general
de la IgG3.
La IgG3 del camello (Camelus dromedarius)
purificada mediante cromatografía de afinidad en Sepharosa Proteína
A se digirió parcialmente con papaína y el digesto se separó en
Sepharosa Proteína A en fracciones de unión y de no unión. Estas
fracciones se analizaron mediante SDS-PAGE bajo
condiciones de reducción y no reducción (fig 4).
La fracción unida contenía dos componentes, uno
de 28 Kd y uno de 14,4 Kd, además de material no dividido o
parcialmente dividido. Se separaron bien mediante electroforesis en
gel (a partir de geles preparativos de SDS-PAGE al
19%) bajo condiciones no reductoras, y se purificaron adicionalmente
por electroelución (en bicarbonato de amonio 50 nM, SDS al 0,1%
(p/v) usando un electroeluidor). Tras la liofilización de estas
fracciones electroeluidas, el SDS restante se eliminó mediante
precipitación de la proteína a través de la adición de etanol al
90%, mezclando e incubando la mezcla durante la noche a -20ºC (14).
La proteína precipitada se recogió en un aglomerado mediante
centrifugación (15.000 rpm, 5 min) y se usó para la secuenciación de
la proteína. La secuenciación del extremo
N-terminal se llevó a cabo usando las química
automatizada de Edman de un secuenciador líquido de proteínas
mediante impulsos de Applied Biosystem 477A. Los aminoácidos se
identificaron como sus derivados de feniltiohidantoína (PTH) usando
un analizador de PTH de Applied Biosystem 120. Todos los productos
químicos y los reactivos se compraron de Applied Biosystems. Los
análisis de los datos cromatográficos se llevaron a cabo usando el
software de Applied Biosystems versión 1.61. En cada caso, el
análisis de la secuencia dirigido por ordenador se confirmó por
inspección directa de los cromatogramas a partir del analizador de
PTH. Las muestras de la secuenciación de la proteína se disolvieron
o bien en ácido trifluoroacético (TFA) al 50% (v/v) (fragmento de
28 Kd) o en TFA al 100% (fragmento de 14 Kd). Las muestras de la
proteína disuelta equivalentes a 2000 pmol (fragmento de 28 Kd) o a
500 pmol (fragmento de 14 Kd) se aplicaron a discos de fibra de
vidrio tratados con TFA. Los discos de fibra de vidrio se
recubrieron con BrioBrene (3 mg) y se preciclaron una vez antes de
usarlos.
La secuenciación del extremo
N-terminal del fragmento de 28 Kd da una secuencia
homóloga a la parte N-terminal del dominio C_{H}2
de \gamma y por tanto, al extremo N-terminal del
fragmento Fc. La secuencia N-terminal del fragmento
de 14,4 Kd corresponde a la última lisina de un C_{H}2 de \gamma
y al extremo N-terminal de un dominio C_{H}3 de
\gamma (Tabla 1). El peso molecular (PM) de los fragmentos de
papaína y la identificación de sus secuencias
N-terminales llevaron a concluir que los dominios
C_{H}2 y C_{H}3 de las cadenas pesadas \gamma3 son normales
en tamaño y que la deleción debe producirse, o bien en el dominio
C_{H}1, o en el V_{HH} para generar la cadena \gamma3 más
corta. Las fracciones que no se unen a la Sepharosa Proteína A
contienen dos bandas de 34 y 17 Kd que están más difusas en
SDE-PAGE, indicando que se originan a partir de la
parte variable N-terminal de la molécula (fig
4).
Bajo reducción, se encuentra una única banda
difusa de 17 Kd, indicando que la de 34 Kd es un dímero unido por
un puente disulfuro del componente de 17 Kd. El fragmento de 34 Kd
contiene aparentemente la bisagra y el dominio V_{HH} del extremo
N-terminal.
Los datos de la secuencia de proteínas también
puede usarse para construir cebadores degenerados de
oligonucleótidos que permiten la amplificación de PCR del ADNc o
del ADN genómico.
Se ha demostrado que las células procedentes de
las células marcadas del bazo del camello reaccionaban con sueros
de anti-inmunoglobulina de conejo y camello y que
por tanto, el bazo fue un sitio de síntesis de al menos una clase
de inmunoglobulina. Por consiguiente, el ADNc se sintetizó a partir
del ARNm del bazo del camello. Las condiciones para el aislamiento
del ARN fueron las siguientes: el ARN total se aisló a partir del
bazo del dromedario mediante el método del isotiocianato de guanidio
(15). El ARNm se purificó con perlas paramagnéticas de oligo T.
La síntesis de ADNc se obtiene usando un molde
de ARNm de 1\mug, un cebador de oligo dT y transcriptasa inversa
(BOERHINGER MAN). La segunda hebra del ADNc se obtiene usando ARNasa
H y ADN polimerasa de E. coli, de acuerdo con la condición
dada por el proveedor.
Las secuencias relevantes se amplificaron por
PCR: 5 ng de ADNc se amplificaron por PCR en una mezcla de reacción
de 100 \mul (Tris-HCl 10 mM a pH 8,3, KCl 50 mM,
MgCl_{2} 15 mM, gelatina al 0,01% p/v), 200 \muM de cada dNTP y
25 pmoles de cada cebador) cubierto con una capa de aceite mineral
(Sigma).
Los cebadores degenerados contienen sitios
EcoRI y KpnI y que además están clonados en pUC 18.
Tras una ronda de desnaturalización y templado (94ºC durante 5 min
y 54ºC durante 5 min), se añadieron 2 unidades de Marcador ADN
polimerasa a la mezcla de la reacción antes de someterlo a 35 ciclos
de amplificación: 1 min a 94ºC (desnaturalizar) 1 min a 54ºC
(templar), 2 min a 72ºC (alargar). Para amplificar las secuencias de
ADN entre los dominios V_{HH} y C_{H}2, (# 72 clones), se llevó
a cabo la PCR en las mismas condiciones, con la excepción de que la
temperatura de templado se incrementó hasta 60ºC.
Un clon examinado (#56/36) tenía una secuencia
correspondiente a la parte N-terminal de un dominio
C_{H}2 idéntico a la secuencia del fragmento de 28 Kd. La
disponibilidad de estos datos de secuencia permitieron la
construcción de un cebador 3' exacto y la clonación de la región
entre el extremo N-terminal del dominio V_{HH} y
el C_{H}2.
Los cebadores 5' correspondientes al V_{HH}
(16) del ratón y que contenían un sitio de restricción XhoI
se usaron junto con el cebador 3' en el que se había insertado un
sitio KpnI y las secuencias amplificadas se clonaron en
pBluescript®. El clon #56/36 que presentaba dos sitios HaeIII
internos, se digirió con esta enzima para producir una sonda para
identificar los clones positivos de la PCR.
Tras la amplificación, los productos de la PCR
se comprobaron en un gel de agarosa al 1,2% (p/v). El aclaramiento
de los productos de la PCR incluyó una extracción de
fenol-cloroformo, seguida por purificación adicional
por HPLC (columna GEN-PAC FAX, Waters) y finalmente
usando el kit MERMAID o GENECLEAN II, BIO 101, Inc) según fue
apropiado. Tras estas etapas de purificación, el ADNc amplificado se
digirió entonces con EcoRI y KpnI para los clones de la serie #56 y
con XhoI y KpnI para los clones de la serie #72. Una extracción
final con fenol-cloroformo precedida por la
ligación en pUC 18 (clones de la serie #56) o en pBluescript®
(clones de la serie #72).
Todos los clones obtenidos fueron más pequeños
de 860 pares de base de lo que se esperaba si poseían una región
completa V_{HH} y C_{H}1. Los datos parciales de la secuencia
correspondientes al N-terminal de la región
V_{HH} revelan que de entre 30 clones, 3 fueron idénticos y
posiblemente no independientes. Las secuencias obtenidas se
asemejan al subgrupo III humano y a los subgrupos murinos IIIa y
IIIb (Tabla 2).
Se obtuvieron los clones correspondientes a dos
juegos diferentes de secuencias proteicas C_{H}2. Un primer juego
de secuencias (#72/41) tenía una región C_{H}2
N-terminal idéntica a la obtenida mediante
secuenciación de proteínas de los fragmentos de papaína de 28 Kd de
la cadena pesada \gamma3, una corta región bisagra que contenía 3
cisteínas y una región variable correspondiente a los residuos de la
estructura (FR4) codificada por los minigenes J que se adhieren a
la bisagra. El dominio C_{H}1 falta por completo. Este ADNc
corresponde a la cadena \gamma3 (Tabla 4).
En una secuencia estrechamente relacionada
(#72/1), la prolina de la posición 259 está sustituida por
treonina.
La secuencia correspondiente al C_{H}3 y a la
parte restante del C_{H}2 se obtuvo por PCR del ADNc usando como
cebador KpnI, un poliT en el que el sitio de restricción
KpnI se había insertado en el extremo 5'. La secuencia total
de la cadena \gamma3 corresponde con un peso molecular (PM) que
está en concordancia con los datos obtenidos a partir de la
electroforesis en SDS-PAGE.
La secuencia de esta cadena \gamma3 presenta
similitudes con otras cadenas \gamma, excepto que carece del
dominio C_{H}1, siendo el dominio V_{HH} adyacente a la
bisagra.
Una o las tres cisteínas podrían ser
probablemente responsables de mantener a las dos cadenas \gamma3
juntas.
Los resultados han permitido definir un modelo
para la molécula IgG3 basado en la secuencia y en la rotura por
papaína (fig. 5).
La papaína puede romper la molécula a cada lado
de los disulfuros de la bisagra y también entre C_{H}2 y
C_{H}3. Bajo condiciones no reductoras, los dominios V_{HH} de
la IgG3 pueden aislarse como dímero unido por disulfuro o como
monómero, dependiendo del sitio de rotura de la papaína.
Un segundo juego de clones #72/29 tenía una
secuencia ligeramente diferente para el C_{H}2 y se caracterizaba
por una bisagra muy larga precedida inmediatamente por el dominio
variable. Esta región bisagra tiene 3 cisteínas en su extremo
C-terminal en una secuencia homóloga a la bisagra de
\gamma3. Tal segundo juego de clones podría representar la
subclase IgG2. Para la parte constante de la \gamma3 y también
para la supuesta \gamma2, la mayoría de los clones son idénticos,
mostrando las secuencias específicas de \gamma2 o \gamma3. Sin
embargo, algunos clones, tales como #72/1, muestran diferencias
menores. Por ejemplo, en el caso de los clones #72/1 se detectan
diferencias en dos nucleótidos.
Varios ADNc de las regiones V_{HH} se han
secuenciado ahora total o parcialmente, con excepción de una corta
región en el extremo N-terminal que se deriva del
cebador.
En la traducción, la mayoría muestra las
secuencias característica Ser_{21}, Cys_{22} y Tyr_{90}
Tyr_{91} Cys_{92}, del puente disulfuro
intra-región V_{HH} que une los residuos 22 y 92.
Todos estos clones tienen una secuencia que corresponde con los
residuos de la estructura 4 (FR4) de la región variable que precede
inmediatamente la secuencia bisagra postulada (Tabla 3). Esta
secuencia se genera por los minigenes J y en la mayoría de los
casos es similar a la secuencia codificada por los minigenes J de
humano y ratón. La longitud de la secuencia entre la Cys_{92} de
la región y el extremo C-terminal de las regiones
V_{HH} es variable y, en las secuencias determinadas, oscila
desde 25 hasta 37 aminoácidos, como se podría esperar a partir de
las reconfiguraciones de los minigenes J y D que varían en
longitud.
Surgen varias preguntas importantes por la
existencia exclusiva de estas inmunoglobulinas de cadena pesada en
una situación no patológica. En primer lugar, ¿son anticuerpos
auténticos? Las inmunoglobulinas de cadena pesada obtenidas a
partir de los camellos infectados por tripanosoma, reaccionan con un
gran número de antígenos de parásitos, tal como se muestra en la
parte I de estos ejemplos. Esto implica que el sistema inmune del
camélido genera un amplio número de sitios de unión compuestos por
dominios V_{HH} únicamente. Esto se confirma por la diversidad de
las regiones V_{HH} de las inmunoglobulinas de cadena pesada
obtenidas por PCR.
La segunda pregunta es "¿cómo se
secretan?". La secreción de las cadenas pesadas de las
inmunoglobulinas que componen las inmunoglobulinas del modelo de
cuatro cadenas no se produce bajo condiciones normales. Una proteína
chaperonina, la proteína de unión a la cadena pesada, o proteína
BIP, evita que las cadenas pesadas se secreten. Es sólo cuando la
cadena ligera desplaza a la proteína BIP en el retículo
endoplasmático cuando puede producirse la secreción (13).
El dímero de cadenas pesadas encontrado en el
suero de humano o ratón con la denominada "enfermedad de la
cadena pesada", carece de los dominios C_{H}1 que se piensa que
albergan el sitio BIP (14). En ausencia de este dominio, la
proteína BIP puede que no se una más y que no evite el transporte de
las cadenas pesadas.
La presencia en los camellos de una clase IgG1
compuesta por cadenas pesadas y ligeras que constituyen entre el
25% y el 50% de las moléculas totales de IgG, también plantea el
problema de cómo se produce la maduración y el intercambio de clase
y de cuál es el papel de la cadena ligera. La cadena ligera del
camélido parece inusualmente grande y heterogénea cuando se examina
en SDS-PAGE.
La mayor dimensión de un dominio aislado es de
40 \ring{A} y la máxima extensión obtenible entre los sitios de
unión de una IgG convencional con C_{H}1 y V_{HH} será del orden
de 160 \ring{A} (2V_{HH} + 2C_{H}1) (19). La deleción del
dominio C_{H}1 en los dos tipos de anticuerpos de cadena pesada
desprovistos de cadenas ligeras, ya secuenciados, tiene como
resultado una modificación de esta extensión máxima (fig. 6). En la
IgG3, la enorme distancia entre las extremidades de las regiones
V_{HH} será del orden de 80 \ring{A} (2V_{HH}). Esto podría
ser una grave limitación para la aglutinación o el entrecruzamiento.
En la IgG2 esto se compensa por la región extremadamente larga de
la bisagra, compuesta por una repetición de 12 veces de la secuencia
Pro-X (en la que X es Gln, Lys o Glu) y localizada
en posición N-terminal con respecto a los puentes
disulfuro de la bisagra. Por el contrario, en la IgG3 humana, la
bisagra muy grande que también surge aparentemente como resultado
de la duplicación de la secuencia, no contribuye a incrementar la
distancia que se extiende a lo largo de los dos sitios de unión
cuando esta bisagra se intercala con los puentes disulfuro.
El único dominio V_{HH} también podría
permitir probablemente la libertad rotacional considerable del sitio
de unión frente al dominio Fc.
A diferencia de las cadenas pesadas del mieloma
que probablemente resultan de la deleción de C_{H}1 en una única
célula que produce anticuerpos, o los anticuerpos de cadena pesada
producidos por la clonación de expresión (15), los anticuerpos de
cadena pesada del camélido (desprovistos de cadenas ligeras) han
aparecido en un entorno inmunológico normal y se espera que habrán
sufrido refinamiento selectivo en la especificidad y la afinidad
que acompaña a la maduración de las células B.
Los clones pueden expresarse en varios tipos de
vectores de expresión. Como un ejemplo que usa un vector
comercialmente disponible Immuno PBS (Huse et al: Science
(1989) 246, 1275), los clones producidos en Bluescript® de acuerdo
con el procedimiento anteriormente descrito, se han recuperado por
PCR usando el mismo XhoI que contiene el cebador 5' y un nuevo
cebador 3' que corresponde a los residuos 113-103 en
la estructura de las inmunoglobulinas, en las que se ha construido
un sitio Spe: TC TTA ACT AGT GAG GAG ACG GTG ACC TG. Este
procedimiento permitió la clonación de V_{HH} en el sitio
Xho/Spe del vector Immuno PBS. Sin embargo, el extremo 3' del
gen no estaba en fase con el "marcador" de identificación y el
codón de terminación del vector. Para lograr eso, el constructo se
cortó con Spe y los salientes de 4 bases se completaron
usando el fragmento Klenow tras lo cual se volvió a ligar el
vector.
- -
- El vector de expresión plásmido ipBS (immunopBS) (Stratacyte) contiene una secuencia líder pel B que se usa para la expresión de la cadena de inmunoglobulina en E. coli bajo el control del promotor pLAC, un sitio de unión al ribosoma y codones de terminación. Además, contiene una secuencia para un marcador decapéptido C-terminal.
- -
- E. coli JM101 que alberga el plásmido ipBS-V_{HH}21 se hizo crecer en 1 l de medio TB con 100 \mug/ml de ampicilina y glucosa al 0,1% a 32ºC. La expresión se indujo por la adición de IPTG 1 mM (concentración final) a una DO_{550} de 1,0. Tras la inducción durante la noche a 28ºC, las células se recogieron mediante centrifugación a 4.000 g durante 10 min (4ºC) y se resuspendieron en 10 ml de tampón TES (Tris-HCl 0,2 M, pH 8,0, EDTA 0,5 mM, sacarosa 0,5 M). La suspensión se mantuvo en hielo durante 2 horas. Las proteínas periplasmáticas se eliminaron por choque osmótico mediante la adición de 20 ml de tampón TES diluido 1:4 v/v con agua, se mantuvieron en hielo durante una hora y posteriormente se centrifugaron a 12.000 g durante 30 min a 4ºC. La fracción periplasmática del sobrenadante se dializó contra Tris-HCl a pH 8,8, NaCl 50 mM, se aplicó en una columna de flujo rápido Q Sepharosa (Pharmacia), se lavó con el tampón anterior y se eluyó con un gradiente lineal de NaCl de 50 mM a 1 M en tampón.
- Las fracciones que contenían la proteína VHH se purificaron adicionalmente en una columna Superdex 75 (Pharmacia) equilibrada con tampón PBS (fosfato 0,01 M a pH 7,2, NaCl 0,15 M). El rendimiento de la proteína VHH purificada varía desde 2 hasta 5 mg/l por cultivo celular.
- -
- Las fracciones se analizaron por SDS-PAGE(I). La identificación positiva del fragmento VHH del anticuerpo del camello se hizo mediante análisis de Western Blot usando anticuerpo producido en conejos contra la IgGH3 purificada del camello y un conjugado anti-IgG del conejo-fosfatasa alcalina (II).
Como patrones de la proteína (Pharmacia), se
usaron proteínas periplasmáticas preparadas a partir de 1 ml de
IPTG-JM101 inducida/ipBS-V_{HH}21.
La Figura 8 muestra: C,D: fracciones a partir de la cromatografía
rápida en columna de S Sepharosa (C:Eluído en NaCl 650 mM, D:Eluído
en NaCl 700 nM), E,F:fracciones a partir de la cromatografía en
columna Superdex 75.
Como puede observarse, la principal impureza se
elimina por la cromatografía de intercambio iónico y la mayoría de
las impurezas que queda se elimina mediante filtración en gel.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
\newpage
1. Ward, E.S., Gussow, D.,
Griffits, A.D., Jones, P.T. y Winter G.
Nature 341, 544-546 (1989).
2. Ungar-Waron H.,
Eliase E., Gluckman A. y Trainin Z. Isr. J.
Vet. Med., 43, 198-203
(1987).
3. Bajyana Songa E. y Hamers R.,
Ann. Soc. Belge Med. Trop., 68,
233-240 (1988).
4. Edelman G.M., Olins D.E.,
Gally J.A. y Zinder N.D., Proc. Nat. Acad. Sc.,
50, 753 (1963).
5. Franek F. y Nezlin R.S.,
Biokhimiya, 28, 193 (1963).
6. Roitt I.M., Brostof J. y
Male D.K., Immunology, Gower Med. Pub. London.
New-York, págs. 9.2. (1985).
7. Shiffer M., Girling R.L.,
Ely K.R. y Edmundson B., Biochemistry,
12, 4620-4631 (1973).
8. Fleischman J.B., Pain R.H. y
Porter R.R., Arch. Biochem. Biophys, Suppl. 1, 174
(1962).
9. Roholt O., Onoue K. y
Pressman D., PNAS 51, 173-178
(1964).
10. Seligmann M., Mihaesco E.,
Preud'homme J.L., Danon F. y Brouet J.C.,
Immunological Rev., 48, 145-167
(1979).
11. Henderschot L., Bole D.,
Köhler G. y Kearney J.F., The Journal of Cell
Biology, 104, 761-767 (1987).
12. Hendrschot L.M., The Journal of
Cell Biology, 111, 829-837
(1990).
13. Hamers-Casterman, C.,
E. Wittouck, W. Van der Loo y R. Hamers,
Journal of Immunogenetics, 6, 373-381
(1979).
14. Applied Biosystems-Ethanol
Precipitation of Electro Eluted Electrodialysed Sample. Publicación
nº 27.
15. Maniatis, T. E.F. Fritsch y J.
Sambrook, Molecular Cloning. A Laboratory Manual
(1988).
16. Sastry et al., PNAS,
86, 5728, (1989).
17. Sanger, F., S. Nicklen y A.R.
Coulson, Proc. Natl. Acad. U.S.A., 74,
5463-5467 (1977).
18. Kabat E.A., Tai Te Wu, M.
Reid-Miller, H.M. Perry y K.S.
Gottesman, U.S. Dpt of Heath and Human Services, National
Institutes of Health (1987).
19. Valentine, R.C. y N.M. Geen,
J.M.B., 27, 615-617 (1967).
Claims (36)
1. Inmunoglobulina caracterizada porque
es obtenible a partir de Camélidos y porque comprende dos cadenas
polipeptídicas pesadas suficientes para la formación de un sitio de
unión al antígeno completo, o varios sitios de unión al antígeno,
en la que las cadenas polipeptídicas pesadas están desprovistas de
un denominado primer dominio en su región constante (CH1), estando
esta inmunoglobulina desprovista de cadenas polipeptídicas
ligeras.
2. Inmunoglobulina según la reivindicación 1,
caracterizada porque comprende dos cadenas polipeptídicas
pesadas capaces de reconocer y unirse a uno o varios antígenos y
porque la secuencia de aminoácidos de su región variable contiene,
en la posición 45, un aminoácido que se escoge entre aminoácidos
cargados o es un residuo de cisteína.
3. Inmunoglobulina según la reivindicación 1 ó
2, caracterizada porque comprende dos cadenas polipeptídicas
pesadas suficientes para la formación de un sitio completo de unión
al antígeno o de varios sitios de unión al antígeno, estando además
esta inmunoglobulina desprovista de cadenas polipeptídicas ligeras y
caracterizada además por el hecho de que es el producto de
la expresión en una célula huésped procariótica o eucariótica, de un
ADN o de un ADNc que codifica para la secuencia de una
inmunoglobulina desprovista de cadenas ligeras como obtenible a
partir de linfocitos o de otras células de Camélidos.
4. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 3, caracterizada porque comprende un
sitio de unión al antígeno o varios sitios de unión al antígeno y,
especialmente, porque cada región variable de cada cadena pesada
contiene al menos un sitio de unión al antígeno.
5. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 4, caracterizada porque es una
inmunoglobulina de tipo G de clase 2 (IgG2) o es una
inmunoglobulina de tipo G de clase 3 (IgG3).
6. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 5, como obtenible mediante purificación a
partir del suero de Camélidos, caracterizada porque:
- -
- se adsorbe mediante cromatografía en columna de Sepharosa Proteína G,
- -
- se adsorbe mediante cromatografía en columna de Sepharosa Proteína A
- -
- tiene un peso molecular de alrededor de 100 kd tras la elución con un tampón de pH 4,5 (NaCl 0,15 M, ácido acético al 0,58% ajustado a pH 4,5 mediante NaOH),
- -
- consiste en cadenas polipeptídicas pesadas \gamma2 de un peso molecular de alrededor de 45 kd, preferiblemente de 46 kd tras reducción.
\vskip1.000000\baselineskip
7. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 5 como obtenible mediante purificación a
partir del suero de los Camélidos, caracterizada porque:
- -
- se adsorbe mediante cromatografía en una columna de Sepharosa Proteína A,
- -
- tiene un peso molecular de alrededor de 100 kd tras la elución con un tampón de pH 3,5 (NaCl 0,15 M, ácido acético al 0,58%),
- -
- se adsorbe mediante cromatografía en una columna de Sepharosa Proteína G y se eluye con un tampón a pH 3,5 (NaCl 0,15M, ácido acético al 0,58%),
- -
- consiste en cadenas polipeptídicas pesadas \gamma3 de un peso molecular de alrededor de 45 kd, en particular entre 43 y 47 kd tras reducción.
8. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 7, caracterizada porque
- comprende 4 estructuras en su región variable,
estructuras que comprenden una secuencia de aminoácidos seleccionada
del siguiente grupo de secuencias:
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
- porque su región constante comprende los
dominios C_{H}2 y C_{H}3 que comprenden una secuencia de
aminoácidos seleccionada del siguiente grupo de secuencias.
\vskip1.000000\baselineskip
y/o,
- porque su región bisagra comprende desde 0
hasta 50 aminoácidos, especialmente porque su región bisagra
comprende una secuencia de aminoácidos seleccionada de las
secuencias siguientes:
- GTNEVCKCPKCP
o,
- EPKIPQPQPKPQPQPQPQPKPQPKPEPECTCPKCP
\vskip1.000000\baselineskip
9. Inmunoglobulina según una cualquiera de la
reivindicación 1 a 8, caracterizada porque está codificada
por una secuencia seleccionada entre aquellas representadas en la
figura 7.
10. Fragmento que es una cadena polipeptídica
pesada de una inmunoglobulina según la reivindicación 1, o un
fragmento que es la región variable de una cadena pesada de una
inmunoglobulina según la reivindicación 1, conteniendo ambos
fragmentos un residuo de aminoácido en la posición 45 de dicha
cadena pesada que es un aminoácido cargado o un residuo de
cisteína, formando dicho fragmento un sitio de unión al antígeno
determinado.
11. Fragmento de una inmunoglobulina según una
cualquiera de las reivindicaciones 1 a 9, caracterizada
porque se selecciona del grupo siguiente:
- -
- fragmentos obtenidos por la digestión enzimática de las inmunoglobulinas de la invención, que son el fragmento FV_{HH}h (que contiene los sitios de unión al antígeno de las cadenas pesadas) o su dímero F(V_{HH}H)_{2},
- -
- fragmentos homólogos obtenidos con otras enzimas proteolíticas.
\vskip1.000000\baselineskip
12. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 9, caracterizada porque toda o una parte
de su región constante está sustituida por toda o parte de la
región constante de un anticuerpo humano.
13. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 9, obtenible en células procarióticas,
especialmente en células E.coli mediante un proceso que comprende
las etapas de:
- a)
- clonar en un vector Bluescript de una secuencia de ADN o de ADNc que codifica para el dominio V_{H} de una inmunoglobulina desprovista de cadena ligera obtenible, por ejemplo, a partir de los linfocitos de los Camélidos,
- b)
- recuperar el fragmento clonado tras la amplificación usando un cebador 5' que contiene un sitio Xho y un cebador 3' que contiene un sitio Spe que tiene la secuencia siguiente
- TC TTA ACT AGT GAG GAG ACG GTG ACC TG,
- c)
- clonar el fragmento recuperado en fase en el vector inmuno PBS tras la digestión del vector con las enzimas de restricción Xho y Spe
- d)
- transformar las células huésped, especialmente E. coli, mediante transfección con el vector recombinante inmuno PBS de la etapa c,
- e)
- recuperar el producto de la expresión de la secuencia que codifica para V_{HH}, por ejemplo mediante la utilización de anticuerpos surgidos contra el dominio V_{HH} del dromedario.
\vskip1.000000\baselineskip
14. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 9, obtenible en células procarióticas, mediante
un proceso que comprende las etapas de:
- a)
- clonar en un vector Bluescript de una secuencia de ADN o de ADNc que codifica para el dominio V_{H} de una inmunoglobulina desprovista de cadena ligera obtenible, por ejemplo, a partir de los linfocitos de los Camélidos,
- b)
- recuperar el fragmento clonado tras la amplificación usando un cebador 5' que contiene un sitio Xho que tiene una secuencia escogida entre las siguientes:
\hskip0.5cm
- y un cebador 3' que contiene un sitio KpnI que tiene la secuencia siguiente
- CGC CAG CAA GGT AAC AGT TGA
- y
- c)
- clonar el fragmento recuperado en fase en el vector inmuno PBS tras la digestión del vector con las enzimas de restricción Xho y Kpn,
- d)
- transformar las células huésped, especialmente E. coli, mediante transfección con el vector recombinante inmuno PBS de la etapa c,
- e)
- recuperar el producto de la expresión de la secuencia que codifica para V_{HH}, por ejemplo mediante la utilización de anticuerpos surgidos contra el dominio V_{HH} del dromedario.
\vskip1.000000\baselineskip
15. Inmunoglobulinas heteroespecíficas según una
cualquiera de las reivindicaciones 1 a 9, obtenibles mediante un
proceso que comprende las etapas de:
- -
- obtener una primera secuencia de ADN o de ADNc que codifique para un dominio V_{HH} o para una parte del mismo, que tenga una especificidad determinada frente a un antígeno dado y que esté comprendida entre los sitios Xho y Spe,
- -
- obtener una segunda secuencia de ADN o ADNc que codifique para un dominio V_{HH} o para una parte del mismo, que tenga una especificidad determinada diferente de la especificidad de la primera secuencia de ADN o ADNc y que esté comprendida entre los sitios Spe y EcoRI,
- -
- digerir un vector inmuno PBS con las enzimas de restricción EcoRI y XhoI,
- -
- ligar las secuencias obtenidas de ADN o de ADNc que codifican para los dominios V_{HH}, de manera que las secuencias de ADN o de ADNc se clonen en serie en el vector,
- -
- transformar una célula huésped, especialmente la célula E. coli, mediante transfección y recuperar las inmunoglobulinas obtenidas.
16. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 9 ó 12 a 13, obtenibles mediante un proceso
que comprende las etapas de:
- -
- obtener una secuencia de ADN o de ADNc que codifique para un dominio V_{HH} o para una parte del mismo, que tenga un sitio específico de unión al antígeno determinado,
- -
- amplificar el ADN o el ADNc obtenido usando un cebador 5' que contenga un codón de iniciación y un sitio HindIII, y un cebador 3' que contenga un codón de terminación que tenga un sitio XhoI,
- -
- recombinar el ADN o el ADNc amplificado en un plásmido,
- -
- transfectar las células permisivas, especialmente las células NB-E, con el plásmido recombinante,
- -
- controlar la expresión, por ejemplo, mediante un ensayo ELISA con anticuerpos dirigidos contra una región de un domino V_{HH} y recuperar los productos obtenidos.
17. Inmunoglobulinas según la reivindicación 16,
obtenibles mediante un proceso que comprende la clonación adicional
de una segunda secuencia de ADN o ADNc que tiene otro sitio
determinado de unión al antígeno, en el plásmido.
18. Inmunoglobulina según una cualquiera de las
reivindicaciones 13 a 17, caracterizada porque es obtenible
mediante un proceso en el que la célula transformada recombinante
es una levadura, especialmente S. cerevisiae.
19. Inmunoglobulina según una cualquiera de las
reivindicaciones 13 a 17, caracterizada porque es obtenible
mediante un proceso en el que el vector es un vector apropiado para
la expresión en células de plantas y las células transformadas
recombinantes son células de plantas.
20. Inmunoglobulina o fragmento según una
cualquiera de las reivindicaciones 16 a 17, caracterizada
porque tiene una actividad catalítica, especialmente porque está
dirigida contra un antígeno que imita un estado activado de un
sustrato dado, habiendo sido modificadas estas inmunoglobulinas, por
ejemplo, a nivel de su sitio catalítico mediante mutagénesis
aleatoria o dirigida.
21. Secuencia de nucleótidos,
caracterizada porque codifica para toda o una parte de una
inmunoglobulina de acuerdo con una cualquiera de las
reivindicaciones 1 a 20, inmunoglobulinas que comprenden una
secuencia peptídica seleccionada de las siguientes:
22. Secuencia de nucleótidos
caracterizada porque codifica para una inmunoglobulina según
una cualquiera de las reivindicaciones 1 a 20, porque comprende una
secuencia seleccionada a partir de aquellos representados en la
figura 7.
23. Proceso para la preparación de un anticuerpo
monoclonal según una cualquiera de las reivindicaciones 1 a 20,
dirigido contra un antígeno determinado, consistiendo el sitio de
unión al antígeno del anticuerpo en cadenas polipeptídicas pesadas
y anticuerpo que está además desprovisto de cadenas polipeptídicas
ligeras, proceso que comprende:
- -
- la inmortalización de los linfocitos, obtenidos por ejemplo de la sangre periférica de los Camélidos previamente inmunizados con un antígeno determinado, con una célula inmortal y preferiblemente con células de mieloma, con el fin de formar un hibridoma,
- -
- el cultivo de las células inmortalizadas formadas y la recuperación de las células que producen los anticuerpos que tienen la especificidad deseada.
\vskip1.000000\baselineskip
24. Proceso para la preparación de anticuerpos
dirigidos contra antígenos determinados, que comprende las etapas
de:
- -
- clonar en vectores, especialmente en fagos y más particularmente en bacteriofagos filamentosos, la secuencia de ADN o de ADNc obtenida a partir de los linfocitos de Camélidos previamente inmunizados con determinados antígenos, capaces de producir una inmunoglobulina según una cualquiera de las reivindicaciones 1 a 20,
- -
- transformar las células procarióticas con los vectores anteriores en condiciones que permitan la producción de anticuerpos,
- -
- seleccionar el anticuerpo apropiado sometiéndolo las células transformadas a selección por afinidad al antígeno,
- -
- recuperar los anticuerpos que tienen la especificidad deseada.
\vskip1.000000\baselineskip
25. Proceso según la reivindicación 24, en la
que el vector de clonación es un plásmido o un virus eucariótico y
la célula transformada es una célula eucariótica, especialmente una
célula de levadura, una célula de mamífero, una célula de planta o
una célula de protozoo.
26. Proceso según la reivindicación 24, en la
que el vector de clonación es un plásmido capaz de expresar la
inmunoglobulina en la membrana bacteriana.
27. Proceso según la reivindicación 24, en la
que el vector de clonación es un plásmido capaz de expresar la
inmunoglobulina como una proteína secretada.
28. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 20, caracterizada porque está dirigida
contra un antígeno tal como uno de una bacteria, un virus, un
parásito, o contra una proteína, hapteno, carbohidrato o ácido
nucleico.
29. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 20 caracterizada porque está dirigida
contra un idiotipo de inmunoglobulina.
30. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 20 caracterizada porque está dirigida
contra un receptor celular o proteína de membrana.
31. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 20, caracterizada porque tiene una
actividad catalítica.
32. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 20, o un fragmento según la reivindicación 10,
caracterizado porque está conjugado con una toxina.
33. Inmunoglobulina según una cualquiera de las
reivindicaciones 1 a 20, caracterizada porque es un
anticuerpo heteroespecífico.
34. Vector recombinante caracterizado
porque comprende una secuencia de nucleótidos según la
reivindicación 21 o la reivindicación 22, y porque es un plásmido,
un fago, especialmente un bacteriofago, un virus, un YAC, un
cósmido.
35. Célula u organismo no humano recombinante
caracterizado porque está modificado por un vector según la
reivindicación 34.
36. Una librería de ADNc compuesta por
secuencias de nucleótidos que codifican para una inmunoglobulina de
cadena pesada según una cualquiera de las reivindicaciones 1 a 20,
tal como obtenida llevando a cabo las siguientes etapas:
- a)
- tratar una muestra que contiene células linfoides, especialmente linfocitos periféricos, células del bazo, ganglios linfáticos u otro tejido linfoide procedente de un animal sano, especialmente seleccionado entre los Camélidos, con el fin de separar los linfocitos B,
- b)
- separar el ARN poliadenilado de otros ácidos nucleicos y componentes de las células,
- c)
- hacer reaccionar el ARN obtenido con una transcriptasa inversa, con el fin de obtener el ADNc correspondiente,
- d)
- poner en contacto el ADNc con los cebadores 5' correspondientes al dominio V_{H} del ratón de las inmunoglobulinas de cuatro cadenas, cebador que contiene un sitio de restricción determinado, por ejemplo un sitio XhoI y con los cebadores 3' que corresponden a la parte N-terminal de un dominio C_{H}2,
- e)
- amplificar el ADN,
- f)
- clonar la secuencia amplificada en un vector, especialmente en un vector Bluescript,
- g)
- recuperar los clones hibridando con una sonda correspondiente a la secuencia que codifica para un dominio constante a partir de una inmunoglobulina aislada de cadena pesada.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP92402326 | 1992-08-21 | ||
EP92402326A EP0584421A1 (en) | 1992-08-21 | 1992-08-21 | Immunoglobulins devoid of light chains |
EP93401310 | 1993-05-21 | ||
EP93401310 | 1993-05-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2162823T3 ES2162823T3 (es) | 2002-01-16 |
ES2162823T5 true ES2162823T5 (es) | 2010-08-09 |
Family
ID=26132410
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES93919098T Expired - Lifetime ES2162823T5 (es) | 1992-08-21 | 1993-08-18 | Inmunoglobulinas desprovistas de cadenas ligeras. |
ES00127968T Expired - Lifetime ES2322324T3 (es) | 1992-08-21 | 1993-08-18 | Inmumoglobulinas desprovistas de cadenas ligeras. |
ES04077639T Expired - Lifetime ES2338321T3 (es) | 1992-08-21 | 1993-08-18 | Inmunoglobulinas desprovistas de cadenas ligeras. |
ES05008358T Expired - Lifetime ES2338791T3 (es) | 1992-08-21 | 1993-08-18 | Inmunoglobulinas desprovistas de cadenas ligeras. |
ES05020889T Expired - Lifetime ES2325541T3 (es) | 1992-08-21 | 1993-08-18 | Inmunoglobulinas desprovistas de cadenas ligeras. |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES00127968T Expired - Lifetime ES2322324T3 (es) | 1992-08-21 | 1993-08-18 | Inmumoglobulinas desprovistas de cadenas ligeras. |
ES04077639T Expired - Lifetime ES2338321T3 (es) | 1992-08-21 | 1993-08-18 | Inmunoglobulinas desprovistas de cadenas ligeras. |
ES05008358T Expired - Lifetime ES2338791T3 (es) | 1992-08-21 | 1993-08-18 | Inmunoglobulinas desprovistas de cadenas ligeras. |
ES05020889T Expired - Lifetime ES2325541T3 (es) | 1992-08-21 | 1993-08-18 | Inmunoglobulinas desprovistas de cadenas ligeras. |
Country Status (13)
Country | Link |
---|---|
US (5) | US5840526A (es) |
EP (6) | EP0656946B2 (es) |
JP (4) | JP3444885B2 (es) |
AT (5) | ATE452975T1 (es) |
AU (1) | AU701578B2 (es) |
CA (1) | CA2142331C (es) |
DE (6) | DE69330523D1 (es) |
DK (5) | DK1087013T3 (es) |
ES (5) | ES2162823T5 (es) |
FI (3) | FI115462B (es) |
GR (1) | GR3037024T3 (es) |
PT (5) | PT1498427E (es) |
WO (1) | WO1994004678A1 (es) |
Families Citing this family (1180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6765087B1 (en) * | 1992-08-21 | 2004-07-20 | Vrije Universiteit Brussel | Immunoglobulins devoid of light chains |
WO1994025591A1 (en) * | 1993-04-29 | 1994-11-10 | Unilever N.V. | PRODUCTION OF ANTIBODIES OR (FUNCTIONALIZED) FRAGMENTS THEREOF DERIVED FROM HEAVY CHAIN IMMUNOGLOBULINS OF $i(CAMELIDAE) |
EP0739981A1 (en) * | 1995-04-25 | 1996-10-30 | Vrije Universiteit Brussel | Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes |
US20040248201A1 (en) * | 1996-06-27 | 2004-12-09 | Serge Muyldermans | Recognition molecules interacting specifically with the active site or cleft of a target molecule |
DK0937140T3 (da) * | 1996-06-27 | 2008-01-28 | Vlaams Interuniv Inst Biotech | Antistofmolekyler, som interagerer specifikt med et målmolekyles aktive sted eller klöft |
DK0931097T3 (da) * | 1996-10-10 | 2006-01-16 | Neose Technologies Inc | Kulhydratoprensning ved anvendelse af omvendt osmose og nanofiltrering |
US20030228310A1 (en) * | 1996-12-23 | 2003-12-11 | Advanced Biotherapy, Inc. | Treatment of skin diseases |
WO1999037681A2 (en) * | 1998-01-26 | 1999-07-29 | Unilever Plc | Method for producing antibody fragments |
CA2327505A1 (en) * | 1998-04-28 | 1999-11-04 | Smithkline Beecham Corporation | Monoclonal antibodies with reduced immunogenicity |
CA2370351A1 (en) * | 1999-04-22 | 2000-11-02 | Unilever Plc | Inhibition of viral infection using monovalent antigen-binding proteins |
US6924359B1 (en) * | 1999-07-01 | 2005-08-02 | Yale University | Neovascular-targeted immunoconjugates |
CA2379214A1 (en) | 1999-07-27 | 2001-02-01 | Unilever Plc | Bleaching detergent compositions |
EP1212100B1 (en) * | 1999-09-16 | 2005-04-06 | Unilever Plc | Delivery system for antidandruff agent |
EP1088892A1 (en) * | 1999-09-24 | 2001-04-04 | Vlaams Interuniversitair Instituut voor Biotechnologie vzw. | Recombinant phages capable of entering host cells via specific interaction with an artificial receptor |
US6479280B1 (en) | 1999-09-24 | 2002-11-12 | Vlaams Interuniversitair Institutuut Voor Biotechnologie Vzw | Recombinant phages capable of entering host cells via specific interaction with an artificial receptor |
ATE342922T1 (de) | 1999-11-29 | 2006-11-15 | Unilever Nv | Immobilisierung von proteinen mit hilfe eines polypeptidsegments |
EP1118669A3 (en) * | 1999-12-17 | 2001-08-29 | Unilever Plc | Production of camelid antibodies in plants |
DE60138333D1 (de) | 2000-03-14 | 2009-05-28 | Unilever Nv | Variabele Domänen der schweren Kette eines Antikörpers gegen menschliche Ernährungslipasen und deren Verwendungen |
US6696620B2 (en) * | 2000-05-02 | 2004-02-24 | Epicyte Pharmaceutical, Inc. | Immunoglobulin binding protein arrays in eukaryotic cells |
CA2380443C (en) | 2000-05-26 | 2013-03-12 | Ginette Dubuc | Single-domain antigen-binding antibody fragments derived from llama antibodies |
CA2441903C (en) | 2000-05-26 | 2012-07-31 | National Research Council Of Canada | Single-domain brain-targeting antibody fragments derived from llama antibodies |
EP1340088B1 (en) * | 2000-11-17 | 2007-01-17 | University Of Rochester | In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells |
US20050196755A1 (en) * | 2000-11-17 | 2005-09-08 | Maurice Zauderer | In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells |
US20060064782A1 (en) * | 2000-12-18 | 2006-03-23 | Conopco, Inc. | Production of antibodies |
BR0116283A (pt) | 2000-12-19 | 2005-12-13 | Unilever Nv | Grânulo de anticorpo, composições detergente, enzimática alvejante de manchas e enzimática de anti-transferência de corante, e, processo para a preparação de um grânulo de anticorpo |
CA2447832C (en) * | 2000-12-22 | 2012-09-25 | Jamshid Tanha | Phage display libraries of human vh fragments |
EP2198882A3 (en) | 2001-01-12 | 2010-10-13 | Novartis Vaccines and Diagnostics, Inc. | Nucleic acid mucosal immunization |
US20030133939A1 (en) | 2001-01-17 | 2003-07-17 | Genecraft, Inc. | Binding domain-immunoglobulin fusion proteins |
US7754208B2 (en) * | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
US7829084B2 (en) | 2001-01-17 | 2010-11-09 | Trubion Pharmaceuticals, Inc. | Binding constructs and methods for use thereof |
US20050069538A1 (en) * | 2003-09-18 | 2005-03-31 | Gregorio Aversa | Therapeutic binding molecules |
US20040058445A1 (en) * | 2001-04-26 | 2004-03-25 | Ledbetter Jeffrey Alan | Activation of tumor-reactive lymphocytes via antibodies or genes recognizing CD3 or 4-1BB |
US20040062768A1 (en) * | 2001-06-05 | 2004-04-01 | Advanced Biotherapy, Inc. | Compositions and methods for treating hyperimmune response in the eye |
US20040086508A1 (en) * | 2001-06-05 | 2004-05-06 | Advanced Biotherapy, Inc. | Treatment of organ transplant rejection |
US6861056B2 (en) * | 2001-06-05 | 2005-03-01 | Advanced Biotherapy, Inc. | Compositions and methods for treating hyperimmune response in the eye |
US20050152902A1 (en) * | 2001-06-05 | 2005-07-14 | Advanced Biotherapy, Inc. | Treatment of diabetic retinopathy |
JP2005289809A (ja) | 2001-10-24 | 2005-10-20 | Vlaams Interuniversitair Inst Voor Biotechnologie Vzw (Vib Vzw) | 突然変異重鎖抗体 |
WO2003054016A2 (en) * | 2001-12-21 | 2003-07-03 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Method for cloning of variable domain sequences |
CA2471645A1 (en) * | 2002-01-03 | 2003-07-10 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Immunoconjugates useful for treatment of tumours |
AU2003205615B2 (en) | 2002-01-10 | 2008-09-25 | Universiteit Gent | A novel splice variant of MyD88 and uses thereof |
WO2003068977A2 (de) | 2002-02-10 | 2003-08-21 | Apoxis Sa | Fusionkonstrukte, enthaltend aktive abschnitte von tnf-liganden |
US20030219436A1 (en) * | 2002-03-15 | 2003-11-27 | Ledbetter Jeffrey A. | Compositions and methods to regulate an immune response using CD83 gene expressed in tumors and using soluble CD83-Ig fusion protein |
DK1517921T3 (da) * | 2002-06-28 | 2006-10-09 | Domantis Ltd | Immunglobulin-enkeltvariable antigen-bindende domæner og dobbeltspecifikke konstruktioner deraf |
US9321832B2 (en) | 2002-06-28 | 2016-04-26 | Domantis Limited | Ligand |
NZ611387A (en) | 2002-07-15 | 2015-05-29 | Univ Texas | Selected antibodies binding to anionic phospholipids and aminophospholipids and their use in treatment |
AU2003251238A1 (en) | 2002-08-07 | 2004-02-25 | Umc Utrecht Holding B.V. | Modulation of platelet adhesion based on the surface exposed beta-switch loop of platelet glycoprotein ib-alpha |
US7425619B2 (en) | 2002-08-14 | 2008-09-16 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
GB0219720D0 (en) * | 2002-08-23 | 2002-10-02 | Univ Aberdeen | Polypeptide |
US20040052790A1 (en) * | 2002-09-18 | 2004-03-18 | Advanced Biotherapy, Inc. | Treatment of schizophrenia |
AU2003286003B2 (en) | 2002-11-08 | 2011-05-26 | Ablynx N.V. | Stabilized single domain antibodies |
WO2004041865A2 (en) | 2002-11-08 | 2004-05-21 | Ablynx N.V. | Stabilized single domain antibodies |
US9320792B2 (en) | 2002-11-08 | 2016-04-26 | Ablynx N.V. | Pulmonary administration of immunoglobulin single variable domains and constructs thereof |
US20060034845A1 (en) | 2002-11-08 | 2006-02-16 | Karen Silence | Single domain antibodies directed against tumor necrosis factor alpha and uses therefor |
GB0230203D0 (en) * | 2002-12-27 | 2003-02-05 | Domantis Ltd | Fc fusion |
BRPI0406694B8 (pt) | 2003-01-10 | 2021-05-25 | Ablynx Nv | polipeptídios terapêutico, seus homólogos, seus fragmentos, que são usados nas modulações da agregação plaquetária |
EP1437764A1 (en) * | 2003-01-10 | 2004-07-14 | S.O.I. Tec Silicon on Insulator Technologies S.A. | A compliant substrate for a heteroepitaxy, a heteroepitaxial structure and a method for fabricating a compliant substrate |
KR101224235B1 (ko) | 2003-04-11 | 2013-01-25 | 메디뮨 엘엘씨 | 재조합 il9 항체 및 그의 용도 |
DK1639011T3 (da) | 2003-06-30 | 2009-02-16 | Domantis Ltd | Pegylerede enkelt-domæne antistoffer (dAb) |
US7754209B2 (en) | 2003-07-26 | 2010-07-13 | Trubion Pharmaceuticals | Binding constructs and methods for use thereof |
EP3095793B1 (en) | 2003-07-28 | 2020-03-25 | Genentech, Inc. | Reducing protein a leaching during protein a affinity chromatography |
AU2004263896A1 (en) | 2003-08-08 | 2005-02-17 | Genenews Inc. | Osteoarthritis biomarkers and uses thereof |
EP1687452A4 (en) * | 2003-09-30 | 2008-08-06 | Centocor Inc | HUMAN HINGE-CORE MIMETICORPS, COMPOSITIONS, METHODS AND APPLICATIONS THEREOF |
AU2004288231A1 (en) | 2003-11-05 | 2005-05-19 | Palingen, Inc. | Enhanced B cell cytotoxicity of CDIM binding antibody |
DK1687338T3 (da) | 2003-11-07 | 2011-02-07 | Ablynx Nv | Camelidae enkeltdomæne-antistoffer VHH, der er rettet mod epidermal vækstfaktor-receptor og anvendelser deraf |
US7999071B2 (en) | 2003-12-12 | 2011-08-16 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Human cytotoxic T-lymphoctye epitope and its agonist eptiope from the non-variable number of tandem repeat sequence of MUC-1 |
US7785903B2 (en) | 2004-04-09 | 2010-08-31 | Genentech, Inc. | Variable domain library and uses |
WO2005105984A2 (en) * | 2004-04-12 | 2005-11-10 | The Trustees Of The University Of Pennsylvania | Culture conditions and growth factors affecting fate determination, self-renewal and expansion of mouse spermatogonial stem cells |
EP1750759A4 (en) * | 2004-06-04 | 2008-06-04 | Genencor Int | SCREENING PROCEDURE USING ANTIBODY HEAVY CHAINS |
US20050276807A1 (en) * | 2004-06-15 | 2005-12-15 | Advanced Biotherapy, Inc. | Treatment of acne |
US20050276806A1 (en) * | 2004-06-15 | 2005-12-15 | Advanced Biotherapy, Inc. | Treatment of autism |
GB2416768A (en) * | 2004-07-22 | 2006-02-08 | Univ Erasmus | Heavy chain immunoglobulin complexes |
KR101422286B1 (ko) | 2004-07-22 | 2014-07-23 | 에라스무스 유니버시티 메디컬 센터 로테르담 | 결합 분자 |
US20060177445A1 (en) * | 2004-08-16 | 2006-08-10 | Boris Skurkovich | Treatment of inflammatory skin diseases |
US7563443B2 (en) * | 2004-09-17 | 2009-07-21 | Domantis Limited | Monovalent anti-CD40L antibody polypeptides and compositions thereof |
RU2401842C2 (ru) | 2004-10-08 | 2010-10-20 | Домантис Лимитед | Антагонисты и способы их применения |
US7462454B2 (en) * | 2004-10-12 | 2008-12-09 | Advanced Biotherapy, Inc. | Treatment of herpes |
BRPI0518151A2 (pt) * | 2004-10-13 | 2009-06-16 | Ablynx Nv | polipetìdeos contra amiloide-beta, ácido nucléico que codifica tal polipetìdeo, composição compreendendo tal polipetìdeo, método para produzir um polipetìdeo e uso do mesmo |
US20060121042A1 (en) | 2004-10-27 | 2006-06-08 | Medimmune, Inc. | Modulation of antibody specificity by tailoring the affinity to cognate antigens |
AU2006205900B8 (en) | 2005-01-14 | 2012-04-05 | Ablynx N.V. | Methods and assays for distinguishing between different forms of diseases and disorders characterized by thrombocytopenia and/or by spontaneous interaction between Von Willebrand Factor (vWF) and platelets |
CA2595682A1 (en) * | 2005-01-31 | 2006-08-03 | Ablynx N.V. | Method for generating variable domain sequences of heavy chain antibodies |
CN101495498B (zh) | 2005-02-07 | 2013-09-18 | 基因信息公司 | 轻度骨关节炎生物标志物及其用途 |
AU2006213686A1 (en) | 2005-02-09 | 2006-08-17 | Avi Bio Pharma, Inc. | Antisense composition and method for treating muscle atrophy |
PT1863849E (pt) | 2005-03-11 | 2011-05-10 | Syngenta Ltd | Controlo de pragas de roedores |
AU2006239315B2 (en) | 2005-04-28 | 2012-03-01 | Ventana Medical Systems, Inc. | Enzymes conjugated to antiobodies via a PEG heterobifuctional linker |
JP2008541015A (ja) * | 2005-04-28 | 2008-11-20 | ベンタナ・メデイカル・システムズ・インコーポレーテツド | ナノ粒子コンジュゲート |
MX363423B (es) | 2005-05-18 | 2019-03-22 | Ablynx Nv | Nanobodiestm (nanocuerpos) mejorados contra el factor alfa de necrosis del tumor. |
PT3415535T (pt) | 2005-05-20 | 2021-02-02 | Ablynx Nv | Nanocorpos tm aperfeiçoados para o tratamento de distúrbios mediados por agregação |
DE102005023617A1 (de) | 2005-05-21 | 2006-11-23 | Aspre Ag | Verfahren zum Mischen von Farben in einem Display |
NI200800032A (es) | 2005-07-25 | 2009-03-23 | Reducción de célula b utilizando moléculas de unión específicas cd37 y cd20 | |
PT1931710T (pt) | 2005-08-31 | 2017-03-28 | Merck Sharp & Dohme | Anticorpos anti-il-23 manipulados |
CA2621086A1 (en) | 2005-09-01 | 2007-03-08 | Schering Corporation | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
CA2623841C (en) * | 2005-09-27 | 2019-03-12 | National Research Council Of Canada | Methods of identifying agents capable of tmem30a mediated transmigration across the blood brain barrier (bbb) |
AU2006297304B2 (en) | 2005-09-29 | 2012-05-17 | Medimmune, Llc | Method of identifying membrane LG specific antibodies and use thereof for targeting immunoglobulin-producing precursor cells |
US7526409B2 (en) * | 2005-10-07 | 2009-04-28 | Oracle International Corporation | Automatic performance statistical comparison between two periods |
GB0521139D0 (en) | 2005-10-18 | 2005-11-23 | Univ Sheffield | Therapeutic agent |
AU2006304883A1 (en) | 2005-10-21 | 2007-04-26 | Genenews Inc. | Method and apparatus for correlating levels of biomarker products with disease |
GB0522460D0 (en) * | 2005-11-03 | 2005-12-14 | Prendergast Patrick T | Composition and method for the treatment of avian influenza |
EP2963011B1 (en) * | 2005-11-23 | 2018-05-09 | Ventana Medical Systems, Inc. | Molecular conjugate |
US10183986B2 (en) | 2005-12-15 | 2019-01-22 | Industrial Technology Research Institute | Trimeric collagen scaffold antibodies |
EP1983823A1 (en) | 2006-01-17 | 2008-10-29 | VIB vzw | Inhibitors of prolyl-hydroxylase 1 for the treatment of skeletal muscle degeneration |
AU2007209201A1 (en) * | 2006-01-24 | 2007-08-02 | Domantis Limited | Fusion proteins that contain natural junctions |
TWI417301B (zh) | 2006-02-21 | 2013-12-01 | Wyeth Corp | 對抗人類介白素-22(il-22)之抗體及其用途 |
TW200744634A (en) | 2006-02-21 | 2007-12-16 | Wyeth Corp | Methods of using antibodies against human IL-22 |
US7504106B2 (en) * | 2006-03-14 | 2009-03-17 | Boris Skurkovich | Method and composition for treatment of renal failure with antibodies and their equivalents as partial or complete replacement for dialysis |
EP1999147A1 (en) * | 2006-03-27 | 2008-12-10 | Ablynx N.V. | Medical delivery device for therapeutic proteins based on single domain antibodies |
MX2008013397A (es) * | 2006-04-21 | 2009-03-27 | Wyeth Corp | Analisis de perfilamiento de expresion diferencial de fenotipos de cultivo celular y usos de los mismos. |
BRPI0711119A2 (pt) | 2006-05-02 | 2011-08-30 | Actogenix Nv | administração microbiana de peptìdeos intestinais associados à obesidade |
CA2654317A1 (en) | 2006-06-12 | 2007-12-21 | Trubion Pharmaceuticals, Inc. | Single-chain multivalent binding proteins with effector function |
EP2815764A1 (en) | 2006-06-14 | 2014-12-24 | Macrogenics, Inc. | Methods for the treatment of autoimmune disorders using monoclonal antibodies with reduced toxicity |
ES2599319T3 (es) | 2006-06-26 | 2017-02-01 | Macrogenics, Inc. | Anticuerpos específicos de Fc RIIB y métodos de uso de éstos |
EP2495307B9 (en) | 2006-07-13 | 2018-05-02 | Wyeth LLC | Production of coagulation factor IX with improved glycosylation pattern |
TWI405771B (zh) | 2006-08-28 | 2013-08-21 | Kyowa Hakko Kirin Co Ltd | 具拮抗性之人類light專一性人類單株抗體 |
WO2008044928A1 (en) | 2006-10-10 | 2008-04-17 | Academisch Ziekenhuis Bij De Universiteit Van Amsterdam | Complement inhibition for improved nerve regeneration |
GB0621513D0 (en) | 2006-10-30 | 2006-12-06 | Domantis Ltd | Novel polypeptides and uses thereof |
ES2493166T3 (es) | 2006-11-01 | 2014-09-11 | Ventana Medical Systems, Inc. | Haptenos, conjugados de haptenos, composiciones de los mismos y método para su preparación y uso |
EP2092080A1 (en) | 2006-11-07 | 2009-08-26 | Vib Vzw | Diagnosis and treatment of t-cell acute lymphoblastic leukemia |
US8470332B2 (en) | 2006-11-22 | 2013-06-25 | Bristol-Myers Squibb Company | Targeted therapeutics based on engineered proteins for tyrosine kinases receptors, including IGF-IR |
WO2008068280A1 (en) * | 2006-12-05 | 2008-06-12 | Ablynx N.V. | Peptides capable of binding to serum proteins |
AR064333A1 (es) | 2006-12-14 | 2009-04-01 | Schering Corp | Anticuerpo anti-tslp de diseno |
CA2672965C (en) | 2006-12-19 | 2018-02-06 | Ablynx N.V. | Amino acid sequences directed against a metalloproteinase from the adam family and polypeptides comprising the same for the treatment of adam-related diseases and disorders |
AU2007336242B2 (en) | 2006-12-19 | 2012-08-30 | Ablynx N.V. | Amino acid sequences directed against GPCRs and polypeptides comprising the same for the treatment of GPCR-related diseases and disorders |
US9023352B2 (en) | 2007-02-20 | 2015-05-05 | Tufts University | Methods, compositions and kits for treating a subject using a recombinant heteromultimeric neutralizing binding protein |
CN101663319A (zh) * | 2007-02-21 | 2010-03-03 | 埃博灵克斯股份有限公司 | 针对血管内皮生长因子的氨基酸序列和包括其的多肽用于治疗特征在于过量和/或病理性血管发生或新血管形成的病症和疾病 |
US20100111966A1 (en) | 2007-02-23 | 2010-05-06 | Schering Corporation | Engineered anti-il-23p19 antibodies |
AR065420A1 (es) | 2007-02-23 | 2009-06-03 | Schering Corp | Anticuerpos anti-il-23 p19 de ingenieria |
CA2679381A1 (en) | 2007-02-28 | 2008-09-04 | Schering Corporation | Engineered anti-il-23r antibodies |
US20100135998A1 (en) | 2007-02-28 | 2010-06-03 | Schering Corporation | Combination therapy for treatment of immune disorders |
EP2115126B1 (en) | 2007-03-02 | 2015-04-08 | Wyeth LLC | Use of copper and glutamate in cell culture for production of polypeptides |
SI2308514T1 (sl) | 2007-03-23 | 2013-09-30 | To-Bbb Holding B.V. | Konjugati za prenos zdravila preko krvno-moĹľganske pregrade |
TW200902708A (en) | 2007-04-23 | 2009-01-16 | Wyeth Corp | Methods of protein production using anti-senescence compounds |
WO2008136694A1 (en) | 2007-05-04 | 2008-11-13 | Technophage, Investigação E Desenvolvimento Em Biotecnologia, Sa | Engineered rabbit antibody variable domains and uses thereof |
EP3072525B1 (en) | 2007-05-14 | 2018-01-31 | AstraZeneca AB | Methods of reducing basophil levels |
JP2010528285A (ja) * | 2007-05-23 | 2010-08-19 | ベンタナ・メデイカル・システムズ・インコーポレーテツド | 免疫組織化学およびinsituハイブリダーゼーションのためのポリマー担体 |
WO2008151081A1 (en) | 2007-06-01 | 2008-12-11 | Omt, Inc. | Compositions and methods for inhibiting endogenous immunoglobulin genes and producing transgenic human idiotype antibodies |
WO2008157299A2 (en) * | 2007-06-15 | 2008-12-24 | Wyeth | Differential expression profiling analysis of cell culture phenotypes and uses thereof |
US10214588B2 (en) | 2007-07-03 | 2019-02-26 | Ablynx N.V. | Providing improved immunoglobulin sequences by mutating CDR and/or FR positions |
JP2010533004A (ja) | 2007-07-13 | 2010-10-21 | バク アイピー ベスローテン フェンノートシャップ | 哺乳動物IgGと結合する単一ドメイン抗原結合タンパク質 |
US8329421B2 (en) | 2007-07-13 | 2012-12-11 | Ventana Medical Systems, Inc. | Methods of predicting response of a neoplasm to an EGFR inhibitor and detecting interactions between EGFR and an EGFR regulatory protein |
EP3327132A3 (en) | 2007-08-09 | 2018-07-18 | Wyeth LLC | Use of perfusion to enhance production of fed-batch cell culture in bioreactors |
ES2667729T3 (es) | 2007-09-26 | 2018-05-14 | Ucb Biopharma Sprl | Fusiones de anticuerpos con doble especificidad |
TWI489993B (zh) | 2007-10-12 | 2015-07-01 | Novartis Ag | 骨硬化素(sclerostin)抗體組合物及使用方法 |
US8216571B2 (en) | 2007-10-22 | 2012-07-10 | Schering Corporation | Fully human anti-VEGF antibodies and methods of using |
JP5514399B2 (ja) * | 2007-11-02 | 2014-06-04 | 国立大学法人 岡山大学 | 無機硫黄化合物加水分解酵素の製造方法 |
US20100254980A1 (en) | 2007-11-02 | 2010-10-07 | Novartis Ag | Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (lrp6) |
EP2219671A4 (en) | 2007-11-09 | 2011-02-09 | Salk Inst For Biological Studi | USE OF TAM RECEPTOR INHIBITORS AS TAM IMMUNOSTIMULATORS AND ACTIVATORS AS IMMUNOSUPPRESSANTS |
JP2011504740A (ja) * | 2007-11-27 | 2011-02-17 | アブリンクス エン.ヴェー. | ヘテロ二量体サイトカイン及び/又はこれらの受容体に指向性を有するアミノ酸配列、並びにこれを含むポリペプチド |
JP5490714B2 (ja) | 2007-11-28 | 2014-05-14 | メディミューン,エルエルシー | タンパク質製剤 |
US20090186358A1 (en) * | 2007-12-21 | 2009-07-23 | Wyeth | Pathway Analysis of Cell Culture Phenotypes and Uses Thereof |
EP2594584B1 (en) | 2008-01-31 | 2015-07-15 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by the SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES | Engineered constant domain molecule of an antibody |
US20110091462A1 (en) | 2008-03-05 | 2011-04-21 | Ablynx N.V. | Novel antigen binding dimer-complexes, methods of making and uses thereof |
US9908943B2 (en) | 2008-04-03 | 2018-03-06 | Vib Vzw | Single domain antibodies capable of modulating BACE activity |
WO2009121948A2 (en) | 2008-04-03 | 2009-10-08 | Vib Vzw | Single domain antibodies capable of modulating bace activity |
GB0809069D0 (en) | 2008-05-19 | 2008-06-25 | Univ Leuven Kath | Gene signatures |
WO2009124931A2 (en) | 2008-04-07 | 2009-10-15 | Ablynx Nv | Amino acid sequences directed against the notch pathways and uses thereof |
CN102099377A (zh) | 2008-04-11 | 2011-06-15 | 新兴产品开发西雅图有限公司 | Cd37免疫治疗剂及其与双功能化学治疗剂的联合 |
AU2009237662A1 (en) | 2008-04-17 | 2009-10-22 | Ablynx N.V. | Peptides capable of binding to serum proteins and compounds, constructs and polypeptides comprising the same |
EP2274331B1 (en) | 2008-05-02 | 2013-11-06 | Novartis AG | Improved fibronectin-based binding molecules and uses thereof |
CN102099373A (zh) | 2008-05-22 | 2011-06-15 | 百时美施贵宝公司 | 基于纤连蛋白的多价支架结构域蛋白 |
DK2995925T3 (da) | 2008-06-05 | 2022-02-21 | Ventana Med Syst Inc | Sammensætning til histokemisk processering |
GB2461546B (en) * | 2008-07-02 | 2010-07-07 | Argen X Bv | Antigen binding polypeptides |
US8444976B2 (en) | 2008-07-02 | 2013-05-21 | Argen-X B.V. | Antigen binding polypeptides |
PL2700651T3 (pl) | 2008-07-18 | 2019-09-30 | Bristol-Myers Squibb Company | Kompozycje jednowartościowe dla wiązania cd28 i sposoby stosowania |
EP2313436B1 (en) | 2008-07-22 | 2014-11-26 | Ablynx N.V. | Amino acid sequences directed against multitarget scavenger receptors and polypeptides |
SG10201405377XA (en) | 2008-08-05 | 2014-12-30 | Novartis Ag | Compositions and methods for antibodies targeting complement protein c5 |
WO2010033913A1 (en) * | 2008-09-22 | 2010-03-25 | Icb International, Inc. | Antibodies, analogs and uses thereof |
US20100136584A1 (en) * | 2008-09-22 | 2010-06-03 | Icb International, Inc. | Methods for using antibodies and analogs thereof |
CA2739357A1 (en) | 2008-09-23 | 2010-04-08 | Wyeth Llc | Methods for predicting production of activating signals by cross-linked binding proteins |
RU2481824C2 (ru) | 2008-10-29 | 2013-05-20 | Аблинкс Н.В | Препараты однодоменных антигенсвязывающих молекул |
AU2009314311B2 (en) | 2008-10-29 | 2013-01-10 | Ablynx N.V. | Methods for purification of single domain antigen binding molecules |
EP2370465B1 (en) | 2008-12-19 | 2019-01-23 | Ablynx N.V. | Genetic immunization for producing immunoglobulins against cell-associated antigens such as p2x7, cxcr7 or cxcr4 |
JP5719309B2 (ja) | 2008-12-19 | 2015-05-13 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | 哺乳動物細胞培養用の栄養補助剤及び使用方法 |
ES2701649T3 (es) | 2009-01-14 | 2019-02-25 | Ablynx Nv | Administración pulmonar de dominios variables individuales de inmunoglobulina y constructos de los mismos |
US20100189919A1 (en) * | 2009-01-27 | 2010-07-29 | Xerox Corporation | Imaging System And Process Using Monoclonal Antibodies |
EP2394159B1 (en) | 2009-02-04 | 2018-09-26 | Molecular Innovations | Assays for detecting prorenin, and antibodies used therein |
US10005830B2 (en) | 2009-03-05 | 2018-06-26 | Ablynx N.V. | Antigen binding dimer-complexes, methods of making/avoiding and uses thereof |
EP2230515B1 (en) | 2009-03-16 | 2014-12-17 | Agilent Technologies, Inc. | Passivation of surfaces after ligand coupling |
WO2010111378A1 (en) | 2009-03-24 | 2010-09-30 | Wyeth Llc | Membrane evaporation for generating highly concentrated protein therapeutics |
GB0905023D0 (en) | 2009-03-24 | 2009-05-06 | Univ Erasmus Medical Ct | Binding molecules |
JP5647222B2 (ja) | 2009-04-10 | 2014-12-24 | アブリンクス エン.ヴェー. | Il−6r関連疾患及び障害の治療のためのil−6rに指向性を有する改善されたアミノ酸配列及びこれを含むポリペプチド |
JP2012524524A (ja) | 2009-04-27 | 2012-10-18 | ノバルティス アーゲー | IL−12レセプターβ1サブユニットに特異的な治療用抗体の組成物および使用方法 |
EA027071B1 (ru) | 2009-04-27 | 2017-06-30 | Новартис Аг | АНТИТЕЛО К ActRIIB И СОДЕРЖАЩАЯ ЕГО КОМПОЗИЦИЯ |
CA2759370C (en) | 2009-04-30 | 2020-02-11 | Peter Schotte | Method for the production of domain antibodies |
EP2432499A2 (en) | 2009-05-20 | 2012-03-28 | Schering Corporation | Modulation of pilr receptors to treat microbial infections |
KR101852204B1 (ko) | 2009-06-05 | 2018-04-26 | 아블린쓰 엔.브이. | 기도 감염의 예방 및/또는 치료를 위한 일가, 이가 및 삼가 항 인간 호흡기 세포융합 바이러스 (hrsv) 나노바디 구조물 |
AU2010268690B2 (en) | 2009-07-03 | 2011-11-10 | Avipep Pty Ltd | Immuno-conjugates and methods for producing them |
WO2011003622A1 (en) | 2009-07-10 | 2011-01-13 | Ablynx N.V. | Method for the production of variable domains |
US20120230918A1 (en) | 2009-07-28 | 2012-09-13 | Hoffmann-La-Roche Inc. | Non-invasive in vivo optical imaging method |
SG177689A1 (en) | 2009-07-31 | 2012-02-28 | Organon Nv | Fully human antibodies to btla |
WO2011018421A1 (en) | 2009-08-10 | 2011-02-17 | Morphosys Ag | Novel screening strategies for the identification of binders |
JP6294585B2 (ja) | 2009-09-03 | 2018-03-20 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | 抗gitr抗体 |
WO2011027132A1 (en) | 2009-09-03 | 2011-03-10 | Cancer Research Technology Limited | Clec14a inhibitors |
LT2805731T (lt) | 2009-09-03 | 2019-02-11 | Ablynx N.V. | Stabilios polipeptidų kompozicijos ir jų panaudojimas |
WO2011029823A1 (en) | 2009-09-09 | 2011-03-17 | Novartis Ag | Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells |
GB201005063D0 (en) | 2010-03-25 | 2010-05-12 | Ucb Pharma Sa | Biological products |
US20110195494A1 (en) | 2009-10-02 | 2011-08-11 | Boehringer Ingelheim International Gmbh | Dll4-binging molecules |
UY32920A (es) | 2009-10-02 | 2011-04-29 | Boehringer Ingelheim Int | Moleculas de unión biespecíficas para la terapia anti-angiogénesis |
US20110117113A1 (en) | 2009-10-09 | 2011-05-19 | Gerald Beste | Immunoglobulin single variable domain directed against human cxcr4 and other cell associated proteins and methods to generate them |
WO2011045079A1 (en) | 2009-10-15 | 2011-04-21 | Intercell Ag | Hepatitis b virus specific human antibodies |
US9340605B2 (en) | 2009-10-22 | 2016-05-17 | Universiteit Twente | VHH for application in tissue repair, organ regeneration, organ replacement and tissue engineering |
PL2490720T3 (pl) | 2009-10-23 | 2020-08-24 | Millennium Pharmaceuticals, Inc. | Cząsteczki przeciwciał anty-gcc oraz powiązane kompozycje i sposoby |
US9139825B2 (en) | 2009-10-30 | 2015-09-22 | Novartis Ag | Universal fibronectin type III bottom-side binding domain libraries |
WO2011051327A2 (en) | 2009-10-30 | 2011-05-05 | Novartis Ag | Small antibody-like single chain proteins |
WO2011051466A1 (en) | 2009-11-02 | 2011-05-05 | Novartis Ag | Anti-idiotypic fibronectin-based binding molecules and uses thereof |
EP3594356A1 (en) | 2009-11-04 | 2020-01-15 | Merck Sharp & Dohme Corp. | Engineered anti-tslp antibody |
CN102640001A (zh) | 2009-11-05 | 2012-08-15 | 诺瓦提斯公司 | 预测纤维化进展的生物标记物 |
WO2011064382A1 (en) | 2009-11-30 | 2011-06-03 | Ablynx N.V. | Improved amino acid sequences directed against human respiratory syncytial virus (hrsv) and polypeptides comprising the same for the prevention and/or treatment of respiratory tract infections |
EP2954779B1 (en) | 2009-12-10 | 2019-02-06 | Regeneron Pharmaceuticals, Inc. | Mice that make heavy chain antibodies |
US20110150885A1 (en) | 2009-12-11 | 2011-06-23 | Atyr Pharma, Inc. | Aminoacyl trna synthetases for modulating hematopoiesis |
EP3309176A1 (en) | 2009-12-14 | 2018-04-18 | Ablynx N.V. | Immunoglobulin single variable domain antibodies against ox40l, constructs and therapeutic use |
WO2011084357A1 (en) | 2009-12-17 | 2011-07-14 | Schering Corporation | Modulation of pilr to treat immune disorders |
WO2011075786A1 (en) | 2009-12-23 | 2011-06-30 | Avipep Pty Ltd | Immuno-conjugates and methods for producing them 2 |
WO2011083140A1 (en) | 2010-01-08 | 2011-07-14 | Ablynx Nv | Immunoglobulin single variable domain directed against human cxcr4 |
TWI513466B (zh) | 2010-01-20 | 2015-12-21 | Boehringer Ingelheim Int | 抗凝血劑解毒劑 |
CN102781959A (zh) | 2010-02-05 | 2012-11-14 | 埃博灵克斯股份有限公司 | 能够结合血清白蛋白的肽和包含所述肽的化合物、构建体和多肽 |
US9120855B2 (en) | 2010-02-10 | 2015-09-01 | Novartis Ag | Biologic compounds directed against death receptor 5 |
KR20120125357A (ko) | 2010-02-10 | 2012-11-14 | 노파르티스 아게 | 근육 성장을 위한 방법 및 화합물 |
PL2533761T3 (pl) | 2010-02-11 | 2019-09-30 | Ablynx N.V. | Sposoby i kompozycje do wytwarzania aerozoli |
US20130012916A1 (en) | 2010-02-11 | 2013-01-10 | Glide Pharmaceutical Technologies Limited | Delivery of immunoglobulin variable domains and constructs thereof |
WO2011106583A1 (en) | 2010-02-26 | 2011-09-01 | Ventana Medical Systems, Inc. | Polytag probes |
AR080446A1 (es) | 2010-03-03 | 2012-04-11 | Boehringer Ingelheim Int | Polipeptidos de union a a-beta (beta amiloide) |
EP2553449A2 (en) | 2010-03-26 | 2013-02-06 | Westfälische Wilhelms-Universität Münster | Substitute therapy for glucocorticoids |
US8937164B2 (en) | 2010-03-26 | 2015-01-20 | Ablynx N.V. | Biological materials related to CXCR7 |
US9101674B2 (en) | 2010-03-29 | 2015-08-11 | Vib Vzw | Targeting and in vivo imaging of tumor-associated macrophages |
US9556273B2 (en) | 2010-03-29 | 2017-01-31 | Vib Vzw | Anti-macrophage mannose receptor single variable domains for targeting and in vivo imaging of tumor-associated macrophages |
JP6154317B2 (ja) | 2010-04-06 | 2017-06-28 | アフロサフエ・エン・フエー | 農薬の特異的送達 |
GB201105584D0 (en) | 2011-04-01 | 2011-05-18 | Imp Innovations Ltd | Cancer methods |
JP5822913B2 (ja) | 2010-04-20 | 2015-11-25 | ヴェンタナ メディカル システムズ, インク. | 2色発色性インサイツハイブリダイゼーション |
US8980253B2 (en) | 2010-04-26 | 2015-03-17 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-tRNA synthetase |
JP6294074B2 (ja) | 2010-04-27 | 2018-03-14 | エータイアー ファーマ, インコーポレイテッド | イソロイシルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
JP6008837B2 (ja) | 2010-04-28 | 2016-10-19 | エータイアー ファーマ, インコーポレイテッド | アラニルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
JP6008838B2 (ja) | 2010-04-29 | 2016-10-19 | エータイアー ファーマ, インコーポレイテッド | アスパラギニルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
US9068177B2 (en) | 2010-04-29 | 2015-06-30 | Atyr Pharma, Inc | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-tRNA synthetases |
WO2011139907A2 (en) | 2010-04-29 | 2011-11-10 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl trna synthetases |
PL2563813T3 (pl) | 2010-04-30 | 2016-01-29 | Alexion Pharma Inc | Przeciwciała anty-C5a i sposoby stosowania przeciwciał |
CA2797977C (en) | 2010-05-03 | 2019-08-20 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases |
US8961961B2 (en) | 2010-05-03 | 2015-02-24 | a Tyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related protein fragments of arginyl-tRNA synthetases |
ES2668207T3 (es) | 2010-05-03 | 2018-05-17 | Atyr Pharma, Inc. | Descubrimiento innovador de composiciones terapéuticas, de diagnóstico y de anticuerpos relacionadas con fragmentos de proteínas de metionil-ARNt sintetasas |
EP2566499B1 (en) | 2010-05-04 | 2017-01-25 | aTyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-trna synthetase complex |
EP2566967B1 (en) | 2010-05-04 | 2016-07-06 | The Brigham and Women's Hospital, Inc. | Cadherin-11 antagonist for the treatment of fibrosis |
US8877188B2 (en) | 2010-05-04 | 2014-11-04 | The Brigham And Women's Hospital, Inc. | Detection and treatment of non-dermal fibrosis |
SG185415A1 (en) | 2010-05-06 | 2012-12-28 | Novartis Ag | Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies |
KR20130066632A (ko) | 2010-05-06 | 2013-06-20 | 노파르티스 아게 | 치료적 저밀도 지단백질-관련 단백질 6 (lrp6) 항체에 대한 조성물 및 사용 방법 |
BR112012028006A2 (pt) | 2010-05-07 | 2016-08-02 | Hoffmann La Roche | método de imuno-histoquímica (ihq), uso de um domínio de ligação, kit e domínio de ligação terapeuticamente ativo |
CA2799197C (en) | 2010-05-14 | 2019-10-29 | Atyr Pharma, Inc. | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases |
CN102906118B (zh) | 2010-05-20 | 2017-07-28 | 埃博灵克斯股份有限公司 | 与her3相关的生物材料 |
CA2803588A1 (en) | 2010-06-22 | 2011-12-29 | The Regents Of The University Of Colorado, A Body Corporate | Antibodies to the c3d fragment of complement component 3 |
WO2011161263A1 (en) | 2010-06-25 | 2011-12-29 | Ablynx Nv | Pharmaceutical compositions for cutaneous administration |
CA2805548A1 (en) | 2010-07-02 | 2012-01-05 | Vib Vzw | The role of fragile x mental retardation gene and protein in cancer metastasis |
US20130109019A1 (en) | 2010-07-02 | 2013-05-02 | Adrian E. Murillo | Hapten conjugates for target detection |
JP6116479B2 (ja) | 2010-07-12 | 2017-04-19 | エータイアー ファーマ, インコーポレイテッド | グリシルtRNA合成酵素のタンパク質フラグメントに関連した治療用、診断用および抗体組成物の革新的発見 |
JP2013536175A (ja) | 2010-07-16 | 2013-09-19 | アブリンクス エン.ヴェー. | 修飾された単一ドメイン抗原結合分子及びその使用 |
GB201014715D0 (en) | 2010-09-06 | 2010-10-20 | Vib Vzw | Nanobodies stabilizing functional conformational states of GPCRS |
GB201012845D0 (en) | 2010-07-30 | 2010-09-15 | Vib Vzw | Inhibition of dicer function for treatment of cancer |
AU2011285919C1 (en) | 2010-08-02 | 2015-09-17 | Regeneron Pharmaceuticals, Inc. | Mice that make binding proteins comprising VL domains |
WO2012024185A1 (en) | 2010-08-16 | 2012-02-23 | Ventana Medical Systems, Inc. | Substrates for chromogenic detection and methods of use in detection assays and kits |
US20130150554A1 (en) | 2010-08-20 | 2013-06-13 | Wyeth Llc | Cell culture of growth factor-free adapted cells |
UA114883C2 (uk) | 2010-08-20 | 2017-08-28 | Новартіс Аг | Антитіло до рецептора епідермального фактора росту-3 (her3) |
WO2012027611A2 (en) | 2010-08-25 | 2012-03-01 | Atyr Pharma, Inc. | INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF TYROSYL-tRNA SYNTHETASES |
US9380781B2 (en) | 2010-08-26 | 2016-07-05 | Agrosavfe N.V. | Compositions for seed treatment |
US20130224226A1 (en) | 2010-08-26 | 2013-08-29 | Agrosavfe N.V. | Insect binding antibodies |
US20120225081A1 (en) | 2010-09-03 | 2012-09-06 | Boehringer Ingelheim International Gmbh | Vegf-binding molecules |
US20120244141A1 (en) | 2010-09-28 | 2012-09-27 | Boehringer Ingelheim International Gmbh | Stratification of cancer patients for susceptibility to therapy with PTK2 inhibitors |
WO2012042026A1 (en) | 2010-09-30 | 2012-04-05 | Ablynx Nv | Biological materials related to c-met |
WO2012045703A1 (en) | 2010-10-05 | 2012-04-12 | Novartis Ag | Anti-il12rbeta1 antibodies and their use in treating autoimmune and inflammatory disorders |
US20130261288A1 (en) | 2010-10-29 | 2013-10-03 | Ablynx N.V. | Method for the production of immunoglobulin single variable domains |
GB201018602D0 (en) | 2010-11-04 | 2010-12-22 | Vib Vzw | MMP8 inactivating antigen binding proteins |
CN103687618A (zh) | 2010-11-05 | 2014-03-26 | 莫福特克公司 | 叶酸受体α作为用于表达叶酸受体α的癌症的诊断和预后标记 |
KR101650995B1 (ko) | 2010-11-08 | 2016-08-25 | 노파르티스 아게 | Cxcr2 결합 폴리펩티드 |
WO2012084895A2 (en) | 2010-12-20 | 2012-06-28 | Universiteit Gent | Crystal structure of flt3 ligand-receptor complex |
CA2817374C (en) | 2010-12-30 | 2018-10-16 | Ventana Medical Systems, Inc. | Enhanced deposition of chromogens utilizing pyrimidine analogs |
WO2012089814A1 (en) | 2010-12-30 | 2012-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antigen binding formats for use in therapeutic treatments or diagnostic assays |
EP2668210B1 (en) | 2011-01-26 | 2020-06-17 | Celldex Therapeutics, Inc. | Anti-kit antibodies and uses thereof |
WO2012105833A1 (en) | 2011-02-01 | 2012-08-09 | Bac Ip B.V. | Antigen-binding protein directed against epitope in the ch1 domain of human igg antibodies |
AR085141A1 (es) | 2011-02-03 | 2013-09-11 | Alexion Pharma Inc | Un metodo para prolongar la supervivencia de un aloinjerto renal, uso de un anticuerpo anti-cd200 para prolongar la supervivencia de aloinjertos |
JP6385060B2 (ja) | 2011-03-07 | 2018-09-05 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | 治療的に活性な抗体のインビボにおける選択 |
EP2683290B1 (en) | 2011-03-07 | 2018-11-07 | F.Hoffmann-La Roche Ag | Methods for in vivo testing of therapeutic antibodies |
WO2012123387A1 (en) | 2011-03-14 | 2012-09-20 | F. Hoffmann-La Roche Ag | A method of analyzing chromosomal translocations and a system therefore |
US9624294B2 (en) | 2011-03-14 | 2017-04-18 | Cellmid Limited | Antibody recognizing N-domain of midkine |
DK2691415T3 (en) | 2011-03-28 | 2018-10-29 | Ablynx Nv | PROCEDURE FOR PREPARING SOLID FORMULATIONS CONTAINING VARIABLE SINGLE DOMAINS OF IMMUNOGLOBULIN |
JP6181040B2 (ja) | 2011-03-28 | 2017-08-16 | アブリンクス エン.ヴェー. | 二特異性抗cxcr7免疫グロブリン単一可変ドメイン |
CN106039306A (zh) | 2011-03-30 | 2016-10-26 | 埃博灵克斯股份有限公司 | 使用针对TNFα的单结构域抗体治疗免疫病症的方法 |
WO2012130834A1 (en) | 2011-03-30 | 2012-10-04 | Boehringer Ingelheim International Gmbh | Anticoagulant antidotes |
JP6014116B2 (ja) | 2011-03-31 | 2016-10-25 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | ヒト・プログラム死受容体pd−1に対する抗体の安定製剤および関連治療 |
US9527925B2 (en) | 2011-04-01 | 2016-12-27 | Boehringer Ingelheim International Gmbh | Bispecific binding molecules binding to VEGF and ANG2 |
US20130078247A1 (en) | 2011-04-01 | 2013-03-28 | Boehringer Ingelheim International Gmbh | Bispecific binding molecules binding to dii4 and ang2 |
JP6072771B2 (ja) | 2011-04-20 | 2017-02-01 | メディミューン,エルエルシー | B7−h1およびpd−1に結合する抗体およびその他の分子 |
UA117218C2 (uk) | 2011-05-05 | 2018-07-10 | Мерк Патент Гмбх | Поліпептид, спрямований проти il-17a, il-17f та/або il17-a/f |
EP3590950A1 (en) | 2011-05-09 | 2020-01-08 | Ablynx NV | Method for the production of immunoglobulin single varible domains |
CN107936121B (zh) | 2011-05-16 | 2022-01-14 | 埃泰美德(香港)有限公司 | 多特异性fab融合蛋白及其使用方法 |
CA2835340A1 (en) | 2011-05-27 | 2012-12-06 | Ablynx Nv | Inhibition of bone resorption with rankl binding peptides |
WO2012166906A1 (en) | 2011-05-31 | 2012-12-06 | Massachusetts Institute Of Technology | Cell-directed synthesis of multifunctional nanopatterns and nanomaterials |
US9193793B2 (en) | 2011-06-13 | 2015-11-24 | Csl Limited | Antibodies against G-CSFR and uses thereof |
WO2012172495A1 (en) | 2011-06-14 | 2012-12-20 | Novartis Ag | Compositions and methods for antibodies targeting tem8 |
JP6164535B2 (ja) | 2011-06-21 | 2017-07-19 | フエー・イー・ベー・フエー・ゼツト・ウエー | Gpcr:gタンパク質複合体に対して作製された結合ドメインおよびそれに由来する使用 |
EP2723772A1 (en) | 2011-06-23 | 2014-04-30 | Ablynx N.V. | Immunoglobulin single variable domains directed against ige |
PT2723771T (pt) | 2011-06-23 | 2019-12-11 | Ablynx Nv | Proteínas de ligação à albumina sérica |
JP6472999B2 (ja) | 2011-07-01 | 2019-02-20 | ノバルティス アーゲー | 代謝障害を治療するための方法 |
GB201112056D0 (en) | 2011-07-14 | 2011-08-31 | Univ Leuven Kath | Antibodies |
WO2013010955A1 (en) | 2011-07-15 | 2013-01-24 | Morphosys Ag | Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt) |
BR112014003679B1 (pt) | 2011-08-17 | 2022-08-30 | Glaxo Group Limited | Domínio variável de imunoglobulina único, composição farmacêutica, formulação, ácido nucleico isolado ou recombinante, vetor, microorganismo transgênico, e, uso de uma composição farmacêutica |
WO2013033073A1 (en) | 2011-08-31 | 2013-03-07 | Ventana Medical Systems, Inc. | Expression of ets related gene (erg) and phosphatase and tensin homolog (pten) correlates with prostate cancer capsular penetration |
GB201115529D0 (en) | 2011-09-08 | 2011-10-26 | Imp Innovations Ltd | Antibodies, uses and methods |
EP2753644A1 (en) | 2011-09-09 | 2014-07-16 | Universiteit Utrecht Holding B.V. | Broadly neutralizing vhh against hiv-1 |
EP3128009B1 (en) | 2011-09-19 | 2020-07-29 | Kymab Limited | Antibodies, variable domains & chains tailored for human use |
WO2013041901A1 (en) | 2011-09-20 | 2013-03-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for preparing single domain antibody microarrays |
EP2747782B1 (en) | 2011-09-23 | 2018-01-17 | Ablynx NV | Prolonged inhibition of interleukin-6 mediated signaling |
WO2013045916A1 (en) | 2011-09-26 | 2013-04-04 | Kymab Limited | Chimaeric surrogate light chains (slc) comprising human vpreb |
EP2747783B1 (en) | 2011-09-30 | 2017-06-14 | Ablynx N.V. | Biological materials related to c-met |
US20130085139A1 (en) | 2011-10-04 | 2013-04-04 | Royal Holloway And Bedford New College | Oligomers |
US9296826B2 (en) | 2011-10-14 | 2016-03-29 | Novartis Ag | Antibodies and methods for WNT pathway-related diseases |
US9127056B2 (en) | 2011-10-17 | 2015-09-08 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Monospecific and bispecific human monoclonal antibodies targeting insulin-like growth factor II (IGF-II) |
GB2496375A (en) | 2011-10-28 | 2013-05-15 | Kymab Ltd | A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof |
US9265817B2 (en) | 2011-10-28 | 2016-02-23 | Patrys Limited | PAT-LM1 epitopes and methods for using same |
US9803004B2 (en) | 2011-11-11 | 2017-10-31 | Ucb Biopharma Sprl | Albumin binding antibodies and binding fragments thereof |
WO2013079606A1 (en) | 2011-12-01 | 2013-06-06 | Ventana Medical Systems, Inc. | Automated dual stain of mirna and protein targets |
GB201122047D0 (en) | 2011-12-21 | 2012-02-01 | Kymab Ltd | Transgenic animals |
WO2013079973A1 (en) | 2011-12-02 | 2013-06-06 | Di Cara Danielle Marie | Antibodies against hgf - receptor and uses |
US9192663B2 (en) | 2011-12-05 | 2015-11-24 | Novartis Ag | Antibodies for epidermal growth factor receptor 3 (HER3) |
SG11201402739YA (en) | 2011-12-05 | 2014-06-27 | Novartis Ag | Antibodies for epidermal growth factor receptor 3 (her3) directed to domain ii of her3 |
BR112014015111A2 (pt) | 2011-12-21 | 2017-06-13 | Novartis Ag | composições e processos para anticorpos que se direcionam ao fator p |
US10112987B2 (en) | 2012-01-09 | 2018-10-30 | Icb International, Inc. | Blood-brain barrier permeable peptide compositions comprising a vab domain of a camelid single domain heavy chain antibody against an amyloid-beta peptide |
US10112988B2 (en) | 2012-01-09 | 2018-10-30 | Icb International, Inc. | Methods of assessing amyloid-beta peptides in the central nervous system by blood-brain barrier permeable peptide compositions comprising a vab domain of a camelid single domain heavy chain antibody against an anti-amyloid-beta peptide |
WO2013108126A2 (en) | 2012-01-16 | 2013-07-25 | University Of Oslo | Methyltransferases and uses thereof |
CN104507967B (zh) | 2012-01-20 | 2018-10-12 | 建新公司 | 抗cxcr3抗体 |
EP2809800A1 (en) | 2012-01-30 | 2014-12-10 | VIB vzw | Means and method for diagnosis and treatment of alzheimer's disease |
WO2013121042A1 (en) | 2012-02-16 | 2013-08-22 | Vib Vzw | PP2A SUBUNITS IN DNA REPAIR, THE PP2A B55α SUBUNIT AS NOVEL PHD2 INTERACTING PROTEIN, AND IMPLICATIONS FOR CANCER |
UA115781C2 (uk) | 2012-02-27 | 2017-12-26 | Бьорінгер Інгельхайм Інтернаціональ Гмбх | Cx3cr1-зв'язуючий поліпептид |
US9592289B2 (en) | 2012-03-26 | 2017-03-14 | Sanofi | Stable IgG4 based binding agent formulations |
JP6101782B2 (ja) | 2012-03-27 | 2017-03-22 | ヴェンタナ メディカル システムズ, インク. | シグナリングコンジュゲート及び使用法 |
RS58732B1 (sr) | 2012-03-30 | 2019-06-28 | Boehringer Ingelheim Int | Ang2 vezujući molekuli |
US9156915B2 (en) | 2012-04-26 | 2015-10-13 | Thomas Jefferson University | Anti-GCC antibody molecules |
US9328174B2 (en) | 2012-05-09 | 2016-05-03 | Novartis Ag | Chemokine receptor binding polypeptides |
AU2013265665B2 (en) | 2012-05-24 | 2017-10-26 | Vib Vzw | Anti-macrophage mannose receptor single variable domains for targeting and in vivo imaging of tumor-associated macrophages |
EP2687595B1 (en) | 2012-07-19 | 2018-05-30 | Laboratoire Français du Fractionnement et des Biotechnologies | Method for purifying transgenic factor VII |
DK2877493T3 (en) | 2012-07-25 | 2018-06-14 | Celldex Therapeutics Inc | ANTI-KIT ANTIBODIES AND APPLICATIONS THEREOF |
EP3184121A3 (en) | 2012-07-25 | 2017-09-27 | Salk Institute For Biological Studies | Lipid membranes with exposed phosphatidylserine as tam ligands, use for treating autoimmune diseases |
WO2014035474A1 (en) | 2012-08-30 | 2014-03-06 | The General Hospital Corporation | Compositions and methods for treating cancer |
UA118441C2 (uk) | 2012-10-08 | 2019-01-25 | Протена Біосаєнсиз Лімітед | Антитіло, що розпізнає альфа-синуклеїн |
KR20210063443A (ko) | 2012-10-09 | 2021-06-01 | 바이오젠 엠에이 인코포레이티드 | 탈수초성 질환의 치료를 위한 복합 요법 및 용도 |
LT2922962T (lt) | 2012-11-20 | 2017-04-10 | Novartis Ag | Optimizuota raiškos kasetė, skirta polipeptido raiškai su didele išeiga |
WO2014084859A1 (en) | 2012-11-30 | 2014-06-05 | Novartis Ag | Molecules and methods for modulating tmem16a activities |
SG11201503567SA (en) | 2012-12-05 | 2015-06-29 | Novartis Ag | Compositions and methods for antibodies targeting epo |
WO2014087010A1 (en) | 2012-12-07 | 2014-06-12 | Ablynx N.V. | IMPROVED POLYPEPTIDES DIRECTED AGAINST IgE |
HRP20201160T4 (hr) | 2012-12-14 | 2024-10-11 | Open Monoclonal Technology, Inc. | Polinukleotidi koji kodiraju protutijela glodavaca s ljudskim idiotipovima i životinje koje ih sadrže |
CN104995303A (zh) | 2012-12-18 | 2015-10-21 | 诺华股份有限公司 | 利用结合乙酰透明质酸的肽标签的组合物和方法 |
AU2013361231A1 (en) | 2012-12-19 | 2015-06-04 | Amplimmune, Inc. | B7-H4 specific antibodies, and compositions and methods of use thereof |
AU2013204922B2 (en) | 2012-12-20 | 2015-05-14 | Celgene Corporation | Chimeric antigen receptors |
AR093984A1 (es) | 2012-12-21 | 2015-07-01 | Merck Sharp & Dohme | Anticuerpos que se unen a ligando 1 de muerte programada (pd-l1) humano |
BR112015014621A2 (pt) | 2012-12-21 | 2017-10-03 | Amplimmune Inc | Anticorpos anti-h7cr |
WO2014118297A1 (en) | 2013-01-30 | 2014-08-07 | Vib Vzw | Novel chimeric polypeptides for screening and drug discovery purposes |
WO2014120916A1 (en) | 2013-02-01 | 2014-08-07 | Bristol-Myers Squibb Company | Pegylated domain antibodies monovalent for cd28 binding and methods of use |
PT2953973T (pt) | 2013-02-05 | 2019-10-25 | Univ Brussel Vrije | Agentes de ligação do receptor muscarínico de acetilololina e usos |
CN104995211B (zh) | 2013-02-07 | 2019-09-13 | Csl有限公司 | Il-11r结合蛋白及其应用 |
SG11201505330QA (en) | 2013-02-08 | 2015-08-28 | Novartis Ag | Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders |
WO2015198217A2 (en) | 2013-02-08 | 2015-12-30 | Novartis Ag | Compositions and methods for long-acting antibodies targeting il-17 |
CN110845618A (zh) | 2013-02-26 | 2020-02-28 | 罗切格利卡特公司 | 双特异性t细胞活化抗原结合分子 |
WO2014133855A1 (en) | 2013-02-28 | 2014-09-04 | Caprion Proteomics Inc. | Tuberculosis biomarkers and uses thereof |
AU2013381730B2 (en) | 2013-03-12 | 2017-07-27 | Ventana Medical Systems, Inc. | Digitally enhanced microscopy for multiplexed histology |
CA2902026C (en) | 2013-03-13 | 2023-08-29 | Prothena Biosciences Limited | Tau immunotherapy |
EP2970479B1 (en) | 2013-03-14 | 2019-04-24 | Novartis AG | Antibodies against notch 3 |
US10160797B2 (en) | 2013-03-15 | 2018-12-25 | Sanofi Pasteur Biologics, Llc | Antibodies against Clostridium difficile toxins and methods of using the same |
EP2970372B1 (en) | 2013-03-15 | 2020-09-30 | Celgene Corporation | Modified t lymphocytes |
EP3623380A1 (en) | 2013-03-15 | 2020-03-18 | Michael C. Milone | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
US10993420B2 (en) | 2013-03-15 | 2021-05-04 | Erasmus University Medical Center | Production of heavy chain only antibodies in transgenic mammals |
JP6499090B2 (ja) | 2013-03-15 | 2019-04-10 | ブイアイビー ブイゼットダブリュVib Vzw | 心血管疾患において使用するための抗マクロファージマンノース受容体単一可変ドメイン |
JP6574754B2 (ja) | 2013-03-19 | 2019-09-11 | ベイジン シェノゲン ファーマ グループ リミテッド | エストロゲン受容体関連疾患を処置するための抗体及び方法 |
WO2014177595A1 (en) | 2013-04-29 | 2014-11-06 | Agrosavfe N.V. | Agrochemical compositions comprising antibodies binding to sphingolipids |
EP3583950A1 (en) | 2013-05-09 | 2019-12-25 | The U.S.A. As Represented By The Secretary, Department Of Health And Human Services | Single-domain vhh antibodies directed to norovirus gi.1 and gii.4 and their use |
NL1040254C2 (en) | 2013-05-17 | 2014-11-24 | Ablynx Nv | Stable formulations of immunoglobulin single variable domains and uses thereof. |
BR112015029395A2 (pt) | 2013-05-24 | 2017-09-19 | Medimmune Llc | Anticorpos anti-b7-h5 e seus usos |
WO2014194293A1 (en) | 2013-05-30 | 2014-12-04 | Amplimmune, Inc. | Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof |
NZ714765A (en) | 2013-06-06 | 2021-12-24 | Pf Medicament | Anti-c10orf54 antibodies and uses thereof |
AR096601A1 (es) | 2013-06-21 | 2016-01-20 | Novartis Ag | Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso |
US9562101B2 (en) | 2013-06-21 | 2017-02-07 | Novartis Ag | Lectin-like oxidized LDL receptor 1 antibodies and methods of use |
WO2014207173A1 (en) | 2013-06-27 | 2014-12-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Interleukin 15 (il-15) antagonists and uses thereof for the treatment of autoimmune diseases and inflammatory diseases |
US20160176943A1 (en) | 2013-07-05 | 2016-06-23 | Inserm (Insititut National De La Sante Et De La Recherche Medicale) | Novel alternative splice transcripts for mhc class i related chain alpha (mica) and uses thereof |
WO2015004633A1 (en) | 2013-07-12 | 2015-01-15 | Neotope Biosciences Limited | Antibodies that recognize islet-amyloid polypeptide (iapp) |
WO2015004632A1 (en) | 2013-07-12 | 2015-01-15 | Neotope Biosciences Limited | Antibodies that recognize iapp |
EP4300103A3 (en) | 2013-08-07 | 2024-02-28 | Alexion Pharmaceuticals, Inc. | Atypical hemolytic uremic syndrome (ahus) biomarker proteins |
WO2015022658A2 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Methods of treating sporadic inclusion body myositis |
AR097306A1 (es) | 2013-08-20 | 2016-03-02 | Merck Sharp & Dohme | Modulación de la inmunidad tumoral |
CN105873608A (zh) | 2013-11-28 | 2016-08-17 | 杰特有限公司 | 治疗肾病的方法 |
EP2883883A1 (en) | 2013-12-16 | 2015-06-17 | Cardio3 Biosciences S.A. | Therapeutic targets and agents useful in treating ischemia reperfusion injury |
KR102466794B1 (ko) | 2013-12-18 | 2022-11-11 | 씨에스엘 리미티드 | 상처 치료 방법 |
JP6779785B2 (ja) | 2013-12-19 | 2020-11-04 | ノバルティス アーゲー | ヒトメソテリンキメラ抗原受容体およびその使用 |
EP4420663A3 (en) | 2013-12-20 | 2024-10-30 | Novartis AG | Regulatable chimeric antigen receptor |
RU2761663C2 (ru) | 2013-12-20 | 2021-12-13 | Интервет Интернэшнл Б.В. | Антитела к pd-1 собак |
WO2015100409A2 (en) | 2013-12-26 | 2015-07-02 | Tufts University | Methods, compositions and kits for treating a subject using a recombinant neutralizing binding protein |
JOP20200094A1 (ar) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | جزيئات جسم مضاد لـ pd-1 واستخداماتها |
JP6687525B2 (ja) | 2014-01-30 | 2020-04-22 | ブイアイビー ブイゼットダブリュVib Vzw | オピオイド受容体結合剤およびその使用 |
JOP20200096A1 (ar) | 2014-01-31 | 2017-06-16 | Children’S Medical Center Corp | جزيئات جسم مضاد لـ tim-3 واستخداماتها |
ES2900749T3 (es) | 2014-02-11 | 2022-03-18 | Visterra Inc | Moléculas de anticuerpos contra el virus del dengue y usos de las mismas |
US10675352B2 (en) | 2014-02-14 | 2020-06-09 | Centrose, Llc | Extracellular targeted drug conjugates |
GB201403775D0 (en) | 2014-03-04 | 2014-04-16 | Kymab Ltd | Antibodies, uses & methods |
NZ631007A (en) | 2014-03-07 | 2015-10-30 | Alexion Pharma Inc | Anti-c5 antibodies having improved pharmacokinetics |
UY36032A (es) | 2014-03-14 | 2015-10-30 | Novartis Ag | Moléculas de anticuerpo que se unen a lag-3 y usos de las mismas |
JP2017513818A (ja) | 2014-03-15 | 2017-06-01 | ノバルティス アーゲー | キメラ抗原受容体を使用する癌の処置 |
WO2015142661A1 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Regulatable chimeric antigen receptor |
WO2015143406A2 (en) | 2014-03-21 | 2015-09-24 | Regeneron Pharmaceuticals, Inc. | Vl antigen binding proteins exhibiting distinct binding characteristics |
AU2015230938C1 (en) | 2014-03-21 | 2021-10-14 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
CA2944402A1 (en) | 2014-04-08 | 2015-10-15 | Prothena Biosciences Limited | Blood-brain barrier shuttles containing antibodies recognizing alpha-synuclein |
TW201622746A (zh) | 2014-04-24 | 2016-07-01 | 諾華公司 | 改善或加速髖部骨折術後身體復原之方法 |
LT3134095T (lt) | 2014-04-25 | 2020-06-10 | Bluebird Bio, Inc. | Patobulinti adaptyviųjų ląstelių gydymo priemonės gamybos būdai |
RS62733B1 (sr) | 2014-04-25 | 2022-01-31 | 2Seventy Bio Inc | Mnd promoter himernih antigenskih receptora |
US9388239B2 (en) | 2014-05-01 | 2016-07-12 | Consejo Nacional De Investigation Cientifica | Anti-human VEGF antibodies with unusually strong binding affinity to human VEGF-A and cross reactivity to human VEGF-B |
HUE058008T2 (hu) | 2014-05-16 | 2022-06-28 | Ablynx Nv | Immunglobulin variábilis domének |
CN115925946A (zh) | 2014-05-28 | 2023-04-07 | 阿吉纳斯公司 | 抗gitr抗体和其使用方法 |
KR102485855B1 (ko) | 2014-06-06 | 2023-01-09 | 2세븐티 바이오, 인코포레이티드 | 개선된 t 세포 조성물 |
NL2013007B1 (en) | 2014-06-16 | 2016-07-05 | Ablynx Nv | Methods of treating TTP with immunoglobulin single variable domains and uses thereof. |
NL2013661B1 (en) | 2014-10-21 | 2016-10-05 | Ablynx Nv | KV1.3 Binding immunoglobulins. |
US20170290876A1 (en) | 2014-06-25 | 2017-10-12 | Novartis Ag | Compositions and methods for long acting proteins |
EP3160991A2 (en) | 2014-06-25 | 2017-05-03 | Novartis AG | Compositions and methods for long acting proteins |
US11542488B2 (en) | 2014-07-21 | 2023-01-03 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
EP3193915A1 (en) | 2014-07-21 | 2017-07-26 | Novartis AG | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
KR102612313B1 (ko) | 2014-07-21 | 2023-12-12 | 노파르티스 아게 | 인간화 항-bcma 키메라 항원 수용체를 사용한 암의 치료 |
EP3194976B1 (en) | 2014-07-22 | 2020-04-01 | Vib Vzw | Methods to select agents that stabilize protein complexes |
MX2017001079A (es) | 2014-07-24 | 2017-09-12 | Bluebird Bio Inc | Receptores de antígeno quiméricos de antígeno de maduración de células b (bcma). |
CA2954359C (en) | 2014-07-29 | 2018-09-25 | Vrije Universiteit Brussel | Radio-labelled antibody fragments for use in the prevention and/or treatment of cancer |
US20180036442A1 (en) | 2014-07-29 | 2018-02-08 | Vrije Universiteit Brussel | Radio-labelled antibody fragments for use in the prognosis, diagnosis of cancer as well as for the prediction of cancer therapy response |
US20170209492A1 (en) | 2014-07-31 | 2017-07-27 | Novartis Ag | Subset-optimized chimeric antigen receptor-containing t-cells |
AP2017009721A0 (en) | 2014-08-07 | 2017-01-31 | Novartis Ag | Angiopoietin-like 4 antibodies and methods of use |
WO2016020882A2 (en) | 2014-08-07 | 2016-02-11 | Novartis Ag | Angiopoetin-like 4 (angptl4) antibodies and methods of use |
AU2015301460B2 (en) | 2014-08-14 | 2021-04-08 | Novartis Ag | Treatment of cancer using GFR alpha-4 chimeric antigen receptor |
PL3183268T3 (pl) | 2014-08-19 | 2020-09-07 | Novartis Ag | Chimeryczny receptor antygenowy (CAR) anty-CD123 do zastosowania w leczeniu nowotworu złośliwego |
JO3663B1 (ar) | 2014-08-19 | 2020-08-27 | Merck Sharp & Dohme | الأجسام المضادة لمضاد lag3 وأجزاء ربط الأنتيجين |
CR20170060A (es) | 2014-08-19 | 2017-04-18 | Merck Sharp & Dohme | Anticuerpos anti tigit |
WO2016040892A1 (en) | 2014-09-13 | 2016-03-17 | Novartis Ag | Combination therapies |
CN107580628B (zh) | 2014-09-17 | 2022-01-07 | 诺华股份有限公司 | 用于过继免疫疗法的具有嵌合受体的靶向细胞毒性细胞 |
WO2016054555A2 (en) | 2014-10-03 | 2016-04-07 | Novartis Ag | Combination therapies |
KR20230042391A (ko) | 2014-10-03 | 2023-03-28 | 나노틱스 엘엘씨 | 가용성 생물분자의 생물학적 활성을 억제하기 위한 조성물 및 방법 |
MA41044A (fr) | 2014-10-08 | 2017-08-15 | Novartis Ag | Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer |
SG11201702688UA (en) | 2014-10-10 | 2017-04-27 | Ablynx Nv | Methods of treating rsv infections |
HUE044199T2 (hu) | 2014-10-10 | 2019-10-28 | Ablynx Nv | Inhalációs készülék légúti betegségek aeroszolos terápiájában való alkalmazásra |
TWI716362B (zh) | 2014-10-14 | 2021-01-21 | 瑞士商諾華公司 | 針對pd-l1之抗體分子及其用途 |
WO2016061632A1 (en) | 2014-10-23 | 2016-04-28 | La Trobe University | Fn14-binding proteins and uses thereof |
BR112017009330A2 (pt) | 2014-11-05 | 2017-12-19 | Agrosavfe N V | planta transgênica que compreende um polinucleotídeo que codifica um domínio variável de anticorpo de cadeia pesada |
US20180334490A1 (en) | 2014-12-03 | 2018-11-22 | Qilong H. Wu | Methods for b cell preconditioning in car therapy |
US11001625B2 (en) | 2014-12-10 | 2021-05-11 | Tufts University | VHH based binding antibodies for anthrax and botulinum toxins and methods of making and using therefor |
AU2015360282B2 (en) | 2014-12-11 | 2021-04-01 | Pierre Fabre Medicament | Anti-C10orf54 antibodies and uses thereof |
ES2750725T3 (es) | 2014-12-12 | 2020-03-26 | Bluebird Bio Inc | Receptores de antígeno quiméricos BCMA |
US20160168237A1 (en) | 2014-12-12 | 2016-06-16 | Alexion Pharmaceuticals, Inc. | Method for treating a complement mediated disorder caused by an infectious agent in a patient |
WO2016094962A1 (en) | 2014-12-19 | 2016-06-23 | Monash University | Il-21 antibodies |
AU2015366284B2 (en) | 2014-12-19 | 2021-07-22 | Ablynx N.V. | Cysteine linked nanobody dimers |
UY36449A (es) | 2014-12-19 | 2016-07-29 | Novartis Ag | Composiciones y métodos para anticuerpos dirigidos a bmp6 |
US20170340733A1 (en) | 2014-12-19 | 2017-11-30 | Novartis Ag | Combination therapies |
EP3237450B1 (en) | 2014-12-22 | 2021-03-03 | The Rockefeller University | Anti-mertk agonistic antibodies and uses thereof |
WO2016109410A2 (en) | 2014-12-29 | 2016-07-07 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
CN107530421B (zh) | 2014-12-30 | 2021-07-20 | 细胞基因公司 | 抗cd47抗体及其用途 |
DK3240801T3 (da) | 2014-12-31 | 2021-02-08 | Checkmate Pharmaceuticals Inc | Kombinationstumorimmunterapi |
JP2018504400A (ja) | 2015-01-08 | 2018-02-15 | バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. | Lingo‐1拮抗薬及び脱髄障害の治療のための使用 |
GB201501004D0 (en) | 2015-01-21 | 2015-03-04 | Cancer Rec Tech Ltd | Inhibitors |
US11161907B2 (en) | 2015-02-02 | 2021-11-02 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
CN107531780B (zh) | 2015-02-03 | 2021-11-02 | 国家健康与医学研究院 | 抗-Rho GTPase的构象单域抗体及其用途 |
ES2791950T3 (es) | 2015-02-03 | 2020-11-06 | Ventana Med Syst Inc | Ensayo histoquímico para evaluar la expresión del ligando de muerte programada 1 (PD-L1) |
WO2016128549A1 (en) | 2015-02-13 | 2016-08-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Polypeptides for engineering integrase chimeric proteins and their use in gene therapy |
WO2016138160A1 (en) | 2015-02-24 | 2016-09-01 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use |
WO2016135041A1 (en) | 2015-02-26 | 2016-09-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Fusion proteins and antibodies comprising thereof for promoting apoptosis |
EP3061826A1 (en) | 2015-02-27 | 2016-08-31 | Novartis AG | Flavivirus replicons |
EP4137157A1 (en) | 2015-03-03 | 2023-02-22 | Kymab Limited | Antibodies, uses and methods |
IL296062A (en) | 2015-03-17 | 2022-10-01 | Memorial Sloan Kettering Cancer Center | Antibodies against muc16 and their uses |
MA41795A (fr) | 2015-03-18 | 2018-01-23 | Sarepta Therapeutics Inc | Exclusion d'un exon induite par des composés antisens dans la myostatine |
EP3271403A1 (en) | 2015-03-19 | 2018-01-24 | Regeneron Pharmaceuticals, Inc. | Non-human animals that select for light chain variable regions that bind antigen |
WO2016151557A1 (en) | 2015-03-25 | 2016-09-29 | Alexion Pharmaceuticals, Inc. | A method for measuring the protease activity of c5 convertase of the alternative complement pathway |
EP3274724A1 (en) | 2015-03-25 | 2018-01-31 | Alexion Pharmaceuticals, Inc. | A method for measuring the protease activity of factor d of the alternative complement pathway |
DK4089113T3 (da) | 2015-03-31 | 2024-02-05 | Sorriso Pharmaceuticals Inc | Polypeptider |
BR112017020915A2 (pt) | 2015-04-02 | 2018-07-10 | Intervet Int Bv | ?anticorpo de mamífero isolado ou fragmento de ligação ao antígeno do mesmo, anticorpo caninizado ou fragmento de ligação ao antígeno caninizado do mesmo, anticorpo monoclonal caninizado ou fragmento de ligação ao antígeno do mesmo, ácido nucleico isolado, vetor de expressão, célula hospedeira, peptídeo isolado, proteína de fusão, composição farmacêutica, e, método para diminuir a atividade de uma célula imune? |
EP3277316A1 (en) | 2015-04-02 | 2018-02-07 | Ablynx N.V. | Bispecific cxcr4-cd-4 polypeptides with potent anti-hiv activity |
WO2016164580A1 (en) | 2015-04-07 | 2016-10-13 | Novartis Ag | Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives |
US10851176B2 (en) | 2015-04-13 | 2020-12-01 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods of administering neutralizing anti-protease nexin-1 antibodies to treat hemophilia A |
US9778265B2 (en) | 2015-04-16 | 2017-10-03 | The United States Of America, As Represented By The Secretary Of The Navy | Charged peptide appendage to facilitate oriented protein covalent immobilization |
WO2016168601A1 (en) | 2015-04-17 | 2016-10-20 | Khalid Shah | Agents, systems and methods for treating cancer |
EP3283619B1 (en) | 2015-04-17 | 2023-04-05 | Novartis AG | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
EP3286211A1 (en) | 2015-04-23 | 2018-02-28 | Novartis AG | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
KR20180015650A (ko) | 2015-05-07 | 2018-02-13 | 아게누스 인코포레이티드 | 항-ox40 항체 및 이의 사용 방법 |
WO2016183183A1 (en) | 2015-05-11 | 2016-11-17 | The Johns Hopkins University | Autoimmune antibodies for use in inhibiting cancer cell growth |
RS65904B1 (sr) | 2015-05-13 | 2024-09-30 | Ablynx Nv | Polipeptidi koji regrutuju t ćelije na osnovu reaktivnosti cd3 |
LT3294768T (lt) | 2015-05-13 | 2019-11-11 | Ablynx Nv | T ląstelių rekrutingo polipeptidai tcr alfa/beta reaktyvumo pagrindu |
IL293719B2 (en) | 2015-05-21 | 2023-07-01 | Harpoon Therapeutics Inc | Trispecific binding proteins and methods of use |
WO2016191659A1 (en) | 2015-05-28 | 2016-12-01 | Bio-Rad Laboratories, Inc. | Affinity ligands and methods relating thereto |
SI3303394T1 (sl) | 2015-05-29 | 2020-10-30 | Agenus Inc. | Protitelesa proti-CTLA-4 in postopki njihove uporabe |
CN107614526A (zh) | 2015-06-05 | 2018-01-19 | 诺华股份有限公司 | 靶向骨形成蛋白9(bmp9)的抗体及其方法 |
WO2016197367A1 (en) | 2015-06-11 | 2016-12-15 | Wuxi Biologics (Shanghai) Co. Ltd. | Novel anti-pd-l1 antibodies |
WO2016207313A1 (en) | 2015-06-24 | 2016-12-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and kits for detecting protein-protein interactions |
JOP20200312A1 (ar) | 2015-06-26 | 2017-06-16 | Novartis Ag | الأجسام المضادة للعامل xi وطرق الاستخدام |
AU2016294858B2 (en) | 2015-07-17 | 2022-08-11 | Vrije Universiteit Brussel | Radiolabelled antibody fragments for use in treating cancer |
US10829735B2 (en) | 2015-07-21 | 2020-11-10 | The Trustees Of The University Of Pennsylvania | Methods for improving the efficacy and expansion of immune cells |
WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
PL3317301T3 (pl) | 2015-07-29 | 2021-11-15 | Novartis Ag | Terapie skojarzone zawierające cząsteczki przeciwciał przeciw lag-3 |
CN114272371A (zh) | 2015-07-29 | 2022-04-05 | 诺华股份有限公司 | 包含抗pd-1抗体分子的联合疗法 |
EP3328399B1 (en) | 2015-07-31 | 2023-12-27 | Regents of the University of Minnesota | Modified cells and methods of therapy |
US20190008983A1 (en) | 2015-07-31 | 2019-01-10 | James R. Prudent | Extracellular drug conjugates targeting cd20 |
AU2016303545B2 (en) | 2015-08-03 | 2019-09-12 | Novartis Ag | Methods of treating FGF21-associated disorders |
WO2017020291A1 (en) | 2015-08-06 | 2017-02-09 | Wuxi Biologics (Shanghai) Co. Ltd. | Novel anti-pd-l1 antibodies |
EP3331904B1 (en) | 2015-08-07 | 2020-12-23 | Merck Patent GmbH | A transglutamine tag for efficient site-specific bioconjugation |
PE20181018A1 (es) | 2015-08-11 | 2018-06-26 | Wuxi Biologics Cayman Inc | Anticuerpos anti-pd-1 novedosos |
CN105384825B (zh) | 2015-08-11 | 2018-06-01 | 南京传奇生物科技有限公司 | 一种基于单域抗体的双特异性嵌合抗原受体及其应用 |
CN108136014A (zh) | 2015-08-31 | 2018-06-08 | 蓝鸟生物公司 | 抗唾液酸tn嵌合抗原受体 |
SG10201913276WA (en) | 2015-09-01 | 2020-02-27 | Agenus Inc | Anti-pd-1 antibodies and methods of use thereof |
WO2017040930A2 (en) | 2015-09-03 | 2017-03-09 | The Trustees Of The University Of Pennsylvania | Biomarkers predictive of cytokine release syndrome |
WO2017042701A1 (en) | 2015-09-09 | 2017-03-16 | Novartis Ag | Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies |
KR20180042433A (ko) | 2015-09-09 | 2018-04-25 | 노파르티스 아게 | 흉선 기질 림포포이에틴 (tslp)-결합 항체 및 항체의 사용 방법 |
UA126278C2 (uk) | 2015-09-21 | 2022-09-14 | Аптево Рісьорч Енд Девелопмент Ллс | Поліпептиди, які зв'язують cd3 |
WO2017062649A1 (en) | 2015-10-07 | 2017-04-13 | Alexion Pharmaceuticals, Inc. | A method for treating age-related macular degeneration in a patient |
WO2017062835A2 (en) | 2015-10-09 | 2017-04-13 | Sarepta Therapeutics, Inc. | Compositions and methods for treating duchenne muscular dystrophy and related disorders |
CN105238759B (zh) * | 2015-10-14 | 2019-05-24 | 吉日木图 | 抗驼乳重链IgG3单克隆抗体、含有所述单克隆抗体的试纸及其应用 |
US11168131B2 (en) | 2015-11-10 | 2021-11-09 | Visterra, Inc. | Antibody molecule-drug conjugates and uses thereof |
NO2768984T3 (es) | 2015-11-12 | 2018-06-09 | ||
US20180327499A1 (en) | 2015-11-13 | 2018-11-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti- nkg2d single domain antibodies and uses thereof |
SG10201911035QA (en) | 2015-11-18 | 2020-01-30 | Merck Sharp & Dohme | Pd1 and/or lag3 binders |
CN108473565B (zh) | 2015-11-18 | 2022-05-27 | 默沙东公司 | Ctla4结合剂 |
LT3380522T (lt) | 2015-11-25 | 2024-02-26 | Visterra, Inc. | Antikūnai prieš april molekules ir jų panaudojimas |
KR20180080337A (ko) | 2015-11-27 | 2018-07-11 | 아블린쓰 엔.브이. | Cd40l을 억제하는 폴리펩티드 |
EP3797790A1 (en) | 2015-12-04 | 2021-03-31 | Boehringer Ingelheim International GmbH | Biparatopic polypeptides antagonizing wnt signaling in tumor cells |
US11479755B2 (en) | 2015-12-07 | 2022-10-25 | 2Seventy Bio, Inc. | T cell compositions |
US10829562B2 (en) | 2015-12-10 | 2020-11-10 | Katholieke Universiteit Leuven | Haemorrhagic disorder due to ventricular assist device |
JP7000322B2 (ja) | 2015-12-16 | 2022-02-04 | メルク・シャープ・アンド・ドーム・コーポレーション | 抗lag3抗体および抗原結合性フラグメント |
JP2019503349A (ja) | 2015-12-17 | 2019-02-07 | ノバルティス アーゲー | Pd−1に対する抗体分子およびその使用 |
JP2019502695A (ja) | 2015-12-17 | 2019-01-31 | ノバルティス アーゲー | PD−1に対する抗体分子とC−Met阻害剤との組合せおよびその使用 |
US11091556B2 (en) | 2015-12-18 | 2021-08-17 | Intervet Inc. | Caninized human antibodies to human IL-4R alpha |
CA3008102A1 (en) | 2015-12-18 | 2017-06-22 | Novartis Ag | Antibodies targeting cd32b and methods of use thereof |
MA44140A (fr) | 2015-12-22 | 2021-05-19 | Dana Farber Cancer Inst Inc | Récepteur d'antigène chimérique (car) contre la mésothéline et anticorps contre l'inhibiteur de pd-l1 pour une utilisation combinée dans une thérapie anticancéreuse |
CN109153975A (zh) | 2015-12-28 | 2019-01-04 | 诺华股份有限公司 | 制备嵌合抗原受体表达细胞的方法 |
EP3998281A1 (en) | 2016-02-05 | 2022-05-18 | Orionis Biosciences BV | Cd8 binding agents |
WO2017141208A1 (en) | 2016-02-17 | 2017-08-24 | Novartis Ag | Tgfbeta 2 antibodies |
AU2017225733A1 (en) | 2016-03-04 | 2018-09-27 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (CAR) molecules and uses therefore |
EP4276114A3 (en) | 2016-03-07 | 2024-02-21 | Vib Vzw | Cd20 binding single domain antibodies |
JP7034489B2 (ja) | 2016-03-15 | 2022-03-14 | アイタブメッド (エイチケイ) リミテッド | 多重特異性Fab融合タンパクおよびその使用 |
WO2017158396A1 (en) | 2016-03-16 | 2017-09-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Cytidine deaminase inhibitors for the treatment of pancreatic cancer |
CN109153728A (zh) | 2016-03-21 | 2019-01-04 | 埃尔斯塔治疗公司 | 多特异性和多功能分子及其用途 |
WO2017162604A1 (en) | 2016-03-21 | 2017-09-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosis and treatment of solar lentigo |
KR20180127971A (ko) | 2016-03-23 | 2018-11-30 | 맵스페이스 바이오사이언시즈 (쑤저우) 컴퍼니 리미티드 | 신규 항-pd-l1 항체 |
EP3433275A1 (en) | 2016-03-24 | 2019-01-30 | Millennium Pharmaceuticals, Inc. | Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments |
WO2017165742A1 (en) | 2016-03-24 | 2017-09-28 | Millennium Pharmaceuticals, Inc. | Methods of treating gastrointestinal immune-related adverse events in anti-ctla4 anti-pd-1 combination treatments |
JP7155009B2 (ja) | 2016-03-25 | 2022-10-18 | ビステラ, インコーポレイテッド | デングウイルスに対する抗体分子の製剤 |
WO2017176762A1 (en) | 2016-04-06 | 2017-10-12 | Nanotics, Llc | Particles comprising subparticles or nucleic acid scaffolds |
EP3442993B1 (en) | 2016-04-13 | 2021-01-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and kits for the rapid detection of the escherichia coli o25b-st131 clone |
CA3020993A1 (en) | 2016-04-14 | 2017-10-19 | Bluebird Bio, Inc. | Salvage chimeric antigen receptor systems |
US20170298119A1 (en) | 2016-04-15 | 2017-10-19 | Visterra, Inc. | Antibody molecules to zika virus and uses thereof |
PT3443096T (pt) | 2016-04-15 | 2023-05-30 | Novartis Ag | Composições e métodos para expressão seletiva de recetores de antigénios quiméricos |
US11230591B2 (en) | 2016-04-20 | 2022-01-25 | Merck Sharp & Dohme Corp. | CMV neutralizing antigen binding proteins |
WO2017182605A1 (en) | 2016-04-22 | 2017-10-26 | Université Libre de Bruxelles | A new biomarker expressed in pancreatic beta cells useful in imaging or targeting beta cells |
WO2017182603A1 (en) | 2016-04-22 | 2017-10-26 | Université Libre de Bruxelles | A new biomarker expressed in pancreatic beta cells useful in imaging or targeting beta cells |
WO2017189724A1 (en) | 2016-04-27 | 2017-11-02 | Novartis Ag | Antibodies against growth differentiation factor 15 and uses thereof |
CN109311968A (zh) | 2016-05-02 | 2019-02-05 | 埃博灵克斯股份有限公司 | 治疗rsv感染 |
CN109415432B (zh) | 2016-05-02 | 2022-07-08 | 普罗塞纳生物科学有限公司 | Tau免疫疗法 |
CN109563141A (zh) | 2016-05-13 | 2019-04-02 | 奥里尼斯生物科学公司 | 对非细胞结构的治疗性靶向 |
SI3458478T1 (sl) | 2016-05-18 | 2021-04-30 | Boehringer Ingelheim International Gmbh | Anti-PD1 in anti-LAG3 protitelesa za zdravljenje raka |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
WO2017201488A1 (en) | 2016-05-20 | 2017-11-23 | Harpoon Therapeutics, Inc. | Single domain serum albumin binding protein |
CN116987189A (zh) | 2016-05-20 | 2023-11-03 | 哈普恩治疗公司 | 单链可变片段cd3结合蛋白质 |
WO2017202962A1 (en) | 2016-05-24 | 2017-11-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd) |
CN118359722A (zh) | 2016-05-27 | 2024-07-19 | 艾吉纳斯公司 | 抗tim-3抗体及其使用方法 |
WO2017213695A1 (en) | 2016-06-07 | 2017-12-14 | The Brigham And Women's Hospital, Inc. | Compositions and methods relating to t peripheral helper cells in autoantibody-associated conditions |
WO2017216724A1 (en) | 2016-06-15 | 2017-12-21 | Novartis Ag | Methods for treating disease using inhibitors of bone morphogenetic protein 6 (bmp6) |
WO2017223419A1 (en) | 2016-06-24 | 2017-12-28 | Ig Biosciences Corporation | Prebiotic neutraceutical compositions and methods of treatment using the same |
WO2018007442A1 (en) | 2016-07-06 | 2018-01-11 | Ablynx N.V. | Treatment of il-6r related diseases |
AU2017292184A1 (en) | 2016-07-08 | 2019-02-07 | Staten Biotechnology B.V. | Anti-Apoc3 antibodies and methods of use thereof |
AU2017297404A1 (en) | 2016-07-13 | 2019-01-24 | Biogen Ma Inc. | Dosage regimens of LINGO-1 antagonists and uses for treatment of demyelinating disorders |
CA3030837A1 (en) | 2016-07-15 | 2018-01-18 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
WO2018014260A1 (en) | 2016-07-20 | 2018-01-25 | Nanjing Legend Biotech Co., Ltd. | Multispecific antigen binding proteins and methods of use thereof |
WO2018017964A2 (en) | 2016-07-21 | 2018-01-25 | Emory University | Ebola virus antibodies and binding agents derived therefrom |
AU2017302668B9 (en) | 2016-07-28 | 2023-06-22 | Novartis Ag | Combination therapies of chimeric antigen receptors and PD-1 inhibitors |
NL2017267B1 (en) | 2016-07-29 | 2018-02-01 | Aduro Biotech Holdings Europe B V | Anti-pd-1 antibodies |
CN110267677A (zh) | 2016-08-01 | 2019-09-20 | 诺华股份有限公司 | 使用与原m2巨噬细胞分子抑制剂组合的嵌合抗原受体治疗癌症 |
NL2017270B1 (en) | 2016-08-02 | 2018-02-09 | Aduro Biotech Holdings Europe B V | New anti-hCTLA-4 antibodies |
KR20190038607A (ko) | 2016-08-02 | 2019-04-08 | 비스테라, 인크. | 조작된 폴리펩티드 및 그의 용도 |
BR112019002127A2 (pt) | 2016-08-03 | 2019-09-17 | Nextcure Inc | proteína de fusão, vetor, célula, composição farmacêutica, e, uso da proteína de fusão |
WO2018029182A1 (en) | 2016-08-08 | 2018-02-15 | Ablynx N.V. | Il-6r single variable domain antibodies for treatment of il-6r related diseases |
EP3512880A1 (en) | 2016-09-15 | 2019-07-24 | Ablynx NV | Immunoglobulin single variable domains directed against macrophage migration inhibitory factor |
JP2020502991A (ja) | 2016-09-20 | 2020-01-30 | ウーシー バイオロジクス アイルランド リミテッド | 新規抗pcsk9抗体 |
RU2759334C2 (ru) | 2016-09-21 | 2021-11-12 | Нексткьюр, Инк. | Антитела против siglec-15 и способы их применения |
EP4360714A3 (en) | 2016-09-21 | 2024-07-24 | Nextcure, Inc. | Antibodies for siglec-15 and methods of use thereof |
CA3034105A1 (en) | 2016-09-23 | 2018-03-29 | Csl Limited | Coagulation factor binding proteins and uses thereof |
JP7274413B2 (ja) | 2016-09-23 | 2023-05-16 | マレンゴ・セラピューティクス,インコーポレーテッド | ラムダ及びカッパ軽鎖を含む多重特異性抗体分子 |
EP3519438A1 (en) | 2016-09-30 | 2019-08-07 | VHsquared Limited | Compositions |
AU2017341047B2 (en) | 2016-10-07 | 2024-10-10 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
WO2018068201A1 (en) | 2016-10-11 | 2018-04-19 | Nanjing Legend Biotech Co., Ltd. | Single-domain antibodies and variants thereof against ctla-4 |
MX2019003683A (es) | 2016-10-11 | 2019-08-22 | Agenus Inc | Anticuerpos anti gen 3 de activación linfocítica (lag 3 ) y métodos para usarlos. |
WO2018071624A1 (en) | 2016-10-12 | 2018-04-19 | Alexion Pharmaceuticals, Inc. | Efficacy of an anti-c5 antibody in the prevention of antibody mediated rejection in sensitized recipients of a kidney transplant |
EP3529359B1 (en) | 2016-10-18 | 2023-12-13 | Regents of the University of Minnesota | Tumor infiltrating lymphocytes for use in therapy |
JP7096240B2 (ja) | 2016-10-19 | 2022-07-05 | アレクシオン ファーマシューティカルズ, インコーポレイテッド | 試料中の非結合c5の定量化方法 |
EP3529619B1 (en) | 2016-10-19 | 2021-06-30 | Alexion Pharmaceuticals, Inc. | A method of quantitating unbound c5a in a sample |
US11365257B2 (en) | 2016-10-21 | 2022-06-21 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods for promoting t cells response by administering an antagonist of human c-type lectin-like receptor 1 (CLEC-1) |
WO2018081400A1 (en) | 2016-10-27 | 2018-05-03 | Alexion Pharmaceuticals Inc. | Assay for c5b-9 deposition in complement-associated disorders |
AU2017348365A1 (en) | 2016-10-28 | 2019-05-23 | Astute Medical, Inc. | Use of antibodies to TIMP-2 for the improvement of renal function |
WO2018078083A1 (en) | 2016-10-28 | 2018-05-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method for treating multiple myeloma |
EP3534947A1 (en) | 2016-11-03 | 2019-09-11 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses & methods |
MA46723A (fr) | 2016-11-04 | 2019-09-11 | Bluebird Bio Inc | Compositions de lymphocytes t car anti-bcma |
AU2017353939A1 (en) | 2016-11-07 | 2019-06-06 | Neuracle Science Co., Ltd. | Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof |
CN110177809B (zh) | 2016-11-16 | 2023-11-03 | 埃博灵克斯股份有限公司 | 能够结合CD123和TCRα/β的T细胞募集多肽 |
CN110072885B (zh) | 2016-11-17 | 2023-12-19 | 2赛文缇生物公司 | TGFβ信号转换器 |
US11773163B2 (en) | 2016-11-21 | 2023-10-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the prophylactic treatment of metastases |
MX2019006045A (es) | 2016-11-23 | 2019-11-11 | Harpoon Therapeutics Inc | Proteinas triespecificas dirigidas a psma y metodos de uso. |
AU2017363300A1 (en) | 2016-11-23 | 2019-06-20 | Harpoon Therapeutics, Inc. | Prostate specific membrane antigen binding protein |
WO2018099968A1 (en) | 2016-11-29 | 2018-06-07 | Ablynx N.V. | Treatment of infection by respiratory syncytial virus (rsv) |
WO2018102746A1 (en) | 2016-12-02 | 2018-06-07 | Rigel Pharmaceuticals, Inc. | Antigen binding molecules to tigit |
US20180193003A1 (en) | 2016-12-07 | 2018-07-12 | Progenity Inc. | Gastrointestinal tract detection methods, devices and systems |
MX2019006340A (es) | 2016-12-07 | 2019-11-07 | Agenus Inc | Anticuerpos anti antígeno 4 del linfocito t citotóxico (ctla-4) y métodos de uso de los mismos. |
AU2017373945A1 (en) | 2016-12-07 | 2019-06-20 | Agenus Inc. | Antibodies and methods of use thereof |
CA3046023A1 (en) | 2016-12-14 | 2018-06-21 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an immunosuppressant |
WO2018112223A1 (en) | 2016-12-14 | 2018-06-21 | Progenity Inc. | Treatment of a disease of the gastrointestinal tract with a tlr modulator |
CA3046093A1 (en) | 2016-12-14 | 2018-06-21 | Progenity Inc. | Treatment of a disease of the gastrointestinal tract with an il-1 inhibitor |
AU2017378398B2 (en) | 2016-12-14 | 2023-02-02 | Biora Therapeutics, Inc. | Treatment of a disease of the gastrointestinal tract with a JAK inhibitor and devices |
WO2018112237A1 (en) | 2016-12-14 | 2018-06-21 | Progenity Inc. | Treatment of a disease of the gastrointestinal tract with an il-6r inhibitor |
EP3554540B1 (en) | 2016-12-14 | 2023-08-02 | Biora Therapeutics, Inc. | Treatment of a disease of the gastrointestinal tract with an il-12/il-23 inhibitor released using an ingestible device |
EP4410832A2 (en) | 2016-12-14 | 2024-08-07 | Biora Therapeutics, Inc. | Treatment of a disease of the gastrointestinal tract with a tnf inhibitor |
EP3554345A1 (en) | 2016-12-14 | 2019-10-23 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with a smad7 inhibitor |
TW201834710A (zh) | 2016-12-14 | 2018-10-01 | 美商寶珍那提公司 | 以整合素抑制劑治療胃腸道疾病 |
WO2018112264A1 (en) | 2016-12-14 | 2018-06-21 | Progenity Inc. | Treatment of a disease of the gastrointestinal tract with a chemokine/chemokine receptor inhibitor |
EP3360898A1 (en) | 2017-02-14 | 2018-08-15 | Boehringer Ingelheim International GmbH | Bispecific anti-tnf-related apoptosis-inducing ligand receptor 2 and anti-cadherin 17 binding molecules for the treatment of cancer |
CA3048156A1 (en) | 2016-12-23 | 2018-06-28 | Novartis Ag | Factor xi antibodies and methods of use |
MX2019007356A (es) | 2016-12-23 | 2019-09-05 | Visterra Inc | Polipeptidos de union y metodos para fabricarlos. |
MA47215A (fr) | 2017-01-09 | 2019-11-13 | Bioxcel Therapeutics Inc | Procédés prédictifs et diagnostiques pour le cancer de la prostate |
CN110431150A (zh) | 2017-01-18 | 2019-11-08 | 威特拉公司 | 抗体分子-药物偶联物及其用途 |
CN110662421B (zh) | 2017-01-19 | 2023-03-24 | 欧莫诺艾比公司 | 来自具有多个重链免疫球蛋白基因座的转基因啮齿类动物的人抗体 |
EP4043485A1 (en) | 2017-01-26 | 2022-08-17 | Novartis AG | Cd28 compositions and methods for chimeric antigen receptor therapy |
WO2018141753A1 (en) | 2017-01-31 | 2018-08-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for treating squamous cell carcinomas |
KR102642385B1 (ko) | 2017-02-06 | 2024-03-04 | 오리오니스 바이오사이언시스 엔브이 | 표적화된 키메라 단백질 및 이의 용도 |
US10899844B2 (en) | 2017-02-08 | 2021-01-26 | Novartis Ag | FGF21 mimetic antibodies and uses thereof |
WO2018151820A1 (en) | 2017-02-16 | 2018-08-23 | Elstar Therapeutics, Inc. | Multifunctional molecules comprising a trimeric ligand and uses thereof |
KR102616335B1 (ko) | 2017-02-28 | 2023-12-21 | 브이아이비 브이지더블유 | 경구 단백질 전달을 위한 수단 및 방법 |
WO2018160731A1 (en) | 2017-02-28 | 2018-09-07 | Novartis Ag | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
EP3589662A4 (en) | 2017-02-28 | 2020-12-30 | Harpoon Therapeutics, Inc. | INDUCTIBLE MONOVALENT ANTIGBINDING PROTEIN |
DE202018006693U1 (de) | 2017-03-14 | 2022-03-08 | Nanotag Biotechnologies Gmbh | Target-Detektion mit einem monovalenten Antikörper |
EP3596126A4 (en) | 2017-03-15 | 2021-03-03 | Tsinghua University | NEW ANTI-TRKB ANTIBODIES |
WO2018167283A1 (en) | 2017-03-17 | 2018-09-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the diagnosis and treatment of pancreatic ductal adenocarcinoma associated neural remodeling |
RU2019129858A (ru) | 2017-03-24 | 2021-03-23 | Новартис Аг | Методы профилактики и лечения сердечных заболеваний |
KR20190133198A (ko) | 2017-03-27 | 2019-12-02 | 셀진 코포레이션 | 면역원성의 감소를 위한 방법 및 조성물 |
CA3054632A1 (en) | 2017-03-30 | 2018-10-04 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an immune modulatory agent released using an ingestible device |
WO2018183932A1 (en) | 2017-03-30 | 2018-10-04 | Progenity Inc. | Treatment of a disease of the gastrointestinal tract with a il-13 inhibitor |
WO2018183941A2 (en) | 2017-03-30 | 2018-10-04 | Progenity Inc. | Treatment of a disease of the gastrointestinal tract with live biotherapeutics |
US11596670B2 (en) | 2017-03-30 | 2023-03-07 | Biora Therapeutics, Inc. | Treatment of a disease of the gastrointestinal tract with IL-10 or an IL-10 agonist |
WO2018183934A1 (en) | 2017-03-30 | 2018-10-04 | Progenity Inc. | Treatment of a disease of the gastrointestinal tract with a chst15 inhibitor |
CA3055769A1 (en) | 2017-04-03 | 2018-10-11 | Oncologie, Inc. | Methods for treating cancer using ps-targeting antibodies with immuno-oncology agents |
WO2018185516A1 (en) | 2017-04-05 | 2018-10-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for treating cardiovascular toxicity induced by anti-cancer therapy |
EP3609921A2 (en) | 2017-04-13 | 2020-02-19 | Agenus Inc. | Anti-cd137 antibodies and methods of use thereof |
US20200088732A1 (en) | 2017-04-13 | 2020-03-19 | INSERM (Institut National de la Santé et de la Recherche Mèdicale) | Methods for the diagnosis and treatment of pancreatic ductal adenocarcinoma |
WO2018189403A1 (en) | 2017-04-14 | 2018-10-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of cancer |
CA3058290A1 (en) | 2017-04-18 | 2018-10-25 | Universite Libre De Bruxelles | Biomarkers and targets for proliferative diseases |
WO2018195283A1 (en) | 2017-04-19 | 2018-10-25 | Elstar Therapeutics, Inc. | Multispecific molecules and uses thereof |
JP2020517605A (ja) | 2017-04-19 | 2020-06-18 | アレクシオン ファーマシューティカルズ, インコーポレイテッド | 腎臓移植の感作されたレシピエントにおける抗体媒介性拒絶の予防における抗c5抗体の有効性 |
CN110506056A (zh) | 2017-04-21 | 2019-11-26 | 斯塔滕生物技术有限公司 | 抗apoc3抗体和其使用方法 |
US20200055948A1 (en) | 2017-04-28 | 2020-02-20 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
EP3615068A1 (en) | 2017-04-28 | 2020-03-04 | Novartis AG | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
US20200385472A1 (en) | 2017-04-28 | 2020-12-10 | Elstar Therapeutics, Inc. | Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof |
PL3618863T3 (pl) | 2017-05-01 | 2023-11-06 | Agenus Inc. | Przeciwciała anty- tigit i sposoby ich zastosowania |
KR20200005635A (ko) | 2017-05-11 | 2020-01-15 | 브이아이비 브이지더블유 | 가변 면역글로불린 도메인의 글리코실화 |
JOP20190256A1 (ar) | 2017-05-12 | 2019-10-28 | Icahn School Med Mount Sinai | فيروسات داء نيوكاسل واستخداماتها |
CN110913908B (zh) | 2017-05-12 | 2022-05-27 | 哈普恩治疗公司 | 靶向msln的三特异性蛋白质及使用方法 |
CN110662760A (zh) | 2017-05-12 | 2020-01-07 | 奥古斯塔大学研究所公司 | 人甲胎蛋白特异性t细胞受体及其用途 |
CN113896792A (zh) | 2017-05-12 | 2022-01-07 | 哈普恩治疗公司 | 间皮素结合蛋白质 |
US11225514B2 (en) | 2017-05-30 | 2022-01-18 | The Regents Of The University Of California | Nanobodies against cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) |
JP7216024B2 (ja) | 2017-05-31 | 2023-01-31 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 腫瘍細胞におけるWntシグナル伝達と拮抗するポリペプチド |
WO2018222901A1 (en) | 2017-05-31 | 2018-12-06 | Elstar Therapeutics, Inc. | Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof |
CN110691790A (zh) | 2017-06-02 | 2020-01-14 | 勃林格殷格翰国际有限公司 | 抗癌联合治疗 |
SG10202113337YA (en) | 2017-06-02 | 2021-12-30 | Ablynx Nv | Aggrecan binding immunoglobulins |
US12129308B2 (en) | 2017-06-02 | 2024-10-29 | Merck Patent Gmbh | MMP13 binding immunoglobulins |
MX2019014397A (es) | 2017-06-02 | 2020-02-10 | Merck Patent Gmbh | Polipeptidos que enlazan adamts5, mmp13 y agrecano. |
CN118894939A (zh) | 2017-06-02 | 2024-11-05 | 默克专利股份有限公司 | 结合adamts的免疫球蛋白 |
EP3415010A1 (en) | 2017-06-13 | 2018-12-19 | Agrosavfe Nv | Insect-controlling polypeptides and methods |
GB201709379D0 (en) | 2017-06-13 | 2017-07-26 | Univ Leuven Kath | Humanised ADAMTS13 binding antibodies |
WO2018229715A1 (en) | 2017-06-16 | 2018-12-20 | Novartis Ag | Compositions comprising anti-cd32b antibodies and methods of use thereof |
US20190062428A1 (en) | 2017-06-19 | 2019-02-28 | Surface Oncology, Inc. | Combination of anti-cd47 antibodies and cell death-inducing agents, and uses thereof |
EP3642240A1 (en) | 2017-06-22 | 2020-04-29 | Novartis AG | Antibody molecules to cd73 and uses thereof |
CA3066774A1 (en) | 2017-06-22 | 2018-12-27 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
MX2019015738A (es) | 2017-06-27 | 2020-02-20 | Novartis Ag | Regimen de dosificacion para anticuerpos anti-tim-3 y usos de los mismos. |
WO2019000223A1 (en) | 2017-06-27 | 2019-01-03 | Nanjing Legend Biotech Co., Ltd. | ENABLERS OF IMMUNE EFFECTOR CELLS OF CHIMERIC ANTIBODIES AND METHODS OF USE THEREOF |
US11613588B2 (en) | 2017-06-28 | 2023-03-28 | The Rockefeller University | Anti-mertk agonistic antibodies and uses thereof |
CA3063659A1 (en) | 2017-06-28 | 2019-01-03 | Novartis Ag | Methods for preventing and treating urinary incontinence |
JP2020530307A (ja) | 2017-06-30 | 2020-10-22 | インティマ・バイオサイエンス,インコーポレーテッド | 遺伝子治療のためのアデノ随伴ウイルスベクター |
CN117327187A (zh) | 2017-07-11 | 2024-01-02 | 亚力兄制药公司 | 结合补体成分c5或血清白蛋白的多肽及其融合蛋白 |
SG10201913147WA (en) | 2017-07-11 | 2020-02-27 | Compass Therapeutics Llc | Agonist antibodies that bind human cd137 and uses thereof |
WO2019012030A1 (en) | 2017-07-13 | 2019-01-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | DHODH INHIBITOR AND CHK1 INHIBITOR FOR THE TREATMENT OF CANCER |
KR102625929B1 (ko) | 2017-07-19 | 2024-01-16 | 브이아이비 브이지더블유 | 혈청 알부민 결합제 |
EP3431496A1 (en) | 2017-07-19 | 2019-01-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anti- isoasp7 amyloid beta antibodies and uses thereof |
US20200172617A1 (en) | 2017-07-20 | 2020-06-04 | Novartis Ag | Dosage regimens of anti-lag-3 antibodies and uses thereof |
WO2019016784A1 (en) | 2017-07-21 | 2019-01-24 | Universidade De Coimbra | ANTI-NUCLEOLIN ANTIBODIES |
WO2019020480A1 (en) | 2017-07-24 | 2019-01-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | ANTIBODIES AND PEPTIDES FOR TREATING HCMV RELATED DISEASES |
CA3069756A1 (en) | 2017-07-27 | 2019-01-31 | Alexion Pharmaceuticals, Inc. | High concentration anti-c5 antibody formulations |
JP2020529605A (ja) | 2017-08-01 | 2020-10-08 | コンパス セラピューティクス リミテッド ライアビリティ カンパニー | 濾過およびクロマトグラフィ用ポッドならびにその使用方法 |
WO2019036363A1 (en) | 2017-08-14 | 2019-02-21 | Progenity Inc. | TREATMENT OF GASTROINTESTINAL TRACT DISEASE WITH GLATIRAMER OR A PHARMACEUTICALLY ACCEPTABLE SALT THEREOF |
WO2019035938A1 (en) | 2017-08-16 | 2019-02-21 | Elstar Therapeutics, Inc. | MULTISPECIFIC MOLECULES BINDING TO BCMA AND USES THEREOF |
US11485781B2 (en) | 2017-08-17 | 2022-11-01 | Massachusetts Institute Of Technology | Multiple specificity binders of CXC chemokines |
EP3679070A1 (en) | 2017-09-07 | 2020-07-15 | Augusta University Research Institute, Inc. | Antibodies to programmed cell death protein 1 |
US20200268837A1 (en) | 2017-09-20 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for modulating autophagy |
EP3692069A1 (en) | 2017-10-02 | 2020-08-12 | Visterra, Inc. | Antibody molecules to cd138 and uses thereof |
ES2759622T3 (es) | 2017-10-02 | 2020-05-11 | Certest Biotec S L | Anticuerpos anti-Dps y dispositivos de prueba para la detección de bacterias del género Campylobacter |
EP3694552A1 (en) | 2017-10-10 | 2020-08-19 | Tilos Therapeutics, Inc. | Anti-lap antibodies and uses thereof |
BR112020007196A2 (pt) | 2017-10-13 | 2020-12-01 | Harpoon Therapeutics, Inc. | proteínas triespecíficas e métodos de uso |
EP3694871A4 (en) | 2017-10-13 | 2021-11-10 | Harpoon Therapeutics, Inc. | B-CELL MATURATION ANTIG-BINDING PROTEINS |
US11713356B2 (en) | 2017-10-13 | 2023-08-01 | Ose Immunotherapeutics | Modified bifunctional anti-human signal regulatory protein alpha (SIRPa) antibody and method of use thereof for treating cancer |
AU2018350370B2 (en) | 2017-10-18 | 2023-05-04 | Csl Limited | Human serum albumin variants and uses thereof |
JP7422070B2 (ja) | 2017-10-19 | 2024-01-25 | デバイオファーム インターナショナル エス.エー. | 癌の治療のための配合剤 |
WO2019081983A1 (en) | 2017-10-25 | 2019-05-02 | Novartis Ag | CD32B TARGETING ANTIBODIES AND METHODS OF USE |
MX2020004229A (es) | 2017-10-25 | 2020-07-22 | Novartis Ag | Metodos de produccion de celulas que expresan receptores antigenicos quimericos. |
US12128101B2 (en) | 2017-10-26 | 2024-10-29 | Alexion Pharmaceuticals, Inc. | Dosage and administration of anti-C5 antibodies for treatment of paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS) |
WO2019089753A2 (en) | 2017-10-31 | 2019-05-09 | Compass Therapeutics Llc | Cd137 antibodies and pd-1 antagonists and uses thereof |
SG11202003980PA (en) | 2017-10-31 | 2020-05-28 | Staten Biotechnology B V | Anti-apoc3 antibodies and methods of use thereof |
JP2021502063A (ja) | 2017-10-31 | 2021-01-28 | フエー・イー・ベー・フエー・ゼツト・ウエー | 新規抗原結合性キメラタンパク質とその方法及び使用 |
US20210179709A1 (en) | 2017-10-31 | 2021-06-17 | Novartis Ag | Anti-car compositions and methods |
US20190160102A1 (en) | 2017-11-03 | 2019-05-30 | Rubius Therapeutics, Inc. | Compositions and methods related to therapeutic cell systems for tumor growth inhibition |
MX2020004756A (es) | 2017-11-16 | 2020-08-20 | Novartis Ag | Terapias de combinacion. |
US11851497B2 (en) | 2017-11-20 | 2023-12-26 | Compass Therapeutics Llc | CD137 antibodies and tumor antigen-targeting antibodies and uses thereof |
BR112020010514A2 (pt) | 2017-11-29 | 2020-11-24 | Csl Limited | método para tratar ou prevenir lesão por isquemia-reperfusão |
WO2019106126A1 (en) | 2017-12-01 | 2019-06-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Mdm2 modulators for the diagnosis and treatment of liposarcoma |
CN112236514A (zh) | 2017-12-05 | 2021-01-15 | 塞利亚德股份公司 | 改善细胞过继转移的持久性的组合物和方法 |
WO2019110667A1 (en) | 2017-12-05 | 2019-06-13 | Celyad S.A. | Reducing fratricide of immune cells expressing nkg2d-based receptors |
US20200377571A1 (en) | 2017-12-08 | 2020-12-03 | Elstar Therapeutics, Inc. | Multispecific molecules and uses thereof |
WO2019121872A1 (en) | 2017-12-20 | 2019-06-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the diagnosis and treatment of liver cancer |
WO2019129054A1 (zh) | 2017-12-27 | 2019-07-04 | 信达生物制药(苏州)有限公司 | 三链抗体、其制备方法及其用途 |
WO2019129137A1 (zh) | 2017-12-27 | 2019-07-04 | 信达生物制药(苏州)有限公司 | 抗lag-3抗体及其用途 |
CN115925943A (zh) | 2017-12-27 | 2023-04-07 | 信达生物制药(苏州)有限公司 | 抗pd-l1抗体及其用途 |
WO2019129136A1 (zh) | 2017-12-27 | 2019-07-04 | 信达生物制药(苏州)有限公司 | 抗pd-l1抗体及其用途 |
CN109970856B (zh) | 2017-12-27 | 2022-08-23 | 信达生物制药(苏州)有限公司 | 抗lag-3抗体及其用途 |
CN117050184A (zh) | 2017-12-28 | 2023-11-14 | 南京传奇生物科技有限公司 | 针对tigit的单域抗体和其变体 |
CN108218990B (zh) | 2017-12-29 | 2021-03-02 | 南京优迈生物科技有限公司 | 分离的抗体或其抗原结合片段及其在肿瘤治疗中的应用 |
WO2019140116A2 (en) | 2018-01-10 | 2019-07-18 | Rubius Therapeutics, Inc. | Amplifiable rnas for therapeutic cell systems |
JP7366908B2 (ja) | 2018-01-15 | 2023-10-23 | ナンジン レジェンド バイオテック カンパニー,リミテッド | Pd-1に対する単一ドメイン抗体及びその変異体 |
US11965191B2 (en) | 2018-01-18 | 2024-04-23 | California Institute Of Technology | Programmable protein circuits in living cells |
WO2019147478A2 (en) | 2018-01-18 | 2019-08-01 | California Institute Of Technology | Programmable protein circuits in living cells |
EP3743447B1 (en) | 2018-01-23 | 2024-03-27 | Nextcure, Inc. | B7-h4 antibodies and methods of use thereof |
JP2021510594A (ja) | 2018-01-25 | 2021-04-30 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | 臓器の虚血再灌流傷害を予防する方法における使用のためのil−33のアンタゴニスト |
WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
EP3749690A1 (en) | 2018-02-05 | 2020-12-16 | Stichting VU | Inverse agonistic anti-us28 antibodies |
JP2021513361A (ja) | 2018-02-05 | 2021-05-27 | オリオニス バイオサイエンシーズ,インコーポレイテッド | 線維芽細胞結合物質およびその使用 |
MX2020008294A (es) | 2018-02-06 | 2020-11-18 | Ablynx Nv | Metodos de tratamiento de episodio inicial de ttp con dominios variables simples de inmunoglobulina. |
US11802303B2 (en) | 2018-02-07 | 2023-10-31 | Georgia Tech Research Corporation | Methods for multiplexed cell isolation using DNA gates |
WO2019156566A1 (en) | 2018-02-12 | 2019-08-15 | Umc Utrecht Holding B.V. | Bispecific molecules comprising gamma-delta tcr and t-cell or nk cell binding domain |
WO2019155041A1 (en) | 2018-02-12 | 2019-08-15 | Vib Vzw | Gβγ COMPLEX ANTIBODIES AND USES THEREOF |
WO2019158512A1 (en) | 2018-02-13 | 2019-08-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the prognosis and the treatment of glioblastoma |
WO2019169229A1 (en) | 2018-03-01 | 2019-09-06 | Nextcure, Inc. | Klrg1 binding compositions and methods of use thereof |
JP2021514649A (ja) | 2018-03-01 | 2021-06-17 | ブレイエ・ユニバージテイト・ブリュッセルVrije Universiteit Brussel | ヒトpd−l1結合免疫グロブリン |
NL2020520B1 (en) | 2018-03-02 | 2019-09-12 | Labo Bio Medical Invest B V | Multispecific binding molecules for the prevention, treatment and diagnosis of neurodegenerative disorders |
MX2020009507A (es) | 2018-03-13 | 2020-10-22 | Smivet B V | Anticuerpos de dominio individual que se unen a la neurotoxina del tetanos. |
WO2019178364A2 (en) | 2018-03-14 | 2019-09-19 | Elstar Therapeutics, Inc. | Multifunctional molecules and uses thereof |
JP7037218B2 (ja) | 2018-03-14 | 2022-03-16 | サーフィス オンコロジー インコーポレイテッド | Cd39と結合する抗体及びその使用 |
EP3765517A1 (en) | 2018-03-14 | 2021-01-20 | Elstar Therapeutics, Inc. | Multifunctional molecules that bind to calreticulin and uses thereof |
EP3768720A4 (en) | 2018-03-20 | 2022-01-05 | Wuxi Biologics Ireland Limited | NEW ANTI-LAG-3 ANTIBODY POLYPEPTIDE |
CN112512571A (zh) | 2018-03-22 | 2021-03-16 | 表面肿瘤学公司 | 抗il-27抗体及其用途 |
CN112384527B (zh) | 2018-03-23 | 2023-06-27 | 布鲁塞尔自由大学 | Wnt信号传递激动剂分子 |
WO2019184909A1 (zh) | 2018-03-27 | 2019-10-03 | 信达生物制药(苏州)有限公司 | 新型抗体分子、其制备方法及其用途 |
WO2019185723A1 (en) | 2018-03-27 | 2019-10-03 | Umc Utrecht Holding B.V. | Targeted thrombolysis for treatment of microvascular thrombosis |
US20210047696A1 (en) | 2018-03-28 | 2021-02-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for treating cancer |
TW202003567A (zh) | 2018-03-30 | 2020-01-16 | 大陸商南京傳奇生物科技有限公司 | 針對lag-3之單一結構域抗體及其用途 |
WO2019193375A1 (en) | 2018-04-04 | 2019-10-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of fzd7 inhibitors for the treatment of retinal neovascularization |
EP3775218A1 (en) | 2018-04-09 | 2021-02-17 | Checkmate Pharmaceuticals | Packaging oligonucleotides into virus-like particles |
WO2019200357A1 (en) | 2018-04-12 | 2019-10-17 | Surface Oncology, Inc. | Biomarker for cd47 targeting therapeutics and uses therefor |
US20210147547A1 (en) | 2018-04-13 | 2021-05-20 | Novartis Ag | Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof |
WO2019197683A1 (en) | 2018-04-13 | 2019-10-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting outcome and treatment of patients suffering from prostate cancer or breast cancer |
WO2019207030A1 (en) | 2018-04-26 | 2019-10-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer |
WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
US12048745B2 (en) | 2018-05-01 | 2024-07-30 | Augusta University Research Institute, Inc. | Methods for detecting and reversing immune therapy resistance |
WO2019211370A1 (en) | 2018-05-03 | 2019-11-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for treating cancer |
WO2019211369A1 (en) | 2018-05-03 | 2019-11-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for treating cancer |
WO2019217913A1 (en) | 2018-05-10 | 2019-11-14 | Sensei Biotherapeutics, Inc. | Aspartate beta-hydroxylase chimeric antigen receptors and uses thereof |
EP3790898A4 (en) | 2018-05-10 | 2022-03-02 | Neuracle Science Co., Ltd | ANTI-FAMILY SEQUENCE 19, ELEMENT A5 ANTIBODIES AND METHODS OF USE THEREOF |
BR112020023330A2 (pt) | 2018-05-14 | 2021-04-20 | Harpoon Therapeutics, Inc. | porção de ligação para ativação condicional de moléculas de imunoglobulina |
EP3569618A1 (en) | 2018-05-19 | 2019-11-20 | Boehringer Ingelheim International GmbH | Antagonizing cd73 antibody |
WO2019226658A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Multispecific antigen-binding compositions and methods of use |
CA3099308A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Compositions and methods for enhancing the killing of target cells by nk cells |
WO2019226050A2 (en) | 2018-05-24 | 2019-11-28 | Wageningen Universiteit | Novel viral anti-infective reagents |
TW202015726A (zh) | 2018-05-30 | 2020-05-01 | 瑞士商諾華公司 | Entpd2抗體、組合療法、及使用該等抗體和組合療法之方法 |
WO2019232244A2 (en) | 2018-05-31 | 2019-12-05 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
CR20200571A (es) | 2018-06-01 | 2021-01-18 | Novartis Ag | Moléculas de únion contra bcma y usos de las mismas |
WO2019234099A1 (en) | 2018-06-06 | 2019-12-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing, predicting the outcome and treating a patient suffering from heart failure with preserved ejection fraction |
WO2019234221A1 (en) | 2018-06-08 | 2019-12-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for stratification and treatment of a patient suffering from chronic lymphocytic leukemia |
TWI848953B (zh) | 2018-06-09 | 2024-07-21 | 德商百靈佳殷格翰國際股份有限公司 | 針對癌症治療之多特異性結合蛋白 |
EP3806888B1 (en) | 2018-06-12 | 2024-01-31 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
KR20210020932A (ko) | 2018-06-13 | 2021-02-24 | 노파르티스 아게 | Bcma 키메라 항원 수용체 및 이의 용도 |
EP3806903B1 (en) | 2018-06-14 | 2024-02-14 | 2seventy bio, Inc. | Cd79a chimeric antigen receptors |
CA3101642A1 (en) | 2018-06-18 | 2019-12-26 | Anwita Biosciences, Inc. | Anti-mesothelin constructs and uses thereof |
CA3104295A1 (en) | 2018-06-19 | 2019-12-26 | Atarga, Llc | Antibody molecules to complement component 5 and uses thereof |
US20230009902A1 (en) | 2018-06-20 | 2023-01-12 | Progenity, Inc. | Treatment of a disease or condition in a tissue orginating from the endoderm |
WO2019246312A1 (en) | 2018-06-20 | 2019-12-26 | Progenity, Inc. | Treatment of a disease of the gastrointestinal tract with an immunomodulator |
WO2020001526A1 (zh) | 2018-06-29 | 2020-01-02 | 苏州智核生物医药科技有限公司 | Pd-l1结合多肽及其用途 |
US11884729B2 (en) | 2018-06-29 | 2024-01-30 | ApitBio, Inc | Anti-L1CAM antibodies and uses thereof |
CN112955465A (zh) | 2018-07-03 | 2021-06-11 | 马伦戈治疗公司 | 抗tcr抗体分子及其用途 |
KR20210030973A (ko) | 2018-07-11 | 2021-03-18 | 액팀 테라퓨틱스, 인코퍼레이티드 | 조작된 면역자극성 박테리아 균주 및 이의 용도 |
US20210330788A1 (en) | 2018-07-11 | 2021-10-28 | Celgene Corporation | Uses of anti-bcma chimeric antigen receptors |
WO2020016160A1 (en) | 2018-07-16 | 2020-01-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method to treat neurological diseases |
US20210290633A1 (en) | 2018-07-19 | 2021-09-23 | INSERM (Insstitut National de la Santé et de la Recherche Médicale) | Combination for treating cancer |
EP3824287A1 (en) | 2018-07-20 | 2021-05-26 | Pierre Fabre Médicament | Receptor for vista |
WO2020021465A1 (en) | 2018-07-25 | 2020-01-30 | Advanced Accelerator Applications (Italy) S.R.L. | Method of treatment of neuroendocrine tumors |
ES2738926A1 (es) | 2018-07-26 | 2020-01-27 | Univ Zaragoza | Granulisina, metodo de obtencion y usos |
WO2020028909A1 (en) | 2018-08-03 | 2020-02-06 | Brown University | Oral formulations with increased uptake |
WO2020033925A2 (en) | 2018-08-09 | 2020-02-13 | Compass Therapeutics Llc | Antibodies that bind cd277 and uses thereof |
US20210309746A1 (en) | 2018-08-09 | 2021-10-07 | Compass Therapeutics Llc | Antibodies that bind cd277 and uses thereof |
EP3833443A1 (en) | 2018-08-09 | 2021-06-16 | Compass Therapeutics LLC | Antigen binding agents that bind cd277 and uses thereof |
US11453893B2 (en) | 2018-08-30 | 2022-09-27 | California Institute Of Technology | RNA-based delivery systems with levels of control |
WO2020047320A1 (en) | 2018-08-31 | 2020-03-05 | California Institute Of Technology | Synthetic protein circuits detecting signal transducer activity |
CA3109959A1 (en) | 2018-08-31 | 2020-03-05 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
EP3844265A2 (en) | 2018-08-31 | 2021-07-07 | Novartis AG | Methods of making chimeric antigen receptor-expressing cells |
CN112585169A (zh) | 2018-09-04 | 2021-03-30 | 南京优迈生物科技有限公司 | 融合蛋白及其在制备用于治疗肿瘤和/或病毒感染的药物中的应用 |
GB201814451D0 (en) | 2018-09-05 | 2018-10-17 | Valerie Nicholas Carl Kristoffer | Methods |
GB2576914A (en) | 2018-09-06 | 2020-03-11 | Kymab Ltd | Antigen-binding molecules comprising unpaired variable domains produced in mammals |
US20220048947A1 (en) | 2018-09-11 | 2022-02-17 | Nanotag Biotechnologies Gmbh | Epitope tags recognized by specific binders |
KR20210086623A (ko) | 2018-09-25 | 2021-07-08 | 하푼 테라퓨틱스, 인크. | Ddl3 결합 단백질 및 사용 방법 |
WO2020064702A1 (en) | 2018-09-25 | 2020-04-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of antagonists of th17 cytokines for the treatment of bronchial remodeling in patients suffering from allergic asthma |
AU2019346645A1 (en) | 2018-09-27 | 2021-04-29 | Marengo Therapeutics, Inc. | CSF1R/CCR2 multispecific antibodies |
AU2019346335B2 (en) | 2018-09-28 | 2024-07-25 | Massachusetts Institute Of Technology | Collagen-localized immunomodulatory molecules and methods thereof |
WO2020070062A1 (en) | 2018-10-01 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of tim-3 inhibitors for the treatment of exacerbations in patients suffering from severe asthma |
KR20210070300A (ko) | 2018-10-03 | 2021-06-14 | 스태튼 바이오테크놀로지 비.브이. | 사람 및 시노몰구스 ApoC3에 대해 특이적인 항체 및 이의 사용 방법 |
WO2020070288A1 (en) | 2018-10-05 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and systems for controlling the agonistic properties of antibody variable domains by light |
JP2022504839A (ja) | 2018-10-10 | 2022-01-13 | ティロス・セラピューティクス・インコーポレイテッド | 抗lap抗体変異体及びその使用 |
UY38407A (es) | 2018-10-15 | 2020-05-29 | Novartis Ag | Anticuerpos estabilizadores de trem2 |
WO2020080941A1 (en) | 2018-10-16 | 2020-04-23 | Umc Utrecht Holding B.V. | Anti- low-density lipoprotein receptor-related protein 5/6 antibodies |
US20210386788A1 (en) | 2018-10-24 | 2021-12-16 | Obsidian Therapeutics, Inc. | Er tunable protein regulation |
WO2020089273A1 (en) | 2018-10-31 | 2020-05-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for treating t-helper type 2 mediated disease |
GB201818477D0 (en) | 2018-11-13 | 2018-12-26 | Emstopa Ltd | Tissue plasminogen activator antibodies and method of use thereof |
US11046769B2 (en) | 2018-11-13 | 2021-06-29 | Compass Therapeutics Llc | Multispecific binding constructs against checkpoint molecules and uses thereof |
US20220026445A1 (en) | 2018-12-07 | 2022-01-27 | Georgia Tech Research Corporation | Antibodies that bind to natively folded myocilin |
EP3894438A1 (en) | 2018-12-13 | 2021-10-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New anti tau svqivykpv epitope single domain antibody |
KR20210106491A (ko) | 2018-12-20 | 2021-08-30 | 노파르티스 아게 | 약제학적 조합물 |
WO2020130838A2 (en) | 2018-12-21 | 2020-06-25 | Qvq Holding B.V. | Antibodies for preventing or treating candidiasis |
EP3897845A1 (en) | 2018-12-21 | 2021-10-27 | OSE Immunotherapeutics | Bifunctional molecule directed against human pd-1 |
AU2019407814A1 (en) | 2018-12-21 | 2021-07-22 | Boehringer Ingelheim International Gmbh | Bifunctional anti-PD-1/IL-7 molecule |
BR112021012040A2 (pt) | 2018-12-21 | 2021-11-03 | Ose Immunotherapeutics | Molécula anti-pd-1/sirpa bifuncional |
WO2020141199A1 (en) | 2019-01-03 | 2020-07-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer |
US11667676B2 (en) | 2019-01-10 | 2023-06-06 | California Institute Of Technology | Synthetic system for tunable thresholding of protein signals |
SG11202107606VA (en) | 2019-01-15 | 2021-08-30 | Inst Nat Sante Rech Med | Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy |
CN113474371A (zh) | 2019-01-16 | 2021-10-01 | 指南针制药有限责任公司 | 与人cd137结合的抗体的制剂及其用途 |
WO2020148349A1 (en) | 2019-01-16 | 2020-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Variants of erythroferrone and their use |
TWI756621B (zh) | 2019-01-25 | 2022-03-01 | 大陸商信達生物製藥(蘇州)有限公司 | 新型雙特異性抗體分子以及同時結合pd-l1和lag-3的雙特異性抗體 |
GB201901608D0 (en) | 2019-02-06 | 2019-03-27 | Vib Vzw | Vaccine adjuvant conjugates |
WO2020165374A1 (en) | 2019-02-14 | 2020-08-20 | Ose Immunotherapeutics | Bifunctional molecule comprising il-15ra |
US10871640B2 (en) | 2019-02-15 | 2020-12-22 | Perkinelmer Cellular Technologies Germany Gmbh | Methods and systems for automated imaging of three-dimensional objects |
WO2020168024A1 (en) | 2019-02-15 | 2020-08-20 | Integral Molecular, Inc. | Antibodies comprising a common light chain and uses thereof |
BR112021016056A2 (pt) | 2019-02-15 | 2021-12-14 | Integral Molecular Inc | Anticorpos de claudina 6 e usos dos mesmos |
WO2020169707A1 (en) | 2019-02-21 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Foxo1 inhibitor for use in the treatment of latent virus infection |
GB2599227B (en) | 2019-02-21 | 2024-05-01 | Marengo Therapeutics Inc | Multifunctional molecules that bind to T cells and uses thereof to treat autoimmune disorders |
EP3927744A1 (en) | 2019-02-21 | 2021-12-29 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to t cell related cancer cells and uses thereof |
CA3131016A1 (en) | 2019-02-21 | 2020-08-27 | Andreas Loew | Multifunctional molecules that bind to calreticulin and uses thereof |
SG11202109122SA (en) | 2019-02-21 | 2021-09-29 | Marengo Therapeutics Inc | Anti-tcr antibody molecules and uses thereof |
EP3927747A1 (en) | 2019-02-21 | 2021-12-29 | Marengo Therapeutics, Inc. | Antibody molecules that bind to nkp30 and uses thereof |
US20220088075A1 (en) | 2019-02-22 | 2022-03-24 | The Trustees Of The University Of Pennsylvania | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
DK3930847T5 (da) | 2019-02-26 | 2024-08-05 | Inspirna Inc | Anti-mertk-antistoffer med høj affinitet og anvendelser deraf |
EP3930757A1 (en) | 2019-03-01 | 2022-01-05 | President And Fellows Of Harvard College | Methods and compositions for protein delivery |
WO2020185069A1 (en) | 2019-03-08 | 2020-09-17 | Linxis B.V. | Internalizing binding molecules targeting receptors involved in cell proliferation or cell differentiation |
WO2020185632A1 (en) | 2019-03-08 | 2020-09-17 | Obsidian Therapeutics, Inc. | Human carbonic anhydrase 2 compositions and methods for tunable regulation |
WO2020193740A1 (en) | 2019-03-28 | 2020-10-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New strategy for treating pancreatic cancer |
US20220169706A1 (en) | 2019-03-28 | 2022-06-02 | Danisco Us Inc | Engineered antibodies |
MX2021011830A (es) | 2019-03-29 | 2022-01-24 | Atarga Llc | Anticuerpo anti fgf23. |
WO2020205409A1 (en) | 2019-04-03 | 2020-10-08 | President And Fellows Of Harvard College | Ionic liquids for drug delivery |
WO2020208082A1 (en) | 2019-04-09 | 2020-10-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for treating cmv related diseases |
EP3953455A1 (en) | 2019-04-12 | 2022-02-16 | Novartis AG | Methods of making chimeric antigen receptor-expressing cells |
JP2022531244A (ja) | 2019-04-29 | 2022-07-06 | コンフォ セラピューティクス エヌ.ブイ. | Gpcrに結合する化合物及びリガンドをスクリーニングするためのキメラタンパク質及び方法 |
US20220289837A1 (en) | 2019-04-30 | 2022-09-15 | Vib Vzw | Cystic Fibrosis Transmembrane Conductance Regulator Stabilizing Agents |
WO2020231992A1 (en) | 2019-05-13 | 2020-11-19 | Regeneron Pharmaceuticals, Inc. | Improved competitive ligand binding assays |
JP2022533591A (ja) | 2019-05-14 | 2022-07-25 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | リンホトキシンアルファ遮断剤によりターゲットされた制御性t細胞及びその使用 |
CA3140430A1 (en) | 2019-05-14 | 2020-11-19 | Harpoon Therapeutics, Inc. | Epcam binding proteins and methods of use |
EP3969472A1 (en) | 2019-05-16 | 2022-03-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method to treat type 2 inflammation or mast-cell dependent disease |
WO2020236797A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Variant cd58 domains and uses thereof |
CN114173810B (zh) | 2019-05-21 | 2024-09-06 | 诺华股份有限公司 | 针对bcma的三特异性结合分子及其用途 |
CA3138360A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Cd19 binding molecules and uses thereof |
WO2020238730A1 (zh) | 2019-05-24 | 2020-12-03 | 三优生物医药(上海)有限公司 | 新型cldn18.2结合分子 |
EP3976067A1 (en) | 2019-05-28 | 2022-04-06 | Vib Vzw | Cd8+ t-cells lacking plexins and their application in cancer treatment |
WO2020239945A1 (en) | 2019-05-28 | 2020-12-03 | Vib Vzw | Cancer treatment by targeting plexins in the immune compartment |
GB2584441A (en) | 2019-06-03 | 2020-12-09 | Fenomark Diagnostics Ab | Medical uses, methods and uses |
BR112021024544A2 (pt) | 2019-06-04 | 2022-02-08 | Biotheus Inc | Anticorpo monoclonal anti-ceacam5 e método de preparação do mesmo e uso do mesmo |
PE20220489A1 (es) | 2019-06-12 | 2022-04-07 | Novartis Ag | Anticuerpos de receptor de peptido natriuretico 1 y metodos de uso |
US20200392241A1 (en) | 2019-06-17 | 2020-12-17 | Visterra, Inc. | Humanized antibody molecules to cd138 and uses thereof |
WO2020254619A1 (en) | 2019-06-20 | 2020-12-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti- protease nexin-1 conformational single domain antibodies and uses thereof |
CN114555643A (zh) | 2019-06-21 | 2022-05-27 | 索瑞索制药公司 | 组合物 |
EP3986571A1 (en) | 2019-06-21 | 2022-04-27 | Sorriso Pharmaceuticals, Inc. | Polypeptides |
JP2022538083A (ja) | 2019-06-21 | 2022-08-31 | ソリッソ ファーマシューティカルズ,インク. | ポリペプチド |
JP2022538974A (ja) | 2019-06-26 | 2022-09-07 | マサチューセッツ インスチテュート オブ テクノロジー | 免疫調節融合タンパク質-金属水酸化物錯体およびその方法 |
CN114466863A (zh) | 2019-07-01 | 2022-05-10 | 苏州康宁杰瑞生物科技有限公司 | 百日咳毒素结合蛋白 |
WO2021001539A1 (en) | 2019-07-04 | 2021-01-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New strategy to detect and treat eosinophilic fasciitis |
CN114174337B (zh) | 2019-07-15 | 2024-10-25 | 英特维特国际股份有限公司 | 针对犬ctla-4的犬源化抗体 |
JP7483857B2 (ja) | 2019-07-26 | 2024-05-15 | ビステラ, インコーポレイテッド | インターロイキン-2作用物質およびその使用 |
EP4010079A1 (en) | 2019-08-05 | 2022-06-15 | Stichting VU | Identification and elimination of hcmv-infected cells |
JP2022545741A (ja) | 2019-08-30 | 2022-10-28 | アジェナス インコーポレイテッド | 抗cd96抗体およびその使用方法 |
BR112022003998A2 (pt) | 2019-09-04 | 2022-05-31 | Genentech Inc | Agente aglutinante de grupamento de diferenciação 8, ácido nucleico isolado, vetor de expressão, célula hospedeira, métodos para fabricar um agente aglutinante de grupamento de diferenciação 8, para detectar células de grupamento de diferenciação 8 positivo, para prever a capacidade de resposta, para monitorar a progressão de doença, para monitorar o progresso do tratamento, para identificar cepas microbianas intestinais e para preparar um agente aglutinante de grupamento de diferenciação 8 rotulado, e, kit |
US20220340975A1 (en) | 2019-09-05 | 2022-10-27 | INSERM (Institute National de la Santé et de la Recherche Médicale) | Method of treatment and pronostic of acute myeloid leukemia |
US20220348937A1 (en) | 2019-09-06 | 2022-11-03 | Obsidian Therapeutics, Inc. | Compositions and methods for dhfr tunable protein regulation |
WO2021055329A1 (en) | 2019-09-16 | 2021-03-25 | Surface Oncology, Inc. | Anti-cd39 antibody compositions and methods |
JP2022548881A (ja) | 2019-09-18 | 2022-11-22 | ノバルティス アーゲー | Entpd2抗体、組合せ療法並びに抗体及び組合せ療法を使用する方法 |
TW202124446A (zh) | 2019-09-18 | 2021-07-01 | 瑞士商諾華公司 | 與entpd2抗體之組合療法 |
CN115087671A (zh) | 2019-09-25 | 2022-09-20 | 表面肿瘤学公司 | 抗il-27抗体及其用途 |
EP4034151A1 (en) | 2019-09-27 | 2022-08-03 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Use of müllerian inhibiting substance inhibitors for treating cancer |
TW202126295A (zh) | 2019-09-27 | 2021-07-16 | 大陸商江蘇挪貝肽醫藥科技有限公司 | 一種治療心境障礙的方法 |
TW202128756A (zh) | 2019-10-02 | 2021-08-01 | 德商百靈佳殷格翰國際股份有限公司 | 用於癌症治療之多重專一性結合蛋白 |
EP3799881A1 (en) | 2019-10-04 | 2021-04-07 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Single domain antibodies specifically binding globo - series glycans |
US20220380456A1 (en) | 2019-10-21 | 2022-12-01 | Vib Vzw | Nanodisc-specific antigen-binding chimeric proteins |
CN114786679A (zh) | 2019-10-21 | 2022-07-22 | 诺华股份有限公司 | 具有维奈托克和tim-3抑制剂的组合疗法 |
EP4048285A1 (en) | 2019-10-21 | 2022-08-31 | Novartis AG | Tim-3 inhibitors and uses thereof |
WO2021080682A1 (en) | 2019-10-24 | 2021-04-29 | Massachusetts Institute Of Technology | Monoclonal antibodies that bind human cd161 and uses thereof |
US20230002785A1 (en) | 2019-10-28 | 2023-01-05 | Georgia Tech Research Corporation | Mrna-encoded antibodies for contraception |
WO2021086953A1 (en) | 2019-10-28 | 2021-05-06 | Georgia Tech Research Corporation | Compositions and methods for prophylaxis of hiv |
WO2021091978A1 (en) | 2019-11-05 | 2021-05-14 | Celgene Corporation | Uses of anti-bcma chimeric antigen receptors |
EP4058477A2 (en) | 2019-11-11 | 2022-09-21 | IBI-AG Innovative Bio Insecticides Ltd. | Insect control nanobodies and uses thereof |
MX2022005705A (es) | 2019-11-12 | 2022-08-16 | Actym Therapeutics Inc | Plataformas de suministro bacteriano inmunomoduladoras y su uso para el suministro de productos terapéuticos. |
EP4061338A1 (en) | 2019-11-22 | 2022-09-28 | President And Fellows Of Harvard College | Ionic liquids for drug delivery |
TW202134264A (zh) | 2019-11-26 | 2021-09-16 | 瑞士商諾華公司 | 嵌合抗原受體及其用途 |
WO2021105384A1 (en) | 2019-11-27 | 2021-06-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Targeting the nls region of nupr1 protein to treat cancer |
EP4065603A1 (en) | 2019-11-27 | 2022-10-05 | Vib Vzw | Positive allosteric modulators of the calcium-sensing receptor |
WO2021105391A1 (en) | 2019-11-27 | 2021-06-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Combination comprising nupr1 inhibitors to treat cancer |
WO2021110990A1 (en) | 2019-12-05 | 2021-06-10 | Ose Immunotherapeutics | Anti-clec-1a antibodies and antigen-binding fragment thereof |
CN114980923A (zh) | 2019-12-06 | 2022-08-30 | 艾伯霖克斯公司 | 包含靶向TNFα和OX40L的免疫球蛋白单可变结构域的多肽 |
US11897950B2 (en) | 2019-12-06 | 2024-02-13 | Augusta University Research Institute, Inc. | Osteopontin monoclonal antibodies |
IL293561A (en) | 2019-12-06 | 2022-08-01 | Ablynx Nv | Polypeptides comprising immunoglobulin with one variable domain targeting TNFa and IL-23 |
US20230040928A1 (en) | 2019-12-09 | 2023-02-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity to her4 and uses thereof |
BR112022010223A2 (pt) | 2019-12-09 | 2022-09-06 | Ablynx Nv | Polipeptídeos compreendendo domínios variáveis únicos de imunoglobulina que direcionam interleucina 13 (il-13) e linfopoietina estromal tímica (tslp) |
GB201918279D0 (en) | 2019-12-12 | 2020-01-29 | Vib Vzw | Glycosylated single chain immunoglobulin domains |
AU2020406083A1 (en) | 2019-12-17 | 2022-06-16 | Boehringer Ingelheim International Gmbh | Bifunctional molecules comprising an IL-7 variant |
EP4077372A1 (en) | 2019-12-20 | 2022-10-26 | Vib Vzw | Nanobody exchange chromatography |
EP4077389A1 (en) | 2019-12-20 | 2022-10-26 | Novartis AG | Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome |
US11725048B2 (en) | 2019-12-20 | 2023-08-15 | Hudson Institute of Medical Research | CXCL10 binding proteins and compositions thereof |
WO2021138407A2 (en) | 2020-01-03 | 2021-07-08 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to cd33 and uses thereof |
TWI845803B (zh) | 2020-01-06 | 2024-06-21 | 美商法西尼克斯股份有限公司 | 抗ccr8抗體及其用途 |
WO2021140205A1 (en) | 2020-01-10 | 2021-07-15 | Confo Therapeutics N.V. | Methods for generating antibodies and antibody fragments and libraries comprising same |
TW202140553A (zh) | 2020-01-13 | 2021-11-01 | 美商威特拉公司 | C5ar1抗體分子及其用途 |
CN114929285A (zh) | 2020-01-17 | 2022-08-19 | 根特大学 | 用于输送黏膜疫苗的免疫球蛋白单域抗体 |
JP2023510393A (ja) | 2020-01-17 | 2023-03-13 | ノバルティス アーゲー | 骨髄異形成症候群または慢性骨髄単球性白血病の処置に使用するためのtim-3阻害剤と低メチル化剤とを含む組合せ |
WO2021156490A2 (en) | 2020-02-06 | 2021-08-12 | Vib Vzw | Corona virus binders |
US20230111593A1 (en) | 2020-02-14 | 2023-04-13 | Novartis Ag | Method of predicting response to chimeric antigen receptor therapy |
EP4106806A4 (en) | 2020-02-21 | 2024-07-24 | Harpoon Therapeutics Inc | FLT3 BINDING PROTEINS AND METHODS OF USE |
KR20230012465A (ko) | 2020-02-24 | 2023-01-26 | 이매틱스 유에스 인코포레이티드 | 암 및 관련 악성 종양을 치료하기 위해 t 세포를 확장하는 방법 |
JP2023514654A (ja) | 2020-02-25 | 2023-04-06 | ブイアイビー ブイゼットダブリュ | ロイシンリッチリピートキナーゼ2のアロステリック調節因子 |
WO2021173674A1 (en) | 2020-02-26 | 2021-09-02 | A2 Biotherapeutics, Inc. | Polypeptides targeting mage-a3 peptide-mhc complexes and methods of use thereof |
EP4110377A2 (en) | 2020-02-27 | 2023-01-04 | Novartis AG | Methods of making chimeric antigen receptor-expressing cells |
CN115175695A (zh) | 2020-02-27 | 2022-10-11 | 诺华股份有限公司 | 制备表达嵌合抗原受体的细胞的方法 |
CA3173527A1 (en) | 2020-03-10 | 2021-09-16 | Massachusetts Institute Of Technology | Methods for generating engineered memory-like nk cells and compositions thereof |
KR20220167276A (ko) | 2020-03-10 | 2022-12-20 | 매사추세츠 인스티튜트 오브 테크놀로지 | NPM1c-양성 암의 면역치료를 위한 조성물 및 방법 |
DE102020111571A1 (de) | 2020-03-11 | 2021-09-16 | Immatics US, Inc. | Wpre-mutantenkonstrukte, zusammensetzungen und zugehörige verfahren |
JP2023516936A (ja) | 2020-03-13 | 2023-04-21 | 江蘇恒瑞医薬股▲ふん▼有限公司 | Pvrig結合タンパク質及びその医薬用途 |
IL296330A (en) | 2020-03-20 | 2022-11-01 | Glaxosmithkline Ip Dev Ltd | A method for the detection of polysorbates |
US11365239B2 (en) | 2020-03-20 | 2022-06-21 | Tsb Therapeutics (Beijing) Co., Ltd. | Anti-SARS-COV-2 antibodies and uses thereof |
CN116249549A (zh) | 2020-03-27 | 2023-06-09 | 诺华股份有限公司 | 用于治疗增殖性疾病和自身免疫病症的双特异性组合疗法 |
CA3175873A1 (en) | 2020-03-30 | 2021-10-07 | Ablynx Nv | Method for the production and purification of multivalent immunoglobulin single variable domains |
CN113461817A (zh) | 2020-03-31 | 2021-10-01 | 苏州泽璟生物制药股份有限公司 | 一种抗人cd47抗体及其抗原结合片段、制备方法和应用 |
US20230110053A1 (en) | 2020-03-31 | 2023-04-13 | Biotalys NV | Anti-fungal polypeptides |
CA3178465A1 (en) | 2020-04-03 | 2021-10-07 | Visterra, Inc. | Antibody molecule-drug conjugates and uses thereof |
EP4132971A1 (en) | 2020-04-09 | 2023-02-15 | Merck Sharp & Dohme LLC | Affinity matured anti-lap antibodies and uses thereof |
BR112022020753A2 (pt) | 2020-04-15 | 2022-12-20 | Voyager Therapeutics Inc | Compostos de ligação a tau |
JP2023522208A (ja) | 2020-04-16 | 2023-05-29 | アシスタンス ピュブリック-オピト ド パリ | ウイルスによって引き起こされる補体媒介性障害を処置する方法 |
US20230279115A1 (en) | 2020-04-22 | 2023-09-07 | Mabwell (shanghai) Bioscience Co., Ltd. | Single variable domain antibody targeting human programmed death ligand 1 (pd-l1) and derivative thereof |
KR20230028242A (ko) | 2020-04-24 | 2023-02-28 | 마렝고 테라퓨틱스, 인크. | T 세포 관련 암 세포에 결합하는 다중기능성 분자 및 그것의 용도 |
AU2021267953A1 (en) | 2020-05-04 | 2022-11-17 | Immunorizon Ltd. | Precursor tri-specific antibody constructs and methods of use thereof |
KR20230008751A (ko) | 2020-05-12 | 2023-01-16 | 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) | 피부 t-세포 림프종 및 tfh 유래된 림프종을 치료하는 신규한 방법 |
WO2021229104A1 (en) | 2020-05-15 | 2021-11-18 | Université de Liège | Anti-cd38 single-domain antibodies in disease monitoring and treatment |
MX2022014538A (es) | 2020-05-19 | 2022-12-15 | Boehringer Ingelheim Int | Moleculas de union para el tratamiento de cancer. |
WO2021233962A1 (en) | 2020-05-19 | 2021-11-25 | Institut Curie | Methods for the diagnosis and treatment of cytokine release syndrome |
EP3916088A1 (en) | 2020-05-28 | 2021-12-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Fusion proteins comprising the sars-cov-2 3clpro catalytic domain and their uses for screening anti-sars-cov-2 agents |
US20230173095A1 (en) | 2020-05-29 | 2023-06-08 | President And Fellows Of Harvard College | Living cells engineered with polyphenol-functionalized biologically active nanocomplexes |
CN111647077B (zh) | 2020-06-02 | 2021-02-09 | 深圳市因诺赛生物科技有限公司 | 新型冠状病毒(sars-cov-2)刺突蛋白结合分子及其应用 |
IL298111A (en) | 2020-06-02 | 2023-01-01 | Arcus Biosciences Inc | Antibodies to tigit |
US20230332104A1 (en) | 2020-06-11 | 2023-10-19 | Novartis Ag | Zbtb32 inhibitors and uses thereof |
TW202214844A (zh) | 2020-06-17 | 2022-04-16 | 美商健生生物科技公司 | 用於製造多能幹細胞之材料及方法 |
US20230218608A1 (en) | 2020-06-18 | 2023-07-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New strategy for treating pancreatic cancer |
WO2021262999A1 (en) | 2020-06-24 | 2021-12-30 | Visterra, Inc. | Antibody molecules to april and uses thereof |
AU2021299932A1 (en) | 2020-06-29 | 2023-02-02 | Assistance Publique-Hôpitaux De Paris (Aphp) | Anti-protein S single-domain antibodies and polypeptides comprising thereof |
US12077576B2 (en) | 2020-07-02 | 2024-09-03 | Trustees Of Tufts College | VHH polypeptides that bind to Clostridium difficile toxin b and methods of use thereof |
WO2022003156A1 (en) | 2020-07-02 | 2022-01-06 | Oncurious Nv | Ccr8 non-blocking binders |
KR20230035079A (ko) | 2020-07-03 | 2023-03-10 | 수조우 알파맵 씨오., 엘티디. | 응고인자 xi(fxi) 결합 단백질 |
CR20230009A (es) | 2020-07-16 | 2023-01-25 | Novartis Ag | Anticuerpos anti-betacelulina, fragmentos de los mismos, y moléculas de unión multiespecíficas |
JP2023535708A (ja) | 2020-07-21 | 2023-08-21 | スーチョウ スマートヌクライド バイオファーマシューティカル カンパニー リミテッド | Cd8結合ポリペプチドおよびその使用 |
JP2023535024A (ja) | 2020-07-23 | 2023-08-15 | オター プロシーナ リミテッド | 抗aベータ抗体 |
WO2022026592A2 (en) | 2020-07-28 | 2022-02-03 | Celltas Bio, Inc. | Antibody molecules to coronavirus and uses thereof |
US20230265478A1 (en) | 2020-07-31 | 2023-08-24 | Biotalys NV | Methods of increasing recombinant protein yields |
CA3191433A1 (en) | 2020-08-12 | 2022-02-17 | Actym Therapeutics, Inc. | Immunostimulatory bacteria-based vaccines, therapeutics, and rna delivery platforms |
WO2022040631A1 (en) | 2020-08-21 | 2022-02-24 | Immatics US, Inc. | Methods for isolating cd8+ selected t cells |
AU2021331075A1 (en) | 2020-08-26 | 2023-04-06 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to calreticulin and uses thereof |
WO2022047046A1 (en) | 2020-08-26 | 2022-03-03 | Marengo Therapeutics, Inc. | Methods of detecting trbc1 or trbc2 |
CN116917316A (zh) | 2020-08-26 | 2023-10-20 | 马伦戈治疗公司 | 与NKp30结合的抗体分子及其用途 |
EP4204020A1 (en) | 2020-08-31 | 2023-07-05 | Advanced Accelerator Applications International S.A. | Method of treating psma-expressing cancers |
EP4204021A1 (en) | 2020-08-31 | 2023-07-05 | Advanced Accelerator Applications International S.A. | Method of treating psma-expressing cancers |
EP4211164A1 (en) | 2020-09-14 | 2023-07-19 | Vor Biopharma Inc. | Single domain antibodies against cd33 |
JP2023541934A (ja) | 2020-09-16 | 2023-10-04 | リンクシス ベスローテン フェンノートシャップ | 内在化結合分子 |
WO2022060806A1 (en) | 2020-09-16 | 2022-03-24 | Obsidian Therapeutics, Inc. | Compositions and methods for expression of anti-bcma chimeric antigen receptors with small molecule-regulated il15 in t cells |
WO2022063947A1 (en) | 2020-09-24 | 2022-03-31 | Vib Vzw | Combination of p2y6 inhibitors and immune checkpoint inhibitors |
WO2022063957A1 (en) | 2020-09-24 | 2022-03-31 | Vib Vzw | Biomarker for anti-tumor therapy |
MX2023003522A (es) | 2020-09-25 | 2023-04-19 | Ablynx Nv | Polipeptidos que comprenden dominios variables unicos de inmunoglobulina que se dirigen a il-13 y ox40l. |
US20230416346A1 (en) | 2020-10-21 | 2023-12-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | C-terminal sparc fragments for treating cancer |
US12110335B2 (en) | 2020-10-21 | 2024-10-08 | Boehringer Ingelheim International Gmbh | Bispecific anti-VEGF and anti-TrkB binding molecules for the treatment of eye diseases |
US20230398149A1 (en) | 2020-11-04 | 2023-12-14 | Celgene Corporation | Car t cell therapy in patients who have had prior anti-cancer alkylator therapy |
CA3199095A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Cd19 binding molecules and uses thereof |
JP2023547506A (ja) | 2020-11-06 | 2023-11-10 | ノバルティス アーゲー | B細胞悪性腫瘍を治療するための抗cd19剤及びb細胞標的化剤の組み合わせ療法 |
CN112480248B (zh) | 2020-11-24 | 2023-05-05 | 三优生物医药(上海)有限公司 | 与cld18a2特异性结合的分子 |
WO2022117572A2 (en) | 2020-12-02 | 2022-06-09 | Oncurious Nv | An ltbr agonist in combination therapy against cancer |
WO2022117569A1 (en) | 2020-12-02 | 2022-06-09 | Oncurious Nv | A ccr8 antagonist antibody in combination with a lymphotoxin beta receptor agonist antibody in therapy against cancer |
CA3203977A1 (en) | 2020-12-04 | 2022-06-09 | Visterra, Inc. | Methods of using interleukin-2 agents |
US20220218614A1 (en) | 2020-12-04 | 2022-07-14 | Tidal Therapeutics, Inc. | Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof |
JP2023552773A (ja) | 2020-12-04 | 2023-12-19 | セルジーン コーポレーション | 炎症関連可溶性因子の阻害剤と組み合わせたキメラ抗原受容体(car)t細胞療法の使用 |
US20240052042A1 (en) | 2020-12-14 | 2024-02-15 | Novartis Ag | Reversal binding agents for anti-natriuretic peptide receptor i (npri) antibodies and uses thereof |
AU2021402065A1 (en) | 2020-12-17 | 2023-06-29 | Boehringer Ingelheim International Gmbh | Bifunctional anti-pd1/il-7 molecules |
KR20230123497A (ko) | 2020-12-18 | 2023-08-23 | 아블린쓰 엔.브이. | IL-6 및 TNF-α를 표적화하는 면역글로불린 단일 가변도메인을 포함하는 폴리펩티드 |
MX2023007308A (es) | 2020-12-18 | 2023-07-04 | Ablynx Nv | Polipeptidos que comprenden dominios variables simples de inmunoglobulina dirigidos a glypican-3 y al receptor de celulas t. |
TW202241948A (zh) | 2020-12-18 | 2022-11-01 | 比利時商艾伯霖克斯公司 | 基於TCR α/β反應性的T細胞募集多肽 |
GB202020502D0 (en) | 2020-12-23 | 2021-02-03 | Vib Vzw | Antibody composistion for treatment of corona virus infection |
US20240052045A1 (en) | 2020-12-24 | 2024-02-15 | Vib Vzw | Murine cross-reactive human ccr8 binders |
CA3206304A1 (en) | 2020-12-24 | 2022-06-30 | Vib Vzw | Human ccr8 binders |
US20240052044A1 (en) | 2020-12-24 | 2024-02-15 | Vib Vzw | Non-blocking human ccr8 binders |
AU2022211021A1 (en) | 2021-01-20 | 2023-08-03 | Visterra, Inc. | Interleukin-2 mutants and uses thereof |
GB2603166A (en) | 2021-01-29 | 2022-08-03 | Thelper As | Therapeutic and Diagnostic Agents and Uses Thereof |
JP2024505049A (ja) | 2021-01-29 | 2024-02-02 | ノバルティス アーゲー | 抗cd73及び抗entpd2抗体のための投与方式並びにその使用 |
AU2022214006A1 (en) | 2021-02-01 | 2023-09-21 | St Phi Therapeutics Co., Ltd. | Targeted protein degradation system and use thereof |
CA3207548A1 (en) | 2021-02-05 | 2022-08-11 | Xavier Saelens | Sarbecovirus binders |
MX2023009186A (es) | 2021-02-05 | 2023-08-21 | Salubris Biotherapeutics Inc | Proteinas de fusion de il-15 y metodos para preparacion y uso de las mismas. |
CN117794566A (zh) | 2021-02-05 | 2024-03-29 | Vib研究所 | 沙贝病毒结合剂 |
US20240229154A9 (en) | 2021-02-12 | 2024-07-11 | Institut National de la Santé et de la Recherche Médicale | Method for prognosis and treating a patient suffering from cancer |
US20240130999A1 (en) | 2021-02-17 | 2024-04-25 | Vib Vzw | Inhibition of SLC4A4 in the Treatment of Cancer |
MX2023009716A (es) | 2021-02-19 | 2024-01-08 | Shaperon Inc | Anticuerpo de dominio individual contra ligando de muerte programada 1 (pd-l1) y uso del mismo. |
US20240228670A9 (en) | 2021-02-19 | 2024-07-11 | Shaperon Inc. | Bispecific single domain antibody to pd-l1 and cd47 and use thereof |
AU2022222994A1 (en) | 2021-02-19 | 2023-09-28 | Seoul National University R&Db Foundation | Single domain antibody against cd47 and use thereof |
WO2022175532A1 (en) | 2021-02-19 | 2022-08-25 | Vib Vzw | Cation-independent mannose-6-phosphate receptor binders |
CN117321076A (zh) | 2021-02-19 | 2023-12-29 | 美国卫生及公众服务部代表 | 中和SARS-CoV-2的单结构域抗体 |
JP2024511373A (ja) | 2021-03-18 | 2024-03-13 | ノバルティス アーゲー | がんのためのバイオマーカーおよびその使用 |
WO2022199804A1 (en) | 2021-03-24 | 2022-09-29 | Vib Vzw | Nek6 inhibition to treat als and ftd |
GB202104104D0 (en) | 2021-03-24 | 2021-05-05 | Liliumx Ltd | Platform and method |
JP2024514530A (ja) | 2021-04-02 | 2024-04-02 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 切断型cdcp1に対する抗体およびその使用 |
TW202304979A (zh) | 2021-04-07 | 2023-02-01 | 瑞士商諾華公司 | 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途 |
AU2022255166A1 (en) | 2021-04-07 | 2023-09-28 | Century Therapeutics, Inc. | Compositions and methods for generating alpha-beta t cells from induced pluripotent stem cells |
MX2023011927A (es) | 2021-04-07 | 2023-10-23 | Century Therapeutics Inc | Composiciones y metodos para la generacion de linfocitos t gamma-delta a partir de celulas madre pluripotentes inducidas. |
AU2022253223A1 (en) | 2021-04-07 | 2023-09-28 | Century Therapeutics, Inc. | Combined artificial cell death/reporter system polypeptide for chimeric antigen receptor cell and uses thereof |
AU2022255506A1 (en) | 2021-04-08 | 2023-11-09 | Marengo Therapeutics, Inc. | Multifunctional molecules binding to tcr and uses thereof |
WO2022214653A1 (en) | 2021-04-09 | 2022-10-13 | Ose Immunotherapeutics | New scaffold for bifunctional molecules with improved properties |
EP4320229A1 (en) | 2021-04-09 | 2024-02-14 | Stichting Radboud Universiteit | Off the shelf proximity biotinylation enzyme |
EP4320156A1 (en) | 2021-04-09 | 2024-02-14 | Ose Immunotherapeutics | Scaffold for bifunctioanl molecules comprising pd-1 or cd28 and sirp binding domains |
WO2022219080A1 (en) | 2021-04-14 | 2022-10-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method to improve nk cells cytotoxicity |
WO2022219076A1 (en) | 2021-04-14 | 2022-10-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method to improve the anti-tumoral activity of macrophages |
JP2024517413A (ja) | 2021-04-16 | 2024-04-22 | セルジーン コーポレーション | 以前に幹細胞移植を受けた患者におけるt細胞療法 |
CA3219609A1 (en) | 2021-05-04 | 2022-11-10 | Regeneron Pharmaceuticals, Inc. | Multispecific fgf21 receptor agonists and their uses |
JP2024516970A (ja) | 2021-05-07 | 2024-04-18 | サーフィス オンコロジー, エルエルシー | 抗il-27抗体及びその使用 |
WO2022242892A1 (en) | 2021-05-17 | 2022-11-24 | Université de Liège | Anti-cd38 single-domain antibodies in disease monitoring and treatment |
WO2022253910A1 (en) | 2021-06-02 | 2022-12-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | A new method to treat an inflammatory skin disease |
JP2024523436A (ja) | 2021-06-16 | 2024-06-28 | 上海▲シン▼湾生物科技有限公司 | Axlタンパク質を標的とする抗体及びその抗原結合断片、その調製方法と使用 |
AR126161A1 (es) | 2021-06-17 | 2023-09-27 | Boehringer Lngelheim Int Gmbh | Moléculas de fijación triespecíficas novedosas |
AU2022299282A1 (en) | 2021-06-22 | 2024-02-01 | Merck Patent Gmbh | Vhh-based nkp30 binders |
US20230174651A1 (en) | 2021-06-23 | 2023-06-08 | Janssen Biotech, Inc. | Materials and methods for hinge regions in functional exogenous receptors |
CA3225194A1 (en) | 2021-06-23 | 2022-12-29 | Vib Vzw | Means and methods for selection of specific binders |
CN114230665B (zh) | 2021-06-23 | 2024-03-22 | 苏州智核生物医药科技有限公司 | CD8α结合多肽及其用途 |
JP2024524378A (ja) | 2021-06-29 | 2024-07-05 | 山▲東▼先声生物制▲薬▼有限公司 | Cd16抗体及びその応用 |
EP4370160A1 (en) | 2021-07-15 | 2024-05-22 | President And Fellows Of Harvard College | Compositions and methods relating to cells with adhered particles |
CA3228014A1 (en) | 2021-07-30 | 2023-02-16 | Vib Vzm | Cation-independent mannose-6-phosphate receptor binders for targeted protein degradation |
CN117751143A (zh) | 2021-07-30 | 2024-03-22 | 山东先声生物制药有限公司 | 抗pvrig/抗tigit双特异性抗体和应用 |
JP2024530943A (ja) | 2021-08-06 | 2024-08-27 | アンスティテュ・レジオナル・デュ・カンセール・ドゥ・モンペリエ | がんの処置のための方法 |
WO2023023220A1 (en) | 2021-08-20 | 2023-02-23 | Alexion Pharmaceuticals, Inc. | Methods for treating sickle cell disease or beta thalassemia using a complement alternative pathway inhibitor |
WO2023023227A1 (en) | 2021-08-20 | 2023-02-23 | Alexion Pharmaceuticals, Inc. | Methods for treating sickle cell disease or beta thalassemia using complement alternative pathway inhibitors |
CA3228641A1 (en) | 2021-08-24 | 2023-03-02 | Jiangsu Hengrui Pharmaceuticals Co., Ltd. | Fap/cd40 binding molecule and medicinal use thereof |
WO2023041985A2 (en) | 2021-09-15 | 2023-03-23 | New York University In Abu Dhabicorporation | Compositions that block activation of the sars-cov-2 replication and transcription complex (rtc) and methods of use thereof |
EP4403573A1 (en) | 2021-09-15 | 2024-07-24 | Jiangsu Hengrui Pharmaceuticals Co., Ltd. | Pharmaceutical composition comprising anti-pvrig/tigit bispecific antibody |
TW202328195A (zh) | 2021-09-15 | 2023-07-16 | 大陸商江蘇恆瑞醫藥股份有限公司 | 特異性結合pd-1的蛋白及其醫藥用途 |
EP4401715A1 (en) | 2021-09-17 | 2024-07-24 | Institut Curie | Bet inhibitors for treating pab1 deficient cancer |
WO2023044483A2 (en) | 2021-09-20 | 2023-03-23 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
EP4405680A1 (en) | 2021-09-20 | 2024-07-31 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods for improving the efficacy of hdac inhibitor therapy and predicting the response to treatment with hdac inhibitor |
WO2023057601A1 (en) | 2021-10-06 | 2023-04-13 | Biotalys NV | Anti-fungal polypeptides |
EP4413165A1 (en) | 2021-10-06 | 2024-08-14 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting and improving the efficacy of mcl-1 inhibitor therapy |
KR20240082406A (ko) | 2021-10-08 | 2024-06-10 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | 약물 전달을 위한 이온성 액체 |
WO2023061005A1 (zh) | 2021-10-14 | 2023-04-20 | 徕特康(苏州)生物制药有限公司 | 新型抗体-细胞因子融合蛋白及其制备方法和用途 |
WO2023073099A1 (en) | 2021-10-28 | 2023-05-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method to improve phagocytosis |
WO2023078906A1 (en) | 2021-11-03 | 2023-05-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for treating acute myeloid leukemia |
EP4177266A1 (en) | 2021-11-05 | 2023-05-10 | Katholieke Universiteit Leuven | Neutralizing anti-sars-cov-2 human antibodies |
WO2023079137A1 (en) | 2021-11-05 | 2023-05-11 | Katholieke Universiteit Leuven | Neutralizing anti-sars-cov-2 human antibodies |
WO2023086796A2 (en) | 2021-11-09 | 2023-05-19 | Actym Therapeutics, Inc. | Immunostimulatory bacteria for converting macrophages into a phenotype amenable to treatment, and companion diagnostic for identifying subjects for treatment |
WO2023083890A1 (en) | 2021-11-09 | 2023-05-19 | Ose Immunotherapeutics | Identification of clec-1 ligand and uses thereof |
EP4180518A1 (en) | 2021-11-12 | 2023-05-17 | Istituto Europeo di Oncologia S.r.l. | T cells and uses thereof |
WO2023092004A1 (en) | 2021-11-17 | 2023-05-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
WO2023089032A1 (en) | 2021-11-19 | 2023-05-25 | Institut Curie | Methods for the treatment of hrd cancer and brca-associated cancer |
EP4437547A1 (en) | 2021-11-22 | 2024-10-02 | Ablynx N.V. | Obtaining sequence information for target multivalent immunoglobulin single variable domains |
WO2023089159A1 (en) | 2021-11-22 | 2023-05-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New strategy targeting stroma/tumor cell crosstalk to treat a cancer |
CN118632860A (zh) | 2021-11-24 | 2024-09-10 | 诺华股份有限公司 | 腺相关病毒转导调节剂及其用途 |
US20230348614A1 (en) | 2021-11-24 | 2023-11-02 | Visterra, Inc. | Engineered antibody molecules to cd138 and uses thereof |
TW202330596A (zh) | 2021-11-29 | 2023-08-01 | 大陸商江蘇恆瑞醫藥股份有限公司 | 經修飾的蛋白或多肽 |
EP4442273A1 (en) | 2021-11-30 | 2024-10-09 | Suzhou Alphamab Co., Ltd. | Method for preventing and/or treating thromboembolic diseases |
TW202333772A (zh) | 2021-12-01 | 2023-09-01 | 美商威特拉公司 | 使用介白素-2藥劑之方法 |
WO2023099763A1 (en) | 2021-12-03 | 2023-06-08 | Institut Curie | Sirt6 inhibitors for use in treating resistant hrd cancer |
EP4428156A1 (en) | 2021-12-03 | 2024-09-11 | Shandong Simcere Biopharmaceutical Co., Ltd. | Anti-bcma nanobody and use thereof |
IL313473A (en) | 2021-12-15 | 2024-08-01 | Interius Biotherapeutics Inc | Identical viral particles, the compositions containing them and their uses |
TW202342508A (zh) | 2021-12-17 | 2023-11-01 | 比利時商艾伯霖克斯公司 | 包含靶向TCRαβ、CD33和CD123的免疫球蛋白單可變結構域的多肽 |
CN118510805A (zh) | 2021-12-31 | 2024-08-16 | 山东先声生物制药有限公司 | 一种gprc5d抗体及其应用 |
EP4209508A1 (en) | 2022-01-11 | 2023-07-12 | Centre national de la recherche scientifique | Nanobodies for the deneddylating enzyme nedp1 |
WO2023135198A1 (en) | 2022-01-12 | 2023-07-20 | Vib Vzw | Human ntcp binders for therapeutic use and liver-specific targeted delivery |
GB202201137D0 (en) | 2022-01-28 | 2022-03-16 | Thelper As | Therapeutic and diagnostic agents and uses thereof |
WO2023148291A1 (en) | 2022-02-02 | 2023-08-10 | Biotalys NV | Methods for genome editing |
WO2023148397A1 (en) | 2022-02-07 | 2023-08-10 | Vib Vzw | Engineered stabilizing aglycosylated fc-regions |
CN118647633A (zh) | 2022-02-07 | 2024-09-13 | 威斯特拉公司 | 抗独特型抗体分子及其用途 |
WO2023151894A1 (en) | 2022-02-11 | 2023-08-17 | Henkel Ag & Co. Kgaa | Process for the synthesis of alpha-methylene-gamma-butyrolactone |
WO2023164487A1 (en) | 2022-02-22 | 2023-08-31 | Brown University | Compositions and methods to achieve systemic uptake of particles following oral or mucosal administration |
WO2023183477A1 (en) | 2022-03-23 | 2023-09-28 | Bodhi Bio Llc | Compositions and methods for antigen-specific therapy |
IL315552A (en) | 2022-03-30 | 2024-11-01 | Novartis Ag | Methods for treating disorders using anti-natriuretic peptide 1 (NPR1) antibodies |
WO2023201238A1 (en) | 2022-04-11 | 2023-10-19 | Vor Biopharma Inc. | Binding agents and methods of use thereof |
WO2023198848A1 (en) | 2022-04-13 | 2023-10-19 | Vib Vzw | An ltbr agonist in combination therapy against cancer |
WO2023198806A1 (en) | 2022-04-13 | 2023-10-19 | Ose Immunotherapeutics | New class of molecules for selective clearance of antibody |
WO2023198851A1 (en) | 2022-04-14 | 2023-10-19 | Institut National de la Santé et de la Recherche Médicale | Methods for controlling the tumor cell killing by light |
US20240092921A1 (en) | 2022-04-25 | 2024-03-21 | Visterra, Inc. | Antibody molecules to april and uses thereof |
WO2023212587A1 (en) | 2022-04-28 | 2023-11-02 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Recombinant polypeptides comprising single-domain antibodies targeting herv-k subtype hml-2 |
WO2023213751A1 (en) | 2022-05-02 | 2023-11-09 | Umc Utrecht Holding B.V | Single domain antibodies for the detection of plasmin-cleaved vwf |
AU2023264591A1 (en) | 2022-05-02 | 2024-11-07 | Arcus Biosciences, Inc. | Anti-tigit antibodies and uses of the same |
WO2023217904A1 (en) | 2022-05-10 | 2023-11-16 | Institut National de la Santé et de la Recherche Médicale | Syncitin-1 fusion proteins and uses thereof for cargo delivery into target cells |
WO2023220641A2 (en) | 2022-05-11 | 2023-11-16 | Juno Therapeutics, Inc. | Methods and uses related to t cell therapy and production of same |
WO2023220647A1 (en) | 2022-05-11 | 2023-11-16 | Regeneron Pharmaceuticals, Inc. | Multispecific binding molecule proproteins and uses thereof |
WO2023220695A2 (en) | 2022-05-13 | 2023-11-16 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
WO2023222825A1 (en) | 2022-05-18 | 2023-11-23 | Vib Vzw | Sarbecovirus spike s2 subunit binders |
US20230372395A1 (en) | 2022-05-19 | 2023-11-23 | Massachusetts Institute Of Technology | Car cells targeting an inserted ligand |
WO2023230128A1 (en) | 2022-05-25 | 2023-11-30 | Surface Oncology, Inc. | Use of anti-il-27 antibodies |
WO2023230548A1 (en) | 2022-05-25 | 2023-11-30 | Celgene Corporation | Method for predicting response to a t cell therapy |
US20240025987A1 (en) | 2022-05-25 | 2024-01-25 | Surface Oncology, Inc. | Use of anti-il-27 antibodies |
WO2023232826A1 (en) | 2022-05-30 | 2023-12-07 | Ose Immunotherapeutics | Biomarkers of il7r modulator activity |
WO2023240109A1 (en) | 2022-06-07 | 2023-12-14 | Regeneron Pharmaceuticals, Inc. | Multispecific molecules for modulating t-cell activity, and uses thereof |
WO2023240124A1 (en) | 2022-06-07 | 2023-12-14 | Regeneron Pharmaceuticals, Inc. | Pseudotyped viral particles for targeting tcr-expressing cells |
US20240002331A1 (en) | 2022-06-08 | 2024-01-04 | Tidal Therapeutics, Inc. | Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof |
US20240109965A1 (en) | 2022-06-14 | 2024-04-04 | Ablynx N.V. | Immunoglobulin single variable domains targeting t cell receptor |
WO2024003873A1 (en) | 2022-06-30 | 2024-01-04 | Intrexon Actobiotics Nv D/B/A Precigen Actobio | Single variable domain antibodies against tumor necrosis factor-alpha |
EP4299125A1 (en) | 2022-06-30 | 2024-01-03 | Universite De Montpellier | Anti-mglur2 biparatopic nanobodies and uses thereof |
EP4299124A1 (en) | 2022-06-30 | 2024-01-03 | Universite De Montpellier | Anti-mglur2 nanobodies for use as biomolecule transporter |
WO2024008755A1 (en) | 2022-07-04 | 2024-01-11 | Vib Vzw | Blood-cerebrospinal fluid barrier crossing antibodies |
KR20240007881A (ko) | 2022-07-08 | 2024-01-17 | 노보 노르디스크 에이/에스 | FVIII(a)를 치환할 수 있는 매우 강력한 ISVD 화합물 |
WO2024008904A2 (en) | 2022-07-08 | 2024-01-11 | Novo Nordisk A/S | Highly potent isvd compounds capable of substituting for fviii(a) |
US20240052065A1 (en) | 2022-07-15 | 2024-02-15 | Boehringer Ingelheim International Gmbh | Binding molecules for the treatment of cancer |
TW202417502A (zh) | 2022-07-18 | 2024-05-01 | 比利時商艾伯霖克斯公司 | Cx3cr1結合化合物、方法及其用途 |
WO2024018426A1 (en) | 2022-07-22 | 2024-01-25 | Janssen Biotech, Inc. | Enhanced transfer of genetic instructions to effector immune cells |
WO2024023271A1 (en) | 2022-07-27 | 2024-02-01 | Ablynx Nv | Polypeptides binding to a specific epitope of the neonatal fc receptor |
WO2024028347A1 (en) | 2022-08-01 | 2024-02-08 | Ose Immunotherapeutics | Heterodimeric fc-clec-1 fusion molecule and uses thereof |
WO2024028386A1 (en) | 2022-08-02 | 2024-02-08 | Ose Immunotherapeutics | Multifunctional molecule directed against cd28 |
WO2024030976A2 (en) | 2022-08-03 | 2024-02-08 | Voyager Therapeutics, Inc. | Compositions and methods for crossing the blood brain barrier |
WO2024028476A1 (en) | 2022-08-05 | 2024-02-08 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of th2-mediated diseases |
WO2024037910A1 (en) | 2022-08-17 | 2024-02-22 | Institut National de la Santé et de la Recherche Médicale | Syk inhibitors for use in the treatment of cancer |
WO2024047110A1 (en) | 2022-08-31 | 2024-03-07 | Institut National de la Santé et de la Recherche Médicale | Method to generate more efficient car-t cells |
TW202417490A (zh) | 2022-08-31 | 2024-05-01 | 美商艾力克森製藥公司 | 用於治療鐮狀細胞病的融合多肽之劑量及投與 |
WO2024050524A1 (en) | 2022-09-01 | 2024-03-07 | University Of Georgia Research Foundation, Inc. | Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death |
WO2024054436A1 (en) | 2022-09-06 | 2024-03-14 | Alexion Pharmaceuticals, Inc. | Diagnostic and prognostic biomarker profiles in patients with hematopoietic stem cell transplant-associated thrombotic microangiopathy (hsct-tma) |
WO2024055034A1 (en) | 2022-09-09 | 2024-03-14 | Yale University | Proteolysis targeting antibodies and methods of use thereof |
WO2024056809A1 (en) | 2022-09-15 | 2024-03-21 | Novartis Ag | Treatment of autoimmune disorders using chimeric antigen receptor therapy |
WO2024059739A1 (en) | 2022-09-15 | 2024-03-21 | Voyager Therapeutics, Inc. | Tau binding compounds |
WO2024068744A1 (en) | 2022-09-27 | 2024-04-04 | Vib Vzw | Antivirals against human parainfluenza virus |
WO2024069180A2 (en) | 2022-09-28 | 2024-04-04 | LiliumX Ltd. | Multivalent proteins and screening methods |
TW202430561A (zh) | 2022-09-30 | 2024-08-01 | 法商賽諾菲公司 | 抗cd28抗體 |
WO2024074713A1 (en) | 2022-10-07 | 2024-04-11 | Institut National de la Santé et de la Recherche Médicale | Method to generate improving car-t cells |
WO2024083843A1 (en) | 2022-10-18 | 2024-04-25 | Confo Therapeutics N.V. | Amino acid sequences directed against the melanocortin 4 receptor and polypeptides comprising the same for the treatment of mc4r-related diseases and disorders |
WO2024096735A1 (en) | 2022-10-31 | 2024-05-10 | Stichting Amsterdam UMC | Single domain anti-cd169 antibodies |
WO2024101989A1 (en) | 2022-11-08 | 2024-05-16 | Stichting Amsterdam UMC | Activation inducible antigen receptors for adoptive immunotherapy |
WO2024102962A1 (en) | 2022-11-10 | 2024-05-16 | Immuvia Inc | Cytotoxic bispecific antibodies binding to dr5 and muc16 and uses thereof |
WO2024105091A1 (en) | 2022-11-15 | 2024-05-23 | Imec Vzw | Method and system for droplet manipulation |
US12110344B2 (en) | 2022-11-21 | 2024-10-08 | Dianthus Therapeutics Opco, Inc. | Antibodies that bind to cis and uses thereof |
TW202430574A (zh) | 2022-11-30 | 2024-08-01 | 美商積分分子股份有限公司 | 針對密連蛋白6之抗體,包括其雙特異性格式 |
WO2024119074A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Stealth lipid nanoparticle compositions for cell targeting |
WO2024123963A2 (en) | 2022-12-07 | 2024-06-13 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Neutralizing monoclonal antibodies against western, eastern, and venezuelan equine encephalitis virus (eev) |
WO2024126363A1 (en) | 2022-12-12 | 2024-06-20 | Institut National de la Santé et de la Recherche Médicale | Image-based high-content screening methods for identifying compounds targeting apicomplexan parasites |
US20240200085A1 (en) | 2022-12-15 | 2024-06-20 | Aarhus Universitet | Synthetic activation of multimeric transmembrane receptors |
WO2024133301A1 (en) | 2022-12-19 | 2024-06-27 | Umc Utrecht Holding B.V. | Btn2a1 binding peptide |
US20240209107A1 (en) | 2022-12-19 | 2024-06-27 | Sanofi | Cd28/ox40 bispecific antibodies |
US20240262923A1 (en) | 2022-12-21 | 2024-08-08 | Genzyme Corporation | Anti-pd-1×4-1bb binding proteins |
WO2024133937A1 (en) | 2022-12-22 | 2024-06-27 | Biotalys NV | Methods for genome editing |
WO2024133723A1 (en) | 2022-12-22 | 2024-06-27 | Institut National de la Santé et de la Recherche Médicale | Methods for decreasing therapeutic acquired resistance to chemotherapy and/or radiotherapy |
WO2024133935A1 (en) | 2022-12-23 | 2024-06-27 | Ablynx Nv | Protein-based conjugation carriers |
WO2024145551A1 (en) | 2022-12-29 | 2024-07-04 | Biotalys NV | Agrochemical compositions |
WO2024141645A1 (en) | 2022-12-30 | 2024-07-04 | Biotalys N.V. | Agglomerate |
WO2024141638A1 (en) | 2022-12-30 | 2024-07-04 | Biotalys NV | Self-emulsifiable concentrate |
WO2024141641A2 (en) | 2022-12-30 | 2024-07-04 | Biotalys NV | Secretion signals |
WO2024151515A2 (en) | 2023-01-09 | 2024-07-18 | Odyssey Therapeutics, Inc. | Anti-tnfr2 antigen-binding proteins and uses thereof |
WO2024152014A1 (en) | 2023-01-13 | 2024-07-18 | Regeneron Pharmaceuticals, Inc. | Fgfr3 binding molecules and methods of use thereof |
WO2024157085A1 (en) | 2023-01-26 | 2024-08-02 | Othair Prothena Limited | Methods of treating neurological disorders with anti-abeta antibodies |
WO2024156881A1 (en) | 2023-01-27 | 2024-08-02 | Vib Vzw | CD8b-BINDING POLYPEPTIDES |
WO2024156888A1 (en) | 2023-01-27 | 2024-08-02 | Vib Vzw | Cd163-binding conjugates |
WO2024165500A1 (en) | 2023-02-06 | 2024-08-15 | Merck Patent Gmbh | Vhh-based nkp46 binders |
WO2024168061A2 (en) | 2023-02-07 | 2024-08-15 | Ayan Therapeutics Inc. | Antibody molecules binding to sars-cov-2 |
WO2024165710A1 (en) | 2023-02-09 | 2024-08-15 | Seni-Preps B.V. | Immunoglobulin single variable domains that inhibit urease and use thereof |
US20240327538A1 (en) | 2023-02-10 | 2024-10-03 | Amunix Pharmaceuticals, Inc. | Compositions targeting prostate-specific membrane antigen and methods for making and using the same |
US20240368250A1 (en) | 2023-02-17 | 2024-11-07 | Ablynx N.V. | Polypeptides binding to the neonatal fc receptor |
WO2024175787A1 (en) | 2023-02-24 | 2024-08-29 | Vrije Universiteit Brussel | Anti-inflammatory pannexin 1 channel inhibitors |
WO2024184812A1 (en) | 2023-03-06 | 2024-09-12 | Beigene Switzerland Gmbh | Anti-cldn6 antibodies and methods of use |
WO2024184811A1 (en) | 2023-03-06 | 2024-09-12 | Beigene Switzerland Gmbh | Anti-cd3 multispecific antibodies and methods of use |
WO2024184810A1 (en) | 2023-03-06 | 2024-09-12 | Beigene Switzerland Gmbh | Anti-cldn6 and anti-cd3 multispecific antibodies and methods of use |
WO2024184476A1 (en) | 2023-03-07 | 2024-09-12 | Institut Curie | Ung/udg inhibition in brca-associated cancer |
WO2024184479A1 (en) | 2023-03-08 | 2024-09-12 | Institut National de la Santé et de la Recherche Médicale | Methods for the treatment of food allergy |
WO2024189171A1 (en) | 2023-03-14 | 2024-09-19 | Aarhus Universitet | Genetically altered nfr5 receptor kinases |
WO2024192065A1 (en) | 2023-03-14 | 2024-09-19 | Odyssey Therapeutics, Inc. | Anti-cd25 antigen-binding proteins and uses thereof |
WO2024194402A1 (en) | 2023-03-21 | 2024-09-26 | Institut Curie | Farnesyl transferase inhibitor for use in methods for the treatment of hrd cancer |
WO2024194401A1 (en) | 2023-03-21 | 2024-09-26 | Institut Curie | Vps4b inhibitor for use in methods for the treatment of hrd cancer |
WO2024194673A1 (en) | 2023-03-21 | 2024-09-26 | Institut Curie | Methods for the treatment of dedifferentiated liposarcoma |
WO2024197296A1 (en) | 2023-03-23 | 2024-09-26 | Bodhi Bio Llc | Compositions and methods for antigen-specific therapy |
WO2024200332A1 (en) | 2023-03-24 | 2024-10-03 | Sanofi | Asthma treatment by blocking il-13 and tslp |
EP4435005A1 (en) | 2023-03-24 | 2024-09-25 | Sanofi | Asthma treatment by blocking il-13 and tslp |
WO2024200846A1 (en) | 2023-03-30 | 2024-10-03 | 272BIO Limited | Gnrh-binding polypeptides and uses thereof |
WO2024208816A1 (en) | 2023-04-03 | 2024-10-10 | Vib Vzw | Blood-brain barrier crossing antibodies |
WO2024213782A1 (en) | 2023-04-13 | 2024-10-17 | Institut Curie | Methods for the treatment of t-cell acute lymphoblastic leukemia |
WO2024224323A1 (en) | 2023-04-24 | 2024-10-31 | King Abdullah University Of Science Of Technology | Compositions, systems and methods for multiplex detection of target biomarkers in a sample |
WO2024226829A2 (en) | 2023-04-26 | 2024-10-31 | Yale University | Enpp3-binding molecules, compositions formed therefrom, and methods of use thereof for the treatment of cancer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8607679D0 (en) * | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
GB9016299D0 (en) * | 1990-07-25 | 1990-09-12 | Brien Caroline J O | Binding substances |
-
1993
- 1993-08-18 AT AT05008358T patent/ATE452975T1/de active
- 1993-08-18 DK DK00127968T patent/DK1087013T3/da active
- 1993-08-18 DK DK05008358.3T patent/DK1589107T3/da active
- 1993-08-18 DE DE69330523A patent/DE69330523D1/de not_active Expired - Lifetime
- 1993-08-18 DE DE69330523T patent/DE69330523T4/de not_active Expired - Lifetime
- 1993-08-18 DE DE69334308T patent/DE69334308D1/de not_active Expired - Lifetime
- 1993-08-18 ES ES93919098T patent/ES2162823T5/es not_active Expired - Lifetime
- 1993-08-18 AT AT04077639T patent/ATE452207T1/de active
- 1993-08-18 ES ES00127968T patent/ES2322324T3/es not_active Expired - Lifetime
- 1993-08-18 AT AT93919098T patent/ATE203767T1/de active
- 1993-08-18 EP EP93919098A patent/EP0656946B2/en not_active Expired - Lifetime
- 1993-08-18 EP EP05020889A patent/EP1621554B2/en not_active Expired - Lifetime
- 1993-08-18 DK DK04077639.5T patent/DK1498427T3/da active
- 1993-08-18 PT PT04077639T patent/PT1498427E/pt unknown
- 1993-08-18 PT PT00127968T patent/PT1087013E/pt unknown
- 1993-08-18 DK DK05020889.1T patent/DK1621554T4/da active
- 1993-08-18 AT AT00127968T patent/ATE420178T1/de active
- 1993-08-18 EP EP04077639A patent/EP1498427B1/en not_active Expired - Lifetime
- 1993-08-18 EP EP05008358A patent/EP1589107B1/en not_active Expired - Lifetime
- 1993-08-18 DK DK93919098.9T patent/DK0656946T4/da active
- 1993-08-18 PT PT93919098T patent/PT656946E/pt unknown
- 1993-08-18 AU AU49497/93A patent/AU701578B2/en not_active Ceased
- 1993-08-18 WO PCT/EP1993/002214 patent/WO1994004678A1/en active IP Right Grant
- 1993-08-18 ES ES04077639T patent/ES2338321T3/es not_active Expired - Lifetime
- 1993-08-18 DE DE69334258T patent/DE69334258D1/de not_active Expired - Lifetime
- 1993-08-18 DE DE69334275T patent/DE69334275D1/de not_active Expired - Lifetime
- 1993-08-18 EP EP09174252A patent/EP2192131A1/en active Pending
- 1993-08-18 EP EP00127968A patent/EP1087013B1/en not_active Expired - Lifetime
- 1993-08-18 PT PT05020889T patent/PT1621554E/pt unknown
- 1993-08-18 PT PT05008358T patent/PT1589107E/pt unknown
- 1993-08-18 ES ES05008358T patent/ES2338791T3/es not_active Expired - Lifetime
- 1993-08-18 DE DE69334305T patent/DE69334305D1/de not_active Expired - Lifetime
- 1993-08-18 CA CA002142331A patent/CA2142331C/en not_active Expired - Lifetime
- 1993-08-18 JP JP50590394A patent/JP3444885B2/ja not_active Expired - Fee Related
- 1993-08-18 AT AT05020889T patent/ATE427968T1/de active
- 1993-08-18 ES ES05020889T patent/ES2325541T3/es not_active Expired - Lifetime
-
1995
- 1995-02-20 FI FI950782A patent/FI115462B/fi not_active IP Right Cessation
- 1995-06-06 US US08/471,282 patent/US5840526A/en not_active Expired - Lifetime
- 1995-06-06 US US08/471,780 patent/US5759808A/en not_active Expired - Lifetime
- 1995-06-06 US US08/467,282 patent/US5800988A/en not_active Expired - Lifetime
- 1995-06-06 US US08/468,739 patent/US6015695A/en not_active Expired - Lifetime
- 1995-06-06 US US08/466,710 patent/US5874541A/en not_active Expired - Lifetime
-
2001
- 2001-05-07 JP JP2001136457A patent/JP3660270B2/ja not_active Expired - Lifetime
- 2001-10-25 GR GR20010401895T patent/GR3037024T3/el unknown
-
2004
- 2004-12-08 FI FI20041584A patent/FI117975B/fi not_active IP Right Cessation
-
2005
- 2005-01-18 JP JP2005010359A patent/JP4414900B2/ja not_active Expired - Lifetime
-
2007
- 2007-02-28 FI FI20070170A patent/FI120404B/fi not_active IP Right Cessation
-
2009
- 2009-08-21 JP JP2009192382A patent/JP2009280608A/ja active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2162823T5 (es) | Inmunoglobulinas desprovistas de cadenas ligeras. | |
US6765087B1 (en) | Immunoglobulins devoid of light chains | |
EP0584421A1 (en) | Immunoglobulins devoid of light chains | |
AU738133B2 (en) | Immunoglobulins devoid of light chains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 656946 Country of ref document: ES |