Nothing Special   »   [go: up one dir, main page]

WO1997038626A1 - Detecteur d'arythmie - Google Patents

Detecteur d'arythmie Download PDF

Info

Publication number
WO1997038626A1
WO1997038626A1 PCT/JP1997/001322 JP9701322W WO9738626A1 WO 1997038626 A1 WO1997038626 A1 WO 1997038626A1 JP 9701322 W JP9701322 W JP 9701322W WO 9738626 A1 WO9738626 A1 WO 9738626A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrhythmia
pulse wave
frequency
waveform
body motion
Prior art date
Application number
PCT/JP1997/001322
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Amano
Kazuo Uebaba
Hitoshi Ishiyama
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to DE69723946T priority Critical patent/DE69723946T2/de
Priority to US08/981,349 priority patent/US6095984A/en
Priority to EP97917411A priority patent/EP0841034B1/en
Priority to JP53695797A priority patent/JP3635663B2/ja
Publication of WO1997038626A1 publication Critical patent/WO1997038626A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms

Definitions

  • the present invention relates to an arrhythmia detection device suitable for detecting arrhythmia at rest and during exercise from the pulse of a living body.
  • a pulse wave waveform the waveform called the main wave caused by the contraction of the heart and the blood is sent to the artery, and the major beat generated after the valve of the heart is closed It is roughly divided into waveforms called waves. In a healthy state, the pulse wave waveform has a constant rhythm because the heart contracts regularly.
  • arrhythmias also occur in smoking but often in heart diseases such as valvular heart disease, myocardial infarction and cardiomyopathy. Under these circumstances, diagnosing abnormalities of the circulatory system has been performed by detecting arrhythmias.
  • an electrocardiograph that attaches an electrode to the chest of a subject and detects an electrocardiographic waveform using the electrode has been used to detect the arrhythmia described above.
  • the electrocardiograph is a large-sized device, and it is necessary to attach electrodes to the subject. And the range of action was limited. Recently, portable electrocardiogram recording devices have also been developed. However, as with the above-mentioned electrocardiographs, it is difficult for people without specialized knowledge to easily detect arrhythmias by themselves. I did not go. That is, arrhythmia could not be accurately detected in daily life. DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a portable arrhythmia detection device that can accurately detect arrhythmia with a simple operation in daily life.
  • the present invention basically provides a pulse wave detecting means for non-invasively detecting a pulse wave waveform of a living body, and a body from a pulse wave waveform detected by the pulse wave detecting means. It is characterized by comprising a body motion component exclusion unit for excluding a moving component, and a notifying unit for notifying information representing a pure pulse waveform from which the body motion component has been excluded by the body motion component exclusion unit.
  • a pulse wave detecting means for non-invasively detecting a pulse wave waveform of a living body
  • a body motion component removing means for removing a body motion component from the pulse wave waveform detected by the pulse wave detecting means
  • a body motion component An arrhythmia detection means for monitoring a change in a pure pulse wave waveform from which a body motion component has been excluded by the exclusion means to detect an arrhythmia, and a notification means for notifying a detection result of the arrhythmia detection means.
  • an arrhythmia can be detected based on a pulse wave waveform that can be acquired non-invasively.Therefore, there is no need to attach an electrode to the subject's chest, and the arrhythmia can be detected by a simple operation. Can be.
  • an arrhythmia detection device which has a simple configuration, can be easily miniaturized, and is excellent in portability can be realized.
  • the pulse wave waveform detected by the pulse wave detecting means is expected to include a body movement component due to daily body movement, but as long as the body movement is within a daily range, the body movement component Since it is easy to distinguish between a pulse wave component and a pulse wave component, a pure pulse wave waveform can be obtained.
  • arrhythmias can be accurately detected in daily life. Needless to say, by informing information representing a pure pulse waveform, the informed person can know whether or not an arrhythmia is present. Furthermore, if a body movement detecting means for detecting a body movement of a living body and outputting a body movement waveform is provided and a change in a pulse wave component obtained by removing a body movement component from the pulse wave waveform is monitored, the body movement is captured. Since arrhythmia can be canceled, arrhythmia can be accurately detected even during exercise. The continuity may be checked in the time domain or in the frequency domain. When checking in the time domain, the difference between the pulse wave interval value and the reference value is monitored, but the pulse wave interval value may be updated in order to more accurately detect arrhythmias.
  • the arrhythmia When examining in the frequency domain, the arrhythmia is detected using the frequency analysis result corresponding to the pulse wave component in the frequency analysis result of the pulse wave waveform.
  • the frequency range to be subjected to the frequency analysis may be changed according to the motion state of the living body to more accurately detect the arrhythmia.
  • the arrhythmia detection operation may be performed only on a platform where the body motion is stationary, and the arrhythmia during steady motion (for example, strong motion such as running) may be detected.
  • the frequency analysis method may be FFT (Fast Fourier Transform), wavelet transform, or another method.
  • the continuity of the pulse wave analysis data obtained by performing the wavelet transform on the pulse wave waveform is analyzed for each frequency region, and when an abnormal portion is detected, it is determined that the arrhythmia has occurred.
  • the pulse wave analysis data is corrected so that the power density per frequency is constant, pulse wave correction data is generated, and the continuity of the pulse wave correction data is determined by each frequency. Analysis may be performed for each region, and when an abnormal portion is detected, it may be determined that an arrhythmia has occurred.
  • the pulse wave waveform and the body motion waveform are subjected to wavelet conversion to obtain pulse wave analysis data and body motion analysis data, and the continuity is obtained with respect to the result obtained by subtracting the body motion analysis data from the pulse wave analysis data. May be analyzed.
  • the above-described subtraction may be performed after correcting each wavelet conversion result so that the power density per frequency is constant, or the above-described correction may be performed after the above-described subtraction.
  • Another method for removing the body motion component from the pulse waveform is For example, there is a method of removing the frequency component corresponding to the body motion from the pulse wave analysis data or the pulse wave correction data.
  • the wavelet transform may be performed in synchronization with the cycle of the pulse waveform.
  • the arrhythmia may be notified or the occurrence time of the arrhythmia may be stored.
  • information for example, a histogram
  • the number of times per predetermined time determined to be arrhythmia may be calculated as arrhythmia frequency information, or when this arrhythmia frequency information exceeds a predetermined value, the fact is notified. You may make it.
  • the arrhythmia accumulation information may be generated by accumulating the number of times determined to be an arrhythmia, or when the arrhythmia accumulation information exceeds a predetermined value, the fact is notified. You may do so.
  • the arrhythmia frequency information exceeds a predetermined value
  • the arrhythmia integrated information exceeds a predetermined value
  • the arrhythmia may be notified, At least one of the frequency information and the integrated information may be notified. By doing so, the user can know his / her physical condition.
  • the arrhythmia detection process and the notification process can be executed in parallel.
  • the pulse wave detecting means may be constituted by a pressure pulse wave sensor for detecting the pulsation of the artery of the living body by pressure, or a light having a wavelength of 300 nm to 700 nm may be applied to the detecting portion of the living body. May be configured to detect the received light signal obtained by receiving the reflected light when illuminating the body as a pulse wave waveform, or the light having a wavelength of 600 nm to 100 nm at the detection site of the living body. May be configured to detect a light reception signal obtained by receiving the transmitted light when irradiating the light as a pulse waveform.
  • FIG. 1 is a block diagram showing a schematic configuration of an arrhythmia detection device based on the basic technical idea of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of an arrhythmia detection device according to a preferred second embodiment of the present invention. It is a lock figure.
  • FIG. 3 is a perspective view showing an example of the appearance of the device.
  • FIG. 4 is a graph showing an example of a frequency analysis result of a finger pulse wave when there is no arrhythmia.
  • FIG. 5 is a graph showing an example of a frequency analysis result of a fingertip pulse wave when there is an arrhythmia.
  • FIG. 6 is a graph showing an example of a frequency analysis result of a radial pulse wave when there is no arrhythmia.
  • FIG. 7 is a graph showing an example of a frequency analysis result of a radial pulse wave when there is an arrhythmia.
  • FIG. 8 is a flowchart showing an example of a pulse wave waveform detecting operation according to the first preferred embodiment of the present invention.
  • FIG. 9A is a diagram illustrating an example of a signal obtained by adding the frequency f 1 and the frequency f B
  • FIG. 9B is a graph illustrating an example of a result obtained by performing the FFT processing on the added signal.
  • FIG. 10 is a graph showing an example of the result of FFT processing of the output signals of the pulse wave sensor and the body motion sensor in the exercise state.
  • FIG. 11 is a flowchart showing an example of a method of specifying a pulse wave component by the arrhythmia detection device according to the first preferred embodiment of the present invention.
  • FIG. 12 is a flowchart showing an example of a method of specifying a pulse wave component by the same device.
  • FIG. 13 is a graph showing an example of the result of the FFT processing of the output signal of the body motion sensor.
  • FIG. 14 is a flowchart illustrating an example of a method of specifying a pulse wave component by the arrhythmia detection device according to the first preferred embodiment of the present invention.
  • FIG. 15 is a flowchart showing an example of a method of specifying a pulse wave component by the same device.
  • FIG. 16 is a flowchart showing an example of a pulse waveform detection operation by the arrhythmia detection device according to the preferred second embodiment of the present invention.
  • Fig. 17 is a cross-sectional view showing an installation example when a piezo element is used as the notification means. You.
  • l8 is a diagram showing a face chart used in a modification of each embodiment of the present invention.
  • FIG. 19 is a diagram showing a configuration of a system using the arrhythmia detection device according to each embodiment of the present invention.
  • FIG. 20 is a functional block diagram of the arrhythmia detection device according to the third to fifth preferred embodiments of the present invention.
  • FIG. 21 is a perspective view of an arrhythmia detection device according to a preferred third embodiment of the present invention.
  • FIG. 22 is an explanatory diagram showing a state when the arrhythmia detecting device according to the embodiment is used.
  • FIG. 23 is a block diagram showing an electrical configuration of the arrhythmia detection device according to the same embodiment.
  • FIG. 24 is a block diagram showing a detailed configuration of the wavelet conversion unit according to the embodiment.
  • FIG. 25 is a timing chart of the wavelet converter according to the embodiment.
  • FIG. 26 is a block diagram illustrating a detailed configuration of the determination unit according to the embodiment.
  • FIG. 27 is a diagram showing the contents of the memory 124 according to the embodiment.
  • FIG. 28 is a timing chart for explaining the operation of this embodiment.
  • FIG. 29 is an explanatory diagram showing a state when the arrhythmia detecting device according to the fourth preferred embodiment of the present invention is used.
  • FIG. 30 is a block diagram showing an electrical configuration of the arrhythmia detection device according to the embodiment.
  • FIG. 31 is a waveform diagram showing a pulse wave waveform, a body motion waveform, and the like according to the embodiment.
  • FIG. 32 is a timing chart for explaining the operation of this embodiment.
  • FIG. 33 is a block diagram showing an electrical configuration of an arrhythmia detection device according to a preferred fifth embodiment of the present invention.
  • FIG. 34 is a circuit diagram showing a configuration of the body movement separating unit 19 according to the embodiment.
  • FIG. 35 is a timing chart for explaining the operation of this embodiment.
  • FIG. 36 is a block diagram showing a configuration of a filter bank according to a modification.
  • FIG. 37 is a circuit diagram of a photoelectric pulse wave sensor according to a modification.
  • FIG. 38 is a diagram for explaining a usage state of the photoelectric pulse wave sensor according to the modification.
  • FIG. 39 is a perspective view showing a state where a device to which the optical pulse wave sensor according to the modification is connected is attached to eyeglasses.
  • FIG. 40 is a circuit diagram of a first wavelet conversion means according to a modification.
  • FIG. 41 is a diagram for explaining the relationship between the number of beats and the pitch in the modified example.
  • FIG. 42 is l3 ⁇ 4j showing a pulse waveform, where (a) shows a normal pulse and (b) shows an arrhythmia pulse.
  • FIGS. 43A and 43B are diagrams showing examples of notification in the present invention.
  • FIG. 43A shows a histogram for each month
  • FIG. 43B shows a histogram for each day of the week
  • FIG. 43A shows a histogram for each month
  • FIG. 44 is a diagram showing an example of a time stamp stored in the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an arrhythmia detection device based on the above-described technical idea.
  • the arrhythmia detection device shown in FIG. 1 detects a pulsation non-invasively and outputs a pulse wave signal (pulse wave waveform).
  • Pulse wave detection means that outputs a body movement, and outputs a body movement signal (body movement waveform) by detecting body movement
  • a arrhythmia detecting means for detecting the occurrence of arrhythmia based on the pulse wave signal and the body motion signal.
  • the pulse wave signal output from the pulse wave detecting means includes not only a pulse wave component but also a body movement component. Therefore, the arrhythmia detection means monitors a pure pulse wave waveform represented by a pulse wave component obtained by removing the body motion component specified by the body motion signal from the pulse wave signal output by the pulse wave detection means, When an irregular change in the pulse waveform is detected, information indicating that an arrhythmia has occurred (arrhythmia detection signal) is output.
  • FIG. 2 is a block diagram showing the configuration of the arrhythmia detection device according to the first embodiment of the present invention.
  • the arrhythmia detection device shown in FIG. 2 performs arrhythmia detection, arrhythmia count, pulse rate calculation, and the like.
  • reference numeral 301 denotes a pulse wave sensor that detects a pulsation of a living body and outputs a pulse wave signal corresponding to the detected pulsation to a pulse wave signal amplifier circuit 303, and is implemented by, for example, a piezoelectric sensor.
  • Reference numeral 302 denotes a body movement sensor that detects movement of a living body and outputs a body movement signal corresponding to the detected body movement to a body movement signal amplification circuit 304 (described later). Implemented by sensors.
  • Reference numeral 303 denotes a pulse wave signal amplifying circuit that amplifies the detected pulse wave signal and outputs the amplified pulse wave signal to an A / D conversion circuit 305 and a pulse wave shaping circuit 306 described later.
  • the amplification circuit 304 amplifies the detected body motion signal, and outputs the amplified body motion signal to the AZD conversion circuit 305 and the body motion waveform shaping circuit 307 (described later).
  • the octane 0 conversion circuit 305 performs A / D conversion of the amplified pulse wave signal and body movement signal, and outputs the result to a CPU 308 described later.
  • the pulse wave shaping circuit 306 shapes the amplified pulse wave signal and outputs it to the CPU 308.
  • the body motion waveform shaping circuit 307 shapes the amplified body motion signal. And outputs it to the CPU 308.
  • the CPU 308 executes a program stored in a storage means (for example, ROM) (not shown).
  • the CPU 308 controls each unit of the apparatus and performs operations described later to detect arrhythmia. Arrhythmia rate Counting, pulse rate calculation, etc. Further, reference numeral 309 denotes a RAM used as work memory of the CPU 308.
  • FIG. 311 is an oscillation circuit that generates a clock pulse of a fixed cycle
  • 312 is a frequency divider that divides the clock pulse generated by the oscillation circuit 311 and generates a pulse of a predetermined cycle
  • 3 13 is a liquid crystal display, which displays the detection results
  • 310 is an input unit for inputting user's instructions, and as shown in Fig. 3, determines various setting values. It has a plurality of switches typified by a set switch S used for the following.
  • FIG. 3 is a perspective view showing an example of the appearance of the arrhythmia detecting device having the above-described configuration. As shown in FIG. 3, the arrhythmia detecting device according to the present embodiment employs a wristwatch form.
  • this soup has not only an arrhythmia detection function, but also a clock function (real-time clock) that measures the current time, and is configured to be able to execute processing by both functions simultaneously.
  • a clock function real-time clock
  • setting of various setting values may be automatically performed according to a signal supplied from the outside via an interface (not shown), or the above-described set switch S and the like.
  • the mode (setting mode measurement mode) may be switched using a mode switch.
  • the clock function in the present embodiment is the same as that of a known digital clock except that the time measurement result (time information) is used to record the arrhythmia detection time. A description of the realized configuration and its operation will be omitted.
  • reference numeral 1 denotes an apparatus main body, which is attached to a user's arm by a band 144. Further, the pulse wave sensor 301 and the body motion sensor 302 (see FIG. 2) are fixed to the user's finger by a sensor fixing band 52.
  • the external appearance of this device is almost the same as that of the arrhythmia detecting device according to the third to fourth embodiments described later, and the external configuration will be described in detail in the third embodiment. .
  • the operations in the arrhythmia detection mode of the arrhythmia detection device having the above configuration are roughly classified into two types of operations, and each operation is switched according to the detection state of body motion.
  • these two types of operations are referred to as “first arrhythmia detection operation” and “second arrhythmia detection operation”, respectively. And it is explained individually.
  • the device detects the pulse wave waveform according to “1-1-2. 3. Pulse wave waveform detection method” described later.
  • the CPU 308 calculates the average value of a predetermined number of pulse wave intercept values immediately after the start of the pulse wave interval value (pulse wave interval value) between the pulse waves constituting the above pulse wave waveform, and calculates the average value.
  • the initial value of the pulse interval value is used, and the value obtained by multiplying the reciprocal of this initial value by 60 is used as the initial value of the pulse rate.
  • the initial value of the inter-pulse-wave value is set as the reference pulse-wave interval value I.
  • the CPU 308 obtains an interval value between pulse waves at an arbitrary time point t culinary, and divides this interval value irada by the reference pulse wave interval value I described above.
  • the CPU 308 determines that an arrhythmia has occurred and implements it using an internal register.
  • the arrhythmia counter is incremented, and the previously calculated pulse rate is set as the current pulse rate.
  • the range in the pulse rate area is 161.5-178.5 beats.
  • CPU 308 repeats the operations of 4 to ⁇ ⁇ until the user presses the switch indicating the end of measurement. Instead of displaying the arrhythmia count value in real time, the count value may be displayed only when the user presses the switch.
  • the device detects the pulse wave waveform according to “1-1 2-3. Pulse wave waveform detection method” described later.
  • the CPU 308 twists the frequency waveform in the vicinity (side lobe) around the frequency spectrum of the fundamental wave of the pulse wave (main lobe) with respect to the pulse wave waveform obtained in 1). Extract the frequency spectrum whose width (power) is greater than or equal to the specified value.
  • CPU 308 determines whether the frequency spectrum extracted in (2) shows an irregular value.
  • Fig. 42 (a) shows the radial pulse wave when there is no arrhythmia
  • Fig. 42 (b) shows the radial pulse waveform when there is an arrhythmia.
  • the second pulse waveform in Fig. 42 (b) is flattened. The occurrence of such deformation in the pulse waveform due to arrhythmia is the same in the finger vein group, so that the finger vein group waveform is not shown.
  • FIG. 4 is a graph showing an example of the FFT processing result of the fingertip pulse wave when there is no arrhythmia.
  • FIG. 5 is a graph showing an example of a result of FFT processing of a finger pulse wave when there is an arrhythmia
  • FIG. 6 is a graph showing an example of a result of FFT processing of a radial pulse wave without an arrhythmia
  • FIG. 4 is a graph showing an example of the FFT processing result of the fingertip pulse wave when there is no arrhythmia.
  • FIG. 5 is a graph showing an example of a result of FFT processing of a finger pulse wave when there is an arrhythmia
  • FIG. 6 is a graph showing an example of a result of FFT processing of a radial pulse wave without an arrhythmia
  • arrhythmia 9 is a graph showing an example of a result of FFT processing of a radial pulse wave in a case where there is a pulse wave; As is clear from these graphs, when a pulse wave due to arrhythmia exists in the pulse wave waveform within the analysis time of the FFT, the baseline does not rise and the frequency analysis by the FFT does not hold.
  • the CPU 308 uses this to detect the occurrence of arrhythmia. ⁇ ⁇ Upon detecting the occurrence of arrhythmia, the CPU 308 displays this on the display unit 313 and displays the previous pulse rate as it is on the display unit 313 as it is.
  • the CPU 308 calculates the pulse rate by multiplying 60 by the frequency of the spectrum extracted in 2), and displays the pulse rate on the display unit 3 1 Indicated by 3.
  • the allowable range of the frequency of the fundamental wave of the pulse wave is a range in a frequency region corresponding to a predetermined range centered on the previous pulse rate in the pulse rate region.
  • the allowable range in the pulse rate range is ⁇ 5%
  • the allowable range is also a range of ⁇ 5% centered on the frequency of the fundamental wave of the previous pulse wave (approximately 2.8333.3 soil 0.1417H'z).
  • the analysis time required for one FFT process is 16 s
  • the frequency of the extracted spectrum by comparing the frequency of the extracted spectrum with the discrete frequency, it can be determined whether or not the frequency is within the allowable range.
  • the continuous allowable range of the frequency and frequency range of the extracted spectrum (about 2.8333.3 ⁇ 0.14) 17 Hz).
  • the frequencies of the extracted vectors are 2.6875, 2.750, 2.870, 2.935, 3.000H. If any of z, it is determined that no arrhythmia has occurred.
  • FIG. 8 is a flowchart showing an example of the pulse waveform detection operation of the present apparatus.
  • the CPU 308 outputs the output of the body motion waveform shaping circuit 307 in step SA 1.
  • a body movement waveform is detected from the signal (body movement signal), and in subsequent step SA 2, it is determined whether or not there is body movement based on the body movement waveform. If the result of the determination is "Y E S”, the process proceeds to step SA3, and if the result of the determination is "NOj", the process proceeds to step SA7.
  • step SA3 the pulse wave sensor 301 detects a pulse and outputs a pulse wave signal, the pulse wave signal is amplified by the pulse wave signal amplification circuit 303, and the amplified pulse wave signal is converted into an AZD signal.
  • the conversion circuit 305 performs AZD conversion.
  • step SA4 the body motion sensor 302 detects the body motion and outputs a body motion signal. The body motion signal is amplified by the body motion signal amplification circuit 304, and the amplified body motion signal is converted into an AZD signal.
  • the conversion circuit 305 performs AZD conversion. Actually, the processing of steps SA 3 and SA 4 is performed in parallel.
  • CPU 308 performs FFT processing on the AZD-converted pulse wave signal (pulse wave waveform) and body motion signal (body motion waveform) respectively (step SA5), and based on the FFT processing result (spectrum), The frequency component (pulse wave component) of the pulse wave is extracted by the method described later (step SA6).
  • step SA7 the CPU 308 detects a pulse wave waveform from the output signal (pulse wave signal) of the pulse waveform shaping circuit 303, and determines in step SA8 whether or not there is any body movement. Judge again. If the result of the determination is “YE S”, the process proceeds to step S A3, and if “NO”, the process proceeds to step S A9.
  • step S A9 the CPU 308 converts the pulse waveform into a rectangular waveform.
  • CPU 308 calculates a pulse rate from the pulse wave component extracted at step S A6 or the square wave converted at step S A9.
  • FIG. 9 (a) shows the time change of the amplitude of the signal obtained by adding the signal of frequency f A and the signal of frequency ⁇ B (however, the amplitude of the signal of frequency f B is 1 2 of the signal of frequency f)).
  • FIG. 9 (b) is a graph showing the result of FFT processing on the signal shown in FIG. 9 (a).
  • the lowest frequency obtained as a result of the FFT processing is determined by the reciprocal of the analysis time. For example, if the analysis time is 16 s, a line spectrum can be obtained with a resolution of 16 s, that is, 62.5 ms.
  • the signal to be processed is decomposed into harmonic components that are integral multiples of 16 Hz in the frequency domain, and a spectrum as shown in Fig. 9 (b) is obtained, in which the power of each high-frequency component is represented on the vertical axis.
  • the spectrum of power frequencies f A is twice the scan Bae-vector of the power of the frequency f B.
  • FIG. 10 is a graph showing an example of a result of FFT processing of an output signal from the pulse wave sensor 301 and an output signal from the body motion sensor 302 in an exercise state
  • FIG. FFT processing of the output signal (pulse wave signal) of the wave sensor 301 represents the pulse wave spectrum (f)
  • (b) shows the output signal of the body movement sensor 302 (body movement signal).
  • ) Represents the result of FFT processing (body motion spectrum f sg)
  • (c) represents the spectrum f M obtained by subtracting the body motion spectrum f sg from the pulse wave spectrum f rag.
  • the pulse wave spectrum contains both the pulse wave component and the frequency component generated by the body motion.
  • the body movement sensor 302 since the body movement sensor 302 responds only to body movement, only the frequency component generated by the body movement comes into the body movement spectrum f sg of FIG. 11 (b). Therefore, the body motion spectrum is subtracted from the pulse wave spectrum f ⁇ , and the obtained spectrum ⁇ can be specified as the spectrum of the pulse wave component.
  • the pulse wave component is extracted by such a method.
  • FIG. 11 is a flowchart showing an example of a method for specifying the frequency of the fundamental wave of the pulse wave.
  • the CPU 308 first sets the pulse wave spectrum f by the FFT processing. seeking and nR and Karadadosupeku tram f SK (step SB 1, SB 2).
  • the CPU 308 performs the above-described subtraction processing ( ⁇ «-ff SR ) to extract the pulse wave component spectrum 1 ⁇ , and in the subsequent steps SB 4 and SB 5, the extracted
  • the spectrum with the maximum power is extracted from the spectrum f M, and the frequency f mai of this spectrum is specified as the frequency of the fundamental wave of the pulse wave.
  • the body motion component is specified, and the frequency of the fundamental wave of the pulse wave is specified from the frequency components excluding the specified body motion component.
  • FIG. 12 is a flowchart showing another example of the method of specifying the frequency of the fundamental wave of the pulse wave.
  • the CPU 308 determines the body in steps SC1 to SC3.
  • the frequency fs2 of the second harmonic of body motion which is relatively easy to detect as a motion component, is specified. This process actually extracts the spectrum of the maximum power in the range of f max to f min (where f max> f min), and uses that frequency fs as the frequency of the second harmonic of body motion. It is realized by fs 2.
  • the frequency range in which the fundamental wave of the body motion can appear usually is 1 to 2 Hz, and the second harmonic of the body motion appears. Since the frequency range that can be expressed is 2 to 4 Hz, in the present embodiment, fmin is set to 2 Hz, which is the lower limit frequency of the second harmonic of body motion, and frequency components below the lower limit frequency are excluded. . On the other hand, if the sampling frequency of the AZD conversion of the body motion signal is 8 Hz, the maximum frequency at which the original waveform can be reproduced is automatically determined to be 4 Hz from the sampling theorem.
  • f max is set to the above-mentioned maximum frequency of 4 Hz, and frequency components higher than the frequency are excluded.
  • the lower limit frequency may be adopted by comparing the upper limit frequency at which the second harmonic can appear and the above-mentioned highest frequency.
  • step SC4 the CPU 308 divides the frequency fs2 of the second harmonic of body motion by 2 to obtain the frequency fs1 of the fundamental wave of body motion, and in steps SC5 to SC8 From the spectrum of the pulse wave signal, it corresponds to the fundamental wave of body motion (frequency is fs1), the second harmonic (frequency is 2Xfs1), and the third harmonic (frequency is 3Xfs1)
  • step SC9 the spectrum of the maximum power spectrum is extracted as the frequency fm of the fundamental wave of the pulse wave.
  • FIG. 13 is a diagram showing an example of the result of the FFT processing of the output of the body motion sensor 302.
  • the power of the second harmonic of body motion will be greater (about 3 to 10 times when running very averagely).
  • the acceleration detection factors of the body motion sensor 302 the following two factors can be considered.
  • the motion becomes the second harmonic component of the body motion.
  • the component corresponding to the pendulum motion with one cycle of arm swing-back is the fundamental wave component of body motion, but it is difficult to make the swing of the arm smooth pendulum motion during normal running. This Minute power is weaker.
  • acceleration is applied at each moment of arm swinging and pulling back, so the power of the second harmonic component of the body motion generated is stronger. Therefore, the second harmonic component of the body motion is characteristically obtained in the spectrum of the body motion signal. Therefore, the frequency of the spectrum with the maximum power can be obtained as the frequency of the second harmonic of the body motion component.
  • the range in which the second harmonic appears can be covered in the range of 2 to 4 Hz, even if the traveling base is fast or slow. Therefore, by extracting the frequency component of the maximum power after limiting to this region, the frequency component corresponding to the second harmonic of the body motion can be reliably extracted, and by extension the frequency of the fundamental wave of the body motion can be extracted. Detection accuracy can be improved.
  • step SD1 the CPU 308 determines in step SD1 the frequency of the line spectrum having the maximum power P based on the frequency analysis result of the body motion signal.
  • the CPU 308 divides the frequency fs by the HMC to obtain the frequency fs1 of the fundamental wave of the body motion.
  • the CPU 308 sets the maximum value excluding the frequency component that matches the fundamental wave, the second harmonic, and the third harmonic of the body motion component.
  • the frequency component is extracted and specified as the frequency fm of the fundamental wave of the pulse wave (steps SD8 to SD12).
  • FIG. 8 shows an example in which, when the body motion signal is no longer detected, the process immediately shifts to rectangular processing.
  • the calculation method is switched to the method using square wave processing I have. This switching procedure will be described with reference to FIG.
  • step S E1 and S E2 the CPU 308 determines whether or not there is body movement based on the output signal (body movement signal) of the body movement waveform shaping circuit 307. If the result of this determination is “Y E S”, the processing proceeds to step S E3. In step S E3, the CPU 308 sets a switching signal for switching the method of calculating the pulse rate to “OFF”, and in step S E4, sets the accumulated time R t without body movement to zero.
  • the pulse wave sensor 301 detects a pulse and outputs a pulse wave signal.
  • the pulse wave signal amplification circuit 303 amplifies the pulse wave signal, and the amplified pulse wave is amplified.
  • the AZD conversion circuit 300 performs A / D conversion of the wave signal, and the body movement sensor 302 detects the body movement and outputs a body movement signal, and the body movement signal amplification circuit 304 amplifies the body movement signal. Then, the amplified body motion signal is subjected to AZD conversion by the A / D conversion circuit 305.
  • step SE7 the CPU 308 sends the A / D-converted body motion signal and And the pulse wave signal is subjected to FFT processing, and in step SE8, a pulse wave component (pure pulse wave waveform) is extracted from the FFT processing result (spectrum), and the frequency of the fundamental wave of the pulse wave is specified.
  • a pulse wave component pure pulse wave waveform
  • step SE2 determines whether the determination result in step SE2 is "NO”
  • the CPU 308 controls the output signals from the oscillation circuit 311 and the frequency divider 312 in steps SE9 and SE10. Starts timing based on, accumulates the time Rt, and determines whether the accumulated time Rt exceeds a certain time T determined by the sampling period or the number of samples of the signal used in the FFT processing. Judge. If the result of this determination is “YE S”, the process proceeds to step S E11, and if “NO”, the process proceeds to step S E5 described above.
  • the CPU 308 sets the switching signal for switching the pulse rate calculation method to “ON”, and stops the AZD conversion processing and the FFT processing.
  • the AZD conversion processing and the FFT processing may be performed in parallel when performing the rectangular wave processing.However, from the viewpoint of power consumption, the rectangular processing is performed in the frequency analysis processing when processing is performed. It is better to stop AZD conversion processing and FFT processing, which are required only.
  • step SE12 the CPU 308 converts the pulse wave signal into a rectangular wave in step SE12
  • step SE13 the CPU 308 converts the pulse wave signal in step SE7.
  • the pulse rate is calculated from the specified frequency or the square wave converted in step SE12.
  • the pulse represents the health of the human body
  • a pulse that is disturbed such as an arrhythmia
  • Disturbance means that there is some kind of physical condition abnormality. Even a normal person without any illness can develop arrhythmias if sleep is insufficient. Arrhythmias also occur when you drink too much coffee or when your psychological stress is excessive. Therefore, the degree of human health can be known by referring to the number of times of detection of arrhythmia. Also, unlike irregular heartbeats that occur in normal people, arrhythmias that are caused by serious heart and vascular diseases may appear more than 200 times a day, even if they are monogenic, or polygenic. It is known to present ECGs in various forms. Therefore, the threshold value is set to, for example, 200, and if the threshold value is exceeded, the user is notified of the fact to warn the user.
  • the arrhythmia frequency information FHD exceeds the threshold and the buzzer 17 sounds, so the user is notified that the user is in a dangerous state be able to. This allows the user to take appropriate measures such as medication and avoid the worst situation such as sudden death.
  • the elapsed time from the measurement start time is measured, and the arrhythmia detection frequency or the number of detections is set to a predetermined frequency (for example, 200 times / day) or the number of times (for example, 200 times). If the number of times exceeds the number of times, a notice to that effect may be issued to alert the user.
  • the notification time at this time may be at the time of the excess, at the end of the measurement, or at the time of the inquiry after the end of the measurement, but it can be a judgment material for the user to control the intensity of exercise. It is preferable to notify at the time of excess. The mode of notification will be described later in “4. Modifications of Embodiments”.
  • the average value of the latest predetermined number of pulse wave interval values is used as the new reference value. You may. At this time, the average value may be obtained by weighting so that the specific gravity of the newer pulse wave interval value becomes higher. This is similarly applicable to the case where the pulse rate is calculated based on the latest predetermined number of pulse wave interval values.
  • the pulse wave interval value is stored in the RAM 309 only when no arrhythmia is detected. Instead of storing, all pulse wave interval values are stored in RAM 309 in order, and the pulse rate and pulse wave interval value reference is based on the pulse wave interval value excluding the pulse wave interval value at the time of arrhythmia detection. The value may be calculated. At this time, it is necessary to determine whether or not the pulse wave interval value at the time of arrhythmia detection is detected. For example, this is done by associating the predetermined information only with the pulse wave interval value at the time of arrhythmia detection. This can be realized by storing it in 9.
  • the predetermined information associated with the pulse wave interval value at the time of arrhythmia detection may be fixed information indicating only the pulse wave interval value at the time of arrhythmia detection, or variable information indicating the arrhythmia detection time.
  • the predetermined information may be directly associated with the pulse wave interval value, or the predetermined information may be indirectly associated with an address or the like in which the pulse wave interval value is stored. .
  • a method other than division may be used to determine whether the difference (deviation) between the latest pulse wave interval value and the reference value of the pulse wave interval value is within the allowable range. It may be. For example, a range of ⁇ 5% of the reference value of the pulse wave interval value may be obtained, and it may be determined whether or not the latest pulse wave interval value is within the range. Furthermore, instead of calculating the reference value based on the pulse wave interval value immediately after the start of the arrhythmia detection operation, the reference value should be calculated based on the pulse wave interval value detected a predetermined time after the start of the operation. It may be.
  • the pulse wave signal contains not only the fundamental wave component of the pulse wave but also the harmonic wave component of the pulse wave. If the power of the harmonic wave component is larger than the power of the fundamental wave wave, in the first embodiment described above, it is determined whether or not the frequency of the harmonic component is within the allowable range of the fundamental component, and as a result, it is determined that arrhythmia has occurred. In order to avoid such erroneous determination, in frequency analysis, the frequency of the spectrum of the maximum power in the pulse wave component is a constant multiple (pulse frequency) of the previous pulse rate divided by 60 (pulse frequency). (Frequency of each harmonic), it may be determined that no arrhythmia exists.
  • rectangular wave processing is performed when there is no body movement
  • frequency analysis processing is performed when there is body movement
  • the pulse analysis may be performed based on the pulse wave signal. If it is possible to provide a means for removing components other than waves (for example, a filter) at the input stage of the pulse wave signal, the rectangular wave processing should be applied in both cases. Is also good. Further, in these embodiments, the processing for removing the body motion component from the pulse wave signal can be always performed regardless of the presence or absence of the body motion.
  • arrhythmia detection processing is performed irrespective of whether or not during strong exercise, and arrhythmia during strong exercise cannot be distinguished from arrhythmia during other exercises. Accordingly, the present invention utilizes the fact that body movements during strong exercise such as running have a continuity, and detects only arrhythmias during exercises having a steady body movement pitch such as a strong exercise. This is two embodiments.
  • the arrhythmia detection device is realized in the form of a wristwatch as shown in FIG. 3, similarly to the first embodiment, has a clock mode and an arrhythmia detection mode, and is in the arrhythmia detection mode. Is for detecting arrhythmia, counting the number of arrhythmias, and calculating the pulse rate. The description of the parts common to those in the first embodiment will be omitted.
  • the configuration of the arrhythmia detecting device according to the second embodiment is substantially the same as the configuration shown in FIG. 2, and only the function of CPU 308 is different from that according to the first embodiment.
  • the CPU 308 of the arrhythmia detection device is different from that of the first embodiment in that in the arrhythmia detection mode, the arrhythmia is detected only when the body motion is stationary. It is. Whether or not the body motion is stationary depends on the processing performed on the pulse wave signal when determining the presence or absence of arrhythmia by frequency analysis in the first embodiment. The determination can be made by applying the same processing to the body motion signal, and the details of this determination will be described in the description of the operation of the second embodiment.
  • the presence or absence of an arrhythmia is basically determined by specifying a fundamental wave of a pulse wave. Harmonic waves are identified to determine the stability of body motion.
  • the operation of the arrhythmia detection device (operation in the arrhythmia detection mode) will be described. Also in the second embodiment, the operation in the arrhythmia detection mode is roughly divided into a “first arrhythmia detection operation” and a “second arrhythmia detection operation”. The former is the same operation as the first arrhythmia detecting operation in the first embodiment, and therefore the description thereof is omitted.
  • the second arrhythmia detection operation in the second embodiment is different from the operation in the first embodiment in that when the body motion is stationary, the process of determining the presence / absence of arrhythmia from the result of frequency analysis of the pulse wave signal If the body motion is not steady, the same process is not performed.
  • the frequency range in which the fundamental wave of the pulse wave can exist (generally, 0.6 Hz to 3.5 Hz) and the time range in which the interval value of the second harmonic of body motion (0.
  • the frequency spectrum of the highest power in the range (2 Hz to 4 Hz) where the spectrum of the second harmonic of body motion can exist from the result of the frequency analysis of the body motion signal If the spectrum of the spectrum is properly spread and the power difference with other spectrum within the above range is sufficient (for example, 30% or more), Then, it is determined whether or not the frequency of the spectrum is twice as high as the frequency corresponding to the previous pulse rate (the frequency of the fundamental wave of body movement). There is a method of making a judgment. Whether or not the side lobes are properly spread can be determined by the same method as in the first embodiment. Also, as in the first embodiment, the above “match” is not an exact match, and the following allowable range exists.
  • the allowable range of “match” can be set arbitrarily, but there is a correlation between the frequency of the fundamental wave of the body motion and the pulse rate, and as in the first embodiment, the detection of the arrhythmia relates to the pulse rate. Since the allowable range of “coincidence” is set, in the present embodiment, a range corresponding to the allowable range of “coincidence” for the pulse rate is set as the allowable range of “coincidence” for the second harmonic of body motion.
  • the pulse rate is 170 kashiwa / min (the fundamental frequency of the pulse wave is about 2.833 Hz), and the allowable range of “match” for the pulse rate is ⁇ 5%
  • the permissible range of the fundamental wave frequency is also ⁇ 5%, that is, 0.14 117 Hz.
  • the frequency range where the fundamental wave of the pulse wave can exist (0.6 Hz to 3.5 Hz) and the frequency range where the second harmonic of body motion can exist (2 Hz to 4 Hz)
  • the analysis time of the frequency analysis is 16 s, in the vicinity of twice the frequency corresponding to the previous pulse rate (for example, 3.53 Hz), 3.3750, 3.4.375,
  • the spectrum at discrete frequencies such as 3.5000, 3.562 25, 3.625 0, 3.676 Hz can be obtained. Therefore, if the spectrum selected as the spectrum of the second harmonic of body motion is any of the above discrete spectra, it is within the range of 3.53 ⁇ 0.0977 Hz.
  • the reason for performing the above-described coincidence determination is to prevent the arrhythmia detection operation from being performed even when the body motion changes in a stepwise manner, by determining that the body motion is “unsteady”. For example, if the user suddenly changes the pitch of stationary motion, and this change occurs at the time of the transition from the previous frequency analysis target period to the current frequency analysis target period, The frequency of the second harmonic of the body motion identified based on the previous frequency analysis result is different from the frequency of the second harmonic of the body motion identified based on the current frequency analysis result. It should not be judged as “stationary”. If the analysis time of the frequency analysis is sufficiently long, the problem of detecting an arrhythmia when the body motion is not stationary does not occur even if the above-mentioned determination of “match” is omitted.
  • the same processing as the processing shown in FIG. 14 is performed.
  • the frequency component having the maximum power in the expected frequency range for example, 2 to 4 Hz
  • the frequency component having the maximum power in the expected frequency range is one of the fundamental wave, the second harmonic, and the third harmonic of the body motion.
  • the frequency component is identified as the fundamental wave, the second harmonic, or the third harmonic of the body motion.
  • the frequency of the fundamental wave of the body motion is specified based on the specified component.
  • the second harmonic of the body motion is specified.
  • the processing in steps SF1 to SF8 is the same as the processing in steps SA1 to SA5 and SA7 to SA9 in FIG. 8, and a body motion signal (body motion waveform) exists.
  • a pulse wave signal pulse wave waveform
  • the pulse wave signal is subjected to rectangular wave processing.
  • the pulse wave signal and the body motion signal are detected and subjected to AZD conversion, and FFT processing is performed on each of them.
  • step SF9 based on the FFT processing result of the body motion signal, it is determined whether or not the body motion is stationary by the above-described processing. Then, the same processing as step SA 6 in FIG. 8 is performed.
  • step SF11 processing is performed to obtain only the frequency of the fundamental wave of the pulse wave. That is, in step SF11, the arrhythmia detection process is not performed, and only the process of obtaining the frequency of the fundamental wave of the pulse wave from the frequency analysis result of the pulse wave signal is performed.
  • step SF12 the rectangular wave signal obtained in step SF5, or the information obtained in step SF10 (the frequency of the fundamental wave of the pulse wave or the frequency could not be specified), or The pulse rate is calculated based on the information obtained in step SF11 (frequency of the fundamental wave of the pulse wave or that the frequency could not be specified). If the fundamental wave frequency of the pulse wave could not be specified in step SF10 or SF11, the pulse rate is not calculated in step SF10, and the previous pulse rate is used as the current pulse rate. Is done.
  • the motion (the running Arrhythmias can be detected during high-intensity exercises or when the body motion pitch is about 80 times per minute.
  • a mode in which the first embodiment is combined with the above-described second embodiment to perform arrhythmia detection regardless of the steadiness of body motion, and a mode in which arrhythmia is detected when the body motion has steadiness May be provided in the same arrhythmia detection device so that the user can select it.
  • the allowable range of “match” is fixed.
  • the present invention is not limited to this, and the allowable range may be variable.
  • the width of the permissible range may be changed according to the operation of a specific switch.
  • the information indicating the width of the permissible range for example, ⁇ 5%
  • the width of the permissible range may be dynamically changed according to the reference value of the inter-pulse wave value, the previous pulse rate, the frequency of the fundamental wave of the previous body motion, and the like.
  • the appropriate fluctuation range of the pulse rate during non-exercise is smaller than that during exercise, so that the allowable range of the fundamental frequency of the pulse wave when there is no body movement is the same as that when there is body movement.
  • Arrhythmia can be detected with higher accuracy by setting it narrower than the allowable range.
  • the width of each allowable range is an absolute value that does not depend on the pulse rate or the frequency of the fundamental wave of body motion.
  • the side lobe in each FFT processing result of the pulse wave signal and the body motion signal, it is determined whether or not the side lobe is appropriately spread around the target spectrum. In these determinations, not only the spectrum adjacent to the target spectrum but also all the spectra within a predetermined range may be considered. For example, if the power difference from the target spectrum is 5% or more in the adjacent spectrum and 10% or more in the spectrum with one space between, the sidelobe May be judged to be spreading properly, It may be determined that the side lobe is properly spread only when the power difference is 5% or more in all the spectrums within the allowable range of “match”.
  • a notification to that effect may be given to a remote supervisor.
  • a heart disease can be attached to a person with a heart disease, and a supervisor such as a physician at a remote location can promptly notify the user of cardiac arrest.
  • the reference time at this time may be a fixed time common to all users, or a time set for each user. The specific system for notifying the supervisor at a remote location in the event of an emergency will be described later in “Systemization”.
  • the place where the pulse wave sensor is mounted is not limited to the finger, but may be any place where a pulse wave can be measured (for example, an ear or a neck).
  • an optical sensor may be used in addition to the acceleration sensor.
  • the location of the body motion sensor is not limited to the arm, but may be worn anywhere on the user's body. Further, each sensor may be fixed using a finger cot or a finger belt.
  • the time at which the arrhythmia was detected may be displayed, or a histogram with the detection time as the horizontal axis may be displayed to notify the time transition of the arrhythmia detection frequency. Good.
  • a histogram indicating the number of occurrences of arrhythmia is displayed in the fluctuation cycle ⁇ ⁇ of the biological rhythm, such as month, week, and day, the user's physical condition can be grasped more accurately.
  • Fig. 43 an example of the displayed histogram is shown in Fig. 43. For example, in FIG.
  • (a) shows the number of arrhythmias in the past year for each month, and by using this histogram, it is possible to know the fluctuation tendency of the frequency of occurrence of arrhythmias throughout the year. Of course, the arrhythmia count may be indicated weekly or daily instead of monthly.
  • (B) shows the number of arrhythmias for each day of the week. Using this histogram, it is possible to know the tendency of the frequency of occurrence of arrhythmia for each day of the week in the past week or a plurality of weeks.
  • (c) represents the number of arrhythmias for each time period of the day, and by using this histogram, it is possible to know the fluctuation tendency of the occurrence frequency of the arrhythmia for each time period in the past one or more days.
  • the arrhythmia detection time time stamp
  • the arrhythmia detection time is referred to by the arrhythmia detection device or an external device (described later) with reference to the recorded occurrence time.
  • the data sequence may be displayed, or the number of occurrences of arrhythmias may be obtained for each fluctuation cycle of the biological rhythm, and may be displayed as a histogram as shown in FIG.
  • a pulse wave waveform including the arrhythmia detected at the time may be recorded in association with the arrhythmia detection time, and the waveform may be displayed according to an instruction of the user or the supervisor.
  • FIG. 44 shows an example in which arrhythmia detection times are recorded in the order of the detection times, it goes without saying that any order may be used.
  • the data sequence indicating the detection time is announced, the data sequence may be arranged in an arbitrary order.
  • the above-described notification processing can be executed at an arbitrary timing. For example, even during an arrhythmia detection operation, it can be executed in accordance with an instruction from a user or a supervisor.
  • a method of making the above notification in parallel with the arrhythmia detection processing for example, there is a method of using an interrupt by a real time clock. That is, if the arrhythmia detection process is executed by interruption by the real-time clock, the arrhythmia detection process will not be interrupted even if the notification process is performed.
  • the pulse waveform may be displayed as it is or after being processed.
  • the user or supervisor will determine the arrhythmia.
  • the arrhythmia detection frequency may be compared with the threshold value, and the difference between the two may be notified.
  • the continuity of the body motion may be always announced. For example, when the body motion has a continuity, an electronic sound may be generated in the same cycle as the fundamental wave of the body motion.
  • the average value of the frequency of the fundamental wave of the body motion during the period in which the body motion was stationary may be notified.
  • the display unit has been described as an example of a means of notifying various data.
  • a means for notifying a person from a device the following may be mentioned. It is appropriate to classify these means based on the five senses It is thought. Of course, these means may be used alone or in combination with a plurality of means. As described below, for example, if a means of appealing other than visual is used, even a visually impaired person can understand the contents of the announcement. Similarly, if a means of appealing other than hearing is used, Can be notified, and a device that is friendly to users with disabilities can be configured.
  • a buzzer that sounds when an event such as an arrhythmia is detected
  • a speaker that sounds the event contents or various values by voice when an event such as an arrhythmia is detected or a threshold is exceeded is applicable.
  • the person to be notified has a portable radio paging receiver, and that the portable radio paging receiver is called from the device side when making a notification. .
  • the level of information such as the volume shown below may be changed according to the content of the information to be conveyed. For example, pitch, volume, timbre, voice, and music type (such as a song).
  • tactile means of notification may be used for warning purposes.
  • an electric stimulus for providing a shape memory alloy protruding from the back surface of a portable device such as a wristwatch and energizing the shape memory alloy.
  • a mechanical stimulus that stimulates the projection (for example, a less sharp needle) from the back of a portable device such as a wristwatch.
  • Examples of other mechanical stimuli include a vibration alarm that transmits vibration to the human body by rotating an eccentric load and, as shown in Fig. 17, a part of the inside of the lower surface of the main unit is made about 70 wm thick.
  • a mode in which a concave portion is formed and the attached piezo element is used here is also conceivable.
  • the thickness of the piezo element should be 100 m, and the diameter should be about 80% of the diameter of the recess.
  • the visual notification means is used for the purpose of notifying various messages and measurement results from the device, or for giving a warning.
  • the following equipment can be considered as a means for that. Examples include display devices, CRTs (cathode ray tube display devices), LCDs (liquid crystal display devices), printers, X-Y plotters, and lamps. Note that there is a spectacle-type projector as a special display device.
  • the following variations can be considered in the announcement. Examples include digital display and analog display in the announcement of numerical values, graphical display, shading of display colors, bar graph display when announcing numerical values as they are or by grading numerical values, pie charts, face charts, etc. .
  • Figure 18 shows an example of a face chart.
  • the face chart shown in this figure is used, for example, if the frequency of arrhythmia detection is lower than the threshold value, the picture represented by F1 in FIG. 18 is displayed, and the arrhythmia detection is performed.
  • the frequency is high, a mode in which the picture represented by F2 in FIG. 18 is displayed can be considered.
  • the occurrence of an event may be notified by blinking, inverting, or changing the color of the display.
  • such information may be displayed with graying.
  • characters such as “danger”, “attention to physical condition”, “normal”, “somewhat good”, and “good J” may be displayed on an LCD or the like.
  • the symbol A is used for “danger”
  • the symbol B is used for “note the physical condition J”
  • the symbol C is used for "normal”
  • the symbol D is used for "somewhat good”.
  • the symbol E may be associated with “good” and these symbols may be displayed on an LCD or the like. 4-1-4.
  • the notification means that appeals to the sense of smell may be configured such that the device to be provided with a discharge mechanism for fragrance or the like, the content to be notified corresponds to the fragrance, and the fragrance is discharged according to the content of the notification. good.
  • a micropump or the like is the most suitable for the spouting mechanism.
  • the detected data is stored in the arrhythmia detecting device in the form of a wristwatch, so that the user or the supervisor operates various switches of the device to obtain desired data.
  • This will be displayed and analyzed, but in the wristwatch form, the size of the display unit that can be mounted, the memory capacity, the processing capacity of the CPU, the operability of the instruction input means, etc. are limited, and it is difficult to compare with other data processing devices. There may be cases where data exchange between the two is required.
  • the personal computer is composed of a device main body 330, a display 331, a keyboard 3332, a printer 3333, and the like. Since it is composed of a computer, details of its internal configuration are omitted.
  • the device main body 330 incorporates a transmission control unit and a reception control unit (not shown) for transmitting and receiving data based on an optical signal, and the transmission control unit and the reception control unit each transmit an optical signal. And a phototransistor 335 for receiving an optical signal.
  • a transmission control unit and a reception control unit for transmitting and receiving data based on an optical signal
  • the transmission control unit and the reception control unit each transmit an optical signal.
  • a phototransistor 335 for receiving an optical signal.
  • All of 35 are used for near-infrared rays (for example, those with a center wavelength of 9400 nm), and they are connected to a visible light cut filter to block visible light.
  • Optical communication is performed from a communication window 337 for optical communication provided in front of 330.
  • the arrhythmia detection device connected to the personal computer
  • the main body 1 has a connector 53 that is detachable. ing. Therefore, communication becomes possible by attaching the communication connector 338 to the connector part from which the connector part 53 has been removed.
  • the communication connector 338 incorporates an LED, a phototransistor, and an interface for optical communication as in the personal computer.
  • An optical interface unit (not shown) for optical communication is provided inside the wristwatch body 1.
  • a transfer command is input from the keyboard 3332.
  • information on the personal computer side is output as near-infrared light via the LED 334 and the communication window 337.
  • this near-infrared light is sent to the optical interface section of the arrhythmia detection device via the communication connector 338.
  • the communication direction is reversed. That is, the user of the arrhythmia detection device sets the device to a mode for data transmission by operating a potentiometer provided on the device main body.
  • a processor or the like built in the device reads information to be transferred from the RAM or the like and sends the information to the optical interface unit.
  • the measured value is converted into an optical signal, transmitted from the communication connector 338, and transferred to the personal computer via the communication window 337 and the phototransistor 335.
  • the arrhythmia detection device sends to the external device or the external device sends the arrhythmia detection device.
  • the transfer of data to the user may be automatically started, or a mode for data transfer and a function to automatically start data transfer may be provided, and the user or supervisor may select the data transfer. Is also good.
  • the output time (time information) of the real-time clock is monitored, and the arrhythmia detector requests a communication start every predetermined time. You may make it. At this time, if an appropriate reply is obtained, data transfer is started. If the reply is not obtained, after a predetermined time has elapsed, the arrhythmia detector requests again to start communication. Also, as described later When the detected arrhythmia exceeds a set threshold or when an emergency event such as a cardiac arrest occurs, the event is used as a trigger to immediately initiate communication from the arrhythmia detection device. You may request it to start. At this time, if an appropriate reply is obtained, the data transfer is started.
  • the arrhythmia detection device requests the start of communication again after a lapse of time according to the urgency.
  • the I / O interface means in transmitting or receiving information, identification information indicating which device transmitted the information is used. This identification information is stored, for example, in a ROM (not shown) in the device main body 1 and is notified to the external device when communication starts.
  • information on the arrhythmia detection device can be transferred to the external device, and various settings and instructions can be made from the external device to the arrhythmia detection device. It becomes possible.
  • an external device may be installed under a supervisor such as a doctor, and the supervisor may set a threshold (for example, 200 times Z days) or an allowable range ( ⁇ 5%) according to the user of the arrhythmia detection device.
  • a threshold for example, 200 times Z days
  • an allowable range ⁇ 5%
  • the detection data may be transferred from the arrhythmia detection device to an external device and stored in the external device in association with the identification information of the arrhythmia detection device.
  • the communication interface between the arrhythmia detection device and the external device is not limited to the optical interface, but may be an electrical interface such as RS-232C, or may use radio waves as a transmission medium. Interface.
  • an external device that can communicate with the arrhythmia detection device is installed on the user side, and an interface that enables communication via a dedicated line or a public line is provided for this external device and the external device on the supervisor side. Then, the user can transmit the detection data via a dedicated line or a public line without going to the supervisor.
  • data transmission in the opposite direction can also be set.
  • the data receiving side should be provided with a function to notify the information that can identify the source of the data and the content of the transmitted data.
  • the above-mentioned threshold value for example, 200 times a day
  • the allowable range ⁇ 5%
  • the arrhythmia detection device returns the set threshold value and allowable range to the supervisor, and the supervisor's external device sets the data transmitted to the arrhythmia detection device to the actual settings. The data may be compared with the data to confirm that the settings have been made correctly.
  • the arrhythmia detection device may be provided with a function of automatically transmitting detection data and the like to an external device on the supervisor side in an emergency.
  • the supervisor is notified of the fact and detection data. Therefore, the supervisor can refer to the detection data, check the condition of the user, take measures such as restricting the exercise of the user.
  • management values such as thresholds may be set only by external devices on the supervisor side. In this case, for example, even if the user changes the threshold value by himself / herself and the supervisor should be notified urgently if the threshold should be used, it is not automatically notified. It is possible to avoid such situations. The converse is also true.
  • a configuration may be adopted in which a supervisor's instruction is transmitted to a remote user.
  • a supervisor's instruction is transmitted to a remote user.
  • the supervisor when the user is running in a remote place and the detection data indicating that the frequency of occurrence of arrhythmia exceeds the threshold is notified to the supervisor, It is also a "J ability" for the supervisor to operate an external device on the supervisor side to transmit an instruction to lower the running pitch to the arrhythmia detection device on the remote user side and notify the user.
  • the doctor can quickly give appropriate instructions to the home-care patient (user) or the caregiver.
  • the detection data may be transmitted to an external device on the supervisor side periodically using a real-time clock or the like, not only in an emergency.
  • the detection data is constantly transmitted to the external device on the supervisor side, the arrhythmia judgment is performed on the external device side, and the mode in which the judgment result is transmitted to the device on the user side by the external device can be realized.
  • a frequency analysis method of the pulse wave waveform in addition to FFT, a maximum entrance peak method, a wavelet transform method, and the like can be considered.
  • an embodiment of an arrhythmia detection device using a wavelet transform method which is a time frequency analysis method, will be described with reference to the drawings.
  • FIG. 20 is a functional block diagram of the pulse wave detection device according to the present embodiment.
  • reference numeral 1 denotes a pulse wave detecting means for detecting a pulse wave waveform.
  • the pulse waveform is detected, for example, by pressing the radial artery from above the skin.
  • f2 is first wavelet transform means, which performs a wavelet transform on the pulse wave waveform detected by the pulse wave detecting means fl to obtain pulse wave analysis data for each frequency domain. Generate.
  • f 3 is a first frequency correction means, which performs correction on the pulse wave analysis data based on each corresponding frequency so that the power density per frequency becomes constant, and outputs the pulse wave correction data. Generate. This makes it possible to compare wavelets detected in different frequency / time regions.
  • f4 is a body movement detecting means, which detects body movement and outputs a body movement waveform. This makes it possible to detect that a person has moved.
  • Reference numeral 5 denotes a second wavelet converting means, which outputs a wavelet to the body motion waveform detected by the body motion detecting means f4. And performs body transform to generate body motion analysis data for each frequency domain.
  • f6 is a second frequency correcting means, which performs correction based on each corresponding frequency so that the power density per frequency is constant in the body motion analysis data, Generate evening. Since the body motion correction data thus calculated has been subjected to frequency correction, it can be compared with the pulse wave correction data.
  • f7 is a mask means, which generates pulse wave correction data from which the body movement has been removed by subtracting the body movement correction data from the pulse wave correction data.
  • f8 is a determination means. When an abnormal portion is detected by analyzing the continuity of the pulse wave correction data generated by the mask means 7 for each frequency region, it is determined that an arrhythmia has occurred.
  • the body movement detection means f4 When detecting arrhythmia at rest, such as during sleep, there is no need to detect body movement, so the body movement detection means f4, the second wavelet conversion means f5, the second frequency correction means f6, and the like.
  • the mask means f7 can be omitted.
  • the configuration may be simplified by providing a frequency correction unit after the mask unit f7 instead of the first frequency correction unit f3 and the second frequency correction unit f6. Further, all frequency correction means may be omitted.
  • ⁇ 9 is a notifying means, and when the arrhythmia is judged by the judging means f8, this is notified.
  • F10 is storage means for storing the occurrence time of the arrhythmia when the arrhythmia is determined by the determination means f8. Thereby, the occurrence time of the arrhythmia can be known afterwards.
  • f 11 is frequency calculation means, and calculates the number of times per predetermined time determined as arrhythmia by the determination means 8 as arrhythmia frequency information.
  • Reference numeral 12 denotes a second notification means, which notifies when the arrhythmia frequency information exceeds a predetermined value. This allows a user suffering from a heart disease to be notified of the danger, and the user can take appropriate measures such as medication.
  • f13 is an integrating means, and the arrhythmia integrated information is generated by integrating the number of times that the determining means f8 has determined that an arrhythmia has occurred.
  • f14 is a third notification means, which notifies when the arrhythmia integrated information exceeds a predetermined value. This allows the user to know that the physical condition has deteriorated.
  • 515 is a fourth notification means, which is used when the arrhythmia frequency information exceeds a predetermined value and the arrhythmia integrated information exceeds a predetermined value. Notice. This allows the user or supervisor to be more accurately notified of the danger.
  • FIG. 21 is a perspective view showing an external configuration of the arrhythmia detection device according to the third embodiment.
  • the arrhythmia detection device 1 has a wristwatch shape.
  • the arrhythmia detecting device 1 is provided with a pair of bands 144 and 144, and the tightening side of one of the fasteners 144 is provided with the elastic rubber 13 of the pressure pulse wave sensor 130. 1 is provided to protrude.
  • the band 144 including the fasteners 144 has a structure in which an FPC (Flexible Printed Circuit) substrate is covered with a flexible plastic to supply a detection signal from the pressure pulse wave sensor 130 (details are not shown). ing.
  • FPC Flexible Printed Circuit
  • the arrhythmia detection device 1 incorporates a main part of an electrical configuration for analyzing a pulse wave, and is provided with a display unit.
  • the arrhythmia detection device 1 uses elastic rubber 13 1 provided on the fasteners 14 5 as shown in FIG. 22 (a) and FIG. 22 (b).
  • the wristwatch 1 46 is wound around the subject's left arm 1 4 7 so that it is located near 3. Therefore, it is possible to constantly detect a pulse wave. Does not differ from the normal use of the watch.
  • FIG. 23 is a block diagram showing an electrical configuration of the arrhythmia detection device.
  • the arrhythmia detecting device 1 includes the following parts.
  • Reference numeral 10 denotes a wavelet conversion unit, which performs a well-known wavelet conversion on the pulse wave waveform MH output from the pressure pulse wave sensor 130 to generate pulse wave analysis data MKD.
  • the wavelet is a unit that cuts out the signal portion.
  • the wavelet transform indicates the size of each part of the signal extracted in this unit.
  • a function (X) localized in time and frequency is introduced as a mother wavelet as a basis function.
  • the wavelet transform of the function f (X) by the mother-to-wavelet (X) is defined as follows.
  • Equation 1 b is the parameter used when translating (translating) the mother wavelet ( ⁇ ), while a is the parameter used when scaling (stretching). Therefore, in Equation 1, the wavelet ((X-b) / a) is obtained by translating the mother's wavelet (x) by b and expanding and contracting by a. In this case, the width of the mother wavelet (X) is extended in accordance with the scale parameter a, so that 1 corresponds to the frequency. The detailed configuration of the wavelet conversion unit 10 will be described later.
  • 11 is a frequency correction unit that performs frequency correction on the pulse wave analysis data MKD.
  • the expression 1 described above have the "1 Bruno 3 1/2" corresponding to the frequencies, when comparing data between different that the frequency domain may be required to correct the effects of this paragraph.
  • the frequency correction unit 11 is provided for this purpose, and generates pulse wave correction data MKD ′ by multiplying the wavelet data WD by the coefficient a 1/2 . This makes it possible to perform correction based on each corresponding frequency so that the power density per frequency becomes constant.
  • reference numeral 12 denotes a determination unit which detects an arrhythmia based on the pulse wave correction data MKD 'and generates arrhythmia detection information FD. Note that the detailed configuration of the determination unit 12 will be described later.
  • Reference numeral 13 denotes a display unit, which includes a ROM, a control circuit, a liquid crystal display, and the like.
  • the control circuit detects the arrhythmia detection information, reads out the character stored in the ROM, and displays the character on the liquid crystal display.
  • the character in addition to the character “arrhythmia”, a specific symbol or icon may be used. This allows the user or doctor to be notified of the arrhythmia.
  • 14 is RAM in which the occurrence times of the arrhythmia detection information FD are sequentially stored.
  • This occurrence time is read out from the RAM 14 when an operation unit (not shown) is operated, and can be displayed on the display unit 13.
  • the time of occurrence can be known afterwards, which can be useful for diagnosis.
  • the time of occurrence may be transmitted to an external device (for example, a personal convenience store) via an interface (not shown).
  • the arrhythmia is prayed in more detail and the diagnosis is made. It is possible to do.
  • the system described in the section of “4-2 since the present invention can be modified and applied, its description is omitted.
  • reference numeral 15 denotes an integrator provided with an internal memory and a comparator therein, which accumulates the number of occurrences of the arrhythmia detection information FD to generate arrhythmia accumulated information FSD indicating the accumulated value, This is stored in the internal memory.
  • the arrhythmia integrated information FSD stored in the internal memory can be reset, or the arrhythmia integrated information FSD at the time of operation can be read and displayed on the display unit 13.
  • a predetermined threshold is stored in the internal memory, and the threshold is compared with the arrhythmia integrated information FSD by a comparator.
  • the comparator generates the first warning information KD1 when the arrhythmia integrated information FSD exceeds the threshold. Then, when the first warning information K D1 is supplied to the buzzer 17, the buzzer 17 sounds and notifies the user that there is a danger.
  • the arrhythmia information FSD is useful in determining the degree of human health. Also, as mentioned above, arrhythmias that occur with serious cardiac and vascular diseases can occur more than 200 times a day even in a monogenic manner, or multi-form electrocardiograms that take various forms. It is known to present. Therefore, the threshold can be set to, for example, 200, and if the threshold is exceeded, the first warning information KD1 is generated, and the user can be warned by notifying the user with a buzzer sound. .
  • reference numeral 16 denotes a frequency calculation unit having an internal memory and a comparator therein, and counts the number of occurrences of the arrhythmia detection information FD per unit time to generate arrhythmia frequency information FHD.
  • the arrhythmia frequency information FHD is displayed on the display unit 13 when the user operates the operation unit. Further, a predetermined ⁇ value is stored in the internal memory, and the threshold value and the arrhythmia frequency information FHD are compared by a comparator. Further, the comparator generates the second warning information KD2 when the arrhythmia frequency information FHD exceeds a threshold. Then, when the second warning information KD2 is supplied to the buzzer 17, the buzzer 17 sounds and notifies the user that the state is dangerous.
  • Arrhythmia frequency Displaying the FHD on the display unit 13 is useful in that the user can manage his or her own health condition as described above, and arrhythmia frequently occurs during sleep. If a dangerous condition occurs, the arrhythmia frequency information that the FHD exceeds the threshold and the buzzer 17 sounds is useful in that it can inform the user that the user is in danger. .
  • FIG. 24 is a block diagram of the wavelet transform unit 10 according to the third embodiment.
  • the ringing filter 101 has a high Q value with a center frequency of 2.2 Hz and a passband of 0.8 Hz to 3.5 Hz. Since the S-wave component of the pulse waveform is usually in the range of 0.8 Hz to 3.5 Hz, when the pulse waveform MH passes through the ringing filter 101, the basic Wave components are extracted. For example, when the pulse wave waveform MH shown in FIG. 25A passes through the ringing filter 101, a sine wave shown in FIG. 25B is obtained.
  • the zero-cross detection circuit 102 is composed of a comparator or the like, and compares the output signal of the ringing filter 101 with the ground level to generate a square wave. This square wave is synchronized with the heartbeat. For example, if the output signal of the ringing filter 101 is as shown in FIG. 25 (b), the output signal of the zero-crossing detection circuit] 02 is as shown in FIG. 25 (c).
  • the frequency dividing circuit 103 divides the output signal of the zero-crossing detecting circuit 102 by 1Z2 to generate the control signal CS shown in FIG. 25 (d).
  • One high level period or one mouth level period of the control signal CS corresponds to one heartbeat period.
  • the pulse wave waveform MH is converted into a digital signal by the AZD converter 104, and then stored in the first memory 105 and the second memory 106.
  • the control signal CS is directly supplied to the write enable terminal of the first memory 105, and the write enable terminal of the second memory 106 is inverted by the inverter 107.
  • a control signal CS is supplied. Therefore, the first and second memories 105 and 106 store the pulse waveform MH alternately in units of heartbeat.
  • Reference numeral 108 denotes a multiplexer which selects pulse wave data MD alternately read from the first and second memories 105 and 106 and outputs the selected pulse wave data MD to the basis function developing unit W.
  • the pulse wave data MD is read from the second memory 106 during the writing period of the first memory 105, and the pulse wave data MD is read to the second memory 106 during the reading period of the first memory 105. Write the wave data MD.
  • the basis function expansion unit W performs the arithmetic processing of Equation 1 described above in a row 0 configuration, and the basis function storage unit W 1 for storing the mother 1.
  • wavelet ( ⁇ ), the scale parameter — It consists of a scale conversion unit W2 for conversion, a buffer memory W3, a translation unit W4 for translating, and a multiplication unit W5.
  • the mother wavelet (X) to be stored in the basis function storage unit W1 in addition to the Gabor wavelet, there are a Mexican hat, a Haar wavelet, a Meyer wavelet, a Shannon wavelet, and the like. Applicable.
  • the mother wavelet (x) is read from the basis function storage unit W1.
  • the scale conversion unit W2 converts the scale parameter a.
  • the scale parameter a corresponds to the period, as a increases, the mother wavelet (x) expands on the time axis.
  • the data ⁇ per unit time decreases as a increases.
  • the scale conversion unit W2 performs a sleeve query process to compensate for this, and when a becomes small, performs a thinning process to generate a function (x / a). This data is temporarily stored in the buffer memory W3.
  • the translation unit W 4 translates the function (X / a) by reading the function (x / a) from the buffer memory W3 at a timing corresponding to the translation parameter b, and performs the function translation ( ⁇ b / a) is generated.
  • the multiplication unit W4 multiplies the variable l / a 1/2 , the function ⁇ (X—bZa), and the pulse wave data MD to perform wavelet conversion in units of heartbeat, and generates pulse wave analysis data MKD.
  • the pulse wave analysis data MKD is 0 Hz to 0.5 Hz, 0.5 Hz to 1.0 Hz, 1.0 Hz to 1.5 Hz, 1.5 Hz to 1.5 Hz.
  • the output is divided into frequency domains such as 0 Hz.
  • FIG. 26 is a block diagram of the determination unit 12 according to the present embodiment.
  • an adder 122, coefficient circuits 122, 124 and a memory 123 are circuits for calculating an average value of the pulse wave correction data MKD 'for each frequency region.
  • the coefficient of the coefficient circuit 122 is 1 ZK + 1, and the coefficient of the coefficient circuit 124 is K.
  • the adder 122 adds the pulse wave correction data MKD 'and the output of the coefficient circuit 124, and the output data of the adder 121 is stored in the memory 123 via the coefficient circuit 122.
  • the above processing is performed every time the pulse wave correction data MKD 'is generated in synchronization with the cardiac cycle. Therefore, the content of the memory 123 is updated in synchronization with the heartbeat.
  • the cycle of the heartbeat is t
  • the current time is T
  • the data stored in memory 1 2 3 Is M a
  • the data M a (T) at time T is given by the following equation.
  • M a (T) ⁇ M a (T-t) * K + MK D '(T) ⁇ / (K + l)
  • M a (T-t) is In other words, the data represents one heart beat before. Therefore, the data M a (T) is a weighted average of the past data and the current data. Since this process is repeatedly performed at every t time, the average value of the pulse wave correction data MKD 'is stored in the memory 124 after all. Also, since the pulse wave correction data MKD 'is generated for each frequency domain, the average value is calculated for each frequency domain. For this reason, as shown in FIG.
  • the average values M a1 to M a8 of the pulse wave correction data MKD ′ are stored in the memory 124 in units of 0.5 Hz. In this sense, the memory 124 functions as an average value table.
  • the operation unit 125 calculates the evaluation function Q (T) expressed by the following equation, and outputs this as evaluation data QD.
  • Pk is a coefficient, which is set to 1 when M ak (T) exceeds a predetermined threshold, and set to 0 when the value falls below the threshold. The coefficient is set in this manner because the characteristic portion of the pulse wave waveform has a large energy, so that it is possible to determine whether or not an arrhythmia is based on this portion. If the arrhythmia is determined based on the lower part of the threshold, accurate determination cannot be performed because the SN ratio is poor.
  • the evaluation function Q (T) indicates how much the pulse wave correction data MKD 'deviates from the average value.
  • the comparing unit 126 compares the evaluation data QD with the reference data RD, and generates arrhythmia detection information FD when the evaluation data QD exceeds the reference data RD.
  • the value of the reference data RD uses a value calculated by an experiment so that arrhythmia can be determined. Is set with a certain margin so as not to erroneously determine as an arrhythmia.
  • the wavelet transform By the way, in the wavelet transform, a frequency distribution in a certain short time can be obtained. Therefore, if the time is sufficiently shortened, it is possible to determine whether or not the pulse waveform in a certain time range has a normal shape, and this method can also detect arrhythmia. In this case, there is an advantage that the determination can be performed by combining the arrhythmia determination in the time domain and the frequency determination in the frequency domain. However, here, as described above, it is assumed that the arrhythmia is detected by comparing the evaluation data QD and the reference data RD for each pulse cycle. This is the same in the fourth and fifth embodiments described later.
  • FIG. 28 is a diagram for explaining the operation of the third embodiment.
  • FIG. 28 (a) shows an example of a pulse wave waveform MH detected by the pressure pulse wave sensor 130.
  • the pulse wave waveform MH1 from time T to time T + t is a normal waveform, and an arrhythmia has occurred between time T + t and time T + 2t.
  • the pulse is usually continuous in synchronization with the heartbeat, but when the heartbeat is lost, the pulse wave waveform MH2 has almost no peak value as shown in the figure, and arrhythmia occurs.
  • the heart contracts again and pulsation occurs.
  • the peak value P 3 of the pulse waveform MH 3 generated immediately after the arrhythmia becomes larger than the peak value P 1 of the normal pulse waveform MH 1, and often compensates for the lack of a heartbeat.
  • the pulse waveform MH3 is delayed by ⁇ from the pulse waveform MH1 due to the influence of the arrhythmia. Although this phase delay also occurs in the pulse waveform MH4, the peak value P4 of the pulse waveform MH4 substantially coincides with the peak value P1 of the normal pulse waveform MH1.
  • FIG. 28 (b) shows the waveform of the output signal of the zero-cross detection circuit 102 shown in FIG.
  • the Q value of the ringing filter 101 is set to be high, even if an arrhythmia occurs and the peak value of the pulse waveform MH2 becomes low, the output signal becomes Continuous.
  • the pulse waveforms MH3 and MH4 are shifted in phase by ⁇ T with respect to the pulse waveform MH1, but the phase of the output signal does not change immediately but gradually follows over a long period of time. Note that, in this example, the frequency of the output signal is 1.3 Hz.
  • the wavelet conversion unit 10 performs ⁇ wavelet conversion in synchronization with the generated output signal and generates a pulse wave analysis data MKD, and the frequency correction unit 11 generates a pulse wave analysis data. Evening Performs frequency correction on MKD to generate pulse wave correction data MKD '.
  • FIG. 28 (c) shows the frequency components M1 to M8 of the pulse wave correction data MKD ′ corresponding to the pulse waveforms MH1 to MH4, respectively.
  • FIG. 28 (d) shows the average values Ma 1 to Ma 8 of the pulse wave correction data MKD ′ stored in the memory 124. In this example, it is assumed that the average values Ma1 to Ma8 do not change between the time of the temple B and the time T + 4t.
  • the frequency of the output signal of the zero-crossing detection circuit 102 is 1.3 Hz
  • the fundamental frequency of the pulse waveform MH is 1.3 Hz. Therefore, the value of the average value Ma 1 corresponding to 1.0 Hz to 1.5 Hz is 7, which is the largest, corresponding to the second and third harmonics. After that, the values of Ma 5 and Ma 7 are greatly increased to “4”.
  • the pulse wave correction data MKD 'corresponding to the pulse waveform MH2 of the arrhythmia the values of the data M1 to M8 corresponding to each frequency component are small because the peak value is low.
  • FIG. 28 (e) shows the evaluation data QD1 to QD4 respectively corresponding to the pulse waveforms MH1 to MH4.
  • the coefficient Pk is Mak (T). It is set so that it becomes 1 when it is 4 or more, and it becomes 0 when it is less than 4.
  • QD 2 is generated by the operation unit 125 shown in FIG. 26 as follows.
  • the comparison unit 1 2 6 compares the evaluation data QD with the reference data RD, this Assume that the value of the reference data RD in the example is fixed to “1”. Therefore, the pulse waveform ⁇ 2 is determined to be arrhythmia, and the pulse waveforms MH 1, MH 3, and MH 4 are determined to be normal.
  • Fig. 28 (f) is an arrhythmia detection flag output from the comparison unit 126 as arrhythmia detection information FD, indicating that the high level is arrhythmia and the low level is normal. .
  • the reason why the arrhythmia detection flag is delayed by the time t is that the processing by the arithmetic unit 125 and the comparison unit 126 takes time.
  • the display unit 13 displays that an arrhythmia has occurred, and the occurrence time is stored in the RAM 14. Then, the number of arrhythmia detection flags is integrated by the integrating section 15. If this value exceeds a threshold value, the user is notified by a buzzer sound. Also, if the frequency of occurrence per unit time exceeds the threshold, the user is notified by a buzzer sound.
  • the third embodiment it is possible to provide a portable arrhythmia detection device that can accurately detect arrhythmia with a simple operation.
  • the occurrence time of the arrhythmia is notified, it is possible to know after the fact that the arrhythmia has occurred.
  • the arrhythmia integrated information FSD can be displayed on the display unit 13, it is possible to easily know the state of health. Further, when the arrhythmia integrated information FSD exceeds the threshold, the buzzer 17 sounds, A warning can be given to the user.
  • the buzzer 17 sounds, so even if arrhythmias occur frequently during sleep and the patient falls into a dangerous state, the worst case of sudden death due to treatment such as medication. Things can be avoided.
  • the arrhythmia detection device is based on the premise that the user is at rest. By the way, since the heart rate increases in response to the movement of a person, the pulse wave waveform fluctuates under the influence of body movement when the user walks or grasps an object. For this reason, it is difficult for the arrhythmia detection device according to the third embodiment to accurately detect the arrhythmia when there is a body motion.
  • the fourth embodiment has been made in view of this point, and the body motion is canceled by canceling the body motion component from the pulse wave waveform. It is an object of the present invention to provide an arrhythmia detecting device that can accurately detect an arrhythmia even if it is held.
  • FIG. 29 is a diagram illustrating an external configuration when the arrhythmia detection device according to the fourth embodiment is used.
  • FIG. 29 differs from FIG. 22 (b), which shows the external configuration of the third embodiment, in that the acceleration sensor 21 is provided on the opposite side of the elastic rubber 13 1 in the fastener 1 45 Is a point.
  • the acceleration sensor 21 is provided in the vicinity of the pressure pulse wave sensor 130 below the elastic rubber 131, the body motion applied to the pressure pulse wave sensor 130 can be accurately detected. Can be detected.
  • FIG. 30 is a block diagram of the arrhythmia detection device according to the fourth embodiment.
  • a first wavelet conversion unit 10A and a first frequency correction unit 11A have the same configurations as the wavelet conversion unit 10 and the frequency correction unit 11 of the third embodiment described above.
  • the pulse wave correction data M KD ' is output from the first frequency correction unit 11A.
  • the body motion waveform TH is detected by the acceleration sensor 21, the body motion waveform TH is supplied to the second wavelet conversion unit 10 B, where the body motion waveform TH is subjected to wavelet conversion, and the body motion analysis data TKD is obtained. Is to be generated.
  • the second wavelet transform unit 10B is configured in the same manner as the wavelet transform unit 10 of the third embodiment.
  • the body motion analysis data TKD is composed of frequency components obtained by dividing the frequency range of 0 to 4 Hz into 0.5 Hz.
  • the second frequency correction unit 11 B is configured in the same manner as the frequency correction unit 11 of the third embodiment, and performs frequency correction on the body motion analysis data TKD to perform the body motion correction data TKD. 'Is generated.
  • the mask section 18 subtracts the body motion correction data TKD 'from the pulse wave correction data MKD' to generate pulse wave correction data MKD '' from which the body motion component has been removed.
  • the determination unit 12 determines an arrhythmia based on the pulse wave correction data MKD ′ ′, as in the third embodiment. Note that the display unit 13 and the like at the subsequent stage of the determination unit 12 are configured in the same manner as in the third embodiment, and a description thereof will be omitted.
  • the body motion waveform TH starts to increase from time T1, becomes a positive peak at time T2, then gradually decreases, passes level 0 at time T2, and becomes a negative peak at time T3. And has returned to level 0 at time T4.
  • time T 3 corresponds to the time when the user lifts the cup to the maximum
  • time T 1 corresponds to the lifting start time
  • Time T4 corresponds to the lifting end time. Therefore, a period from time T1 to time T4 is a period in which the body motion exists.
  • FIG. 31 (c) shows the pulse wave waveform MH 'in the case where there is no body movement. From this figure, it can be seen that an arrhythmia occurs during the period Te, and that the pulse wave is a normal pulse wave during the periods Ta to Td and Tf.
  • the fundamental frequency of the pulse waveform MH is 1.3 Hz.
  • FIG. 32 shows the pulse wave correction data MKD 'in this example as data M1 to M8 for each frequency domain.
  • FIG. 32 (b) shows the body motion correction data T KD ′ as data M 1 to M 8 for each frequency domain.
  • the data M1 corresponding to 0 Hz to 0.5 Hz and the data M2 corresponding to ⁇ 0.5 Hz to lOH It can be seen that it increases during the period T f. This is because the time T1 at which the body motion occurs corresponds to the period Ta and the end time T4 corresponds to the period ⁇ ⁇ Power, et al.
  • the above-described pulse wave correction data MKD 'and body motion correction data TKD' are generated by the first and second frequency correction units 11A and 11B, respectively, and are supplied to the mask unit 18.
  • the mask unit 18 subtracts the body motion correction data TKD 'from the pulse wave correction data MKD', and the pulse wave correction data MKD '' from which the body motion component shown in Fig. 32 (c) has been removed. Generates As a result, even if there is a body motion, it is possible to cancel the effect and obtain pulse wave correction data MKD ′ ′ similar to the pulse wave correction data MKD ′ obtained from the pulse waveform at rest.
  • the determination unit 12 determines an arrhythmia based on the pulse wave correction data MKD ′′.
  • evaluation data QD is generated with reference to the average value table (memory 123 in FIG. 26) obtained from a normal pulse wave.
  • the average value data Ma 1 to Ma 8 stored in the average value table are as shown in FIG. 32 (d)
  • the evaluation data QD a to QD f generated for each period Is shown in Fig. 32 (e).
  • the comparing section 126 compares the evaluation data QD with the reference data RD, and the value of the reference data RD in this example is fixed to “1”. Note that, as described in the third embodiment, the value of the reference data RD may be variable.
  • the value of the evaluation data QD e generated in the period T e is 2.5, which exceeds the value of the reference data RD. It is determined that an arrhythmia has occurred during the period Te, and an arrhythmia detection flag shown in FIG. 32 (f) is generated as the arrhythmia detection information FD.
  • the display unit 13 displays that an arrhythmia has occurred, as in the third embodiment, and the time of occurrence is stored in the RAM 14. Is done. Then, the number of arrhythmia detection flags is integrated by the integrating section 15, and when this value exceeds a threshold value, the user is notified by a buzzer sound. Also, if the frequency of occurrence per unit time exceeds the threshold, the user is notified by a buzzer sound.
  • the body motion waveform TH is also subjected to wavelet conversion, and the body motion component is canceled based on the wavelet transform. Can be accurately detected.
  • Arrhythmia integrated information Even when long-term measurement is required, as in the case of FSD, it can be performed without any problem, and can be useful in diagnosing the state of a living body.
  • the pulse wave correction data is obtained by detecting the body motion by the acceleration sensor 21 and subtracting the body motion correction data TKD 'from the pulse wave correction data MKD'.
  • the arrhythmia was detected by canceling the body motion component contained in MKD '.
  • the configuration becomes complicated because the acceleration sensor 21, the second wavelet transform unit 10B, the second frequency correction unit 11B, and the like are required.
  • the fifth embodiment has been made in view of this point, and provides an arrhythmia detection device that can accurately detect an arrhythmia even when there is a body movement despite a simple configuration.
  • FIG. 33 is a block diagram of the arrhythmia detection device according to the fifth embodiment, except that a body motion separation unit 19 is newly provided between the frequency correction unit 11 and the determination unit 12. 23 is the same as FIG. 23 described in the third embodiment. Hereinafter, the differences will be described.
  • the body motion separation unit 19 separates and removes the body motion component from the pulse wave correction data MKD 'to generate body motion separated pulse wave correction data TBD.
  • the body motion separation unit 19 utilizes the following properties of body motion.
  • Body motion is caused by the vertical movement of the arm or the swing of the arm during running.
  • the frequency component of the body movement waveform TH is not so high, and is usually in the range of 0 Hz to 1 Hz.
  • the fundamental frequency of the pulse waveform MH is often in the range of 1 1 to 2 ⁇ . Therefore, in daily life, the frequency component of the body motion waveform TH is in a frequency region lower than the fundamental frequency of the pulse waveform MH.
  • the frequency component of the body motion waveform TH increases somewhat due to the effects of arm swing, etc., but the pulse wave waveform increases because the heart rate increases according to the amount of exercise.
  • the fundamental frequency of MH also increases at the same time. For this reason, even during sports, the frequency component of the body motion waveform TH is usually in a frequency range lower than the fundamental frequency of the pulse waveform MH.
  • the body motion separation unit 19 separates the body motion component, and is configured to ignore a frequency region lower than the fundamental wave component of the pulse waveform MH. In this case, if the body motion component exists in a frequency region higher than the fundamental wave component of the pulse waveform MH, the arrhythmia detection accuracy is reduced. However, as described above, since the body motion component is more likely to be in a lower frequency region than the fundamental wave component of the pulse waveform MH, arrhythmia can be detected with high accuracy.
  • FIG. 34 is a detailed block diagram of the body movement separating section 19.
  • the waveform shaping section 191 performs waveform shaping on the pulse waveform MH and generates a reset pulse synchronized with the pulse waveform MH.
  • the average value calculation circuit 1993 calculates the average value of the count values of the power counters 192. Specifically, it may be configured by the adder 121, the coefficient circuits 122, 123, the memory 123, etc. shown in FIG. 26 described above. In this case, the average value calculated by the average value calculation circuit 193 corresponds to the average period of the pulse waveform MH. Therefore, the fundamental frequency of the pulse waveform MH can be detected by referring to the average ⁇ .
  • the replacement circuit 194 specifies a frequency region including the fundamental frequency of the pulse waveform MH based on the average value. For example, when the average value indicates 0.71 seconds, the fundamental frequency is 1.4 Hz, and the specified frequency range is 1 Hz to 1.5 Hz. Thereafter, the replacement circuit 194 replaces the pulse wave correction data MKD 'with "0" for a frequency region lower than the specific frequency region to generate the body motion separated pulse wave correction data TBD. As a result, components in the frequency gradient range lower than the fundamental frequency of the pulse waveform MH are ignored in determining arrhythmia. In this case, the pulse wave component is replaced with “0” together with the body motion component, but the characteristic part of the pulse wave waveform MH is the fundamental wave frequency. Since it exists in the frequency range higher than the wave number, replacing it with “0” has almost no effect on arrhythmia determination.
  • the determination unit 12 determines arrhythmia and generates arrhythmia detection information FD.
  • the display unit 13 and the like at the subsequent stage of the determination unit 12 are configured in the same manner as in the third embodiment, and thus description thereof is omitted.
  • FIG. 35 is a timing chart showing the operation of the arrhythmia detection device according to the fifth embodiment. Note that the periods T a to T f shown in FIG. 35 correspond to those shown in FIG.
  • FIG. 35 (a) shows the pulse wave correction data MKD ′ in this example as data M1 to M8 for each frequency domain, which is consistent with FIG. 32 (a).
  • the fundamental frequency of the pulse wave waveform MH is 1.3 Hz.
  • the frequency region specified by the replacement circuit 194 is 1.0 Hz to 1.5 Hz, and the frequency region to be replaced is 0.5 Hz corresponding to the data M2. OHz and 0 Hz to 0.5 Hz corresponding to the data M1. Therefore, the data Ml and M2 of the pulse wave correction data MKD 'are replaced with "0", and the body motion separation pulse wave correction data TBD shown in FIG. 35 (b) is generated.
  • the determination unit 12 determines an arrhythmia based on the body movement separated pulse wave correction data TBD.
  • evaluation data QD is generated with reference to the average value table (memory 1 23 in FIG. 26) obtained from a normal pulse wave.
  • the average value data Ma 1 to Ma 8 stored in the average value table are as shown in FIG. 35 (c)
  • the evaluation data QD a to QD f is as shown in Fig. 35 (d).
  • the comparing section 126 compares the evaluation data QD with the reference data RD, and the value of the reference data RD in this example is fixed to “1”. Note that the value of the reference data RD may be variable as described in the third embodiment.
  • the value of the evaluation data QD e generated during the period Te is 2.5, which exceeds the value of the reference data RD. Therefore, it is determined that an arrhythmia has occurred during the period Te, and an arrhythmia flag shown in FIG. 35 (e) is generated. This arrhythmia flag matches the one shown in FIG. 32 (f).
  • the display unit 13 displays that an arrhythmia has occurred, as in the third embodiment, and the time of occurrence is stored in the RAM 14. Is done. Then, the number of arrhythmia detection flags is integrated by the integrating section 15, and when this value exceeds a threshold value, the user is notified by a buzzer sound. Also, if the frequency of occurrence per unit time exceeds the threshold, the user is notified by a buzzer sound.
  • the body motion component skillfully utilizes the property of the body motion that it is stochastically high in the frequency region lower than the fundamental frequency component of the pulse wave waveform MH.
  • the body motion component was separated.
  • the configuration of the acceleration sensor 21, the second wavelet transform unit 10 B, and the second frequency correction unit 11 B required in the fourth embodiment can be omitted, and the body movement It is possible to accurately detect arrhythmias even when there is a pulse.
  • each frequency correction unit is used to compare energy in different frequency regions.However, focusing on a certain frequency region, the energy level there is used. Arrhythmias may be detected by comparison.
  • the frequency correction means need not be used. For example, 0-0.4 Hz, 0.4 Hz-0.8 Hz, 0.8 Hz-l.6 Hz, 1.6 Hz-3.2 Hz, 3.2 Hz-
  • the frequency domain is selected as 6.4 Hz, it is assumed that the fundamental wave component exists in the frequency domain of 0.8 Hz to L. 6 Hz and 1.6 Hz to 3.2 Hz. Since it is conceivable, the arrhythmia may be detected by calculating the sum of the two regions and comparing this with a certain reference value.
  • each of the wavelet transform units 10, 10 A, and 10 B includes the basis function expansion unit W, and performs the wavelet transform by this.
  • the wavelet transform may be realized by a filter bank.
  • Figure 36 shows an example of the configuration of the Phil Bank.
  • the filter bank consists of three stages, the basic units of which are high-pass filter 1A and decimation filter 1C, low-pass filter 1B and decimation filter 1C.
  • the high-pass filter 1A and the low-pass filter 1B divide a predetermined frequency band and output a high-frequency component and a low-frequency component, respectively.
  • the pass band of the first high-pass filter 1A is set to 2 Hz to 4 Hz, —
  • the pass band of the first stage low-pass filter 1B is set to 0 Hz to 2 Hz.
  • the decimation filter 1 C thins out the data every other sample.
  • the high-pass filter 1A and the low-pass filter 1B may be configured by a transversal filter including a delay element (D flip-flop) therein.
  • D flip-flop delay element
  • the arrhythmia may be determined using a part of the output data M1 to M8 of the filter bank.
  • the filter bank is configured to synchronize with the pulse wave waveform MH as described above, a part of the high-pass filter 1A, the low-pass filter IB, and a part of the decimation filter 1C are omitted.
  • the configuration can be simplified.
  • the body motion waveform TH is detected by the acceleration sensor 21.
  • the fundamental frequency of the pulse wave waveform MH becomes higher.
  • the pulse wave waveform MH is frequency-analyzed by the first wavelet transform unit 10A, but if the frequency region to be subjected to the frequency analysis is fixed, the characteristic portion of the pulse wave waveform MH is sufficiently analyzed. It becomes difficult. For example, in a resting state, a person whose pulse wave waveform MH had a fundamental frequency of 1 Hz performed a run, and the pulse wave waveform MH had a fundamental frequency of 2 Hz (corresponding to a pulse rate of 120). Let's say it has changed.
  • the frequency analysis can be performed up to the third harmonic of the pulse wave waveform MH by performing the wavelet conversion in the range of 0 to 4H′z as described in the fourth embodiment.
  • the third harmonic is 6 Hz, so frequency analysis cannot be performed.
  • the momentum is obtained based on the body motion waveform TH, and the first and second wavelet transform units 1 OA and 1 OA and 1 are configured to shift the frequency range for performing the ABR transform to a higher range as the momentum increases.
  • 0 B may be controlled.
  • first and second wavelet transform sections 10A and 10B are constituted by the above-mentioned filter banks, their clock frequencies are controlled according to the momentum. Just do it. That is, well-known feedback control may be performed so as to increase the clock frequency as the momentum increases.
  • the pitch of the body motion waveform TH indicates the reciprocating pitch of the arm, and has a fixed relationship with the slide pitch of the foot. Normally, two steps are performed for each swing of the arm. is there. In addition, the amount of exercise can be expressed by the product of the running speed and the step length. Generally, the pitch tends to increase as the running speed increases, and the stride tends to decrease. Therefore, there is a certain relationship between the pitch of the body motion waveform TH and the momentum.
  • FIG. 41 shows, on the same diagram, firstly the relationship between the running speed and the number of beats in the ground running, and secondly, the relationship between the running speed and the running pitch.
  • the subject's pulse rate and running pitch increase with the running speed.
  • the higher the running pitch the greater the amount of exercise and the number of beats. Therefore, the relationship between the pitch of the body motion waveform TH and the amount of exercise may be measured in advance and stored in a table, and the amount of exercise may be calculated with reference to this table.
  • the frequency range to be subjected to the frequency analysis may be read out by referring to a table based on the measured pitch of the body motion waveform TH. More specifically, the relationship between the pitch of the body motion waveform TH and the optimal clock frequency is measured in advance, stored in a table, and the clock frequency may be determined by referring to this table. .
  • the frequency range for wavelet conversion is variable according to the body movement pitch do it.
  • a first frequency correction unit 11A and a second frequency correction unit 11B are provided before the mask unit 18 so that the pulse wave analysis data MKD and body movement Analysis Data Even frequency correction was performed separately for TKD.
  • a frequency correction unit may be provided after the mask unit 18 instead of the second frequency correction units 11 A and 11 B. In this case, the frequency correction, which has been performed independently and separately, can be performed in common, so that the arrhythmia can be detected with a simple configuration.
  • the frequency correction unit 11 is provided before the body motion separation unit 19; however, the present invention is not limited to this.
  • the output may be provided after the unit 19 and the output may be supplied to the determination unit 12. The point is that the frequency correction may be performed between the wavelet conversion and the arrhythmia determination processing. Further, the frequency correction unit 11 may be omitted.
  • a control unit for generating the third warning information KD3 based on the arrhythmia frequency information FHD and the arrhythmia integrated information FSD is newly provided, and the third warning information KD3 is provided.
  • the buzzer 17 may be supplied and notified.
  • the control unit generates third warning information KD3 when the arrhythmia frequency information FHD exceeds a predetermined value and the arrhythmia integrated information FSD exceeds a predetermined value.
  • the conditions for generating the third warning information are stored in a table in association with the arrhythmia frequency information FHD and the arrhythmia integrated information FSD, and the third warning information is generated by referring to this table. Is also good.
  • Characters such as “Attention to health”, “Normal”, “Slightly healthy”, and “Healthy” may be displayed on an LCD or the like.
  • the symbol A is used for “possible disease”
  • the symbol B for “careful”
  • the symbol C for “normal”
  • the symbol D for “somewhat healthy”.
  • the symbol E may be associated with “health” and these symbols may be displayed on an LCD or the like.
  • the pressure pulse wave sensor 130 is taken up as an example of the pulse wave detecting means.
  • the described force is not limited to this. Anything is acceptable. This is the same regardless of whether the pulse detection site is the radius or the fingertip.
  • a photoelectric pulse wave sensor may be used.
  • the photoelectric pulse wave sensor is configured as shown in FIG. 37, and its modes include a type using reflected light and a type using transmitted light.
  • FIG. 37 when the switch SW is turned on and a power supply voltage is applied, light is emitted from the LED 32 and is reflected by a blood vessel or tissue. Wave signal M is detected.
  • the emission wavelength of the LED is selected near the absorption wavelength peak of hemoglobin in blood. For this reason, the light receiving level changes according to the blood flow. Therefore, pulsation can be detected by detecting the light receiving level.
  • an InGaN-based (indium-gallium-nitrogen-based) blue LED is suitable as the LED.
  • the emission spectrum of the blue LED has an emission peak at, for example, 450 nm, and the emission wavelength range is from 350 nm to 60 O nm.
  • a GaAs P-based (gallium-arsenic-phosphorus-based) phototransistor PT may be used as the phototransistor PT corresponding to the LED having such light emission characteristics.
  • the main sensitivity region is in a range from 300 nm to 600 nm, and there is a sensitivity region below 300 nm.
  • hemoglobin in blood has a large absorption coefficient for light having a wavelength of 300 nm to 700 nm, and is several times to about 10 times larger than the absorption coefficient for light having a wavelength of 880 nm. 0 times larger. Therefore, as shown in this example, if light in the wavelength region (300 nm to 700 nm) with a large light absorption characteristic is used as detection light in accordance with the light absorption characteristic of hemoglobin, the detected value will be the change in blood volume. Therefore, the SZN ratio of the pulse wave signal based on the change in blood volume can be increased.
  • transmitted light As described above, light having a wavelength region of 700 nm or less tends to hardly penetrate finger tissues. For this reason, when using transmitted light, light with a wavelength of 600 nm to 100 nm is emitted from the light emitting section, and the irradiated light is transmitted in the order of tissue ⁇ blood vessel ⁇ tissue, and the amount of transmitted light It tries to detect changes. Since transmitted light is absorbed by hemoglobin in blood, a pulse wave waveform can be detected by detecting a change in the amount of transmitted light.
  • an InGaAs-based (indium-gallium-arsenic) laser or a GaAs-based (gallium-arsenic) laser-emitting diode is suitable for the light emitting section.
  • external light having a wavelength of 600 nm to 100 nm easily passes through tissue, when external light enters the light receiving portion, the SZN of the pulse wave signal deteriorates. Therefore, a laser beam that is polarized may be emitted from the light emitting unit, and the transmitted light may be received by the light receiving unit via the polarizing filter. As a result, a pulse wave signal can be detected with a good SZN ratio without being affected by external light.
  • the photoelectric pulse wave sensor is first used in the above-described wristwatch.
  • a sensor unit integrating a light emitting unit and a light receiving unit is used instead of the elastic rubber 13 1 and the pressure pulse wave sensor 130 provided on the back surface thereof.
  • the transmitted light as shown in FIG. 38 (a)
  • the light emitting unit 200 is connected to the fastening side of the fastener 144.
  • a light receiving section 201 on the main body of the watch.
  • the light emitted from the light emitting unit 200 passes through the blood vessel 144 and then passes between the radius 200 and the ulna 203 to reach the light receiving unit 201.
  • transmitted light it is necessary that the irradiated light be transmitted through the tissue. Therefore, in consideration of the absorption of the tissue, the wavelength thereof is desirably 600 to 11] 71 to 1 OO nm.
  • FIG. 38 (b) shows an example of detecting a pulse wave at the fingertip using reflected light.
  • the sensor unit 54 incorporates a light emitting unit and a light receiving unit, and is fixed to a finger by a ring-shaped sensor fixing band 52.
  • the sensor unit 54 and the device main body 1 are connected as shown in FIG. 3, and the pulse wave signal MS is supplied to the device main body 1 via the connection cable 51.
  • FIG. 3C shows an example of detecting a pulse wave using transmitted light.
  • the gripping member 204 and the gripping member 205 are urged by a spring 207 so as to be rotatable about a shaft 206.
  • the holding member 204 and the holding member 205 are provided with a light emitting unit 200 and a light receiving unit 201.
  • a pulse wave detector In the case of using this pulse wave detector, a web portion between the thumb and the index finger is gripped by the gripping members 204 and 205 to detect a pulse wave.
  • the photoelectric pulse wave sensor is combined with glasses.
  • a display device as a means for notifying the user is incorporated together. Therefore, the function as a display device in addition to the function as the pulse wave detection unit will be also described.
  • FIG. 39 is a perspective view showing a state in which the device to which the pulse wave detection unit is connected is attached to eyeglasses.
  • the main body of the device is divided into a main body 75a and a main body 75b, each of which is separately attached to the vine 76 of the eyeglasses. Are electrically connected to each other via
  • the main body 75a has a built-in display control circuit.
  • a liquid crystal panel 78 is mounted on the entire surface of the body 75a on the side of the lens 77, and a mirror 79 is provided at one end of the side. It is fixed at a predetermined angle.
  • the main body 75a incorporates a drive circuit for the liquid crystal panel 78 including a light source (not shown) and a circuit for creating a display image. Light emitted from this light source is reflected by a mirror 79 through a liquid crystal panel 78. Then, it is projected on the glasses lens 7 7.
  • the main part of the device is incorporated in the main body 75b, and various buttons are provided on the upper surface thereof. The functions of these buttons 80 and 81 differ for each device.
  • the LED 32 and the phototransistor 33 constituting the photoelectric pulse wave sensor are stored in the pads 82 and 83, and the pads 82 and 8 are stored in the pads 82 and 83, respectively. 3 is fixed to the lobe. These pads 82 and 83 are electrically connected by lead wires 84 and 84 drawn from the main body 75.
  • a photoelectric pulse wave sensor may be used.
  • the photoelectric pulse wave sensor is configured as shown in FIG.
  • the switch SW When the switch SW is turned on and the power supply voltage is applied, light is emitted from the LED 32, reflected by blood vessels and tissues, received by the phototransistor 33, and the pulse wave signal M is detected. Is done.
  • the emission wavelength of the LED is selected near the absorption wavelength peak of hemoglobin in blood. Therefore, the light reception level changes according to the blood flow. Therefore, pulsation can be detected by detecting the light receiving level.
  • the first wavelet transform unit 1OA may be configured as shown in FIG.
  • the amplitude value PP is detected.
  • the amplitude value PP is compared with the reference value REF by the comparator 1 1 1 .
  • the comparator 1 1 1 the amplitude value PP becomes low level while the amplitude value PP exceeds the reference value REF, and the amplitude value PP falls below the reference value REF.
  • a control signal that is high during the period is generated. This control signal indicates the presence or absence of body movement. There is no body movement during the low level period and no movement during the high level period.
  • the reference value REF is predetermined by an experiment so that the presence or absence of body movement can be determined.
  • the gate circuit 112 applies a gate to the pulse wave waveform Mil based on the control signal. Specifically, when the control signal is at a high level, the pulse waveform MH is supplied to the ringing filter, and when the control signal is at the mouth level, the pulse waveform MH is supplied to the ringing filter 101. Do not supply. Thereby, the pulse wave waveform MH can be masked during the period in which there is a body motion. In this case, the Q value of the ringing filter 101 is set high, so that even if the supply of the pulse waveform MII is stopped for a certain period of time, it is necessary to continue to output a sine wave that is continuous with the output waveform before the stop. Can be. Therefore, even if there is a body motion, it is possible to calculate the period of the pulse wave waveform MH and perform wavelet transform based on this.
  • arrhythmia may be detected as follows. First, the continuity of the pulse wave waveform MH is determined from the pulse wave analysis data MKD which is the result of the wavelet transform (step S1). Next, when discontinuity is detected, the presence or absence of body motion is determined based on the body motion waveform TH (step S2). If it is determined that there is a body movement, the body movement component is removed from the pulse wave component by the method of the above-described fourth or fifth embodiment, and the presence or absence of an arrhythmia is determined based on this (step S10). 3) On the other hand, if it is determined in step S1 that the pulse wave waveform is continuous, it is determined that there has been no arrhythmia (step S4).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Signal Processing (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

不整脈検出装置 技 術 分 野 本発明は、 生体の脈から、 安静時および運動時の不整脈を検出するのに好適な 不整脈検出装置に関する。 技 術 背 景 心臓の収縮によって生じる脈を脈波波形として捉えると、 心臓が縮小して血液 が動脈に送出されることによって生じる主波と呼ばれる波形と、 心臓の弁が閉じ た後に生じる重拍波と呼ばれる波形に大別される。 健康な状態では、 心臓が規則 正しく収縮を繰り返すため、 脈波波形には一定のリズムがある。
しかしながら、 循環器系の異常等により心臓が弱ると、 脈が結滞 (脈が途切れ ること) を起こしたり、 脈が不規則になることがある。 このような脈の乱れ (以 後、 不整脈という) は、 喫煙でも起こるが、 心臓弁膜症、 心筋梗塞、 心筋症など の心臓病ではしばしば起こる。 このような事情から、 不整脈を検出することによ り、 循環器系の異常を診断することが行われている。
また、 完全房室ブロックやアダム · ス ト一クス症候群などによって発生する除 脈 (脈拍数が 4 0拍 Z分以下となる脈) は危険性が高いことが知られている。 さ らに、 除脈あるいは頻脈 (毎分 1 5 0拍以上) を引き起こす洞不全症候群も知ら れている。 また、 期外収縮は脈の結滞 (不整脈) を招く ものであり、 運動時にお ける期外収縮の発生は危険性を有することが予測され、 このような事情から、 不 整脈の検出が重要視されている。
従来、 上述した不整脈の検出には、 被験者の胸部に電極を貼り付け、 電極によ つて心電波形を検出する心電計が用いられていた。
ところで、 心電計は大型の装置であり、 また、 被験者に電極を取り付けること が必要となるため、 検査を受けている期間中、 被験者は検査室から外に出ること ができず、 行動範囲が限られていた。 また、 最近では、 携帯型の心電図記録装置 も開発されているが、 上記心電計と同様に、 取り扱いが難しく、 専門的な知識の 無い者が自分で気軽に不整脈を検出するというわけにはいかなかった。すなわち、 日常生活において不整脈を正確に検出することはできなかった。 発明の開示 本発明は上述した事情に鑑みてなされたものであり、 日常生活において簡単な 操作で不整脈を正確に検出することができる携帯型の不整脈検出装置を提供する ことを目的とする。
上記課題を解決するために、 本発明は、 基本的に、 非侵襲的に生体の脈波波形 を検出する脈波検出手段と、 この脈波検出手段によって検出された脈波波形中か ら体動成分を除外する体動成分除外手段と、 この体動成分除外手段によって体動 成分が除外された純粋な脈派波形を表す情報を告知する告知手段とを具備するこ とを特徴としている。 あるいは、 非侵襲的に生体の脈波波形を検出する脈波検出 手段と、 この脈波検出手段によって検出された脈波波形から体動成分を除外する 体動成分除外手段と、 この体動成分除外手段によって体動成分が除外された純粋 な脈波波形の変化を監視して不整脈を検出する不整脈検出手段と、 この不整脈検 出手段の検出結果を告知する告知手段とを具備することを特徴としている。
上述した構成によれば、 非侵襲的に取得可能な脈波波形に基づいて不整脈を検 出することができるので、 被験者の胸部に電極を取り付ける必要がなく、 簡単な 操作で不整脈を検出することができる。 また、 心電計に比較して、 構成が簡素で 小型化が容易であり、 携帯性に優れた不整脈検出装置を実現できる。 なお、 脈波 検出手段によって検出される脈波波形には、 日常的な体動による体動成分が入り 込むことが予想されるが、 上記体動が日常的な範囲である限り、 体動成分と脈波 成分とを区別することは容易であるので、 純粋な脈波波形を得ることができる。 したがって、 日常生活において不整脈を正確に検出することができる。 なお、 純 粋な脈派波形を表す情報を告知することにより、 告知された人間が、 不整脈の有 無を知ることができることはいうまでもない。 さらに、 生体の体動を検出して体動波形を出力する体動検出手段を設け、 脈波 波形から体動成分を除いた脈波成分の変化を監視するようにすれば、 体動をキヤ ンセルすることができるので、運動中でも不整脈を正確に検出することができる。 また、 連続性の有無については、 時間領域で調べるようにしてもよいし、 周波 数領域で調べるようにしてもよい。 時間領域で調べる場合には、 脈波間隔値と基 準値との差異を監視することになるが、 不整脈をより正確に検出するために、 脈 波間隔値を更新するようにしてもよい。
周波数頜域で調べる場合には、 脈波波形の周波数解析結果中の脈波成分に相当 する周波数解析結果を用いて不整脈を検出する。 この際、 生体の運動状態に応じ て周波数解析の対象となる周波数頜域を変更して不整脈をより正確に検出するよ うにしてもよい。 また、 体動に定常性がある場台にのみ不整脈の検出動作を行う ようにして、 定常運動 (例えば、 走行等の強運動) 時の不整脈を検出するように してもよい。 もちろん、 周波数解析手法は、 F F T (高速フーリエ変換) であつ てもよし、 ウエーブレッ ト変換であってもよし、 他の手法であってもよい。 F F Tの場合には、 拍動周波数の適正な変動範囲を推定し、 F F T結果において、 推 定した変動範囲内に突出した周波数スぺク トルが存在しない場含に不整脈発生と 判定するようにしてもよい。
ウェーブレツ 卜変換の場合には、 脈波波形にウェーブレツ ト変換を施して得ら れる脈波解析データの連続性を各周波数領域毎に解析し、 異常部分を検知した塌 合に不整脈と判定する。 この際、 対応する各周波数に基づいて、 脈波解析データ に周波数当たりのパワー密度が一定になるように補正を施し、 脈波補正データを 生成し、 この脈波補正データの連続性を各周波数領域毎に解析し、 異常部分を検 知した場合に不整脈と判定するようにしてもよい。
さらに、 脈波波形および体動波形のそれぞれにウェーブレツ ト変換を施して脈 波解析データおよび体動解析データを取得し、 脈波解析データから体動解析デー 夕を減算した結果に対して連続性の解析を行うようにしてもよい。 もちろん、 各 ウエーブレツ 卜変換結果に対して、 周波数当たりのパワー密度が一定になるよう に補正を施した後に上記減算を行うようにしてもよいし、 上記減算後に上記補正 を施すようにしてもよい。 なお、 脈波波形から体動成分を除去する他の手法とし ては、 脈波解析デ一夕または脈波補正デ一夕から体動に対応する周波数成分を除 去する方法がある。 また、 脈波波形の周期に同期してウェーブレッ ト変換を施す ようにしてもよい。
さらに、 不整脈であると判定されると、 そのことを告知するようにしても良い し、 不整脈の発生時刻を記憶するようにしてもよい。 ここで、 記憶した発生時刻 に応じた情報 (例えばヒストグラム) を生体リズムと対応付けて告知するように してもよい。 また、 不整脈であると判定された所定時間当たりの回数を不整脈頻 度情報として算出するようにしても良いし、 この不整脈頻度情報が予め定められ た所定値を越えた場合に、 そのことを告知するようにしてもよい。 さらに、 不整 脈であると判定された回数を積算して不整脈積算情報を生成するようにしても良 いし、 前記不整脈積算情報が予め定められた所定値を越えた場合に、 そのことを 告知するようにしてもよい。 また、 前記不整脈頻度情報が予め定められた所定値 を越え、 かつ、 前記不整脈積算情報が予め定められた所定値を越えた場合に、 そ のことを告知するようにしてもよいし、 前記不整脈頻度情報および前記積算情報 の少なくとも一方を告知するようにしてもよい。 このようにすることにより、 使 用者が自らの体調を知ることができる。
また、 不整脈検出処理と告知処理とを並行実行することができる。 さらに、 前 記脈波検出手段は、 生体の動脈の脈動を圧力によって検出する圧脈波センサから 構成しても良いし、 生体の検出部位に 3 0 0 n m ~ 7 0 0 n mの波長の光を照射 したときの反射光を受光して得られる受光信号を脈波波形として検出するように 構成しても良いし、 生体の検出部位に 6 0 0 n m〜 l 0 0 O n mの波長の光を照 射したときの透過光を受光して得られる受光信号を脈波波形として検出するよう に構成しても良い。 図面の簡単な説明 図 1は、 本発明の基本的な技術的思想に基づいた不整脈検出装置の概略構成を 示すブロック図である。
図 2は、 本発明の好適な第〗実施形態による不整脈検出装置の構成例を示すブ ロック図である。
図 3は、 同装置の外観例を示す斜視図である。
図 4は、 不整脈がない場合における指尖脈波の周波数解析結果の一例を示すグ ラフである。
図 5は、 不整脈がある場合における指尖脈波の周波数解析結果の一例を示すグ ラフである。
図 6は、 不整脈がない場合における橈骨脈波の周波数解析結果の一例を示すグ ラフである。
図 7は、 不整脈がある場合における橈骨脈波の周波数解析結果の一例を示すグ ラフである。
図 8は、 本発明の好適な第 1実施形態による脈波波形検出動作の一例を示すフ ローチャー卜である。
図 9は、 ( a ) は周波数 f 、 と周波数 f B を加算した信号例を示す図であり、 ( b ) は該加算信号を F F T処理した結果の一例を示すグラフである。
図 1 0は、 運動状態での脈波センサと体動センサの出力信号を F F T処理した 結果の一例を示すグラフである。
図 1 1 は、 本発明の好適な第 1実施形態による不整脈検出装置による脈波成分 の特定方法の一例を示すフローチヤ一 卜である。
図 1 2は、 同装置による脈波成分の特定方法の一例を示すフローチャー トであ る。
図 1 3は、 体動センサの出力信号を F F T処理した結果の一例を示すグラフで ある。
図 1 4は、 本発明の好適な第 1実施形態による不整脈検出装置による脈波成分 の特定方法の一例を示すフローチヤ一卜である。
図 1 5は、 同装置による脈波成分の特定方法の一例を示すフローチャートであ る。
図 1 6は、 本発明の好適な第 2実施形態による不整脈検出装置による脈波波形 検出動作の一例を示すフローチャー トである。
図 1 7は、 告知手段としてピエゾ素子を用いる場合の設置例を示す断面図であ る。
l 8は、 本発明の各実施形態の変形例において用いられるフェイスチヤ一ト を示す図である。
図 1 9は、 本発明の各実施形態による不整脈検出装置を用いたシステムの構成 を示す図である。
図 2 0は、 本発明の好適な第 3〜第 5実施形態に係わる不整脈検出装置の機能 ブロック図である。
図 2 1は、 本発明の好適な第 3実施形態に係わる不整脈検出装匱の斜視図であ る。
図 2 2は、 同実施形態に係わる不整脈検出装置の使用時の状態を示す説明図で ある。
図 2 3は、 同実施形態に係わる不整脈検出装置の電気的構成を示すブロック図 である。
図 2 4は、 同実施形態に係わるウエーブレツ ト変換部の詳細な構成を示すプロ ック図である。
図 2 5は、 同実施形態に係わるウエーブレツ 卜変換部のタイミングチヤ一卜で ある。
図 2 6は、 同実施形態に係わる判定部の詳細な構成を示すブロック図である。 図 2 7は、 同実施形態に係わるメモリ 1 2 4の内容を示す図である。
図 2 8は、 同実施形態の動作を説明するためのタイミングチャートである。 図 2 9は、 本発明の好適な第 4実施形態に係わる不整脈検出装置の使用時の状 態を示す説明図である。
図 3 0は、 同実施形態に係わる不整脈検出装置の電気的構成を示すブロック図 である。
図 3 1は、 同実施形態に係わる脈波波形、 体動波形等を示す波形図である。 図 3 2は、 同実施形態の動作を説明するためのタイミングチャートである。 図 3 3は、 本発明の好適な第 5実施形態に係わる不整脈検出装置の電気的構成 を示すブロック図である。
図 3 4は、 同実施形態に係わる体動分離部 1 9の構成を示す回路図である。 図 3 5は、 同実施形態の動作を説明するためのタイミングチャートである。 図 3 6は、 変形例に係わるフィルタバンクの構成を示すブロック図である。 図 3 7は、 変形例に係わる光電式脈波センサの回路図である。
図 3 8は、 変形例に係わる光電式脈波センサの使用状態を説明するための図で ある。
図 3 9は、 変形例に係わる光 ¾式脈波センサが接続された装置を眼鏡に取り付 けた様子を表わす斜視図である。
図 4 0は、 変形例に係わる第 1 のウェーブレツ ト変換手段の回路図である。 図 4 1は、 変形例において拍数とピッチの関係を説明するための図である。 図 4 2は、 脈派波形を示す l¾jであり、 (a ) は通常の脈派、 (b ) は不整脈の 脈派を示す。
図 4 3は、 本発明における告知例を示す図であり、 (a ) は月毎、 (b ) は曜 日毎、 (c ) は時間帯毎のヒストグラムを示す。
図 4 4は、 本発明において記憶されるタイムスタンプの一例を示す図である。 発明を実施するための最良の形態 以下、 図面を参照し本発明の好適な実施形態について説明する。
まず、 本発明の実施形態の説明に先立って、 本発明の基本的な技術的思想につ いて述べる。
通常、 運動時と非運動時とでは程度の差があるものの、 いずれの場合でも、 生 体の状態が正常であれば、 拍動が急激に変動することは希であり、 すなわち脈波 波形の時間変化は連続的 (規則的) となる。 一方、 不整脈には様々なタイプがあ るが、 いずれにせよ、上記連続的変化を断つような拍動は不整脈であるといえる。 したがって、 脈波波形の不規則な変化を検出することにより、 不整脈の発生を検 出することができる。 これが本発明の基本的な技術的思想である。
図 1は、 上述した技術的思想に基づいた不整脈検出装置の概略構成を示す図で あり、 この図に示す不整脈検出装置は、 非侵襲的に脈動を検出して脈波信号 (脈 波波形) を出力する脈波検出手段と、 体動を検出して体動信号 (体動波形) を出 力する体動検出手段と、 上記脈波信号および上記体動信号に基づいて不整脈発生 の有無を検出する不整脈検出手段とを備えている。 脈波検出手段が検出する脈動 には、 生体の体動の影響が現れるので、 脈波検出手段から出力される脈波信号に は、 脈波成分のみならず、 体動成分も存在する。 そこで、 不整脈検出手段は、 脈 波検出手段が出力した脈波信号から上記体動信号で特定される体動成分を除いた 脈波成分で表される純粋な脈波波形を監視し、 この純粋な脈波波形の不規則な変 化を検出した場合には不整脈が発生した旨の情報 (不整脈検出信号) を出力する ようにしている。
1 . 第 1実施形態
1 一 1 . 第 1実施形態の構成
図 2は、 本発明の第 1実施形態による不整脈検出装置の構成を示すブロック図 であり、 この図に示す不整脈検出装置は、 不整脈の検出、 不整脈数の計数、 脈拍 数の算出等を行うものである。 図において、 3 0 1は、 生体の脈動を検出し、 検 出した脈動に応じた脈波信号を脈波信号増幅回路 3 0 3に出力する脈波センサで あり、 例えば、 圧電センサで実現される。 また、 3 0 2は、 生体の動きを検出し、 検出した体動に応じた体動信号を体動信号増幅回路 3 0 4 (後述する) に出力す る体動センサであり、 例えば、 加速度センサによって実現される。
3 0 3は、 検出された脈波信号を増幅し、 後述する A / D変換回路 3 0 5およ び脈波波形整形回路 3 0 6に出力する脈波信号増幅回路であり、 体動信号増幅回 路 3 0 4は、 検出された体動信号を増幅し、 A Z D変換回路 3 0 5および体動波 形整形回路 3 0 7 (後述する) に出力する。 また、 八ノ0変換回路3 0 5は、 増 幅された脈波信号と体動信号を A / D変換し、後述する C P U 3 0 8に出力する。 脈波波形整形回路 3 0 6は、 増幅された脈波信号を整形し、 C P U 3 0 8に出 力するものであり、 体動波形整形回路 3 0 7は、 増幅された体動信号を整形し、 C P U 3 0 8に出力するものである。 また、 C P U 3 0 8は、 図示せぬ記憶手段 (例えば R O M ) に格納されたプログラムを実行するものであり、 本装置の各部 を制御すると共に、 後述する動作を行うことによって、 不整脈の検出、 不整脈数 の計数、 脈拍数の算出等を行う。 さらに、 3 0 9は、 C P U 3 0 8のワークメモ リとして用いられる R A Mである。
3 1 1は、 一定周期のクロックパルスを生成する発振回路、 3 1 2は、 発振回 路 3 1 1が生成したクロックパルスを分周して、 所定周期のパルスを生成する分 周回路、 3 1 3は、 液晶表示器で構成され、 検出結果を表示する表示部、 3 1 0 は、 使用者の指示を入力するための入力部であり、 図 3に示すように、 各種設定 値の決定に用いられるセッ 卜スィツチ Sに代表される複数のスィツチを有する。 図 3は、 上述した構成の不整脈検出装置の外観例を示す斜視図であり、 この図 に示すように、本実施形態における不整脈検出装置は腕時計形態を採用している。 すなわち、 本装匱は、 不整脈検出機能のみならず、 現在時刻を計時する時計機能 (リアルタイムクロック) をも備え、 両機能による処理を同時に実行可能に構成 されている。 なお、 各機能において、 各種設定値の設定は、 図示せぬイン夕フエ ースを介して外部から供給される信号に応じて自動的に行うようにしても良い し、 上述のセッ トスィッチ Sやモード (設定モード 測定モード) を切り替える モードスィッチを用いて行うようにしてもよい。 また、 本実施形態における時計 機能は、 計時結果 (時刻情報) が不整脈の検出時刻を記録するために使用される 点を除いて周知のデジタル時計のものと同様であるので、 ここでは時計機能を実 現する構成やその動作に関する説明を省略する。
また、 図 3において、 1は装置本体であり、 バンド 1 4 4によって使用者の腕 に取り付けられている。また、上記脈波センサ 3 0 1および体動センサ 3 0 2 (図 2参照) は、 センサ固定用バンド 5 2によって使用者の指に固定されている。 な お、 本装置の外観は後述する第 3〜第 4実施形態による不整脈検出装置とおよそ 同様であり、 外観構成については第 3実施形態において詳細に説明するので、 こ こでは簡単な説明に止める。
1 一 2 . 第 1実施形態の動作
上記構成による不整脈検出装置の不整脈検出モードにおける動作は 2種類の動 作に大別され、 体動の検出状況に応じて各動作が切り換えられる。 以下、 これら の 2種類の動作をそれぞれ 「第 1の不整脈検出動作」 , 「第 2の不整脈検出動作」 と呼び、 個々に説明する。
1 - 2 - 1. 第 1の不整脈検出動作
① 使用者が計測の開始を表すスィッチを押下することにより、 本装置は、 後 述する 「 1一 2— 3. 脈波波形検出方法」 によって脈波波形を検出する。
② C PU 3 0 8は、 上記脈波波形を構成する各脈波間の間隔値(脈波間隔値) について、 スタート直後の所定数の脈波問隔値の平均値を求め、 この平均値を脈 波間隔値の初期値とするとともに、 この初期値の逆数に 6 0を乗算した値を脈拍 数の初期値とする。
③ C P U 3 0 8は、 上記脈波波間値の初期値を基準脈波間隔値 I とする。
④ C PU 3 0 8は、 任意の時点 t„ における脈波間の間隔値 を求め、 こ の間隔値 i„ を上記基準脈波間隔値 Iで除算する。
⑤ C PU 3 0 8は、 ④での除算結果が予め求められた許容範囲 (適正な変動 範囲) 外である場合には、 不整脈が発生したものと判断し、 内部のレジスタによ つて実現している不整脈カウンタをィンクリメントするとともに、 前回算出され た脈拍数をそのまま今回の脈拍数として設定する。 なお、 ここでは、 不整脈発生 の判断基準とする許容範囲を、 脈拍数領域において前回の脈拍数を中心とした所 定範囲に対応する範囲としている。 例えば、 上記所定範囲を ± 5 %とし、 基準脈 波間隔値 Iが約 0. 3 52 9 s、 前回の脈拍数が 1 70拍 Z分とすると、 1 7 0 X 0. 0 5 = 8. 5であることから、 脈拍数領域での範囲は 1 6 1. 5 - 1 7 8. 5拍 分となる。 この範囲に相当する時間領域での範囲は、 6 0Z 1 6 1. 5 = 0. 3 7 丄 5、 6 0 / 1 7 8. 5 = 0. 3 3 6 1であることから、 約 0. 3 3 6 1〜 0. 3 7 1 5 s となる。 0. 3 3 6 1 0. 3 5 2 9 = 0. 9 5 24、 0.
3 7 1 5 / 0. 3 5 2 9 = 1. 0 5 2 7であるので、 除算結果の許容範囲は、 約 0. 9 5 24〜 1. 0 5 2 7となる。
⑥ C PU 3 0 8は、 ④での除算結果が上記許容範囲内である場合には、 上記 間隔値 i を基準脈波間隔値 I とするとともに、 当該間隔値 i n を RAM 30 9 の間隔値領域に順に記憶させ、 RAM 3 0 9の間隔値頜域に記憶された最新の所 定数の間隔値の平均値の逆数に 6 0を乗算して脈拍数を算出する。 ⑦ C P U 3 0 8は、 不整脈カウン夕のカウン 卜値および脈拍数を表示部 3 1 3により表示する。
⑧ C P U 3 0 8は、 使用者が計測の終了を表すスィッチを押すまで、 ④〜⑦ の動作を繰り返す。 なお、 不整脈カウン夕のカウン ト値をリアルタイム表示せず に、 使用者が上記スィ ツチを押下したときに初めて表示するようにしてもよい。
1 - 2 - 2 . 第 2の不整脈検出動作
① 使用者が計測の開始を表すスィツチを押下すると、本装置は、後述する 「 1 一 2— 3 . 脈波波形検出方法」 により脈波波形を検出する。
② C P U 3 0 8は、 ①で求めた脈波波形について、 脈波の基本波の周波数ス ベク トルを中心 (メインローブ) とする近傍 (サイ ドローブ) の周波数スぺク ト ルについて、 その捩幅値 (パワー) が所定値以上である周波数スペク トルを取り 出す。
③ C P U 3 0 8は、 ②で取り出した周波数スペク トルが不規則な値を示して いないか否かを判定する。
ここで、 上記 「不規則」 について説明する。 図 4 2 ( a ) は、 不整脈がない場 合の橈骨脈波を、 図 4 2 ( b ) は不整脈がある場合の橈骨脈派波形を示す図であ り、 両者を比較して明らかなように、 不整脈により、 図 4 2 ( b ) 中の 2番目の 脈派波形が扁平になっている。 不整脈により脈派波形にこのような変形が生じる ことは、 指尖脈派においても同様であるので、 指尖脈派波形については図示を省 略する。
次に、 図 4は、 不整脈がない場合における指尖脈波の F F T処理結果の一例を 示すグラフである。 同様に、 図 5は不整脈がある場合における指尖脈波の F F T 処理結果の一例を示すグラフ、 図 6は不整脈がない場合における橈骨脈波の F F T処理結果の一例を示すグラフ、 図 7は不整脈がある場合における橈骨脈波の F F T処理結果の一例を示すグラフである。これらのグラフからも明らかなように、 F F Tの分析時間内の脈波波形中に不整脈による脈波が存在する場合には、 基線 が立ち上がらなくなり、 F F Tによる周波数解析が成り立たなくなる。 C P U 3 0 8は、 このことを利用して、 不整脈の発生を検出するのである。 ④ 不整脈の発生を検出すると、 C P U 3 0 8は、 このことを表示部 3 1 3に より表示するとともに、 前回の脈拍数をそのまま今回の脈拍数として表示部 3 1 3により表示させる。
⑤ 不整脈の発生を検出しなかった場合には、 C P U 3 0 8は、 ②で取り出し たスぺク トルの周波数に 6 0を乗算して脈拍数を算出し、 この脈拍数を表示部 3 1 3により表示する。
第 2の不整脈検出動作における②, ③の処理は、 具体的には、 以下の手順で行 われる。
( I ) 脈波信号に対する F F T処理結果 (スペク トラム) から、 脈波の基本波 の周波数が存在し得る範囲 (一般には 0 . 6〜 3 . 5 H z ) 内において、 体動成 分を除いてパワーが最大の周波数スぺク トルを選択し、 当該スぺク トルのパワー が所定値以上であり、 かつ上記範囲内の体動成分を除いた他の基線とのパワー差 が 3 0 %以上である場合に、 当該スぺク トルを脈波の基本波の周波数スぺク トル として取り出し、
( Π ) 取り出した周波数スぺク トルをメインローブとするサイ ドローブが適切 に広がっており、 かつ当該スぺク トルの周波数が予想される許容範囲内に存在す る場合には、 不整脈は存在しないと判定する。
なお、 ここでは、 取り出した周波数スペク トルをメインローブとするサイ ド口 —ブが適正に広がっているか否かは、 当該スぺク トルのパワーの 9 5 %値よりも 当該スぺク トルに隣接する両スぺク トルのパワーが小さいか否かで判断してい る。 また、 ここでは、 脈波の基本波の周波数の許容範囲を、 脈拍数領域において 前回の脈拍数を中心とした所定範囲に対応する周波数領域での範囲としている。 例えば、 前回の脈拍数を 1 7 0拍 分 (脈波の基本波の周波数は約 2 . 8 3 3 3 H z ) 、 脈拍数頜域における許容範囲を ± 5 %とすると、 周波数領域での許容範 囲も前回の脈波の基本波の周波数を中心とする ± 5 %の範囲 (約 2 . 8 3 3 3 土 0 . 1 4 1 7 H 'z ) となる。 一方、 1回の F F T処理に必要な分析時間を 1 6 s とすると、 各スぺク トルは 1 1 6 = 0 . 0 6 2 5 H z間隔で得られる。 すなわ ち、 拍動周波数近辺では、 2 · 6 8 7 5 , 2 . 7 5 0 0 , 2 . 8 7 5 0 , 2 . 9 3 7 5 , 3 . 0 0 0 0 H z というように、 離散した周波数のスペク トルが得られ る。 したがって、 取り出したスペク トルの周波数を上記離散した周波数と比較す ることにより、 許容範囲内であるか否かを判断することができる。 もちろん、 こ のようなスぺク トルの離散性を考慮せずに、 取り出したスぺク トルの周波数と周 波数頜域の連続した許容範囲 (約 2. 8 3 3 3 ± 0. 1 4 1 7 H z ) とを比較す るようにしてもよい。
ところで、 上述した例では、 2. 6 8 7 5く 2. 8 3 3 3 - 0. 1 4 1 7 < 2. 7 5 0 0であり、 2. 9 3 7 5く 2. 8 3 3 3 + 0. 1 4 1 7 < 3. 0 0 0 0で あることから明らかなように、 2. 7 5 0 0〜 2. 9 3 7 5 H zの 3つのスぺク トルは連続した許容範囲に含まれ、 2. 6 8 7 5、 3. 0 0 0 0 H zの 2つのス ベク トルは連続した許容範囲に含まれていない。 したがって、 2. 6 8 7 5、 3. 0 0 0 0 H zの 2つのスぺク トルを考慮する態様と、 考慮しない態様が考えられ るが、 本実施形態では、 正常な拍動を不整脈として検出してしまう事態を極力避 けるために、 前者を採用している。 したがって、 本実施形態では、 取り出したス ベク トルの周波数が 2. 6 8 7 5 , 2. 7 5 0 0, 2. 8 7 5 0 , 2. 9 3 7 5 , 3. 0 0 0 0 H zのいずれかであれば、 不整脈は発生していないと判定される。
1 - 2 - 3. 脈波波形検出方法
図 8は、 本装置による脈波波形検出動作の一例を示すフローチヤ一トであり、 この図に示す例では、 C P U 3 0 8は、 ステップ S A 1 において、 体動波形整形 回路 3 0 7の出力信号 (体動信号) から体動波形を検出し、 続くステップ S A 2 において、 上記体動波形に基づいて体動があるか否かを判断する。 この判断結果 が 「Y E S」 の場合には、 処理はステップ S A 3へ進み、 該判断結果が 「NOj の場合には、 処理はステップ S A 7へ進む。
ステップ S A 3では、 脈波センサ 3 0 1が拍動を検出して脈波信号を出力し、 当該脈波信号を脈波信号増幅回路 3 0 3が増幅し、 増幅された脈波信号を AZD 変換回路 3 0 5が AZD変換する。 ステップ S A 4では、 体動センサ 3 0 2が体 動を検出して体動信号を出力し、 この体動信号を体動信号増幅回路 3 0 4が増幅 し、 増幅された体動信号を AZD変換回路 3 0 5が AZD変換する。 なお、 実際 には、 上記ステップ S A 3 , S A 4の処理は並行して行われる。 そして、 C P U 3 0 8は、 AZD変換された脈波信号 (脈波波形) および体動信号 (体動波形) をそれぞれ F FT処理し (ステップ S A 5) 、 F FT処理結果 (スペク トラム) に基づいて、 後述する手法にて脈波の周波数成分 (脈波成分) を抽出する (ステ ップ S A 6 ) 。
一方、 C P U 3 0 8は、 ステップ S A 7において、 脈波波形整形回路 3 06の 出力信号 (脈波信号) から脈波波形を検出し、 続くステップ S A 8において、 体 動があるか否かをもう一度判断する。 この判断結果が 「YE S」 の場合には、 処 理はステップ S A 3へ進み、 「NO」 の場合には、 処理はステップ S A 9へ進む。 ステップ S A 9では、 C PU 30 8は脈波波形を矩形波に変換する。
ステップ S A 1 0では、 C PU 308は、 ステップ S A 6で抽出された脈波成 分、 または、 ステップ S A 9で変換された矩形波から、 脈拍数を演算する。
次に、 脈波波形整形回路 306から出力される脈波信号から脈波成分 (純粋な 脈波波形) を求める処理の基本的方針について説明する。
図 9 (a) は、 周波数 f A の信号と周波数 ί B (但し、 周波数 f B の信号の振幅 は、 周波数 f ¾ の信号の 1 2 ) の信号とを加算した信号の振幅の時間変化を示 す図であり、 図 9 ( b) は、 図 9 (a) に示す信号を F F T処理した結果を示す グラフである。 前述したように、 F F T処理した結果として得られる最も低い周 波数は、 分析時間の逆数で決定される。 例えば、 分析時間を 1 6 sとすると線ス ぺク トルは 1ノ 1 6 s、 すなわち 6 2. 5m sの分解能で得られる。 したがって、 処理対象の信号は周波数領域において 1 6 H zの整数倍の高調波成分に分解さ れ、 各高周波成分のパワーを縦軸で表した図 9 (b) のようなスペク トラムが得 られる。 例えば、 図 9 (b) において、 周波数 f A のスペク トルのパワーは周波 数 f B のスぺク トルのパワーの 2倍となっている。
図 1 0は、 運動状態での脈波センサ 3 0 1からの出力信号と体動センサ 3 0 2 からの出力信号とを F FT処理した結果の一例を示すグラフであり、 (a) は脈 波センサ 3 0 1の出力信号 (脈波信号) を F FT処理した結果 (脈波スぺク トラ ム f „) を表し、 (b) は体動センサ 3 0 2の出力信号 (体動信号) を F FT処 理した結果 (体動スペク トラム f sg) を表し、 (c ) は脈波スペク トラム f ragか ら体動スぺク トラム f sgを引いて得られるスぺク トラム f M を表す。 図 1 0 (a) に示すように、 脈波スペク トラム には、 脈波成分と体動によ つて発生した周波数成分との両方が乗ってくる。 一方、 体動センサ 30 2は体動 だけに反応するので、 図 1 1 (b) の体動スペク トラム f sgには、 体動によって 発生した周波数成分のみが乗ってくる。 したがって、 脈波スペク トラム f „から 体動スぺク 卜ラム を引き、得られたスペク トラム ί« を脈波成分のスぺク トラ ムとして特定することができる。 図 8のステップ S A 6では、 このような方法に よって脈波成分を抽出している。
次に、 脈拍数の演算にて必要とされる脈波の基本波の周波数の求め方について 説明する。
図 1 1は、 脈波の基本波の周波数の特定方法の一例を示すフローチャー トであ り、 この図において、 C PU 3 0 8は、 まず、 F F T処理によって脈波スぺク ト ラム f nRと体動スぺク トラム f SKとを求めている (ステップ S B 1, S B 2) 。 C P U 3 0 8は、 続くステップ S B 3では、 前述した減算処理 ( ί « - f f SR) を行い、 脈波成分のスぺク トラム 1^ を取り出し、 続くステップ S B 4 , S B 5 では、 取り出したスペク トラム f M から最大パワーのスぺク トルを抽出し、 この スぺク トルの周波数 f maiを脈波の基本波の周波数として特定する。
ところで、 実際には、 それぞれのセンサ出力信号を F F T処理して単純に差を とっても、 高調波信号の影響があり、 脈波成分のみに対応したスペク トラムを得 るのが難しい場合がある。 そこで、 本実施形態では、 スペク トラムの減算を行う のではなく、 体動成分を特定し、 特定した体動成分を除く周波数成分から脈波の 基本波の周波数を特定するようにしている。
図 1 2は、 脈波の基本波の周波数の特定方法の他の例を示すフローチヤ一卜で あり、 この図に示す例では、 C PU 3 0 8は、 ステップ S C 1〜S C 3において、 体動成分として比較的検出し易い体動の第 2高調波の周波数 f s 2を特定してい る。 この処理は、 実際には、 f max 〜 f min の範圓 (ただし、 f max > f min ) における最大パワーのスぺク トルを抽出し、 その周波数 f sを体動の第 2高調波 の周波数 f s 2とすることで実現される。
ところで、 使用者が行う運動を例えば 「走行」 とした場合、 通常、 その際の体 動の基本波が出現し得る周波数範囲は 1〜 2 H zとなり、 体動の第 2高調波が出 現し得る周波数範囲は 2〜 4 H z となるので、 本実施形態では、 f m i n を体動の 第 2高調波の下限周波数である 2 H z とし、 当該下限周波数以下の周波数成分を 除外している。 一方、 体動信号の A Z D変換のサンプリング周波数を 8 H z とす ると、 サンプリング定理から、 原波形が再現できる最高周波数は 4 H z と自動的 に決まる。 そこで、 本実施形態では、 f max を上記最高周波数である 4 H z とし、 当該周波数以上の周波数成分を除外している。 なお、 f max については、 第 2高 調波が出現し得る上限周波数と上記最高周波数とを比較し、 より低い周波数を採 用するようにしてもよい。
次に、 C P U 3 0 8は、 ステップ S C 4において、 体動の第 2高調波の周波数 f s 2を 2で除算して体動の基本波の周波数 f s 1 を求め、 ステップ S C 5〜 S C 8において、 脈波信号のスぺク トラムから、 体動の基本波 (周波数は f s 1 ) , 第 2高調波 (周波数は 2 X f s 1 ) , 第 3高調波 (周波数は 3 X f s 1 ) に相当 する周波数成分を除外した周波数帯において最大パワーのスぺク トルを抽出し、 ステップ S C 9において、 当該最大パワーのスぺク トルの周波数を脈波の基本波 の周波数 f m として特定する。
ここで、 図 1 2に示す例において、 f ni i n 〜 f max の周波数帯の最大パワーの スぺク トルを抽出し、 その周波数を体動成分の第 2高調波として扱っている理由 について述べる。
図 1 3は、 体動センサ 3 0 2の出力を F F T処理した結果の一例を示す図であ り、 一般に、 運動状態、 特に走行状態においては、 図 1 3のごとく体動の基本波 に比べて体動の第 2高調波のパワーがより大きくなる (ごく平均的な走り方をし ている時で、 3〜 1 0倍程度) 。 ここで、 体動センサ 3 0 2の加速度検知要因に ついて分析してみると、 当該要因として、 以下の 2つが考えられる。
( 1 ) 走行時の上下動
( 2 ) 腕の振り出し〜引き戻し
( 1 ) に関しては、 右足をステップした時と左足をステップした時に均等に上 下動が出るので体動の第 2高調波成分となる。 ( 2 ) に関しては、 腕の振り出し 〜引き戻しを一周期とする振り子運動に相当する成分は体動の基本波成分となる が、 通常走行において腕の振りを滑らかな振り子運動にするのは難しく、 この成 分のパワーは弱めとなる。 逆に、 腕の振り出し、 引き戻しのそれぞれの瞬間に加 速度がかかる為に発生する体動の第 2高調波成分のパワーは強めとなる。 したが つて、 体動信号のスペク トラムにおいて、 体動の第 2高調波成分が特徴的に得ら れることになる。 よって、 最大パワーのスペク トルの周波数を体動成分の第 2高 調波の周波数として极ぅことができるのである。
さらに、 前述したように、 通常走行では、 2〜 4 H zの範囲であれば走行べ一 スの速い遅いを考えても第 2高調波が出現する領域をカバーできる。したがって、 この領域に限定した上で最大パワーの周波数成分を抽出することで、 体動の第 2 高調波に対応した周波数成分を確実に抽出することができ、 ひいては体動の基本 波の周波数の検出精度を上げることができる。
次に、 体動信号のスペク トラムにおいて、 体動の第 2高調波の周波数成分のパ ヮ一が最大になるとは限らない状況下で、 脈波の基本波周波数を特定する方法に ついて、 図 1 4を参照して説明する。
体動の基本波の周波数を 1〜 2 H z とし、 f min = 2 H z, f max = 4 H z と すると、 f min 〜; f raax の範囲において最大パワーとなり得るのは、 体動の基本 波、 第 2高調波、 第 3高調波の周波数成分である。 なお、 第 4高調波以降は前述 の主要な ( 1 ) , ( 2) の要因に起因していないので、 存在したとしてもその周 波数成分のパワーが f min 〜 f max の範囲において最大となることはない。
このような事情に鑑みて、 図 1 4に示す方法では、 C P U 3 0 8は、 ステップ S D 1 において, 体動信号の周波数分析結果に基づいて、 パワー Pが最大の線ス ぺク トルの周波数 f sを求めた後に、 ステップ S D 2および S D 4により、 周波数 f sが体動の基本波、 第 2高調波、 第 3高調波のいずれの周波数成分であるかを 特定している。具体的には、 C P U 3 0 8は、周波数 f sの 1ノ 2の周波数位置に、 ある一定値 T h以上の周波数成分が存在しているか否かを判断し (ステップ S D 2 ) 、 この判断結果が 「Y E S」 の場合には、 ステップ S D 3において、 周波数 f sを体動の第 2高調波 (HMC = 2 ) の周波数 f s 2 として特定する。 ステップ S D 2での判断結果が 「NO」 の場合、 すなわち、 ある一定値 T h以上の周波数 成分が存在しない場合には、 さらに、 f sの 1 3の周波数位置に、 ある一定値 T h以上の周波数成分が存在しているか否かを判断し (ステップ S D 4 ) 、 この判 断結果が 「Y E S」 の場合には、 ステップ S D 5において、 周波数 f sを体動の第 3高調波 (HMC = 3 ) の周波数 f s 3として特定する。 ステツプ S D 4での判 断結果が 「NO」 の場合、 すなわち、 f sの 2 / 1および 1 Z3の周波数位置に ある一定値 T h以上の周波数成分が存在しない場合には、 ステツプ S D 6におい て、 周波数 f sを体動の基本波の周波数 f s 1 として特定する。
以上の処理により、 ステップ S D 1で求めた周波数 f sが、 体動の基本波 (HM C = 1 ) 、 第 2高調波 (IIMC 2) 、 第 3高調波 (HMC= 3) のいずれの周 波数であるかが特定され、 ステップ S D 7では、 C PU 3 0 8が、 周波数 f s を HMCで除算することで、 体動の基本波の周波数 f s 1が求められる。 以降、 図 1 2のステップ S C 5〜S C 9と同一の処理により、 C PU 3 0 8は、 体動成分 の基本波、 第 2高調波、 第 3高調波と一致する周波数成分を除外した最大の周波 数成分を抽出し、 これを脈波の基本波の周波数 f m として特定する (ステップ S D 8〜 S D 1 2 ) 。
ところで、 図 8においては、 体動信号が検出されなくなると、 即座に矩形彼処 理に移行する例を示したが、 実際には、 運動中であっても体動信号の瞬時値によ つては 「非検出」 とされる場合があり得ることを考慮し、 体動信号が検出されな い期間がある --定時間 Tを超えてから演算方法を矩形波処理による方法に切り替 えるようにしている。 この切り替え手順について、 図 1 5を参照して説明する。
C P U 3 0 8は、 ステップ S E 1および S E 2では、 体動波形整形回路 30 7 の出力信号 (体動信号) により体動があるか否かを判断する。 この判断結果が 「Y E S」 の場合には、 処理はステップ S E 3へ進む。 ステップ S E 3では、 C PU 30 8は、 脈拍数の演算方法を切り替えるための切替信号を " O F F" にし、 ス テツプ S E 4では、 体動無しの累積時間 R tをゼロにする。
続くステップ S E 5および S E 6では、 脈波センサ 3 0 1が拍動を検出して脈 波信号を出力し、 この脈波信号を脈波信号増幅回路 3 0 3が増幅し、 増幅された 脈波信号を AZD変換回路 3 0 5が A/D変換するとともに、 体動センサ 30 2 が体動を検出して体動信号を出力し、 この体動信号を体動信号増幅回路 3 04が 増幅し、 増幅された体動信号を A/D変換回路 3 0 5が AZD変換する。
C PU 3 0 8は、 続くステップ S E 7において、 A/D変換された体動信号お よび脈波信号をそれぞれ F F T処理し、 ステップ S E 8において、 F F T処理結 果 (スペク トラム) から脈波成分 (純粋な脈波波形) を抽出し、 脈波の基本波の 周波数を特定する。
一方、 ステップ S E 2での判断結果が 「NO」 の場合には、 C PU 3 0 8は、 ステツプ S E 9および S E 1 0において、 発振回路 3 1 1および分周回路 3 1 2 からの出力信号に基づく計時を問始し、 時間 R tを累積し、 累積時間 R tが、 F F T処理の際に用いられる信号のサンプリ ング周期あるいはサンプリ ング数など によって決められるある一定時間 Tを超えているか否かを判断する。 この判断結 果が 「YE S」 の場合には、 処理はステップ S E 1 1へ進み、 「NO」 の場合に は、 処理は前述のステップ S E 5へ進む。
C PU 30 8は、 ステップ S E 1 1 において、 脈拍数の演算方法を切り替える ための切替信号を "ON" にし、 AZD変換処理及び F F T処理を停止させる。 なお、 矩形波処理を行う場合にも AZD変換処理および F FT処理を並行して行 うようにしてもよいが、 消費電力の観点からは、 矩形は処理を行う場合には周波 数分析処理にのみ必要となる AZ D変換処理および F F T処理を停止させた方が よい。
そして、 C PU 3 08は、 ステップ S E 1 2において、 脈波波形整形回路 3 0 6が脈波信号を矩形波に変換し、 ステップ S E 1 3において、 C PU 3 0 8がス テツプ S E 7で特定された周波数、 またはステツプ S E 1 2において変換された 矩形波から脈拍数を演算する。
2. 第 1実施形態の変形例
ところで、 不整脈には、 その発生原因によって危険なものと危険性が極めて少 ないものとがある。 しかし、 脈は人体の健康状態を表すものであるから、 不整脈 のように乱れた脈は好ましいものではなく、 乱れるということは、 何らかの体調 の異常があるといえる。 仮に疾患のない正常な人であっても、 睡眠不足であれば 不整脈が発生する。 また、 コーヒーを飲み過ぎた時や心理的なス トレスが過剰に なった時にも不整脈は発生する。 したがって、 不整脈の検出回数を参照すれば、 人の健康の程度を知ることができる。 また、 正常な人に発生する不正脈と異なり、 重大な心臓 ·血管系の病気に伴つ て起こってくる不整脈は、 単源性でも一日 2 0 0回以ヒ出現するとか、 多源性で いろいろな形態をとる心電図を呈することが知られている。 したがって、 閾値を 例えば 2 0 0個に設定し、 これを越える場合にその旨を使用者に告知することに より、 使用者に警告を与えることができる。
また、 心臓 ·血管系の病気を患っている場合、 短時間に不整脈が多発すると、 人体が危険な状態に陥ることがあり、 また、 最悪の場合には突然死に至ることも あり得る。 そこで、 不整脈の発生頻度を告知するようにすれば、 使用者は自己の 健康状態を管理することができる。 例えば、 待ち合わせの時間に遅れそうになつ て駆け出すような時に、 上記発生頻度を表示させ、 その値が大きい場合には、 走 るのを思い止まることができる。
また、 睡眠中に不整脈が多発し、 危険な状態に陥った場合には、 不整脈の発生 頻度情報 F H Dが閾値を越えてブザー 1 7が発音するので、 使用者に危険な状態 にあることを知らせることができる。 これにより、 使用者は投薬等の適切な処置 を取ることができ、 突然死といった最悪の事態を回避することができる。
すなわち、 ヒ述した第 1実施形態において、 計測開始時点からの経過時間を測 定し、 不整脈の検出頻度あるいは検出回数が所定の頻度 (例えば 2 0 0回/日) あるいは回数 (例えば 2 0 0回) を超過した場合に、 その旨を告知して使用者の 注意を喚起するようにしてもよい。 この際の告知時期は超過時点であってもよい し、 測定終了時や測定終了後の問い合わせ時であってもよいが、 使用者が運動の 強度を制御するための判断材料になり得ることから、 超過時点で告知するのが好 ましい。 なお、 告知の態様については 「4 . 各実施形態の変形例」 において後述 する。
また、 脈波間隔値の基準値の更新時に、 最新の脈波間隔値をそのまま基準値と するのではなく、 最新の所定数の脈波間隔値の平均値を新たな基準値とするよう にしてもよい。 この際、 より新しい脈波間隔値の比重が高くなるよう、 重み付け して平均値を求めるようにしてもよい。 このことは、 最新の所定数の脈波間隔値 に基づいて脈拍数を算出する場合にも同様に適用可能である。
さらに、 不整脈が検出されなかった場合にのみ、 脈波間隔値を R A M 3 0 9に 記憶させるのではなく、 全ての脈波間隔値を R A M 3 0 9に順に記憶させ、 不整 脈検出時の脈波間隔値を除く脈波問隔値に基づいて脈拍数や脈波間隔値の基準値 を算出するようにしてもよい。 この際、 不整脈検出時の脈波間隔値であるか否か を判断する必要があるが、 これは、 例えば、 不整脈検出時の脈波間隔値にのみ所 定の情報を対応付けて R A M 3 0 9に記憶させることで実現可能である。 なお、 不整脈検出時に脈波間隔値に対応付ける所定の情報としては、 不整脈検出時の脈 波間隔値であることのみを示す固定情報や、 不整脈検出時刻を示す可変情報であ つてもよい。 もちろん、 脈波間隔値に直接的に上記所定の情報を対応付けるよう にしても良いし、 脈波間隔値が格納されたァドレス等を用いて間接的に上記所定 の情報を対応付けるようにしてもよい。
また、 矩形波処理時 (非運動時) において、 脈波間隔値の基準値に対する最新 の脈波間隔値の差異 (ズレ) が許容範囲内であるか否かを除算以外の手法で求め るようにしてもよい。 例えば、 脈波間隔値の基準値の ± 5 %の範囲を求め、 最新 の脈波間隔値が当該範囲内に存在するか否かを判断するようにしてもよい。 さら に、 不整脈検出動作の開始直後からの脈波間隔値に基づいて基準値を求めるので はなく、 動作開始時点から所定時間経過した後に検出された脈波間隔値に基づい て基準値を求めるようにしてもよい。
ところで、 脈波信号には、 脈波の基本波成分のみならず、 脈波の高調波成分も 含まれており、 基本波成分のパワーよりも高調波成分のパワーの方が大きい場合 には、 上述した第 1実施形態では、 高調波成分の周波数が基本波成分の許容範囲 内に存在するか否かが判断され、 結果として、 不整脈が発生していると判定され てしまう。 このような誤判定を避けるために、 周波数分析において、 脈波成分に おける最大パワーのスぺク トルの周波数が、前回の脈拍数を 6 0で除算した値(拍 動周波数) の定数倍 (各高調波の周波数) に一致した場合に不整脈は存在しない と判定するようにしてもよい。
また、 体動がない場合は矩形波処理、 体動がある場合は周波数分析処理を行う ようにしたが、 いずれの場合にも周波数分析処理を行うようにしてもよいし、 脈 波信号から脈波以外の成分を除去する手段 (例えばフィルタ) を脈波信号の入力 段に設けることが可能であれば、 上記両場合に矩形波処理を適用するようにして もよい。 さらに、 これらの態様では、 脈波信号からの体動成分の除外処理を、 体 動の有無に関わらずに常に行うようにすることができる。 この際、 体動が無い場 合には、上記除外処理を行っても脈波成分から除外される成分は存在しないので、 体動の有無に応じて処理内容を変更する第 1実施形態と同様の結果が得られる。 また、 矩形波処理において、 実際の脈派間隔値と S準脈波間隔値との差異を告 知するようにしてもよい。 これにより、 脈派のずれの程度が定量化される。
3 . 第 2実施形態
ところで、 健康な人でも、 走行などの強運動時には不整脈が発生することがあ り、 このような不整脈の発生状況を把握することは、 運動時の体調管理に役立つ ことが予想される。 しかしながら、 第 1実施形態においては、 強運動時であるか 否かに関わらず、 不整脈の検出処理を行っており、 強運動時の不整脈とそれ以外 の運動時の不整脈とを区別できない。 そこで、 走行などの強運動時の体動が定常 性を有することを利用し、 強運動等の体動ピッチに定常性がある運動時の不整脈 のみを検出するようにしたのが本発明の第 2実施形態である。
以下、 図面を参照して、 この発明の第 2実施形態について説明する。 第 2実施 形態による不整脈検出装置は、 第 1実施形態によるものと同様に、 図 3に示すよ うな腕時計形態で実現され、 時計モードと不整脈検出モードとを有し、 不整脈検 出モードにあっては、 不整脈の検出、 不整脈数の計数、 脈拍数の算出を行うもの であり、 第 1実施形態によるものと共通する部分については、 その説明を省略す る。
3— 1 . 第 2実施形態の構成
第 2実施形態による不整脈検出装置の構成は、図 2に示す構成と略同一であり、 C P U 3 0 8の機能のみが第 1実施形態によるものと異なっている。
第 2実施形態による不整脈検出装匱の C P U 3 0 8が第 1 実施形態におけるも のと異なる点は、 不整脈検出モードにおいて、 体動に定常性がある場合にのみ不 整脈の検出を行う点である。 体動に定常性があるか否かは、 第 1実施形態におい て周波数分析によって不整脈の有無を判定する際に脈波信号に対して施した処理 と同様の処理を体動信号に施すことにより判断可能であり、 この判断の詳細につ いては、 第 2実施形態の動作の説明において詳述する。 なお、 第 1実施形態にお ける不整脈の検出処理では、 基本的に脈波の基本波を特定して不整脈の有無を判 断しているが、 第 2実施形態においては、 体動の第 2高調波を特定して体動の定 常性を判断している。
3 - 2 . 第 2実施形態の動作
次に、 第 2実施形態による不整脈検出装置の動作 (不整脈検出モードの動作) について説明する。 第 2実施形態においても、 不整脈検出モードの動作は、 「第 1 の不整脈検出動作」 と 「第 2の不整脈検出動作」 とに大別される。 前者につい ては、 第 1実施形態における第 1の不整脈検出動作と同一の動作であるので、 そ の説明を省略する。
3 - 2 - 1 . 第 2実施形態における第 2の不整脈検出動作の特徴
第 2実施形態における第 2の不整脈検出動作が第 1実施形態における動作と異 なる点は、 体動に定常性がある場合には、 脈波信号の周波数解析結果から不整脈 の有無を判定する処理を行い、 体動に定常性がない場合には、 同処理を行わない 点である。
3— 2— 2 . 体動の定常性の判断手法
ここで、 体動に定常性があるか否かの判断手法の例として、 「時間領域での判 断手法」 および 「周波数領域での判断手法」 を挙げる。
3 - 2 - 2 - 1 . 時間領域での判断手法
時間領域での判断手法としては、 脈拍数領域での所定範囲 (例えば ± 5 % ) に 応じた体動の第 2高調波の波間値の範囲 (時間領域での範囲) を許容範囲とし、 体動の第 2高調波の波間値が当該許容範囲内に存在する場合には 「定常性あり」 と判断し、 当該許容範囲内に存在しない場合には 「定常性なし」 と判断する手法 が挙げられる。 例えば、 脈拍数が 1 7 0柏/分とすると、 1 7 0 X 0. 0 5 = 8. 5であるこ とから、 脈拍数領域での ± 5 %範囲は ± 8. 5拍 Z分となり、 周波数領域での相 当する範囲は ± 0. 1 4 1 7 H z となる。 ここで、 脈波の基本波が存在し得る周 波数範囲 (一般には 0. 6 H z ~3. 5 H z ) と体動の第 2高調波の間隔値とな り得る時間範囲 ( 0. 5〜0. 2 5 s ) とが線形に対応すると仮定すると、 ± 0. 1 4 1 7 H zに相当する体動の第 2高調波の間隔値に関する時間領域での許容範 囲は ± 0. 1 4 1 7 X (0. 5— 0. 2 5 ) / ( 3. 5 - 0. 6) =± 0. 0 1 2 2となる。 したがって、 体動の第 2高調波の間隔値の基準値を 0. 2 8 s と仮 定すると、 体動の第 2高調波の間隔値が 0. 2 8 ± 0. 0 1 2 2 sの範囲内に存 在する場合には 「定常性あり」 、 それ以外の場合には 「定常性なし」 と判断され る。
3— 2— 2— 2. 周波数領域での判断手法
周波数領域での判断手法としては、 体動信号の周波数解析結果から体動の第 2 高調波のスペク トルが存在し得る範囲 (2 H z〜4 H z ) において最も高パワー の周波数スぺク トルを抽出し、 当該スぺク トルのサイ ドロ一ブが適正に広がって おり、 かつ、 上記範囲内の他のスペク トルとのパワー差が十分 (例えば 30 %以 上) である場合には、 当該スぺク トルの周波数が前回の脈拍数に相当する周波数 (体動の基本波の周波数) の 2倍に一致するか否かを判定し、 一致した場合には 「定常性あり」 と判断する手法が挙げられる。 なお、 サイ ドローブが適正に広が つているか否かは、 第 1実施形態と同様な手法で判断できる。 また、 第 1実施形 態と同様に、 上記 「一致」 は厳密な一致ではなく、 以下に述べる許容範囲が存在 する。
「一致」 の許容範囲は、 任意に設定可能であるが、 体動の基本波の周波数と脈 拍数との間には相関があり、 第 1実施形態と同様に不整脈の検出において脈拍数 に関する 「一致」 の許容範囲を設定していることから、 本実施形態では、 脈拍数 に関する 「一致」 の許容範囲に相当する範囲を体動の第 2高調波に関する 「一致」 の許容範囲としている。 例えば、 脈拍数が 1 70柏/分 (脈波の基本波の周波数は約 2. 8 3 3 H z ) であり、 脈拍数に関する 「一致」 の許容範囲が ± 5 %であるとすると、 脈波の基 本波の周波数に関する許容範囲 (周波数領域の許容範囲) も ± 5 %, すなわち土 0. 1 4 1 7 H zとなる。 ここで、 脈波の基本波が存在し得る周波数範囲 (0. 6 H z〜 3. 5 H z ) と体動の第 2高調波が存在し得る周波数範囲 (2 H z〜4 H z ) とが線形に対応すると仮定すると、 上記許容範囲 (± 0. 1 4 1 7 H z ) に対応する脈波の第 2高調波に関する許容範囲は ± 0. 1 4 1 7 X (4 - 2 ) / (3. 5— 0. 6) =± 0. 0 9 7 7 H zとなる。 一方、 周波数解析の分析時間 を 1 6 s とすると、 前回の脈拍数に相当する周波数の 2倍 (例えば 3. 5 3H z ) 近辺では、 3. 3 7 5 0, 3. 4 3 7 5 , 3. 5000, 3. 56 2 5 , 3. 6 2 5 0, 3. 7 6 6 7 H zというように、 離散した周波数でのスペク トルが得ら れる。 したがって、 体動の第 2高調波のスペク トルとして選択したスペク トルが 上記各離散スペク トルのいずれかであるならば、 3. 53 ± 0. 0 9 7 7 H zの 範囲内であるので、 「一致」 と判断し、 それ以外の場合には 「不一致」 と判断す る。
上述した一致判定を行う理由は、体動が階段状に変化した場合にも、体動に「定 常性なし」 と判断して不整脈の検出動作を行わないようにするためである。 例え ば、 使用者が定常性のある運動のピッチを急激に変化させ、 しかもこの変化が前 回の周波数解析の対象期間から今回の周波数解析の対象期間への移行時点で生じ た場合には、 前回の周波数解析結果に基づいて特定された体動の第 2高調波の周 波数と、 今回の周波数解析結果に基づいて特定された体動の第 2高調波の周波数 とが異なり、 体動に 「定常性あり」 と判断すべきではない。 なお、 周波数解析の 分析時間が十分に長い場合には、 上述した 「一致」 の判断を省略しても、 体動に 定常性がないときに不整脈を検出してしまう、 といった問題は生じない。
なお、 体動の第 2高調波の周波数成分のパワーが他の周波数成分のパワーより も強くなるとは限らない状況下では、図 1 4に示す処理と同様の処理が行われる。 すなわち、 予想される周波数範囲 (例えば、 2〜4H z ) において最大パワーの 周波数成分は、 体動の基本波、 第 2高調波、 第 3高調波のいずれかの周波数成分 であるものと仮定し、 当該最大パワーの周波数成分の 1 Z 2, 1ノ 3の周波数に おけるパワーを調べることによって、 当該周波数成分が体動の基本波、 第 2高調 波、 第 3高調波のいずれの成分であるかを特定する。 なお、 図 1 4においては、 特定した成分に基づいて体動の基本波の周波数を特定しているが、 第 2実施形態 では体動の第 2高調波を特定することになる。
3 - 2 - 2 . 第 2実施形態における全体の動作
ここで、 図 1 6を参照し、 第 2実施形態における全体の動作について説明する。 なお、 特に断らない限り、 動作の主体は C P U 3 0 8であるものとする。
図 1 6において、 ステップ S F 1 〜 S F 8の処理は、 図 8のステップ S A 1 〜 S A 5 , S A 7〜 S A 9と同--の処理であり、 体動信号 (体動波形) が存在する 場合には、 脈波信号 (脈波波形) を検出し、 この脈波信号に矩形波処理を施す。 一方、 体動信号が存在する場合には、 脈波信号および体動信号を検出して A Z D 変換し、 それぞれに F F T処理を施す。 そして、 ステップ S F 9では、 体動信号 の F F T処理結果に基づいて、 前述した処理により、 体動に定常性があるか否か を判断し、 定常性がある場合には、 ステップ S F 1 0にて、 図 8のステップ S A 6 と同様な処理が行われる。 したがって、 不整脈が発生している場合には、 ここ で、 その旨が報知される。 一方、 ステップ S F 9において体動に定常性がないと 判断された場合には、 ステップ S F 1 1 において、 脈波の基本波の周波数のみを 求める処理が行われる。 すなわち、 ステップ S F 1 1では、 不整脈の検出処理は 行われず、 脈波信号の周波数解析結果から脈波の基本波の周波数を求める処理の みが行われる。
そして、 ステップ S F 1 2では、 ステップ S F 5において得られた矩形波信号、 またはステツプ S F 1 0において得られた情報 (脈波の基本波の周波数または当 該周波数を特定できなかった旨) 、 あるいはステップ S F 1 1 において得られた 情報 (脈波の基本波の周波数または当該周波数を特定できなかった旨) に基づい て、 脈拍数が算出される。 なお、 ステップ S F 1 0または S F 1 1 において脈波 の基本波の周波数を特定できなかった場合には、 ステップ S F 1 0では脈拍数は 算出されず、 前回の脈拍数が今回の脈拍数として採用される。
このように、 上述した第 2実施形態によれば、 体動に定常性がある運動 (走行 などの強運動時や体動ピッチが 1分間に 8 0回程度の歩行など) 時における不整 脈を検出することができる。
4 . 第 1および第 2実施形態の変形例
以上、 この発明の第 1および第 2実施形態を図面を参照して詳述してきたが、 具体的な構成はこの実施形態に限られるものではなく、 この発明の要旨を逸脱し ない範囲の設計の変更等があってもこの発明に含まれる。
例えば、 第 1実施形態と前述の第 2実施形態とを組み合わせ、 体動の定常性に 関わらずに不整脈検出を行うモ一ドと、 体動に定常性があるときに不整脈を検出 するモ一ドとを同一の不整脈検出装置に設け、 使用者が選択できるようにしても よい。
また、 上述した各実施形態では、 「一致」 の許容範囲を固定とすることを前提 としているが、 これに限らず、 当該許容範囲を可変としてもよい。 例えば、 特定 のスィツチの操作に応じて当該許容範囲の幅を変動させるようにしてもよい。 こ の際、 当該許容範囲の幅を表す情報 (例えば ± 5 % ) を設定者に告知するように 構成するのが望ましい。 また、 脈波波間値の基準値や前回の脈拍数、 前回の体動 の基本波の周波数等に応じて、 当該許容範囲の幅を動的に変更するようにしても よい。 さらに、 一般に、 非運動時の脈拍数の適正な変動幅は運動時に比較して小 さいので、 体動が無い場合の脈波の基本波の周波数に関する許容範囲を、 体動が 有る場合の同許容範囲よりも狭く設定すれば、 より高い精度で不整脈を検出する ことができる。 また、 各種許容範囲の幅を、 脈拍数や体動の基本波の周波数に依 存しない絶対値とする態様も考えられる。
また、 上述した各実施形態では、 脈波信号および体動信号の各 F F T処理結果 において、 対象とするスぺク トルの周りにサイ ドローブが適正に広がっているか 否かを判断しているが、 これらの判断において、 対象とするスペク トルに隣接し たスぺク トルだけでなく、 所定範囲内の全てのスぺク トルを考慮するようにして もよい。 例えば、 対象とするスペク トルとのパワー差が、 隣接するスペク トルに あっては 5 %以上、 さらに一つ間をおいたスぺク トルにあっては 1 0 %以上ある 場合にのみサイ ドローブが適正に広がっていると判断するようにしても良いし、 「一致」 の許容範囲内の全スぺク 卜ルにおいて上記パワー差が 5 %以上ある場合 にのみサイ ドローブが適正に広がっていると判断するようにしてもよい。
さらに、 心臓が停止する等して、 脈波が検出されない期間が所定時間を超過し た場合には、 その旨を遠隔地の監督者に知らせるようにしてもよい。 このように すれば、 例えば、 心臓に疾患を抱えた人等に装着させ、 遠隔地の医師等の監督者 が、 使用者の心停止を迅速に告知することができるので、 適切な措置を迅速に講 じることができる。 なお、 この際の基準となる時間は、 全ての使用者に共通の一 定時間であってもよいし、 各使用者毎に設定される時間であってもよい。 また、 緊急時に遠隔地の監督者側にその旨を知らせる具体的なシステムについては、「シ ステム化」 の櫊において後述する。
また、 脈波センサの装着場所は、 指に限らず、 脈波が測れる場所 (例えば、 耳、 首等) ならばどこでも良い。 また、 体動センサとしては、 加速度センサの他に、 光学式センサを用いることも考えられる。 また、 体動センサの装着場所は、 腕の みに限らず、 使用者の身体のどこかに装着すればよい。 さらに、 指サックや指べ ルト等を用いて各センサを固定するようにしてもよい。
また、 使用者による問い合わせ時に、 不整脈を検出した時刻を表示するように してもよいし、 検出時刻を横軸としたヒストグラムを表示し、 不整脈の検出頻度 の時間推移を告知するようにしてもよい。 この際、 月、 週、 日などの、 生体リズ ムの変動周期每に不整脈の発生回数を表すヒストグラムを表示するようにすれ ば、 使用者の体調状態をより正確に把握することができる。 ここで、 表示するヒ ス卜グラムの例を図 4 3に示す。 例えば、 図 4 3において、 ( a ) は過去 1年間 の不整脈数を月毎に表しており、 このヒストグラムを用いれば、 1年間を通じて の不整脈の発生頻度の変動傾向を知ることができる。 もちろん、 月毎でなく週毎 や日毎の不整脈数を表すようにしてもよい。 また、 (b ) は各曜日毎の不整脈数 を表しており、 このヒストグラムを用いれば、 過去 1週間あるいは複数週間にお ける曜日毎の不整脈の発生頻度の変動傾向を知ることができる。 さらに、 (c ) は 1 日の時間帯毎の不整脈数を表しており、 このヒストグラムを用いれば、 過去 1 日あるいは複数日における時間帯毎の不整脈の発生頻度の変動傾向を知ること ができる。 また、 図 4 4に示すように、 不整脈の検出時刻 (タイムスタンプ) を記録し続 け、 不整脈検出装匱または外部機器 (後述する) によって、 記録した発生時刻を 参照し、 不整脈の検出時刻を表すデータ列を表示するようにしても良いし、 生体 リズムの変動周期毎に不整脈の発生回数を求め、 図 4 3に示すようにヒストグラ ム化して表示するようにしてもよい。 また、 不整脈の検出時刻に対応付けて、 当 該時刻に検出された不整脈を含む脈派波形を記録し、 当該波形を使用者または監 督者の指示に応じて表示できるよにしてもよい。 なお、 図 4 4においては、 不整 脈の検出時刻を検出時刻順に記録する例を示したが、 どのような順序であっても よいことは言うまでもない。 もちろん、 検出時刻を表すデータ列の告知時に、 当 該デ一夕列を任意の順序で整列可能としてもよい。
また、 上述した告知処理は、 任意のタイミングで実行可能であり、 例えば、 不 整脈の検出動作中であっても、 使用者または監督者からの指示に応じて実行可能 である。 不整脈の検出処理に並行して上記告知を行う方法としては、 例えば、 リ アルタイムクロックによる割り込みを利用する方法がある。 すなわち、 不整脈の 検出処理をリアルタイムクロックによる割り込みにより実行するようにすれば、 上記告知処理が行われても、 不整脈の検出処理が中断することはない。
さらに、 脈派波形をそのまま、 あるいは加工して表示するようにしてもよい。 この場合には、 使用者あるいは監督者が、 不整脈の判定を行うことになる。 また、 問い合わせ時あるいはしきい値超過時に、 不整脈の検出頻度としきい値 とを比較し、 両者の差を告知するようにしてもよい。 また、 第 2実施形態におい ては、 常時、 体動の定常性を告知するようにしてもよい。 例えば、 体動に定常性 がある場合には、 体動の基本波と同一周期で電子音を発生させる態様が考えられ る。 また、 使用者による問い合わせ時に、 体動に定常性があった期間における体 動の基本波の周波数の平均値とを告知するようにしてもよい。
4 - 1 . 告知手法
なお、 上述した各実施形態においては、 表示部を各種データの告知手段の一例 として説明したが、 装置から人間に対して告知をするための手段としては以下に 説明するようなものが挙げられる。 これら手段は五感を基準に分類するのが適当 かと考えられる。 なお、 これらの手段は、 単独で使用するのみならず複数の手段 を組み合わせても良いことは勿論である。 そして、 以下に説明するように、 例え ば視覚以外に訴える手段を用いれば、 視覚障害者であっても告知内容を理解する ことができ、 同様に、 聴覚以外に訴える手段を用いれば聴覚障害者に対して告知 を行うことができ、 障害を持つ使用者にも優しい装置を構成できる。
4 一 1 一 1 . 聴覚
まず、 聴覚に訴える告知手段としては、 不整脈の発生やその分析 ·診断結果な どを知らせるための目的、 あるいは警告の目的でなされるものなどがある。 例え ば、 不整脈検出時などのイベント発生時に鳴唱するブザーの他、 不整脈検出時や しきい値超過時などのィベント発生時に、 音声でィベン卜内容または各種値を告 げるスピーカ等が該当する。 また、 特殊な例として、 告知の対象となる人間に携 帯用無線呼出受信機を持たせ、 告知を行う場合にはこの携帯用無線呼出受信機を 装置側から呼び出すようにすることが考えられる。 また、 これらの機器を用いて 告知を行うにあたっては、 単に告知するだけではなく、 何らかの情報を一緒に伝 達したい場合も多々ある。 そうした場合、 伝えたい情報の内容に応じて、 以下に 示す音量等の情報のレベルを変えれば良い。 例えば、 音高、 音量、 音色、 音声、 音楽の種類 (曲目など) である。
4 - 1 - 2 . 触覚
次に、 触覚に訴える告知手段は、 警告の目的で使用されることがあると考えら れる。 そのための手段として以下のようなものがある。 まず、 腕時計等の携帯機 器の裏面から突出する形状記憶合金を設け、 この形状記憶合金に通電するように する電気的刺激がある。 また、 腕時計等の携帯機器の裏から突起物 (例えばあま り尖っていない針など) を出し入れ可能な構造としてこの突起物によって刺激を 与える機械的刺激がある。 他の機械的刺激の例としては、 偏心荷重を回転させて 人体に振動を伝える振動アラームや、 図 1 7に示すように、 本体の下面内側の一 部を 7 0 w m程度の厚さにして凹部を作り、 ここに、 取り付けたピエゾ素子を利 用する態様も考えられる。 このピエゾ素子に適当な周波数の交流電流を印加する と、 ピエゾ素子が振動し、 その振動が人体に伝達される。 したがって、 不整脈検 出時に交流電流を印加するようにすれば、 触覚的な運動強度の告知を行うことが できる。 なお、 ピエゾ素子の厚みは 1 0 0 m, 直径は凹部の直径の 8 0 %程度 にするとよい。
なお、 触覚に訴える場合には、 使用者に警告を確実に伝えることができるので、 上述した聴覚による告知手段と組み合わせて、 あるいはその替わりに用いると好 適である。 これにより、 睡眠中に不整脈が多発し不整脈の発生頻度が危険な状態 になった場合に、 使用者を覚醒させて投薬等の処置を促すことが可能となる。
4 - 1 - 3 . 視覚
次に、 視覚に訴える告知手段が用いられるのは、 装置から各種メッセージ, 測 定結果を知らせる目的であったり、 警告をするためであったりする。 そのための 手段として以下のような機器が考えられる。 例えば、 ディスプレイ装置、 C R T (陰極線管表示装置) , L C D (液晶表示ディスプレイ) 、 プリ ンタ、 X — Yプ ロッタ、 ランプなどがある。 なお、 特殊な表示装置として眼鏡型のプロジェクタ 一がある。 また、 告知にあたっては以下に示すようなバリエーションが考えられ る。 例えば、 数値の告知におけるデジタル表示, アナログ表示の別、 グラフによ る表示、 表示色の濃淡、 数値そのまま或いは数値をグレード付けして告知する場 合の棒グラフ表示、 円グラフ、 フェイスチャート等である。
図 1 8にフェイスチャートの一例を示す。 この図に示すフェイスチャートを用 いた場合には、 例えば、 しきい値に比較して不整脈の検出頻度が低い場合には図 1 8中の F 1で表される絵を表示し、 不整脈の検出頻度が高い場合には図 1 8中 の F 2で表される絵を表示する態様が考えられる。 また、 表示の点滅や反転、 色 変更などにより、 イベントの発生を告知するようにしてもよい。
また、 不整脈の検出頻度等を表示する場合にあっては、 これらの情報にグレー デイ ングを施して表示するようにしてもよい。 例えば、 不整脈の検出頻度を表示 する場合には、 「危険」 、 「体調に留意」 、 「普通」 、 「やや良好」 、 「良好 J といった文字を L C D等に表示してもよい。 また、 この場合、 「危険」 に記号 A を、 「体調に留意 J に記号 Bを、 「普通」 に記号 Cを、 「やや良好」 に記号 Dを、 「良好」 に記号 Eを対応させ、 これらの記号を L C D等に表示してもよい。 4 - 1 - 4 . 嗅覚
次に、 嗅覚に訴える告知手段は、 装置に香料等の吐出機構を設けるようにして、 告知する内容と香りとを対応させておき、 告知内容に応じた香料を吐出するよう に構成しても良い。 ちなみに、 香料等の吐出機構には、 マイクロポンプなどが最 適である。
4— 2 . システム化
ところで、 ヒ述した各実施形態においては、 検出されたデータは、 腕時計形態 の不整脈検出装置内に記憶されるので、 使用者または監督者が同装置の各種スィ ツチを操作し、 所望のデータを表示させ、 これを分析することになるが、 腕時計 形態では実装できる表示部の大きさや、 メモリ容量、 C P Uの処理能力、 指示入 力手段の操作性等に限界があり、 他のデータ処理装置との間でのデータ交換を必 要とするケースが考えられる。
以下、 不整脈検出装置と外部機器との間で通信を行うための通信手段について 図 1 9を参照して説明する。 この図に示すように、 パーソナルコンピュータは機 器本体 3 3 0, ディスプレイ 3 3 1, キーボード 3 3 2, プリ ン夕 3 3 3などか ら構成されており、 以下の点を除いて通常のパーソナルコンピュータから構成さ れているため、 その内部構成の説明の詳細は省略する。
すなわち、 機器本体 3 3 0は、 光信号によるデータを送受信するための図示し ない送信制御部及び受信制御部を内蔵しており、 これら送信制御部と受信制御部 は、 それぞれ光信号を送信するための L E D 3 3 4 と光信号を受信するためのフ オ ト トランジスタ 3 3 5を有する。 これら L E D 3 3 4 , フォ ト トランジスタ 3
3 5は何れも近赤外線用のもの (例えば中心波長が 9 4 0 n mのもの) が用いら れ、 可視光を遮断するための可視光カッ ト用のフィル夕 3 3 6を介し、 機器本体
3 3 0の前面に設けられた光通信用の通信窓 3 3 7から光通信を行う。
一方、 パーソナルコンピュータと接続される不整脈検出装置は、 図 2および図
3に示す構成を有し、 さらに、 本体 1 は、 コネクタ部 5 3が着脱可能に構成され ている。 したがって、 コネクタ部 5 3が取り外されたコネクタ部分に対して通信 コネクタ 3 3 8を取り付けることによって通信可能となる。 この通信コネクタ 3 3 8には、 パーソナルコンピュータ側と同様に L E Dとフォ ト トランジスタ及び 光通信用のインターフェイスとが組み込まれている。 また、 腕時計の装匱本体 1 の内部には光通信のための光インターフェイス部 (図示略) が設けられている。 パーソナルコンピュータ側の R A Mやハードディスク等に格納された各種の情 報を、 当該パーソナルコンピュータ側から不整脈検出装置側へ転送するには、 例 えば、 キーボード 3 3 2から転送コマンドを投入する。 これにより、 パーソナル コンピュー夕側の情報が、 L E D 3 3 4及び通信窓 3 3 7を介して近赤外光で出 力される。 一方、 不整脈検出装置側ではこの近赤外光が通信コネクタ 3 3 8を介 して不整脈検出装置の光ィンターフェイス部へ送られる。
他方、 不整脈検出装置側からパーソナルコンピュータ側へ各種の情報を転送す る場合は、 通信方向が上記と逆になる。 すなわち、 不整脈検出装置の使用者は、 装置本体に設けられたポタンスィツチを操作するなどして、 当該装匱をデータ転 送のためのモードに設定する。 これにより、 装置に内蔵されたプロセッサ等が転 送すべき情報を R A M等から読み出して、 これらを光インターフェイス部へ送出 する。 これにより、 計測値が光信号へ変換されて通信コネクタ 3 3 8から送出さ れ、 通信窓 3 3 7及びフオ ト トランジスタ 3 3 5を介してパーソナルコンピュー 夕側へ転送される。
もちろん、 デ一夕転送のためのモード等を設けず、 インタフェース部を介して 外部機器側から所定の信号を受け取った時に、 不整脈検出装置側から外部機器側 へ、 あるいは外部機器側から不整脈検出装置へのデータ転送を自動的に開始する ようにしてもよいし、 データ転送のためのモードとデータ転送を自動的に開始す る機能とを併設し、 使用者または監督者が選択するようにしてもよい。
また、 本例のように, リアルタイムクロックを利用できる場合には、 リアル夕 ィムクロックの出力デ一夕 (時刻情報) を監視し、 所定時間経過毎に、 不整脈検 出装置側から通信の開始を要求するようにしてもよい。 この際、 適正な返信が得 られれば、 データ転送が開始され、 当該返信が得られなければ、 所定時間経過後 に、 再び、 不整脈検出装置側から通信の開始が要求される。 また、 後述するよう に、 検出した不整脈が設定されたしきい値を越えた場合や、 心停止が認められる 場合などの緊急イベン ト発生時に、 当該イベン トをトリガとして、 即座に、 不整 脈検出装置側から通信の開始を要求するようにしてもよい。 この際、 適正な返信 が得られれば、 データ転送が開始され、 当該返信が得られなければ、 緊急度に応 じた時間経過後に、 再び、 不整脈検出装置側から通信の開始が要求される。 ところで、 上記のような光通信を行う場合には、 何れの機器が情報を発信した かどうかを識別できないと、 本来は他の機器が受け取るべき情報を誤って受信し てしまうことが起こりうる。 そこで、 本発明に係る I / Oインターフェイス手段 には、 情報を送信或いは受信するにあたって、 何れの装置が情報を発信したかを 示す識別情報を用いている。 この識別情報は、 例えば、 装置本体 1内の図示せぬ R O Mに格納されており、 通信開始時に外部機器側に通知される。
以上のように外部機器と通信可能とすることで、 不整脈検出装置側の情報を外 部機器側へ転送することができると共に、 外部機器から不整脈検出装置側に対し て各種の設定や指示を行うことが可能になる。
例えば、 外部機器を医師などの監督者の下に設置し、 監督者が不整脈検出装置 の使用者に応じて、 しきい値 (例えば 2 0 0回 Z日) や許容範囲 (± 5 % ) など を外部機器に入力し、 これを不整脈検出装置の識別情報に関連付けて外部機器に 記憶させるとともに、 外部機器側から不整脈検出装置へ転送して設定することが できる。 また、 不整脈検出装置から検出データを外部機器へ転送し、 外部機器側 において、 不整脈検出装置の識別情報に関連付けて記憶するようにしてもよい。 外部機器を上述したパーソナルコンピュータとすれば、 十分な容量の外部記憶装 置、 高速な C P U、 多彩なデータ分析 · 加工 ' 管理用ソフ トウェア、 大量のデー 夕を見やすく出力可能なディスプレイやプリ ンタ等を使用することができるの で、 監督者は、 蓄積したデータの分析にかかる手間を大幅に削減することができ る。
なお、 転送するデータ量に対してデ一夕 送速度が遅い場合には、 転送しょう とするデ一夕を圧縮してから転送するようにしてもよい。 また、 不整脈検出装置 と外部機器との通信インタフェースは、 光イン夕フェースに限らず、 R S— 2 3 2 Cなどの電気的ィ ン夕フェースであってもよいし、 伝送媒体として電波を用い るインタフェースであってもよい。 さらに、 使用者側に不整脈検出装置と通信可 能な外部機器を設置し、 さらにこの外部機器および監督者側の外部機器に専用回 線あるいは公衆回線経由での通信を可能とするィンタフェースを設ければ、 使用 者は監督者の下に赴く ことなく、 専用回線あるいは公衆回線経由で、 検出データ を送信することができる。 もちろん、 逆方向のデータ送信 · 設定も可能となる。 このような送受信を行う場合には、 データの受信側に、 データの送信元を特定で きる情報や送信データの内容を告知する機能を設けるべきである。 特に、 監督者 側の外部機器から使用者側の不整脈検出装置側へ上述のしきい値 (例えば 2 0 0 回 日) や許容範囲 (± 5 % ) などを遠隔設定する場合には、 設定する内容のみ ならず、 受信データを用いてしきい値や許容範囲などを設定する旨を使用者に告 知するようにすべきである。 なお、 不整脈検出装置において、 遠隔設定時には設 定したしきい値や許容範囲などを監督者側へ返送するようにし、 監督者側の外部 機器において、 不整脈検出装置へ送信したデータと実際に設定されたデータとを 比較し、 設定が正しく行われたことを確認するようにしてもよい。
ところで、 上述した態様では、 検出データを迅速に監督者に伝えるべき場合に、 使用者が動けない、 忘れている、 あるいは遠隔地にいる等して、 検出データを迅 速に監督者へ伝えられないことが考えられる。 そこで、 不整脈検出装置に、 緊急 時に検出データ等を監督者側の外部機器へ自動的に送信する機能を設けてもよ い。 このようにすることにより、 例えば、 使用者の心臓が停止した場合や、 使用 者の不整脈の発生頻度が所定値を超過した場合などの緊急時に、 監督者にその旨 および検出データが告知されるので、 監督者は、 検出データを参照し、 使用者の 状態を確認したり、 使用者の運動を制限したりする等の措置を講じることができ る。
また、 しきい値等の管理値を、 監督者側の外部機器でのみ設定できるようにし てもよい。 この場合には、 例えば、 使用者が自らしきい値を変更し、 本来である ならば監督者側に緊急で知らせなければならないような状態になっても、 そのこ とを自動的に通知しない、 といった事態を回避することができる。 逆もまた同様 である。
さらに、遠隔地の使用者に対して監督者の指示を伝えるように構成してもよい。 このような構成とすることにより、 例えば、 使用者が遠隔地でランニングしてお り、 かつ不整脈の発生頻度がしきい値を超過した旨の検出データが監督者に告知 された場台に、 監督者が監督者側の外部機器を操作して、 走行ピッチを下げる旨 の指示を遠隔地の使用者側の不整脈検出装置へ送信し、 使用者に告知することも "J能となる。 また、 自宅療養患者の容態悪化時に、 医師が適切な指示を自宅療養 患者 (使用者) あるいは介護者に対して迅速に与えることも可能となる。
もちろん、 緊急時に限らず、 リアルタイムクロック等を利用して、 検出データ を監督者側の外部機器へ定期的に送信するようにしてもよい。 検出データを監督 者側の外部機器へ常に送信する場合には、 不整脈の判定を外部機器側で行い、 判 定結果を外部機器が使用者側の機器へ送信するといつた態様も実現可能である。 ところで、 脈波波形の周波数解析方法としては、 F F Tの他に、 最大ェン卜口 ピー法や、 ウェーブレッ ト変換法等も考えられる。 ここで、 時問周波数解析方法 であるウェーブレッ ト変換法を用いた不整脈検出装 ¾の実施形態について図面を 参照して説明する。
5 . ウェーブレツ ト変換法を用いた不整脈検出装置の実施形態の機能構成 まず、 ウエーブレツ ト変換法を用いた脈波検出装置の実施形態の機能を図面を 参照しつつ説明する。 図 2 0は本実施形態に係わる脈波検出装置の機能ブロック 図である。 図において、 ί 1 は脈波検出手段であって、 脈波波形を検出する。 脈 波波形は、 例えば、 橈骨動脈を皮膚の上から押圧することによって検出される。 また、 f 2は第 1のウェーブレッ ト変換手段であって、 脈波検出手段 f l によつ て検出された脈波波形にウエーブレツ ト変換を施して、 各周波数領域毎に脈波解 析データを生成する。 また、 f 3は第 1の周波数補正手段であって、 対応する各 周波数に基づいて、 前記脈波解析データに周波数当たりのパワー密度が一定にな るように補正を施し、 脈波補正データを生成する。 これにより、 異なる周波数時 間領域で検出されるウェーブレツ 卜を比較することが可能となる。
次に、 f 4は体動検出手段であって、 体動を検出して体動波形を出力する。 こ れにより、 人が動いたことを検知できる。 また、 ί 5は第 2のウェーブレツ 卜変 換手段であって、 体動検出手段 f 4によって検出された体動波形にウェーブレツ ト変換を施して、 各周波数領域毎に体動解析データを生成する。 また、 f 6は第 2の周波数補正手段であって、 対応する各周波数に基づいて、 前記体動解析デー 夕に周波数当たりのパワー密度が一定になるように補正を施し、 体動補正デ一夕 を生成する。 こうして算出された体動補正データは周波数補正が施されているの で、 脈波補正デ一夕と比較することができる。
次に、 f 7はマスク手段であって、 脈波補正データから体動補 1王デ一夕を減算 して、 体動を除去した脈波補正データを生成する。 また、 f 8は判定手段であつ て、 マスク手段 ί 7によって生成された脈波補正デ一夕の連続性を各周波数領域 毎に解析することによって異常部分を検知すると、 不整脈と判定する。
なお、 睡眠中等、 安静時に不整脈を検出する場合には、 体動を検出する必要が ないので、 体動検出手段 f 4、 第 2ウェーブレツ 卜変換手段 f 5、 第 2の周波数 補正手段 f 6およびマスク手段 f 7は省略することができる。 また、 第 1 の周波 数補正手段 f 3および第 2の周波数補正手段 f 6の替わりにマスク手段 f 7の後 段に周波数補正手段を設け、 構成を簡易にしても良い。 さらに、 全ての周波数補 正手段を省略してもよい。
次に、 ί 9は告知手段であって、 判定手段 f 8によって不整脈であると判定さ れると、 そのことを告知する。 これにより、 使用者または医師等の第三者が不整 脈の有無を認識できる。 また、 f 1 0は記憶手段であって、 判定手段 f 8によつ て不整脈であると判定されると、 不整脈の発生時刻を記憶する。 これにより、 不 整脈の発生時刻を事後的に知ることができる。 また、 f 1 1 は頻度算出手段であ つて、 判定手段 8によって不整脈であると判定された所定時間当たりの回数を不 整脈頻度情報として算出する。 また、 ί 1 2は第 2の告知手段であって、 不整脈 頻度情報が予め定められた所定値を越えた場合に、 そのことを告知する。 これに より、 心臓疾患を患っている使用者に、 危険な状態になったことを知らせること ができ、 使用者は投薬等の適切な処置をとることができる。
次に、 f 1 3は積算手段であって、 判定手段 f 8によって不整脈であると判定 された回数を積算して不整脈積算情報を生成する。 また、 f 1 4は第 3の告知手 段であって、 不整脈積算情報が予め定められた所定値を越えた場合に、 そのこと を告知する。 これにより、 使用者は体調が悪化したことを知ることができる。 また、 ί 1 5は第 4の告知手段であって、 不整脈頻度情報が予め定められた所 定値を越え、 かつ、 不整脈積算情報が予め定められた所定値を越えた場合に、 そ のことを告知する。 これにより、 より正確に使用者あるいは監督者に対して、 危 険な状態になったことを知らせることができる。
6. 第 3実施形態
6 - 1. 第 3実施形態の構成
本発明の第 3実施形態に係わる不整脈検出装置の構成を図面を参照しつつ説明 する。
6— 1一 1. 第 3実施形態の外観構成
図 2 1は第 3実施形態に係わる不整脈検出装置の外観構成を示す斜視図であ る。 この図に示すように、 不整脈検出装置 1は、 腕時計形状をしている。 不整脈 検出装置 1には、 -対のバンド 1 44, 1 4 4が設けられており、 その一方の締 着具 1 4 5の締め付け側には、 圧脈波センサ 1 3 0の弾性ゴム 1 3 1が突出して 設けられている。 締着具 1 4 5を備えるバンド 1 44は、 圧脈波センサ 1 30に よる検出信号を供給するべく F P C (Flexible Printed Circuit) 基板を軟性プ ラスチックで被覆した構造 (詳細は図示省略) となっている。
また、 不整脈検出装置 1には、 脈波を解析する電気的構成の主要部が組み込ま れており、 また、 表示部が設けられている。 不整脈検出装置 1は、 使用時におい ては、 図 2 2 (a) および図 2 2 (b) に示すように、 締着具 1 4 5に設けられ た弾性ゴム 1 3 1が橈骨動脈 1 4 3の近傍に位置するべく、 腕時計 1 4 6が被験 者の左腕 1 4 7 (こ卷回される。 このため、 脈波を恒常的に検出することが可能と なる。 なお、 この巻回については通常の腕時計の使用状態と何等変わることがな い。
こうして弾性ゴム 1 3 1力 被験者の橈骨動脈 1 4 3近傍に押圧されると、 該 動脈の血流変動 (すなわち脈波) が弾性ゴム 1 3 1を介して圧脈波センサ 1 3 0 に伝達され、 圧脈波センサ 1 3 0はこれを血圧として検知する。 6 - 1一 2. 第 3実施形態の電気的構成
次に、 不整脈検出装置の電気的構成を図 2 3を参照して説明する。 図 2 3は不 整脈検出装置の電気的構成を示すブロック図である。
不整脈検出装置 1は、 以下の部分から構成される。 1 0はウェーブレッ ト変換 部であって、 圧脈波センサ 1 30から出力される脈波波形 MHに対して周知のゥ ェ一ブレツ ト変換を施して、 脈波解析データ MKDを生成する。
一般に、信号を時間と周波数の両面から同時に捉える時間周波数解析において、 ウェーブレッ トは信号の部分を切り出す単位となる。 ウェーブレッ ト変換は、 こ の単位で切り出した信号各部の大きさを表している。 ウェーブレツ 卜変換を定義 するために基底関数として、 時間的にも周波数的にも局在化した関数 ( X ) を マザ一 ' ウェーブレッ トとして導入する。 ここで、 関数 f ( X ) のマザ一 · ゥェ 一ブレッ トゆ (X ) によるウエーブレッ ト変換は次のように定義される。
1 fx— b、
_i a 、 。 ノ
式 1において bは、 マザ一 · ウェーブレッ ト ( χ ) をトランスレート (平行 移動) する際に用いるパラメ一夕であり、 一方、 aはスケール (伸縮) する際の パラメ一夕である。 したがって、 式 1においてウェーブレッ トゆ ( ( X - b ) / a ) は、 マザ一 ' ウェーブレッ トゆ (x) を bだけ平行移動し、 aだけ伸縮した ものである。 この場合、 スケールパラメータ aに対応してマザ一 ' ウエーブレツ ト ( X ) の幅は伸長されるので、 1 は周波数に対応するものとなる。 なお、 ウエーブレツ ト変換部 1 0の詳細な構成については後述する。
次に、 1 1は周波数補正部であって脈波解析データ MKDに対して周波数補正 を行う。 上記した式 1には周波数に対応する 「 1ノ 3 1 / 2」 の項があるが、 異な る周波数領域間でデータを比較する場合には、 この项の影響を補正する必要があ る。 周波数補正部 1 1はこのために設けられたものであり、 ウエーブレッ トデ一 夕 WDに係数 a 1 /2を乗算して、 脈波補正データ MKD ' を生成する。 これによ り、 対応する各周波数に基づいて、 周波数当たりのパワー密度が一定になるよう に補正を施すことができる。 次に、 1 2は判定部であって、 脈波補正デ一夕 M K D ' に基づいて、 不整脈を 検出して、 不整脈検出情報 F Dを生成する。 なお、 判定部 1 2の詳細な構成につ いては後述する。 また、 1 3は表示部であって、 R O M、 制御回路および液晶デ イスプレイ等によって構成される。 表示部 1 3に不整脈検出情報 F Dが供給され ると、 制御回路がこれを検知し、 R O Mに格納されているキャラクタを読み出し、 これを液晶ディスプレイに表示するようになっている。キャラクタとしては、 「不 整脈」 という文字の他、 特定の記号やアイコンを用いてもよい。 これにより、 使 用者や医師に不整脈があったことを告知することができる。
次に、 1 4は R A Mであって、 そこには不整脈検出情報 F Dの発生時刻が順次 記憶される。 この発生時刻は、 図示せぬ操作部を操作すると R A M 1 4から読み 出され、 表示部 1 3に表示させることができるようになつている。 これにより、 発生時刻を事後的に知ることができ、 診断に役立てることができる。 なお、 発生 時刻は図示せぬインタ一フェースを介して外部機器 (例えば、 パーソナルコンビ ュ一夕) に送信できるようにしてもよく、 この場合には、 より詳細に不整脈を解 祈して診断を行うことが可能となる。 なお、 第 3実施形態や後述する第 4、 第 5 実施形態に係る不整脈検出装置と外部機器とのシステム化については、 「4 一 2 . システム化」 の櫊において記載したシステムをそのままあるいは僅かに変形して 適用可能であるので、 その説明を省略する。
次に、 1 5は、 その内部に内部メモリ と比較器を備えた積算部であって、 不整 脈検出情報 F Dの発生回数を積算して、 積算値を示す不整脈積算情報 F S Dを生 成し、 これを内部メモリに格納する。 また、 図示せぬ操作部を操作すると、 内部 メモリに格納された不整脈積算情報 F S Dをリセッ トしたり、 あるいは操作時点 の不整脈積算情報 F S Dを読み出して表示部 1 3に表示させることができるよう になっている。 また、 内部メモリには、 予め定められた閾値が格納されており、 この閾値と不整脈積算情報 F S Dとを比較器で比較するようになっている。 比較 器は不整脈積算情報 F S Dが閾値を上回った場合に第 1 の警告情報 K D 1 を生成 する。 そして、 第 1の警告情報 K D 1がブザー 1 7に供給されると、 ブザー 1 7 が発音し、 危険な状態にあることを使用者に告知する。
ところで、 前述したように、 不整脈には、 その発生原因によって危険なものと 危険性が極めて少ないものとがあるが、 人の健康の程度を知る上で、 不整脈積算 情報 F S Dは有益である。 また、 前述したように、 重大な心臓 · 血管系の病気に 伴って起こってくる不整脈は、 単源性でも一日 2 0 0個以上出現するとか、 多源 性でいろいろな形態をとる心電図を呈することが知られている。 したがって、 前 記閾値を例えば 2 00個に設定し、 これを越える場合に第 1の警告情報 KD 1を 生成し、 ブザー音で使用者に告知することにより、 使用者に警告を与えることが できる。
次に、 1 6は、 その内部に内部 モリ と比較器を備えた頻度算出部であって、 不整脈検出情報 F Dの単位時間当たりの発生回数を計数して不整脈頻度情報 F H Dを生成する。 この不整脈頻度情報 FHDは、 使用者が操作部を操作すると、 表 示部 1 3に表示されるようになっている。 また、 内部メモリには、 予め定められ た闞値が格納されており、 この閾値と不整脈頻度情報 F H Dとを比較器で比較す るようになっている。 また、 比較器は、 不整脈頻度情報 FHDが閾値を上回った 場合に第 2の警告情報 KD 2を生成する。 そして、 第 2の警告情報 KD 2がブザ — 1 7に供給されると、 ブザー 1 7が発音し、 危険な状態にあることを使用者に 告知する。
不整脈頻度倩報 FHDを表示部 1 3に表示させることは、 前述したように、 使 用者が自己の健康状態を管理することができる点で有益であるし、 睡眠中に不整 脈が多発し、 危険な状態に陥った場合に不整脈頻度情報 F H Dが閾値を越えてブ ザ一 1 7が発音することは、 使用者に危険な状態にあることを知らせることがで きるという点で有益である。
6— 1 一 3. ウェーブレツ ト変換部
次に、 ウェーブレッ ト変換部 1 0の構成を図面を用いて詳細に説明する。 図 2 4は、 第 3実施形態に係わるウェーブレツ ト変換部 1 0のブロック図である。 図においてリ ンギングフィル夕 1 0 1は、 中心周波数を 2. 2 H z、 通過帯域 を 0. 8 H z〜 3. 5 H zとする Q値が高いフィルタである。 脈波波形の S本波 成分は、 0. 8 H z〜 3. 5 H zの範囲内にあるのが通常であるから、 脈波波形 MHがリ ンギングフィル夕 1 0 1を通過すると、 その基本波成分が抽出される。 例えば、 図 2 5 (a) に示す脈波波形 MHがリンギングフィル夕 1 0 1を通過す ると、 図 2 5 (b) に示す正弦波が得られる。
次に、 ゼロクロス検出回路 1 0 2はコンパレータ等から構成され、 リンギング フィル夕 1 0 1の出力信号とグラン ドレベルを比較して、 矩形波を生成する。 こ の矩形波は、 心拍に同期したものとなる。 例えば、 リンギングフィルタ 1 0 1の 出力信号が図 2 5 ( b ) に示すものであるならば、 ゼロクロス検出回路 ] 0 2の 出力信号は図 2 5 ( c ) に示すものとなる。
次に、 分周回路 1 0 3はゼロクロス検出回路 1 0 2の出力信号を 1 Z 2分周し て図 2 5 (d) に示す制御信号 C Sを生成する。 この制御信号 C Sの 1つのハイ レベル期間または口一レベル期間が、 1心拍の期間に対応する。
次に, 脈波波形 MHは AZD変換器 1 04によってデジタル信号に変換され、 この後、 第 1のメモリ 1 0 5と第 2のメモリ 1 06に格納される。 ここで、 第 1 のメモリ 1 0 5のライ トイネーブル端子には制御信号 C Sが直接供給され、 第 2 のメモリ 1 0 6のライ トイネ一ブル端子にはィンバ一夕 1 0 7によって反転され た制御信号 C Sが供給されるようになっている。 このため、 第 1, 第 2のメモリ 1 0 5 , 1 0 6は、 心拍単位で脈波波形 MHを交互に格納する。 また、 1 0 8は マルチプレクサであって、 第 1 , 第 2のメモリ 1 0 5 , 1 0 6から交互に読み出 される脈波データ MDを選択して基底関数展開部 Wに出力する。 こうして、 第 1 のメモリ 1 0 5の書込期間に第 2のメモリ 1 0 6から脈波データ MDを読み出 し、 第 1のメモリ 1 0 5の読出期間に第 2のメモリ 1 06へ脈波データ MDを書 き込む。
次に、 基底関数展開部 Wは、 上記した式 1の演算処理を行 0構成であって、 マ ザ一 . ウエーブレッ ト ( χ ) を記憶する基底関数記憶部 W 1、 スケールパラメ —夕 aを変換するスケール変換部 W 2、 バッファメモリ W3、 トランスレートを 行う平行移動部 W4および乗算部 W5からなる。 なお、 基底関数記億部 W 1に記 憶するマザ一 ' ウエーブレツ 卜 ( X ) としては、 ガボールウェーブレッ トの他、 メキシカンハツ 卜、 H a a rウェーブレッ ト、 Me y e rウェーブレッ ト、 S h a n n o nウェーブレツ 卜等が適用できる。
まず、 基底関数記憶部 W 1からマザ一 ' ウェーブレツ 卜ゆ (x) が読み出され ると、 スケール変換部 W2はスケールパラメータ aの変換を行う。 ここで、 スケ —ルパラメ一夕 aは周期に対応するものであるから、 aが大きくなると、マザ一 · ウェーブレッ ト (x) は時問軸上で伸長される。 この場合、 基底関数記憶部 W 1 に記憶されるマザ一 ' ウェーブレッ ト ( X ) のデータ量は一定であるので、 aが大きくなると単位時間 たりのデータ璗が減少してしまう。 スケール変換部 W2は、 これを補うように袖問処理を行うとともに、 aが小さくなると間引き処 理を行って、 関数 (x/a) を生成する。 このデ一夕はバッファメモリ W3に 一旦格納される。
次に、 平行移動部 W 4はバッファメモリ W3から トランスレートパラメータ b に応じたタイミングで関数 (x/a) を読み出すことにより、 関数ゆ ( X / a ) の平行移動を行い関数ゆ ( - b / a ) を生成する。
次に、 乗算部 W4は、 変数 l /a 1 /2、 関数 ψ ( X — bZa) および脈波デ一 夕 MDを乗算して心拍単位でウェーブレツ ト変換を行い、 脈波解析データ MKD を生成する。 この例において、 脈波解析データ MKDは、 0 H z〜0. 5 H z、 0. 5 H z〜 l . 0H z、 1. 0 H z〜 l . 5 H z、 1. 5 H z〜2. 0 il z、 2. 0 H z〜2. 5 H z、 2. 5 H z ~ 3. 0 H z、 3. 0 H z〜3. 5 H z、 3. 5 H z〜4. 0 H zといった周波数領域に分割されて出力される。
6 - 1 - 4. 判定部
次に判定部 1 2について説明する。 図 2 6は本実施形態に係わる判定部 1 2の ブロック図である。
図において加算器 1 2 1、 係数回路 1 2 2 , 1 2 4およびメモリ 1 2 3は、 脈 波補正データ MKD' の平均値を各周波数領域毎に算出する回路である。 なお、 係数回路 1 2 2の係数は 1 ZK+ 1、 係数回路 1 24の係数は Kである。 加算器 1 2 1は脈波補正データ MKD' と係数回路 1 24の出力を加算し、 加算器 1 2 1の出力データは係数回路 1 2 2を介してメモリ 1 2 3に格納される。 以上の処 理は、 心拍周期に同期して脈波補正データ MKD ' が生成されるたびに行われる。 したがって、 メモリ 1 2 3の内容は、 心拍に同期して更新される。
ここで、 心拍の周期を t、 現在の時刻を T、 メモリ 1 2 3に格納されるデ一夕 を M a とするならば、 時刻 Tにおけるデ一夕 M a (T) は、 以下に示す式で与え られる。
M a (T) = {M a (T - t ) * K + MK D ' (T) } / (K+ l ) この式において M a (T - t ) は、 時間 t だけ過去のデ一夕、 すなわち、 1心 拍前のデータを表している。 したがって、 データ M a (T) は、 過去のデータと 現在のデ一夕を加重平均したものとなる。 この処理は t時間毎に繰り返して行わ れるので、 結局、 メモリ 1 2 4には脈波補正デ一夕 MKD' の平均値が格納され る。 また、 脈波補正データ MKD ' は各周波数領域毎に生成されるため、 平均値 は各周波数領域毎に算出される。 このため、 メモリ 1 2 4には、 図 2 7に示すよ うに 0. 5 H z 単位で脈波補正データ MKD ' の平均値 M a 1〜M a 8が格納さ れる。 この意味において、 メモリ 1 2 4は、 平均値テーブルとして機能する。 次に、 演算部 1 2 5は、 次式で表される評価関数 Q (T) の演算を行い、 これ を評価データ QDとして出力する。
Q (T) =∑ P k · I M ak(T) -Mk(T) I /M a k(T)
= P I - | M a l (T) -M l (T) | /M a l (T)
+ P 2 · I M a 2 (T) - M 2 (T) I /U a 2 (T) +··· + P 8 · I M a 8 (T) - M 8 (T) I / a 8 (T)
ただし、 Mk (T)は時刻 Tにおける脈波補正データ MKD ' の各周波数成分、 k = l〜 8とする。 また、 Pkは係数であって、 M a k (T)が予め定められた閾値 を越える場合に 1 となり、 当該閾値を下回る場台に 0となるように設定する。 こ のように係数を設定したのは、 脈波波形の特徴部分は、 大きなエネルギーをもつ ているので、 この部分に基づいて不整脈か否かを判別することができるからであ り、 一方、 レベルの低い部分に基づいて不整脈を判別すると、 S N比が悪いため 正確な判別が行えないからである。
この場合、 評価関数 Q (T) は、 脈波補正デ一夕 MKD' が平均値とどの程度 ずれているかを表している。 比較部 1 2 6は、 評価デ一夕 QDと基準データ R D とを比較し、 評価データ QDが基準データ R Dを上回る場合に不整脈検出情報 F Dを生成する。 なお、 本実施形態において、 基準データ RDの値は、 不整脈を判 定できるように実験によって算出された値を用いていており、 不整脈でない脈派 を不整脈と誤判定しないように、 ある程度の余裕をもって設定されている。
ところで、 ウエーブレッ ト変換では、 ある短い時間における周波数分布を求め ることができる。 したがって、 上記時間を十分に短くすれば、 ある時間範囲にお ける脈派波形が正常な形状となっているか否かを判定することが可能となり、 こ の方法でも不整脈を検出することができる。 この場合には、 時間領域での不整脈 判定と周波数領域での周波数判定とを組み合わせた判定を行うことができるとい う利点がある。 ただし、 ここでは、 前述したように、 脈派の周期毎に評価デ一夕 QDと基準データ RDとを比較して不整脈を検出するものとする。 このことは後 述する第 4および第 5実施形態においても同様である。
6— 2. 第 3実施形態の動作
次に、 第 3実施形態の動作を図面を参照しつつ説明する。 図 2 8は、 第 3実施 形態の動作を説明するための図である。
図 2 8 (a) は、 圧脈波センサ 1 3 0によって検出される脈波波形 MHの一例 を示したものである。 この例では、 時刻 Tから時刻 T + tまでの脈波波形 MH 1 が、 通常の波形であり、 これに続く時刻 T+ tから時刻 T+ 2 tの間に不整脈が 発生している。 脈は、 心拍に同期して連続しているのが通常であるが、 心拍の欠 落が生じると、 図示するように脈波波形 MH 2の波高値がほとんど無くなり、 不 整脈が生じる。
時刻 T+ 2 tから時刻 T+ 3 tまでの期間では、 再び心臓が収縮し脈動が生じ る。 一般に、 不整脈の直後に生じる脈波波形 MH 3のピーク値 P 3は、 通常の脈 波波形 MH 1のピーク値 P 1よりも大きくなり、 心拍の欠落を補うことが多い。 また、 脈波波形 MH 3は、 不整脈の影響を受けてその位相が脈波波形 MH 1に対 して ΔΤだけ遅れている。 この位相の遅れは、 脈波波形 MH 4にも生じるが、 脈 波波形 MH 4のピーク値 P 4は、 通常の脈波波形 MH 1のピーク値 P 1 と略一致 する。
図 2 8 (b) は、 図 24に示すゼロクロス検出回路 1 0 2の出力信号の波形で ある。 上述したように、 リンギングフィル夕 1 0 1の Q値は高く設定されている ので、不整脈が発生して脈波波形 MH 2の波高値が低くなつても当該出力信号は、 連続する。 また、 脈波波形 MH 3, MH4は、 脈波波形 MH 1に対して位相が△ Tだけずれるが、 当該出力信 の位相は、 すぐには変化せず長時間をかけて次第 に追従する。 なお、 この例にあっては、 当該出力信号の周波数は 1. 3 H zであ る。
こうして、 生成された出力信 ^に同期してウエーブレツ ト変換部 1 0でゥエー ブレッ ト変換が行われ脈波解析デ一夕 MKDが生成されると、 周波数補正部 1 1 は脈波解析デ一夕 MKDに周波数補正を施して、 脈波補正データ MKD' を生成 する。 図 2 8 ( c ) は、 脈波波形 MH 1〜MH 4に各々対応する脈波補正データ MKD ' の各周波数成分 M 1〜M 8を示したものである。 また、 図 2 8 ( d ) は、 メモリ 1 24に格納される脈波補正デ一夕 MKD ' の平均値デ一夕 M a 1 〜M a 8を示したものである。 なお、 この例にあっては、 B寺刻 Tから時刻 T + 4 tまで の間で平均値 M a 1〜M a 8は変化しないものとする。
ここで、 ゼロクロス検出回路 1 0 2の出力信号の周波数は 1. 3 H zであるか ら、 脈波波形 MHの基本波周波数は 1. 3H zとなる。 このため、 1. 0 H z〜 1. 5 H zに対応する平均値デ一夕 M a 1の値は、 「 7」 となり最も大きくなつ ており、 2次高調波、 3次高調波に対応する平均値デ一夕 M a 5 , M a 7の値が これについで大きく 「4」 となっている。 一方、 不整脈の脈波波形 MH 2に対応 する脈波補正デ一夕 MKD ' では、 その波高値が低いため、 各周波数成分に対応 するデー夕 M 1〜 M 8の値が小さくなつている。
図 2 8 ( e ) は、 各脈波波形 MH 1〜MH 4に各々対応する評価データ QD 1 〜QD 4を示すものである。 なお、 この例にあっては、 ヒ述した評価関数 Q (T) =∑ Pk · I M ak(T) -Mk(T) I ZM ak(T)において、 係数 Pkは、 M ak(T) が 4以上の場合に 1 となり、 4未満の場合に 0となるように設定されている。 例えば、 QD 2は、 以下のように図 2 6に示す演算部 1 2 5で生成される。
QD 2 = I M a 3 -M 3 I / a 3
+ I M a 5 -M 5 I /U a 5
+ I M a 3 - M 7 I /M a 7
= 1 7 - 0 | /7 + | 4 - 2 | /4 + | 4 - 0 | /4 = 2. 5 この後、 比蛟部 1 2 6は評価データ QDを基準データ R Dと比較するが、 この 例の基準データ R Dの値は 「 1」 に固定されているものとする。 このため、 脈波 波形 Μ Π 2は不整脈と判定され、 脈波波形 M H 1 、 M H 3、 M H 4は、 正常と判 定される。 図 2 8 ( f ) は不整脈検出情報 F Dとして比較部 1 2 6から出力され る不整脈検出フラグであり、 ハイ レベルが不整脈であることを示しており、 ロー レベルが正常であることを示している。 なお、 不整脈検出フラグが時間 t だけ遅 れているのは、 演算部 1 2 5 と比較部 1 2 6の処理に時間がかかるからである。 こう して不整脈検出フラグが不整脈検出情報 F Dとして検出されると、 表示部 1 3に不整脈が発生したことが表示され、 また、 その発生時刻が R A M 1 4に格 納される。 そして、 積算部 1 5によって不整脈検出フラグの数が積算され、 この 値が閾値を越えると、 そのことがブザー音で使用者に知らされる。 また、 単位時 間当たりの発生頻度が閾値を越えた場合にも、 そのことがブザー音で使用者に知 らされる。
このように第 3実施形態によれば、 簡単な操作で不整脈を正確に検出すること ができる携帯型の不整脈検出装置を提供することができる。 また、 不整脈の発生 時刻を告知するから、 事後的に不整脈が発生したことを知ることができる。 また、 不整脈積算情報 F S Dを表示部 1 3に表示することができるので、 健康の状態を 簡易に知ることができ、 さらに、 不整脈積算情報 F S Dが閾値を越えるとブザ一 1 7が発音するので、 使用者に警告を与えることができる。 また、 不整脈頻度情 報 F H Dが閾値を越えるとブザー 1 7が発音するので、 睡眠中に不整脈が多発し て危険な状態に陥った場合であっても、 投薬等の処置により突然死といった最悪 の事態を回避することができる。
7 . 第 4実施形態
第 3実施形態に係わる不整脈検出装置は、 使用者が安静状態であることを前提 とするものであった。 ところで、 心拍は人が運動するとこれに応じて強くなるの で、 使用者が歩行したり物を掴み上げたりすると、 脈波波形が体動の影響を受け て変動する。 このため、 第 3実施形態に係わる不整脈検出装置では、 体動がある と不整脈を正確に検出することが難しい。 第 4実施形態は、 この点に鑑みてなさ れたものであり、 脈波波形から体動成分をキャンセルすることにより、 体動があ つたとしても不整脈を正確に検出できる不整脈検出装置を提供するものである。
7 - 1. 第 4実施形態の構成
7 - 1 - 1. 第 4実施形態の外観構成
図 2 9は、 第 4実施形態に係わる不整脈検出装置の使用時における外観構成を 示す図である。 図 2 9が第 3実施形態の外観構成を示す図 2 2 (b) と相違する のは、 締着具 1 4 5において弾性ゴム 1 3 1の反対側に加速度センサ 2 1が設け られている点である。 この場合、 加速度センサ 2 1は、 弾性ゴム 1 3 1の下側に ある圧脈波センサ 1 3 0の近傍に設けられているので、 圧脈波センサ 1 3 0に加 わる体動を精度よく検出することができる。
7— 1一 2. 第 4実施形態の電気的構成
次に、 第 4実施形態に係わる不整脈検出装置の電気的構成について説明する。 図 30は第 4実施形態に係わる不整脈検出装置のプロック図である。
図において、 第 1のウェーブレツ 卜変換部 1 0 Aおよび第 1の周波数補正部 1 1 Aは、 上述した第 3実施形態のウェーブレツ ト変換部 1 0および周波数補正部 1 1 と各々同一の構成であり、 第 1の周波数補正部 1 1 Aから脈波補正データ M KD ' が出力されるようになっている。
また、 加速度センサ 2 1によって体動波形 THが検出されると、 これが第 2の ウエーブレツ ト変換部 1 0 Bに供給され、 体動波形 THにウェーブレツ ト変換が 施され、 体動解析データ TKDが生成されるようになっている。 ここで、 第 2の ウェーブレツ ト変換部 1 0 Bは、 第 3実施形態のウエーブレッ ト変換部 1 0と同 様に構成される。 このため、 体動解析データ TKDは、 0〜4 H zの周波数領域 を 0. 5 H z毎に分割した各周波数成分から構成される。 また、 第 2の周波数補 正部 1 1 Bは、 第 3実施形態の周波数補正部 1 1 と同様に構成され、 体動解析デ 一夕 TKDに周波数補正を施して体動補正デ一夕 TKD ' を生成する。
次に、 マスク部 1 8は、 脈波補正データ MKD' から体動補正デ一夕 TKD ' を減算して、 体動成分が除去された脈波補正データ MKD' 'を生成する。 次に、 判定部 1 2は脈波補正データ MKD' 'に基づいて、 第 3実施形態と同様に不整脈 の判定を行う。 なお、 判定部 1 2の後段にある表示部 1 3等は第 3実施形態と同 様に構成されているので説明を省略する。
7 - 2. 第 4実施形態の動作
次に、 第 4実施形態の動作について図面を参照しつつ説明する。
この例では、 不整脈の検出中に使用者が手でコップを持ち上げた後、 これを元 の位置に戻した場合を想定する。 この場合、 図 3 1 ( a ) に示す脈波波形 MHが 圧脈波センサによって検出され、 また、 同時に図 3 1 ( b ) に示す体動波形 TH が検出されたものとする。
ここで、 体動波形 THは、 時刻 T 1から増加しはじめ、 時刻 T 2で正のピーク となり、 その後、 次第に減少して時刻 T 2でレベル 0を通過し、 時刻 T 3で負の ピークに達し、 時刻 T 4でレベル 0に戻っている。 ところで、 体動波形 THは加 速度センサ 2 1によって検出されるため、 時刻 T 3は使用者がコップを最大に持 ち上げた時刻に対応し、 時刻 T 1は持上開始時刻に対応し、 また、 時刻 T 4は持 上終了時刻に対応する。 したがって、 時刻 T 1から時刻 T 4までの期間が体動が 存在する期間となる。
なお、 図 3 1 ( c ) は仮に体動がなかったとした場合の脈波波形 MH' である。 この図から、 期間 T eにおいて不整脈が発生しており、 期間 T a〜期間 T d、 お よび期間 T f では、 通常の脈波であることが分かる。 また、 この例において、 脈 波波形 MHの基本波周波数は、 1. 3 H zとなっている。
次に、 図 3 2を参照して、 第 4実施形態に係わる不整脈検出装置の動作を説明 する。なお、図 3 2に示す期間 T a〜期間 T f は図 3 1に示したものと対応する。 図 3 2 ( a) は、 この例における脈波補正データ MKD ' を各周波数領域毎のデ 一夕 M 1 〜M 8で示したものである。 また、 図 3 2 (b) は、 体動補正データ T KD ' を各周波数領域毎のデ一夕 M 1 〜M 8で示したものである。 図 3 2 ( b ) より、 0 H z〜 0. 5 H zに対応するデ一夕 M 1 と◦ . 5 H z〜 l . O H zに対 応するデータ M 2の値が期間 T a〜期間 T f で増加していることが分かる。 これ は、 体動の発生時刻 T 1が期間 T aに、 その終了時刻 T 4が期間 Τ ίに対応する 力、らである。
上記した脈波補正データ MKD' と体動補正デ一夕 TKD' が、 第 1, 第 2の 周波数補正部 1 1 A, 1 1 Bで各々生成されこれらがマスク部 1 8に供給される と、 マスク部 1 8は、 脈波補正データ MKD' から体動補正データ TKD' を減 算して、 図 3 2 ( c ) に示す体動成分が除去された脈波補正デ一夕 MKD' 'を生 成する。 これにより、 体動がある場合でもその影響をキャンセルして、 安静時の 脈波波形から得れる脈波補正データ MKD ' と同様の脈波補正データ MKD' 'を 得ることが可能となる。
この後、 判定部 1 2は、 この脈波補正データ MKD' 'に基づいて不整脈を判定 する。 この判定処理では、 通常の脈波から得られた平均値テ一ブル (図 2 6のメ モリ 1 2 3) を参照して、 評価データ QDを生成する。 ここで、 平均値テーブル に格納されている平均値データ M a 1〜M a 8が図 3 2 (d ) に示すものである ならば、 各期間毎に生成される評価データ QD a〜QD f は図 3 2 ( e ) に示す ものとなる。 この後、 比較部 1 2 6は評価データ QDを基準データ RDと比較す るが、 この例の基準データ R Dの値は 「 1」 に固定するものとする。 なお、 基準 データ R Dの値を可変としてもよいことは第 3実施形態において記載した通りで ある。 この例にあっては、 期間 T eにおいて生成される評価データ QD eの値が 2. 5となっており、 基準デ一夕 R Dの値を越える。 期間 T eにおいて不整脈が 発生したと判定され、 図 3 2 ( f ) に示す不整脈検出フラグが不整脈検出情報 F Dとして生成される。
こうして不整脈検出フラグが不整脈検出情報 FDとして検出されると、 第 3実 施形態と同様に、 表示部 1 3に不整脈が発生したことが表示され、 また、 その発 生時刻が RAM 1 4に格納される。 そして、 積算部 1 5によって不整脈検出フラ グの数が積算され、 この値が閾値を越えると、 そのことがブザー音で使用者に知 らされる。 また、 単位時間当たりの発生頻度が閾値を越えた場合にも、 そのこと がブザー音で使用者に知らされる。
このように第 4実施形態にあっては、 体動波形 THについてもウェーブレツ ト 変換を施し、 これに基づいて体動成分をキャンセルするようにしたので、 日常生 活ゃ運動中であっても不整脈を正確に検出することができる。 この結果、 1日の 不整脈積算情報 F S Dのように、 長時間の計測を必要とする場合であっても、 何 等支障なく行うことができ、 生体の状態を診断する際に役立てることができる。
8. 第 5実施形態
第 4実施形態に係わる不整脈検出装置では、 加速度センサ 2 1によって体動を 検出し脈波補正データ MKD ' から体動補正デ一夕 TKD ' を減算することによ つて、 脈波補正デ一タ MKD' に含まれている体動成分をキャンセルして、 不整 脈を検出した。 しかし、 加速度センサ 2 1、 第 2のウェーブレツ ト変換部 1 0 B、 および第 2の周波数補正部 1 1 B等が必要になるので、 構成が複雑になる。 第 5 実施形態は、 この点に鑑みてなされたものであり、 簡易な構成にもかかわらず、 体動があっても正確に不整脈を検出することができる不整脈検出装置を提供する ものである。
8— 1. 第 5実施形態の構成
第 5実施形態に係わる不整脈検出装置の外観構成は、 図 2 1および図 2 2に示 す第 3実施形態の外観構成と同様であるのでここでは説明を省略し、 その電気的 構成について説明する。 図 3 3は第 5実施形態に係わる不整脈検出装置のブロッ ク図であり、 周波数補正部 1 1と判定部 1 2との間に体動分離部 1 9が新たに設 けられた点を除いて、 第 3実施形態で説明した図 2 3と同じである。 以下、 相違 点について説明する。
体動分離部 1 9は、 脈波補正データ MKD' から体動成分を分離除去して体動 分離脈波補正データ TBDを生成する。 ここで、 体動分離部 1 9は、 以下に述べ る体動の性質を利用している。
体動は、 腕の上下動や走行時の腕の振り等によって生じるが、 日常生活におい ては、 人体を瞬間的に動かすことはほとんどない。 このため、 日常生活では、 体 動波形 THの周波数成分はそれほど高くなく、 0 H z〜 1 H zの範囲にあるのが 通常である。 この場合、 脈波波形 MHの基本波周波数は、 1 Η ζ〜 2 Η ζの範囲 にあることが多い。 したがって、 日常生活において、 体動波形 THの周波数成分 は脈波波形 MHの基本波周波数よりも低い周波数領域にある。 一方、 ジョギング等のスポーツ中にあっては、 腕の振り等の影響があるため、 体動波形 THの周波数成分が幾分高くなるが、 運動量に応じて心拍数が増加する ため、 脈波波形 MHの基本波周波数も同時に高くなる。 このため、 スポーツ中に おいても、 体動波形 THの周波数成分は脈波波形 MHの基本波周波数よりも低い 周波数領域にあるのが通常である。
体動分離部 1 9は、 この点に着目して体動成分を分離するものであり、 脈波波 形 MHの基本波成分よりも低い周波数領域を無視するように構成されている。 こ の場合には、 脈波波形 MHの基本波成分より高い周波数領域に体動成分が存在す ると不整脈の検出精度が低下する。 しかしながら、 上述したように体動成分は脈 波波形 MHの基本波成分よりも低い周波数領域にある確率が高いので、 高い精度 で不整脈の検出を行うことができる。 図 34は、 体動分離部 1 9の詳細なブロッ ク図である。 波形整形部 1 9 1は脈波波形 MHに波形整形を施して、 脈波波形 M Hと同期したリセッ トパルスを生成する。 具体的には、 上述した図 2 4のリンギ ングフィルタ 1 0 1 とゼロクロス検出回路 1 0 2等によって構成される。 カウン 夕 1 9 2は図示せぬクロックパルスを計数し、 前記リセッ 卜パルスによってカウ ン ト値がリセッ トされるようになっている。 また、 平均値算出回路 1 9 3は、 力 ゥンタ 1 9 2のカウント値の平均値を算出する。 具体的には、 上述した図 26に 示す加算器 1 2 1、 係数回路 1 2 2, 1 2 3、 メモリ 1 2 3等によって構成すれ ばよい。 この場合、 平均値算出回路 1 9 3によって算出される平均値は、 脈波波 形 MHの平均周期に対応する。 したがって、 平均倘を参照すれば、 脈波波形 MH の基本波周波数を検知できる。
次に、 置換回路 1 9 4は、 前記平均値に基づいて、 脈波波形 MHの基本波周波 数を含む周波数領域を特定する。 例えば、 前記平均値が 0. 7 1秒を示す場合に は、 基本波周波数は 1. 4H zとなるので、 特定される周波数領域は 1 H z〜 1. 5 H zとなる。 この後、 置換回路 1 94は、 特定周波数領域未満の周波数領域に ついて、 脈波補正データ MKD' を 「0」 に置換して体動分離脈波補正データ T BDを生成する。 これにより、 脈波波形 MHの基本波周波数より低い周波数傾域 の成分は、 不整脈の判定に当たって無視される。 この場合、 体動成分とともに脈 波成分も 「0」 に置換されてしまうが、 脈波波形 MHの特徴的な部分は基本波周 波数よりも高域の周波数領域に存在するため、 「0」 に置換しても不整脈の判定 には影響をほとんど与えない。
こうして生成された体動分離脈波補正データ TBDに基づいて、判定部 1 2は、 不整脈の判定を行って不整脈検出情報 FDを生成する。 なお、 判定部 1 2の後段 にある表示部 1 3等は第 3実施形態と同様に構成されているので説明を省略す る。
8 - 2. 第 5実施形態の動作
次に、 第 5実施形態の動作について図面を参照しつつ説明する。
この例では、 圧脈波センサ 1 3 0によって、 図 3 1 (a) に示す脈波波形 MH が検出されたものとする。 図 3 5は、 第 5実施形態に係わる不整脈検出装匱の動 作を示すタイミングチャートである。 なお、 図 3 5に示す期間 T a〜期間 T f は 図 3 1に示したものと対応する。
図 3 5 (a) は、 この例における脈波補正データ MKD ' を各周波数領域毎の データ M 1〜M 8で示したものであり、 図 3 2 (a) と一致する。 ここで、 脈波 波形 MHの基本波周波数が 1. 3 H zであるとする。 この場合、 置換回路 1 94 によって特定される周波数領域は 1. 0H z〜 l . 5 H zとなるので、 置換の対 象となる周波数領域は、 デ一タ M 2に対応する 0. 5 H z〜 l . O H zとデータ M 1に対応する 0 H z〜0. 5 H z となる。 したがって、 脈波補正データ MKD ' のデータ M l , M 2は 「0」 に置換され、 図 3 5 (b) に示す体動分離脈波補正 データ T B Dが生成される。
この後、 判定部 1 2は、 この体動分離脈波補正データ TBDに基づいて不整脈 を判定する。 この判定処理では、 通常の脈波から得られた平均値テーブル (図 2 6のメモリ 1 2 3) を参照して、 評価データ QDを生成する。 ここで、 平均値テ —ブルに格納されている平均値データ M a 1〜M a 8が図 3 5 ( c ) に示すもの であるならば、 各期間毎に生成される評価データ QD a〜QD f は図 3 5 ( d ) に示すものとなる。
ここで、 図 3 5 ( d ) と図 3 2 ( e ) を比較すると、 評価デ一夕 QD b, QD eにおいて、 両者が若干相違していることがわかる。 これは、 体動成分にわずか ながら 1. 0 Η ζ〜 1. 5 H zの成分が存在することに起因している。 すなわち、 図 3 2 (b) に示す体動補正デ一夕 TKD' を参照すると、 期間 T b, T dのデ —夕 M 3の値力 Γ 1 j となっており、 1. 0 H z〜 l . 5 H zの成分がそこに存 在している。 上記した置換回路 1 94では、 この成分を無視して置換を行うため、 若干のずれが生じるのである。 しかし、 評価データ QD b, QD eにおける両者 の差はいずれも 0. 1であるので、 無視したとしても不整脈の判定精度はほとん ど劣化しない。
この後、 比較部 1 2 6は評価データ QDを基準データ R Dと比較するが、 この 例の基準データ RDの値は 「 1」 に固定するものとする。 なお、 基準データ RD の値を可変としてもよいことは第 3実施形態において記載した通りである。
この例にあっては、 期間 T eにおいて生成される評価デ一夕 QD eの値が 2. 5となっており、 基準データ R Dの値を越える。 したがって、 期間 T eにおいて 不整脈が発生したと判定され、 図 3 5 ( e ) に示す不整脈フラグが生成される。 この不整脈フラグは図 3 2 ( f ) に示すものと一致する。
こうして不整脈検出フラグが不整脈検出情報 F Dとして検出されると、 第 3実 施形態と同様に、 表示部 1 3に不整脈が発生したことが表示され、 また、 その発 生時刻が RAM 1 4に格納される。 そして、 積算部 1 5によって不整脈検出フラ グの数が積算され、 この値が閾値を越えると、 そのことがブザー音で使用者に知 らされる。 また、 単位時間当たりの発生頻度が閾値を越えた場合にも、 そのこと がブザー音で使用者に知らされる。
このように第 5実施形態によれば、 体動成分は脈波波形 MHの基本波周波数成 分よりも低い周波数領域に存在することが確率的に高いという体動の性質を巧み に利用して体動成分を分離した。 このため、 第 4実施形態で必要とされた加速度 センサ 2 1、 第 2のウェーブレッ ト変換部 1 0 B、 および第 2の周波数補正部 1 1 Bといった構成を省略することができ、 しかも体動がある場合でも正確に不整 脈を検出することが可能となる。
9. 変形例
本発明は上述した実施形態に限定されるものではなく、 例えば、 以下に述べる 各種の変形が可能である。
( 1 ) 第 3〜第 5実施形態において、 各周波数補正部は、 異なる周波数領域でェ ネルギ一を比較するために用いられたが、 ある周波数領域に着目して、 そこのェ ネルギ一レベルを比較して不整脈を検出してもよい。 この場合には、 周波数補正 手段を用いなく ともよい。 例えば、 0〜0. 4 H z、 0. 4H z〜 0. 8 H z、 0. 8H z〜 l . 6 H z、 1. 6 H z〜3. 2 H z、 3. 2 H z〜 6. 4 H zと いったように周波数領域を選定した場合、 0. 8H z〜; L . 6 H zと 1. 6 H z 〜 3. 2 H zの周波数領域に基本波成分が存在すると考えられるので、 2つの領 域の合計を求め、 これをある基準値と比較して、 不整脈を検出するようにしても よい。
( 2 ) 第 3〜第 5実施形態において、 各ウエーブレッ ト変換部 1 0, 1 0 A, 1 0 Bは基底関数展開部 Wを備え、 これによりウエーブレッ ト変換を行ったが、 本 発明はこれに限定されるものではなく、 ウエーブレツ ト変換をフィルタバンクに よって実現してもよい。 フィル夕バンクの構成例を図 3 6に示す。 図において、 フィルタバンクは 3段で構成されており、 その基本単位は、 高域フィル夕 1 Aお よびデシメ一ションフィルタ 1 Cと、 低域フィル夕 1 Bおよびデシメ一ショ ンフ ィル夕 1 Cである。 高域フィル夕 1 Aと低域フィル夕 1 Bは、 所定の周波数帯域 を分割して、高域周波数成分と低域周波数成分を各々出力するようになっている。 この例にあっては脈波データ MDの周波数帯域として 0H z〜4H zを想定して いるので、 一段目の高域フィル夕 1 Aの通過帯域は 2 H z〜 4 H zに設定され、 —方、 一段目の低域フィル夕 1 Bの通過帯域は 0 H z〜 2 H zに設定される。 ま た、 デシメーシヨ ンフィルタ 1 Cは、 1サンプルおきにデ一夕を間引く。
こうして生成されたデータが次段に供給されると、 周波数帯域の分割とデータ の間引きが繰り返され、 最終的には、 0 H z〜 4 H zの周波数帯域を 8分割した データ M 1〜; M 8が得られる。
また、 高域フィル夕 1 Aと低域フィルタ 1 Bとは、 その内部に遅延素子(Dフリ ップフ口ップ)を含む卜ランスバーサルフィル夕で構成すればよい。 ところで、 人 の脈拍数は 4 0〜 2 0 0の範囲にあり、 脈波波形 MHの基本波周波数は、 生体の 状態に応じて刻々と変動する。 この場合、 基本波周波数に同期して、 分割する帯 域を可変することができれば、 動的な生体の状態に追従した情報を得ることがで きる。 そこで、 トランスバーサルフィル夕に供給するクロックを脈波波形 MHと させることによって、 分割する帯域を適応的に可変してもよい。
また、 脈波解析データ MKDのうち、 脈波波形 MHの特徴を表す代表的な周波 数成分は、 基本波、 第 2高調波および第 3高調波の各周波数成分である。 したが つて、 フィルタバンクの出力データ M l〜M 8のうち一部を用いて不整脈を判定 するようにしてもよい。 この場合、 上述したようにフィルタバンクを脈波波形 M Hに同期するように構成すれば、 高域フィルタ 1 A、 低域フィル夕 I Bおよびデ シメ一シヨ ンフィルタ 1 Cの一部を省略して、 構成を簡易なものにすることがで さる。
(3) 第 4実施形態においては、 加速度センサ 2 1によって体動波形 THを検出 した。 ところで、 体動が検出される場合は、 利用者が運動状態にあるため、 脈波 波形 MHの基本波周波数が高くなる。 この脈波波形 MHは、 第 1のウェーブレツ ト変換部 1 0 Aにて周波数解析されるが、 周波数解析の対象となる周波数領域を 固定にすると、 脈波波形 MHの特徴部分を十分に解析することが困難となる。 例 えば、 安静状態で脈波波形 MHの基本波周波数が 1 H zであった人が、 ランニン グを行い、 脈波波形 MHの基本波周波数が 2 H z (脈拍数 1 2 0に相当) に変化 したとする。 安静状態においては、 第 4実施形態で説明したように 0〜4H 'zの 範囲でウエーブレツ ト変換を行うことにより、 脈波波形 MHの第 3高調波まで周 波数解析を行う ことができる。 しかし、 ランニング中にあっては、 第 3高調波は 6 H z となるので、 周波数解析を行うことができなくなってしまう。
そこで、 体動波形 THに基づいて運動量を求め、 運動量が大きくなるにつれゥ エーブレツ ト変換を行う周波数頜域を高い頜域ヘシフ 卜するように第 1 , 第 2の ウェーブレツ 卜変換部 1 O A, 1 0 Bを制御してもよい。
また、 第 1, 第 2のウェーブレツ 卜変換部 1 0 A, 1 0 Bを上述したフィル夕 バンクで構成する場合にあっては、 そのクロック周波数を運動量に応じて制御す ればよい。 すなわち、 運動量が増加するにつれ、 クロック周波数を高くするよう に周知のフィ一ドバック制御を施すようにすればよい。
ランニング中にあっては、 体動波形 T Hのピッチは、 腕の往復ピッチを示して おり、 足のスライ ドピッチと一定の関係があり、 腕の振り一回に対して 2歩進む のが通常である。 また、 運動量は走行速度と歩幅の積で表すことができる。 一般 に、 走行速度が上がるとともにピッチも上がり、 また、 歩幅は減少する傾向にあ る。 したがって、 体動波形 T Hのピッチと運動量には一定の関係がある。
例えば、 図 4 1 は、 第 1 に、 グランド走における走行速度および拍数の関係と、 第 2に、 走行速度および走行ピッチの関係とを、 同じ図上で示したものである。 この図に示すように、 被験者の拍数および走行ピッチは、 走行速度とともに増加 することが判る。 すなわち、 走行ピッチが高くなると、 これに伴い運動量と拍数 が増加することが判る。 したがって、 体動波形 T Hのピッチと運動量の関係を予 め測定し、 これをテーブルに格納しておき、 このテーブルを参照して, 運動量を 算出するようにしてもよい。
また、 図 4 1 より、 体動波形 T Hのピッチと心拍との間にも一定の関係がある と考えられるので、 体動波形 T Hのピッチと周波数解析の対象とする周波数領域 の関係をテーブルに格納しておき、計測された体動波形 T Hのピッチに基づいて、 テーブルを参照して周波数解析の対象となる周波数領域を読み出すようにしても よい。 より具体的には、 体動波形 T Hのピッチと最適なクロック周波数の関係を 予め測定し、 これをテーブルに格納しておき、 このテーブルを参照して、 クロッ ク周波数を定めるようにすればよい。
これらの場合、 体動波形 T Hのピッチとの関係を詳細に求めなく とも、 数力所 のデータを格納しておき、 残りのデータについては補間により求めるようにして もよい。
また、 以上の変形例は、 第 5実施形態の構成に加速度センサ 2 1等の体動検出 手段を追加した不整脈検出装匱に適用してもよい。 この場合、 体動検出手段によ つて検出される体動波形 T Hに基づいて生体の運動状態を検出し、 この結果に基 づいてウェーブレッ ト変換部で行う周波数解析の周波数領域を可変する制御手段 を設け、 体動ピッチに応じてウエーブレツ ト変換の対象となる周波数領域を可変 すればよい。
(4) 第 4実施形態においては、 マスク部 1 8の前段に第 1の周波数補正部 1 1 Aと第 2の周波数補正部 1 1 Bとを設け、 脈波解析デ一夕 MKDと体動解析デー 夕 TKDについて別個に周波数補正を行ったが、 第:!, 第 2の周波数補正部 1 1 A, 1 1 Bの替わりにマスク部 1 8の後段に周波数補正部を設けてもよい。 この 場合には、 別個独立に行っていた周波数補正を共通して行うことができるので、 簡易に構成で不整脈を検出することができる。
また、 上述した第 5実施形態では、 周波数補正部 1 1を体動分離部 1 9の前段 に設けたが、 本発明はこれに限定されるものではなく、 周波数補正部 1 1を体動 分離部 1 9の後段に設け、 その出力を判定部 1 2に供給してもよい。 要は、 ゥェ 一ブレッ ト変換から不整脈の判定処理の間で、 周波数補正を行えばよい。 また、 周波数補正部 1 1 を省略してもよい。
( 5 ) 第 3〜第 5実施形態において、 不整脈頻度情報 FHDと不整脈積算情報 F S Dとに基づいて第 3の警告情報 KD 3を生成する制御部を新たに設け、 第 3の 警告情報 KD 3をブザー 1 7に供給して告知するようにしてもよい。 この場合、 制御部は、 不整脈頻度情報 FHDが予め定められた所定値を越え、 かつ、 不整脈 積算情報 F S Dが予め定められた所定値を越えた場合に、 第 3の警告情報 KD 3 を生成する。 また、 第 3の警告情報を生成する条件を、 不整脈頻度情報 FHDお よび不整脈積算情報 F S Dと関連づけてテーブルに格納しておき、 このテーブル を参照して第 3の警告情報を生成するようにしてもよい。
(6 ) 第 3〜第 5実施形態において、 不整脈積算情報 F S Dを表示する場合にあ つては、 これらの情報にグレーデイ ングを施して表示するようにしてもよい。 具 体的には、 不整脈積算情報 F S Dを表示する場合には、 「疾患の可能性が高い J 、
「健康に留意」 、 「普通」 、 「やや健康」 、 「健康」 といった文字を L CD等に 表示するようにしてもよい。 また、 この場合、 「疾患の可能性が高い」 に記号 A を、 「健康に留意」 に記号 Bを、 「普通」 に記号 Cを、 「やや健康」 に記号 Dを、 「健康」 に記号 Eを対応させ、 これらの記号を L CD等に表示するようにしても よい。
(7 ) 上述した第 1〜第 5実施形態においては、 脈波検出手段の一例として圧脈 波センサ 1 30を取りあげ説明した力 本発明はこれに限定されるものではなく、 脈動を検出できるものであれば、 どのようなものであってもよい。 このことは、 脈派検出部位が橈骨、 指尖のいずれであっても同様である。
例えば、 光電式脈波センサであってもよい。 光電式脈波センサは、 図 3 7に示 すように構成されるが、 その態様には反射光を利用したものと透過光を利用した ものとがある。
まず、 反射光を利用したものについて説明する。 図 3 7において、 スィ ッチ S Wが o n状態となり、 電源電圧が印加されると、 L E D 3 2から光が照射され、 血管や組織によって反射された後に、フォ ト トランジスタ 3 3によって受光され、 脈波信号 Mが検出される。 ここで、 L EDの発光波長は、 血液中のヘモグロビン の吸収波長ピーク付近に選ばれる。 このため、 受光レベルは血流量に応じて変化 する。 したがって、 受光レベルを検出することによって、 脈動を検出できる。 また、 反射光を利用する場合、 L EDとしては、 I n G a N系 (インジウム一 ガリウム一窒素系) の青色 L E Dが好適である。 青色 L EDの発光スぺク トルは、 例えば 4 50 nmに発光ピークを有し、 その発光波長域は、 3 50 nmから 6 0 O nmまでの範囲にある。 この場合には、 かかる発光特性を有する L E Dに対応 させてフォ 卜 トランジスタ PTとして、 G aA s P系 (ガリウム—砒素一リ ン系) のフォ ト トランジスタ PTを用いればよい。 このフォ ト トランジスタ PTの受光 波長領域は、 例えば、 主要感度領域が 3 0 0 nmから 6 0 0 nmまでの範囲にあ つて、 3 0 0 nm以下にも感度領域がある。 このような青色 L E Dとフォ ト トラ ンジス夕 P Tとを組み合わせると、 その重なり領域である 3 0 0 n mから 6 00 nmまでの波長領域において、 脈波が検出される。 この場合には、 以下の利点が ある。
まず、 外光に含まれる光のうち、 波長領域が 7 0 0 n m以下の光は、 指の組織 を透過しにくい傾向があるため、 外光がセンサ固定用バン ドで覆われていない指 の部分に照射されても、指の組織を介してフォ ト トランジスタ 3 3まで到達せず、 検出に影響を与えない波長領域の光のみがフォ ト トランジスタ 3 3に達する。 一 方、 3 00 n mより低波長領域の光は、 皮膚表面でほとんど吸収されるので、 受 光波長領域を 7 00 nm以下としても、 実質的な受光波長領域は、 3 0 0 nm〜 7 00 nmとなる。 したがって、 指を大掛かりに覆わなく とも、 外光の影響を抑 圧することができる。 また、 血液中のヘモグロビンは、 波長が 3 0 0 nmから 7 0 0 n mまでの光に対する吸光係数が大きく、 波長が 8 8 0 n mの光に対する吸 光係数に比して数倍〜約 1 0 0倍以上大きい。 したがって、 この例のように、 へ モグロビンの吸光特性に合わせて、 吸光特性が大きい波長領域 ( 30 0 nmから 7 0 0 n m) の光を検出光として用いると、 その検出値は、 血量変化に応じて感 度よく変化するので、 血量変化に基づく脈波信号の S ZN比を高めることができ る。
次に、 透過光を利用する場合について説明する。 上述したように、 波長領域が 7 0 0 nm以下の光は、 指の組織を透過しにくい傾向がある。 このため、 透過光 を利用する場合は、 発光部から波長が 6 0 0 nm〜 1 0 0 0 nmの光を照射し、 照射光を組織→血管→組織の順に透過させ、 この透過光の光量変化を検出するよ うにしている。 透過光は血液中のヘモグロビンの吸収を受けるので、 透過光の光 量変化を検出することによって、 脈波波形を検出することができる。
この場合、 発光部には、 I n G a A s系 (インジウム一ガリウム—砒素) や G a A s系 (ガリゥム—砒素) のレーザ一発光ダイォ一ドが好適である。 ところで、 波長が 6 00 n m〜 1 0 00 n mの外光は組織を透過し易いので、 受光部に外光 が入射すると脈波信号の SZNが劣化してしまう。 そこで、 発光部から偏光した レーザー光を照射し、 透過光を偏光フィルタを介して受光部で受光するようにし てもよい。 これにより、 外光の影響を受けることなく、 脈波信号を良好な SZN 比で検出することができる。
光電式脈波センサは、 まず、 上述した腕時計に用いられる。 反射光を用いる場 合には、弾性ゴム 1 3 1 とその裏面に設けられる圧脈波センサ 1 30の替わりに、 発光部と受光部を一体にしたセンサユニッ トを用いる。 一方、 透過光を用いる場 合には、 図 3 8 (a) に示すように、 発光部 2 0 0を締着具 1 4 5の締め付け側 に設け、 時計本体側には受光部 2 0 1 を設けている。 この場合、 発光部 2 0 0か ら照射された光は、 血管 1 4 3を透過した後、 橈骨 2 0 2 と尺骨 2 0 3の間を通 つて、 受光部 2 0 1 に達する。 なお、 透過光を用いる場合には、 照射光は組織を 透過する必要があるため、 組織の吸収を考慮すると、 その波長は6 0 0 11 ]71〜 1 ◦ O O n mであることが望ましい。
次に、 検出部位を指とする使用態様を説明する。 図 3 8 ( b ) は反射光を用い て指尖部で脈波を検出する例である。 この場合、 センサユニッ ト 5 4には、 発光 部と受光部が組み込まれており、 リング状のセンサ固定用バン ド 5 2によって指 に固定される。 この場合、 センサユニッ ト 5 4 と装置本体 1 は図 3に示すように 接続されており、 脈波信号 M Sは接続ケーブル 5 1 を介して装置本体 1 に供給さ れる。 また、 同図 ( c ) は透過光を用いて脈波を検出する例である。 把持部材 2 0 4 と把持部材 2 0 5は、 バネ 2 0 7で付勢され、 軸 2 0 6を中心に回動できる ようになつている。 また、 把持部材 2 0 4 と把持部材 2 0 5には、 発光部 2 0 0 と受光部 2 0 1が設けられている。 この脈波検出部を用いる場合には、 母指と示 指の間の水かき部分を把持部材 2 0 4 と把持部材 2 0 5で把持して脈波を検出す る。
次に、 光電式脈波センサを眼鏡と組み合わせた使用態様を説明する。 なお、 こ の眼鏡の形態では、 使用者に対する告知手段としての表示装置も一緒に組み込ま れた構造になっている。 したがって、 脈波検出部として以外に表示装置としての 機能についても併せて説明する。
図 3 9は、 脈波検出部が接続された装置を眼鏡に取り付けた様子を表わす斜視 図である。 図のように、 装置本体は本体 7 5 aと本体 7 5 bに分かれ、 それぞれ 別々に眼鏡の蔓 7 6に取り付けられており、 これら本体が蔓 7 6内部に埋め込ま れたリ一ド線を介して互いに電気的に接続されている。
本体 7 5 aは表示制御回路を内蔵しており、 この本体 7 5 aのレンズ 7 7側の 側面には全面に液晶パネル 7 8が取り付けられ、 また、 該側面の一端には鏡 7 9 が所定の角度で固定されている。 さらに本体 7 5 aには、 光源 (図示略) を含む 液晶パネル 7 8の駆動回路と、 表示デ一夕を作成するための回路が組み込まれて いる。 この光源から発射された光は、 液晶パネル 7 8を介して鏡 7 9で反射され て、 眼鏡のレンズ 7 7に投射される。 また、 本体 7 5 bには、 装置の主要部が組 み込まれており、 その上面には各種のボタンが設けられている。 なお、 これらボ タン 8 0 , 8 1の機能は装置毎に異なる。
一-方、 光電式脈波センサを構成する L ED 3 2およびフォ ト トランジスタ 3 3 (図 3 7を参照) はパッ ド 8 2, 8 3に內蔵されると共に、 パッ ド 8 2, 8 3を ¾朶へ固定するようになっている。 これらのパッ ド 8 2 , 8 3は、 本体 7 5 か ら引き出されたリー ド線 84 , 84によって電気的に接続されている。
例えば、 光電式脈波センサであってもよい。 光電式脈波センサは、 図 3 7に示 すように構成される。 スィツチ SWが o n状態となり、 電源電圧が印加されると、 L E D 3 2から光が照射され、 血管や組織によって反射された後に、 フォ ト トラ ンジス夕 3 3によって受光され、 脈波信号 Mが検出される。 ここで、 L EDの発 光波長は、 血液中のヘモグロビンの吸収波長ピーク付近に選ばれる。 このため、 受光レベルは血流量に応じて変化する。 したがって、 受光レベルを検出すること によって、 脈動を検出できる。
( 8 ) 第 4実施形態において、 第 1のウェーブレツ ト変換部 1 O Aは、 図 40に 示すように構成してもよい。
図 4 0において、 振幅検出回路 1 1 0に体動波形 THが供給されると、 その振 幅値 P Pが検出される。 この振幅値 P Pは、 比較器 1 1 1によって基準値 RE F と比較され、 比較器 1 1 1では振幅値 P Pが基準値 R E Fを上回る期間にローレ ベルとなり、 振幅値 P Pが基準値 R E Fを下回る期間にハイ レベルとなる制御信 号が生成される。 この制御信号は体動の有無を表しており、 ローレベルの期間は 体動があり、 ハイ レベルの期間は体動がない。 この場合、 基準値 RE Fは体動の 有無を判別できるように実験で予め定められている。 次に、 ゲート回路 1 1 2は 制御信号に基づいて脈波波形 Milにゲー卜をかける。 具体的には、 制御信号がハ ィ レベルの期問、 脈波波形 MHをリ ンギングフィル夕に供給し、 一方、 制御信号 が口一レベルの期間、 脈波波形 MHをリンギングフィル夕 1 0 1に供給しないよ うにする。 これにより、 体動有りの期間においては、 脈波波形 MHをマスクする ことができる。 この場合、 リ ンギングフィル夕 1 0 1の Q値は高く設定されているので、 脈波 波形 M IIの供給が一定期間停止したとしても、 停止前の出力波形に連続した正弦 波を出力し続けることができる。 したがって、 体動がある場合であっても、 脈波 波形 MHの周期を算出し、 これに基づいてウェーブレツ ト変換を施すことが可能 となる。
( 9) 第 3〜第 5実施形態において、 以下のようにして不整脈を検出するように してもよい。 まず、 脈波波形 MHの連続性をウェーブレツ 卜変換の結果である脈 波解析データ MKDから判定する (ステップ S 1 ) 。 次に、 不連続であることが 検出された場合には体動の有無を体動波形 T Hに基づいて判定する (ステップ S 2) 。 体動有りと判定された場合には、 上述した第 4実施形態あるいは第 5実施 形態の手法によって、 体動成分を脈波成分から除去し、 これに基づいて不整脈の 有無を判定する (ステップ S 3) 。 一方、 ステップ S 1において、 脈波波形が連 続していると判定された場合には、不整脈がなかったと判定する(ステツプ S 4 )。
( 1 0) 第 1〜第 5実施形態において、 体動がないときには、 F F T処理ゃゥェ —ブレツ 卜処理を行う必要はなく、 脈派波形がしきい値を越えた分当たりに換算 される数に基づいて欠拍を検出することができる。 日常生活においては、 体動が ない状態が続く ことがかなり多いので、 体動の有無に応じて処理を切り替えるこ とにより、 処理時間の短縮はもちろん、 消費電力の低減をも実現できる。

Claims

請 求 の 範 囲
1 . 非侵襲的に生体の脈波波形を検出する脈波検出手段と、
前記脈波検出手段によって検出された脈波波形から体動成分を除外する体動成 分除外手段と、
前記体動成分除外手段によって体動成分が除外された純粋な脈波波形を表す情 報を告知する告知手段と
を具備することを特徴とする不整脈検出装置。
2 . 前記生体の体動を検出して体動波形を出力する体動検出手段を具備し、 前記体動成分除外手段は、 前記脈波検出手段によって検出された脈波波形から 前記体動波形で特定される体動成分を除外する
ことを特徴とする請求項 1 に記載の不整脈検出装置。
3 . 非侵襲的に生体の脈波波形を検出する脈波検出手段と、
前記脈波検出手段によって検出された脈波波形から体動成分を除外する体動成 分除外手段と、
前記体動成分除外手段によって体動成分が除外された純粋な脈波波形の変化を 監視して不整脈を検出する不整脈検出手段と、
前記不整脈検出手段の検出結果を告知する告知手段と
を具備することを特徴とする不整脈検出装置。
4 . 前記生体の体動を検出して体動波形を出力する体動検出手段と、
基準値決定期間において前記脈波波形を構成する各脈波間の間隔値の代表値を 求め、 該代表値を脈波間隔値の基準値とする基準値決定手段と、
前記脈波検出手段によって検出された脈波波形に対する間隔値を求め、 該間隔 値と前記基準値との差異を求める比蛟手段とを具備し、
前記体動成分除外手段は、 前記体動検出手段から体動波形が出力されない場合 にのみ、前記脈派検出手段によって検出された脈派波形を前記比較手段へ供給し、 前記告知手段は前記比較手段によって求められた差異を告知する ことを特徴とする請求項 3に記載の不整脈検出装置。
5 . 前記生体の体動を検出して体動波形を出力する体動検出手段と、
基準値決定期間において前記脈波波形を構成する各脈波間の間隔値の代表値を 求め、 該代表値を脈波間隔値の基準値とする基準値決定手段と、
前記脈波検出手段によって検出された脈波波形に対する間隔値を求め、 該間隔 値と前記基準値との差異を求める比較手段と、
前記比蛟手段で求められた前記差異が所定範囲外である場合に不整脈発生と判 定する判 手段とを具備し、
前記体動成分除外手段は、 前記体動検出手段から体動波形が出力されない場合 にのみ、前記脈派検出手段によって検出された脈派波形を前記比較手段へ供給し、
^記告知手段は前記判定手段の判定結果を告知する
ことを特徴とする請求項 3に記載の不整脈検出装置。
6 . 前記不整脈検出手段は、 連続する 2つの脈波間の間隔値について前記比較 手段が求めた差異が所定範囲内である場合に、 該間隔値を用いて前記基準値を更 新する基準値更新手段を有する
ことを特徴とする請求項 4または 5に記載の不整脈検出装匱。
7 . 前記不整脈検出手段は、 前記脈波検出手段によって検出された脈波波形に 周波数解析を施す周波数解析手段を有し、
前記体動成分除外手段は、 前記周波数解析手段による周波数解析結果から体動 成分を除外し、
前記不整脈検出手段は、 前記体動成分除外手段によって体動成分が除外された 前記周波数解析結果を用いて不整脈を検出する
ことを特徴とする請求項 3に記載の不整脈検出装置。
8 . 前記不整脈検出手段は、 前記体動検出手段から出力された体動波形に基づいて体動の定常性の有無を判 定する体動定常性判定手段を有し、
前記不整脈検出手段は、 前記体動定常性判定手段が体動に定常性有りと判定し た場合にのみ、 前記周波数解析手段による周波数解析結果に基づいて不整脈を検 出する
ことを特徴とする請求項 7に記載の不整脈検出装置。
9 . 前記不整脈検出手段は、 前記周波数解析手段として、 前記脈派検出手段に よって検出された脈派波形に高速フーリェ変換を施すフーリェ変換手段を有する ことを特徴とする請求項 7 または 8いずれかに記載の不整脈検出装置。
1 0 . 前記不整脈検出手段は、 拍動周波数の適正な変動範囲を推定する範囲推 定手段を有し、
前記フーリェ変換手段による周波数解析結果において、 前記範囲推定手段が推 定した変動範囲内に突出した周波数スぺク トルが存在しない場合には、 不整脈発 生と判定する
ことを特徴とする請求項 9に記載の不整脈検出装匱。
1 1 . 前記生体の体動を検出して体動波形を出力する体動検出手段を具備し、 前記不整脈検出手段は、 第 1のフーリェ変換手段として前記フーリェ変換手段 を有するとともに、 前記体動検出手段によって検出された前記体動波形に高速フ 一リェ変換を施す第 2のフーリェ変換手段を有し、
前記体動成分除外手段は、 前記第 1 のフーリエ変換手段による周波数解析結果 から前記第 2のフ一リェ変換結果を減算し、
前記不整脈検出手段は、 前記体動成分除外手段による減算結果を用いて不整脈 を検出する
ことを特徴とする請求項 9に記載の不整脈検出装置。
1 2 . 前記生体の体動を検出して体動波形を出力する体動検出手段を具備し、 前記不整脈検出手段は、 第 1のフーリェ変換手段として前記フ一リェ変換手段 を有するとともに、 前記体動検出手段によって検出された前記体動波形に高速フ 一リェ変換を施す第 2のフーリェ変換手段を有し、
前記体動成分除外手段は、 前記第 2のフ一リェ変換手段による周波数解析結果 から体動に対応する周波数成分を求め、 前記第 1 のフーリェ変換手段による周波 数解析結果から該周波数成分を除外し、
前記不整脈検出手段は、 前記体動成分除外手段において体動に対応する周波数 成分が除外された周波数解析結果を用いて不整脈を検出する
ことを特徴とする請求項 9に記載の不整脈検出装置。
1 3 . 前記不整脈検出手段は、 前記周波数解析手段として、 前記脈波検出手段 によって検出された脈波波形にウェーブレツ ト変換を施して、 各周波数領域毎に 脈波解析データを生成するウエーブレツ ト変換手段を有し、 前記脈波解析データ の連続性を各周波数領域毎に解析することによって異常部分を検知すると、 不整 脈と判定する
ことを特徴とする請求項 7または 8記載の不整脈検出装置。
1 4 . 前記不整脈検出手段は、 対応する各周波数に基づいて、 前記脈波解析デ —夕に周波数当たりのパヮ一密度が一定になるように補正を施し、 脈波補正デー 夕を生成する周波数補正手段を有し、 前記脈波補正データの連続性を各周波数領 域毎に解析することによって異常部分を検知すると、 不整脈と判定する
ことを特徴とする請求項 1 3記載の不整脈検出装置。
1 5 . 前記生体の体動を検出して体動波形を出力する体動検出手段を備え、 前記不整脈検出手段は、
第 1 のウェーブレツ ト変換手段として前記ウェーブレツ 卜変換手段を有すると ともに、 前記体動検出手段によって検出された前記体動波形にウェーブレツ 卜変 換を施して、 各周波数領域毎に体動解析データを生成する第 2のウエーブレツ 卜 変換手段を有し、 前記体動成分除外手段は前記脈波解析データから前記体動解析データを減算し て、 体動を除去した脈波解析データを生成するマスク手段を有し、
前記不整脈検出手段は、 前記マスク手段によって生成された前記脈波解析デー 夕の連続性を各周波数領域毎に解析することによって異常部分を検知すると、 不 整脈と判定する
ことを特徴とする請求項 1 3記載の不整脈検出装置。
1 6 . 前記生体の体動を検出して体動波形を出力する体動検出手段を備え、 前記不整脈検出手段は、
第】 のウエーブレツ ト変換手段として 記ウェーブレツ ト変換 -段を苻すると ともに、
対応する各周波数に基づいて、 前記脈波解析データに周波数当たりのパヮ一密 度が一定になるように補正を施し、脈波補正データを生成する周波数補正手段と、 前記体動検出手段によって検出された前記体動波形にウエーブレッ ト変換を施 して、 各周波数領域毎に体動解析データを生成する第 2のウェーブレツ ト変換手 段と、
対応する各周波数に基づいて、 前記体動解析データに周波数当たりのパワー密 度が一定になるように補正を施し、 体動補正データを生成する第 2の周波数補正 手段とを有し、
前記体動成分除外手段は、 前記脈波補正データから前記体動補正データを減算 して、 体動を除去した脈波補正データを生成するマスク手段を有し、
前記不整脈検出手段は、 前記マスク手段によって生成された前記脈波補正デー 夕の連続性を各周波数頜域毎に解析することによって異常部分を検知すると、 不 整脈と判定する
ことを特徴とする請求項 1 3記載の不整脈検出装匱。
1 7 . 前記生体の体動を検出して体動波形を出力する体動検出手段を備え、 前記不整脈検出手段は、 第 1 のウエーブレツ ト変換手段として前記ウェーブレ ッ 卜変換手段を有するとともに、 前記体動検出手段によって検出された前記体動 波形にウェーブレツ 卜変換を施して、 各周波数頜域毎に体動解析データを生成す る第 2のウェーブレツ 卜変換手段を有し、
前記体動成分除外手段は、 前記脈波解析データから前記体動解析データを減算 して、体動を除去した脈波データを各周波数領域毎に生成するマスク手段を有し、 前記不整脈検出手段は、 さらに、 対応する各周波数に基づいて、 前記脈波デー 夕に周波数当たりのパワー密度が一定になるように補正を施し、 脈波補正データ を生成する周波数補正手段を有し、 前記マスク手段によって生成された前記脈波 補正データの連続性を各周波数領域毎に解析することによって異常部分を検知す ると、 不整脈と判定する
ことを特徴とする請求項 1 3記載の不整脈検出装置。
1 8 . 前記生体の体動を検出して体動波形を出力する体動検出手段を備え、 前記体動成分除外手段は、 前記脈波解析データのうち、 体動に対応する周波数 成分を除外して脈波データを生成し、
前記不整脈検出手段は、 前記脈波データの連続性を各周波数領域毎に解析する ことによって異常部分を検知すると、 不整脈と判定する
ことを特徴とする請求項 1 3記載の不整脈検出装置。
1 9 . 前記生体の体動を検出して体動波形を出力する体動検出手段を備え、 前記不整脈検出手段は、 対応する各周波数に基づいて、 前記脈波解析データに 周波数当たりのパワー密度が一定になるように補正を施し、 脈波補正デ一夕を生 成する周波数補正手段を有し、
前記体動成分除外手段は、 前記脈波補正データのうち、 体動に対応する周波数 成分を除外して、 脈波デ一夕を生成し、
前記不整脈検出手段は、 前記脈波データの速続性を各周波数領域毎に解析する ことによって異常部分を検知すると、 不整脈と判定する
ことを特徴とする請求項 1 3記載の不整脈検出装匱。
2 0 . 前記不整脈検出手段は、 前記脈波波形の周期を検出する脈波周期検出手 段を備え、
前記ウェーブレツ ト変換手段は、 検出された前記周期に同期してウエーブレツ ト変換を施すことを特徴とする請求項 1 3 、 1 4 、 1 8または 1 9のいずれかに 記載の不整脈検出装置。
2 1 . 前記不整脈検出手段は、 前記脈波波形の周期を検出する脈波周期検出手 段を備え、
前記第 1のウエーブレツ ト変換手段および前記第 2のウェーブレツ 卜変換手段 は、 検出された前記周期に同期してウェーブレツ 卜変換を施すことを特徴とする 請求項 1 5乃至 1 7のいずれかに記載の不整脈検出装置。
2 2 . 前記不整脈検出手段によって不整脈であると判定されると、 前記不整脈 の発生時刻を記憶する記憶手段を備えたことを特徴とする請求項 3乃至 2 1 のい ずれかに記載の不整脈検出装置。
2 3 . 前記記憶手段に記憶された発生時刻に応じた情報を告知する
ことを特徴とする請求項 2 2記載の不整脈検出装置。
2 4 . 前記記憶手段に記憶された発生時刻に応じた情報を生体リズムの変動周 期に合わせて図形化して告知する
ことを特徴とする請求項 2 2記載の不整脈検出装置。
2 5 . 前記不整脈検出手段によって不整脈であると判定された所定時間当たり の回数を不整脈頻度情報として算出する頻度算出手段を備えたことを特徴とする 請求項 3乃至 2 4のいずれかに記載の不整脈検出装置。
2 6 . 前記不整脈頻度情報が予め定められた所定値を越えた場合に、 そのこと を告知する第 2の告知手段を備えたことを特徴とする請求項 2 5に記載の不整脈 検出装置。
2 7 . 前記不整脈検出手段によって不整脈であると判定された回数を積算して 不整脈積算情報を生成する積算手段を備えたことを特徴とする請求項 3乃至 2 5 のいずれかに記載の不整脈検出装置。
2 8 . 前記不整脈積算情報が予め定められた所定値を越えた場合に、 そのこと を告知する第 3の告知手段を備えたことを特徴とする請求项 2 7に記載の不整脈 検出装置。
2 9 . 前記不整脈検出手段によって不整脈であると判定された所定時間当たり の回数を不整脈頻度情報として算出する頻度算出手段と、
前記不整脈検出手段によって不整脈であると判定された回数を積算して不整脈 積算情報を生成する積算手段と
を具備することを特徴とする請求項 3乃至 2 4のいずれかに記載の不整脈検出 装置。
3 0 . 前記不整脈検出手段によって不整脈であると判定された所定時間当たり の回数を不整脈頻度情報として算出する頻度算出手段と、
前記不整脈検出手段によって不整脈であると判定された回数を積算して不整脈 積算情報を生成する積算手段と、
前記不整脈頻度情報が予め定められた所定値を越え、 かつ、 前記不整脈積算情 報が予め定められた所定値を越えた場合に、 そのことを告知する第 4の告知手段 と
を備えたことを特徴とする請求項 3乃至 2 4のいずれかに記載の不整脈検出装
3 1 . 前記不整脈頻度情報を告知することを特徴とする請求項 2 5 、 2 6 、 2 9または 3 0のいずれかに記載の不整脈検出装置。
3 2 . 前記積算情報を告知することを特徴とする請求項 2 7、 2 8、 2 9また は 3 0のいずれかに記載の不整脈検出装置。
3 3 . 前記不整脈頻度情報および前記積算情報を告知することを特徴とする請 求項 2 9または 3 0に記載の不¾脈検出装置。
3 4 . 不整脈検出手段による不整脈検出処理と各種告知処理とを並行して行う ことを特徴とする請求項 3乃至 3 3のいずれかに記載の不整脈検出装置。
3 5 . 前記脈波検出手段は、 生体の動脈の脈動を圧力によって検出する圧脈波 センサからなることを特徴とする請求項 1 乃至 3 4のいずれかに記載の不整脈検 出装置。
3 6 . 前記脈波検出手段は、 生体の検出部位に 3 0 0 n m ~ 7 0 0 n mの波長 の光を照射したときに得られる反射光を受光した受光信号を脈波波形として検出 することを特徴とする請求項 1乃至 3 4のいずれかに記載の不整脈検出装置。
3 7 . 前記脈波検出手段は、 生体の検出部位に 6 0 0 n n!〜 1 0 0 0 n mの波 長の光を照射したときに得られる透過光を受光した受光信号を脈波波形として検 出することを特徴とする請求項 1乃至 3 4のいずれかに記載の不整脈検出装置。
PCT/JP1997/001322 1996-04-17 1997-04-17 Detecteur d'arythmie WO1997038626A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69723946T DE69723946T2 (de) 1996-04-17 1997-04-17 Arrhythmiedetektor
US08/981,349 US6095984A (en) 1996-04-17 1997-04-17 Arrhythmia detecting apparatus
EP97917411A EP0841034B1 (en) 1996-04-17 1997-04-17 Arrhythmia detector
JP53695797A JP3635663B2 (ja) 1996-04-17 1997-04-17 不整脈検出装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/95731 1996-04-17
JP9573196 1996-04-17
JP9/55263 1997-03-10
JP5526397 1997-03-10

Publications (1)

Publication Number Publication Date
WO1997038626A1 true WO1997038626A1 (fr) 1997-10-23

Family

ID=26396157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001322 WO1997038626A1 (fr) 1996-04-17 1997-04-17 Detecteur d'arythmie

Country Status (7)

Country Link
US (1) US6095984A (ja)
EP (1) EP0841034B1 (ja)
JP (1) JP3635663B2 (ja)
CN (1) CN1155332C (ja)
DE (1) DE69723946T2 (ja)
TW (1) TW376312B (ja)
WO (1) WO1997038626A1 (ja)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119564A (ja) * 1997-06-27 1999-01-19 Seiko Epson Corp 心機能診断装置
JPH11128186A (ja) * 1997-10-31 1999-05-18 Seiko Epson Corp 一回拍出量検出装置および心機能診断装置
JP2000037360A (ja) * 1998-07-22 2000-02-08 Seiko Instruments Inc 脈波検出装置
JP2002049979A (ja) * 2000-08-03 2002-02-15 Seiko Precision Inc 自動緊急警報装置及び自動緊急警報出力方法
JP3843462B2 (ja) * 1997-11-20 2006-11-08 セイコーエプソン株式会社 脈波診断装置
JP2007516024A (ja) * 2003-11-26 2007-06-21 カーディオネット インコーポレーテッド 心臓不整脈の識別および治療を容易にするために不整脈情報を処理して、表示するシステムおよび方法
JP2009213551A (ja) * 2008-03-07 2009-09-24 Denso Corp 心電波形処理装置、心拍数測定装置
JP2013055982A (ja) * 2011-09-07 2013-03-28 Seiko Epson Corp 心房細動判定装置、心房細動判定方法およびプログラム
JP2014054448A (ja) * 2012-09-13 2014-03-27 Omron Healthcare Co Ltd 脈拍測定装置、ならびに、脈拍測定方法および脈拍測定プログラム
US8801621B2 (en) 2007-04-05 2014-08-12 Konica Minolta Sensing, Inc. Method, system and program product for analyzing pulse wave data
JP2015150095A (ja) * 2014-02-12 2015-08-24 株式会社エー・アンド・デイ 血圧計
JP2015163220A (ja) * 2015-04-24 2015-09-10 セイコーエプソン株式会社 解析システム、脈波解析装置、およびプログラム
JP2017504414A (ja) * 2014-01-16 2017-02-09 ノキア テクノロジーズ オサケユイチア 医学的データのエントロピーの程度の検出の方法およびデバイス
WO2017179694A1 (ja) * 2016-04-15 2017-10-19 オムロン株式会社 生体情報分析装置、システム、プログラム、及び、生体情報分析方法
JP2018166883A (ja) * 2017-03-30 2018-11-01 ルネサスエレクトロニクス株式会社 脈拍計測装置、脈拍計測方法、及びプログラム
JP2020110422A (ja) * 2019-01-15 2020-07-27 エイアイビューライフ株式会社 情報処理装置
US10842396B2 (en) 2015-04-17 2020-11-24 Taiyo Yuden Co., Ltd. Vibration waveform sensor and waveform analysis device
US11147500B2 (en) 2015-10-27 2021-10-19 Cardiologs Technologies Sas Electrocardiogram processing system for delineation and classification
US11331034B2 (en) 2015-10-27 2022-05-17 Cardiologs Technologies Sas Automatic method to delineate or categorize an electrocardiogram
US11672464B2 (en) 2015-10-27 2023-06-13 Cardiologs Technologies Sas Electrocardiogram processing system for delineation and classification
US11678831B2 (en) 2020-08-10 2023-06-20 Cardiologs Technologies Sas Electrocardiogram processing system for detecting and/or predicting cardiac events
US11826150B2 (en) 2017-08-25 2023-11-28 Koninklijke Philips N.V. User interface for analysis of electrocardiograms
EP4265182A3 (en) * 2017-05-15 2023-12-27 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US11918857B2 (en) 2016-06-11 2024-03-05 Apple Inc. Activity and workout updates
US11931625B2 (en) 2021-05-15 2024-03-19 Apple Inc. User interfaces for group workouts
US11950916B2 (en) 2018-03-12 2024-04-09 Apple Inc. User interfaces for health monitoring
US11972853B2 (en) 2019-05-06 2024-04-30 Apple Inc. Activity trends and workouts
US11977729B2 (en) 2022-06-05 2024-05-07 Apple Inc. Physical activity information user interfaces
US11979467B2 (en) 2019-06-01 2024-05-07 Apple Inc. Multi-modal activity tracking user interface
US11985506B2 (en) 2020-02-14 2024-05-14 Apple Inc. User interfaces for workout content
WO2024122104A1 (ja) * 2022-12-09 2024-06-13 オムロンヘルスケア株式会社 血圧計
US12016694B2 (en) 2019-02-04 2024-06-25 Cardiologs Technologies Sas Electrocardiogram processing system for delineation and classification
US12023567B2 (en) 2022-06-05 2024-07-02 Apple Inc. User interfaces for physical activity information
US12036018B2 (en) 2016-09-22 2024-07-16 Apple Inc. Workout monitor interface
US12080421B2 (en) 2013-12-04 2024-09-03 Apple Inc. Wellness aggregator

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20060161071A1 (en) 1997-01-27 2006-07-20 Lynn Lawrence A Time series objectification system and method
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
EP0960598B1 (en) * 1998-05-28 2008-07-16 Microlife Intellectual Property GmbH A method and a device for noninvasive measurement of the blood pressure and for detection of arrhythmia
JP3114142B2 (ja) 1998-05-28 2000-12-04 マイクロライフ システムズ エージー 血圧の測定と不整脈の検出とを同時に行うための装置
US8103325B2 (en) * 1999-03-08 2012-01-24 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US6468490B1 (en) * 2000-06-29 2002-10-22 Applied Materials, Inc. Abatement of fluorine gas from effluent
US6721594B2 (en) 1999-08-24 2004-04-13 Cardiac Pacemakers, Inc. Arrythmia display
US6519490B1 (en) * 1999-12-20 2003-02-11 Joseph Wiesel Method of and apparatus for detecting arrhythmia and fibrillation
US20010034488A1 (en) * 2000-02-09 2001-10-25 Shal Policker Method and system of automated hemodynamical detection of arrhythmias
US6606510B2 (en) 2000-08-31 2003-08-12 Mallinckrodt Inc. Oximeter sensor with digital memory encoding patient data
US6591123B2 (en) * 2000-08-31 2003-07-08 Mallinckrodt Inc. Oximeter sensor with digital memory recording sensor data
US6665558B2 (en) 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US8548576B2 (en) 2000-12-15 2013-10-01 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
KR100452748B1 (ko) * 2001-05-08 2004-10-12 유닉스전자주식회사 전자 혈압계를 이용한 심전도 측정 방법
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6822564B2 (en) * 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US20080200775A1 (en) * 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
US20080139954A1 (en) * 2002-09-20 2008-06-12 Mary Carol Day System for at least two types of patient alerting associated with cardiac events
US6956572B2 (en) * 2003-02-10 2005-10-18 Siemens Medical Solutions Health Services Corporation Patient medical parameter user interface system
ATE521279T1 (de) 2003-02-27 2011-09-15 Nellcor Puritan Bennett Ie Verfahren und vorrichtung zur auswertung und verarbeitung von photoplethysmografischen signalen durch wellentransformationsanalyse
US7107096B2 (en) * 2004-01-28 2006-09-12 Angel Medical Systems, Inc. System for patient alerting associated with a cardiac event
US7233822B2 (en) * 2004-06-29 2007-06-19 Medtronic, Inc. Combination of electrogram and intra-cardiac pressure to discriminate between fibrillation and tachycardia
US7578793B2 (en) 2004-11-22 2009-08-25 Widemed Ltd. Sleep staging based on cardio-respiratory signals
US7680532B2 (en) * 2005-02-25 2010-03-16 Joseph Wiesel Detecting atrial fibrillation, method of and apparatus for
JP4752673B2 (ja) * 2005-10-06 2011-08-17 コニカミノルタセンシング株式会社 脈波データ解析方法、システム、プログラム
US8046060B2 (en) 2005-11-14 2011-10-25 Cardiac Pacemakers, Inc. Differentiating arrhythmic events having different origins
US7761150B2 (en) * 2006-03-29 2010-07-20 Medtronic, Inc. Method and apparatus for detecting arrhythmias in a medical device
CN101073496B (zh) * 2006-05-17 2011-05-11 优盛医学科技股份有限公司 可判断心跳不规则的方法及其装置
US20100198509A1 (en) * 2007-06-07 2010-08-05 Qualcomm Incorporated 3d maps rendering device and method
CN101802881B (zh) * 2007-09-19 2012-08-15 皇家飞利浦电子股份有限公司 检测异常情况的设备和方法
JP2011507666A (ja) * 2007-12-26 2011-03-10 ネルコー ピューリタン ベネット エルエルシー 生理学的パラメーターに対する履歴傾向アイコン
CA2722773C (en) 2008-05-07 2015-07-21 Lawrence A. Lynn Medical failure pattern search engine
US20090324033A1 (en) * 2008-06-30 2009-12-31 Nellcor Puritan Bennett Ireland Signal Processing Systems and Methods for Determining Slope Using an Origin Point
US8827917B2 (en) * 2008-06-30 2014-09-09 Nelleor Puritan Bennett Ireland Systems and methods for artifact detection in signals
US8077297B2 (en) * 2008-06-30 2011-12-13 Nellcor Puritan Bennett Ireland Methods and systems for discriminating bands in scalograms
US8295567B2 (en) * 2008-06-30 2012-10-23 Nellcor Puritan Bennett Ireland Systems and methods for ridge selection in scalograms of signals
US20090326402A1 (en) * 2008-06-30 2009-12-31 Nellcor Puritan Bennett Ireland Systems and methods for determining effort
US7944551B2 (en) 2008-06-30 2011-05-17 Nellcor Puritan Bennett Ireland Systems and methods for a wavelet transform viewer
US8660799B2 (en) 2008-06-30 2014-02-25 Nellcor Puritan Bennett Ireland Processing and detecting baseline changes in signals
US8761855B2 (en) * 2008-07-15 2014-06-24 Nellcor Puritan Bennett Ireland Systems and methods for determining oxygen saturation
US8506498B2 (en) 2008-07-15 2013-08-13 Nellcor Puritan Bennett Ireland Systems and methods using induced perturbation to determine physiological parameters
US20100016692A1 (en) * 2008-07-15 2010-01-21 Nellcor Puritan Bennett Ireland Systems and methods for computing a physiological parameter using continuous wavelet transforms
US8082110B2 (en) 2008-07-15 2011-12-20 Nellcor Puritan Bennett Ireland Low perfusion signal processing systems and methods
US8660625B2 (en) * 2008-07-15 2014-02-25 Covidien Lp Signal processing systems and methods for analyzing multiparameter spaces to determine physiological states
US8385675B2 (en) * 2008-07-15 2013-02-26 Nellcor Puritan Bennett Ireland Systems and methods for filtering a signal using a continuous wavelet transform
US20100016676A1 (en) * 2008-07-15 2010-01-21 Nellcor Puritan Bennett Ireland Systems And Methods For Adaptively Filtering Signals
US8370080B2 (en) * 2008-07-15 2013-02-05 Nellcor Puritan Bennett Ireland Methods and systems for determining whether to trigger an alarm
US8285352B2 (en) 2008-07-15 2012-10-09 Nellcor Puritan Bennett Llc Systems and methods for identifying pulse rates
US8358213B2 (en) * 2008-07-15 2013-01-22 Covidien Lp Systems and methods for evaluating a physiological condition using a wavelet transform and identifying a band within a generated scalogram
US8226568B2 (en) * 2008-07-15 2012-07-24 Nellcor Puritan Bennett Llc Signal processing systems and methods using basis functions and wavelet transforms
US8679027B2 (en) * 2008-07-15 2014-03-25 Nellcor Puritan Bennett Ireland Systems and methods for pulse processing
JP5336803B2 (ja) 2008-09-26 2013-11-06 株式会社東芝 脈波計測装置
US8696585B2 (en) * 2008-09-30 2014-04-15 Nellcor Puritan Bennett Ireland Detecting a probe-off event in a measurement system
US8410951B2 (en) * 2008-09-30 2013-04-02 Covidien Lp Detecting a signal quality decrease in a measurement system
US9155493B2 (en) 2008-10-03 2015-10-13 Nellcor Puritan Bennett Ireland Methods and apparatus for calibrating respiratory effort from photoplethysmograph signals
US20100087714A1 (en) * 2008-10-03 2010-04-08 Nellcor Puritan Bennett Ireland Reducing cross-talk in a measurement system
US9011347B2 (en) 2008-10-03 2015-04-21 Nellcor Puritan Bennett Ireland Methods and apparatus for determining breathing effort characteristics measures
JP2010104694A (ja) 2008-10-31 2010-05-13 Mitsubishi Heavy Ind Ltd 補助人工心臓の異常検出装置、補助人工心臓の異常検出方法、及び異常検出プログラム
AU2009311406B2 (en) * 2008-11-05 2013-06-27 Covidien Lp System and method for facilitating observation of monitored physiologic data
US9501619B2 (en) 2008-11-13 2016-11-22 Cerner Innovation, Inc. Integrated medication and infusion monitoring system
US20100204591A1 (en) * 2009-02-09 2010-08-12 Edwards Lifesciences Corporation Calculating Cardiovascular Parameters
JP5448515B2 (ja) * 2009-03-25 2014-03-19 シチズンホールディングス株式会社 生体信号測定装置
US8364225B2 (en) * 2009-05-20 2013-01-29 Nellcor Puritan Bennett Ireland Estimating transform values using signal estimates
US20100298728A1 (en) * 2009-05-20 2010-11-25 Nellcor Puritan Bennett Ireland Signal Processing Techniques For Determining Signal Quality Using A Wavelet Transform Ratio Surface
US8444570B2 (en) * 2009-06-09 2013-05-21 Nellcor Puritan Bennett Ireland Signal processing techniques for aiding the interpretation of respiration signals
US20100324827A1 (en) * 2009-06-18 2010-12-23 Nellcor Puritan Bennett Ireland Fluid Responsiveness Measure
US20100331716A1 (en) * 2009-06-26 2010-12-30 Nellcor Puritan Bennett Ireland Methods and apparatus for measuring respiratory function using an effort signal
US20100331715A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Ireland Systems and methods for detecting effort events
US8636667B2 (en) 2009-07-06 2014-01-28 Nellcor Puritan Bennett Ireland Systems and methods for processing physiological signals in wavelet space
US20110021892A1 (en) * 2009-07-23 2011-01-27 Nellcor Puritan Bennett Ireland Systems and methods for respiration monitoring
US8478376B2 (en) * 2009-07-30 2013-07-02 Nellcor Puritan Bennett Ireland Systems and methods for determining physiological information using selective transform data
US8594759B2 (en) * 2009-07-30 2013-11-26 Nellcor Puritan Bennett Ireland Systems and methods for resolving the continuous wavelet transform of a signal
US8346333B2 (en) * 2009-07-30 2013-01-01 Nellcor Puritan Bennett Ireland Systems and methods for estimating values of a continuous wavelet transform
US8628477B2 (en) 2009-07-31 2014-01-14 Nellcor Puritan Bennett Ireland Systems and methods for non-invasive determination of blood pressure
US8755854B2 (en) 2009-07-31 2014-06-17 Nellcor Puritan Bennett Ireland Methods and apparatus for producing and using lightly filtered photoplethysmograph signals
US8172777B2 (en) * 2009-09-14 2012-05-08 Empire Technology Development Llc Sensor-based health monitoring system
US20110071844A1 (en) 2009-09-22 2011-03-24 Cerner Innovation, Inc. Pharmacy infusion management
US8923945B2 (en) * 2009-09-24 2014-12-30 Covidien Lp Determination of a physiological parameter
WO2011037699A2 (en) * 2009-09-24 2011-03-31 Nellcor Puritan Bennett Llc Determination of a physiological parameter
US8400149B2 (en) * 2009-09-25 2013-03-19 Nellcor Puritan Bennett Ireland Systems and methods for gating an imaging device
US20110077484A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Ireland Systems And Methods For Identifying Non-Corrupted Signal Segments For Use In Determining Physiological Parameters
US20110098933A1 (en) * 2009-10-26 2011-04-28 Nellcor Puritan Bennett Ireland Systems And Methods For Processing Oximetry Signals Using Least Median Squares Techniques
US9050043B2 (en) 2010-05-04 2015-06-09 Nellcor Puritan Bennett Ireland Systems and methods for wavelet transform scale-dependent multiple-archetyping
US9044147B2 (en) 2010-06-17 2015-06-02 Welch Allyn, Inc. Detection of noise during heart beat variation evaluation
US9039627B2 (en) * 2010-07-28 2015-05-26 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
US8092393B1 (en) * 2010-07-28 2012-01-10 Impact Sports Technologies, Inc. Monitoring device with an accelerometer, method and system
US8834378B2 (en) 2010-07-30 2014-09-16 Nellcor Puritan Bennett Ireland Systems and methods for determining respiratory effort
JP5576234B2 (ja) 2010-10-14 2014-08-20 株式会社デンソー 生体状態監視装置
CN102340313B (zh) * 2010-12-31 2014-07-02 杭州百富电子技术有限公司 采集设备采样丢点测试方法和装置及系统
US8888701B2 (en) * 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
CN102048558B (zh) * 2011-01-28 2012-05-23 深圳市理邦精密仪器股份有限公司 一种胎心率信号处理方法及其装置
JP5742369B2 (ja) * 2011-03-29 2015-07-01 セイコーエプソン株式会社 脈波計、および信号処理方法
JP5742441B2 (ja) * 2011-05-06 2015-07-01 セイコーエプソン株式会社 生体情報処理装置
US9113830B2 (en) * 2011-05-31 2015-08-25 Nellcor Puritan Bennett Ireland Systems and methods for detecting and monitoring arrhythmias using the PPG
US9109902B1 (en) 2011-06-13 2015-08-18 Impact Sports Technologies, Inc. Monitoring device with a pedometer
US20130127620A1 (en) 2011-06-20 2013-05-23 Cerner Innovation, Inc. Management of patient fall risk
US9489820B1 (en) 2011-07-12 2016-11-08 Cerner Innovation, Inc. Method for determining whether an individual leaves a prescribed virtual perimeter
US10546481B2 (en) 2011-07-12 2020-01-28 Cerner Innovation, Inc. Method for determining whether an individual leaves a prescribed virtual perimeter
US9741227B1 (en) 2011-07-12 2017-08-22 Cerner Innovation, Inc. Method and process for determining whether an individual suffers a fall requiring assistance
US9269000B2 (en) * 2011-07-29 2016-02-23 Nokia Technologies Oy Method and apparatus for providing adaptive display and filtering of sensors and sensor data
US9597022B2 (en) 2011-09-09 2017-03-21 Nellcor Puritan Bennett Ireland Venous oxygen saturation systems and methods
US9693709B2 (en) 2011-09-23 2017-07-04 Nellcot Puritan Bennett Ireland Systems and methods for determining respiration information from a photoplethysmograph
US8880576B2 (en) 2011-09-23 2014-11-04 Nellcor Puritan Bennett Ireland Systems and methods for determining respiration information from a photoplethysmograph
US9402554B2 (en) 2011-09-23 2016-08-02 Nellcor Puritan Bennett Ireland Systems and methods for determining respiration information from a photoplethysmograph
US9675274B2 (en) 2011-09-23 2017-06-13 Nellcor Puritan Bennett Ireland Systems and methods for determining respiration information from a photoplethysmograph
US9119597B2 (en) 2011-09-23 2015-09-01 Nellcor Puritan Bennett Ireland Systems and methods for determining respiration information from a photoplethysmograph
US9098069B2 (en) 2011-11-16 2015-08-04 Google Technology Holdings LLC Display device, corresponding systems, and methods for orienting output on a display
US9693736B2 (en) 2011-11-30 2017-07-04 Nellcor Puritan Bennett Ireland Systems and methods for determining respiration information using historical distribution
US8755871B2 (en) 2011-11-30 2014-06-17 Covidien Lp Systems and methods for detecting arrhythmia from a physiological signal
US9247896B2 (en) 2012-01-04 2016-02-02 Nellcor Puritan Bennett Ireland Systems and methods for determining respiration information using phase locked loop
US8947382B2 (en) 2012-02-28 2015-02-03 Motorola Mobility Llc Wearable display device, corresponding systems, and method for presenting output on the same
US8988349B2 (en) 2012-02-28 2015-03-24 Google Technology Holdings LLC Methods and apparatuses for operating a display in an electronic device
US9179876B2 (en) 2012-04-30 2015-11-10 Nellcor Puritan Bennett Ireland Systems and methods for identifying portions of a physiological signal usable for determining physiological information
US9060745B2 (en) 2012-08-22 2015-06-23 Covidien Lp System and method for detecting fluid responsiveness of a patient
US8731649B2 (en) 2012-08-30 2014-05-20 Covidien Lp Systems and methods for analyzing changes in cardiac output
US9357937B2 (en) 2012-09-06 2016-06-07 Covidien Lp System and method for determining stroke volume of an individual
US9241646B2 (en) 2012-09-11 2016-01-26 Covidien Lp System and method for determining stroke volume of a patient
US20140081152A1 (en) 2012-09-14 2014-03-20 Nellcor Puritan Bennett Llc System and method for determining stability of cardiac output
US8977348B2 (en) 2012-12-21 2015-03-10 Covidien Lp Systems and methods for determining cardiac output
US9560978B2 (en) 2013-02-05 2017-02-07 Covidien Lp Systems and methods for determining respiration information from a physiological signal using amplitude demodulation
US9270877B2 (en) 2013-02-20 2016-02-23 Kristin Elizabeth Slater Method and system for generation of images based on biorhythms
US10022053B2 (en) 2013-02-22 2018-07-17 Cloud Dx, Inc. Simultaneous multi-parameter physiological monitoring device with local and remote analytical capability
US9554712B2 (en) 2013-02-27 2017-01-31 Covidien Lp Systems and methods for generating an artificial photoplethysmograph signal
US9687159B2 (en) 2013-02-27 2017-06-27 Covidien Lp Systems and methods for determining physiological information by identifying fiducial points in a physiological signal
US9974468B2 (en) 2013-03-15 2018-05-22 Covidien Lp Systems and methods for identifying a medically monitored patient
US20140288885A1 (en) * 2013-03-19 2014-09-25 Seiko Epson Corporation Signal processing device, pulse wave measuring apparatus, and signal processing method
US9681819B2 (en) 2013-08-30 2017-06-20 Joseph Wiesel Method and apparatus for detecting atrial fibrillation
US11147499B2 (en) 2013-08-30 2021-10-19 Joseph Wiesel Method and apparatus for detecting atrial fibrillation
US9622687B2 (en) 2013-09-05 2017-04-18 Qualcomm Incorporated Half step frequency feature for reliable motion classification
US10022068B2 (en) 2013-10-28 2018-07-17 Covidien Lp Systems and methods for detecting held breath events
US20160019360A1 (en) 2013-12-04 2016-01-21 Apple Inc. Wellness aggregator
EP3079571A4 (en) 2013-12-12 2017-08-02 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
US10096223B1 (en) 2013-12-18 2018-10-09 Cerner Innovication, Inc. Method and process for determining whether an individual suffers a fall requiring assistance
TWI551266B (zh) * 2013-12-30 2016-10-01 財團法人工業技術研究院 動脈波分析方法及其系統
WO2015105787A1 (en) 2014-01-07 2015-07-16 Covidien Lp Apnea analysis system and method
US10225522B1 (en) 2014-01-17 2019-03-05 Cerner Innovation, Inc. Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections
US10078956B1 (en) 2014-01-17 2018-09-18 Cerner Innovation, Inc. Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections
US9729833B1 (en) 2014-01-17 2017-08-08 Cerner Innovation, Inc. Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections along with centralized monitoring
US9955894B2 (en) 2014-01-28 2018-05-01 Covidien Lp Non-stationary feature relationship parameters for awareness monitoring
CN104739399A (zh) * 2014-02-10 2015-07-01 北京金日吉通科贸有限公司 一种检测脉搏波心率计算中运动抵消的方法
US9901308B2 (en) 2014-02-20 2018-02-27 Covidien Lp Systems and methods for filtering autocorrelation peaks and detecting harmonics
US20150250398A1 (en) * 2014-03-06 2015-09-10 Medsense Inc. Sensor module for simultaneously measuring ecg and pulse signal
US10438692B2 (en) 2014-03-20 2019-10-08 Cerner Innovation, Inc. Privacy protection based on device presence
JP2016016203A (ja) * 2014-07-10 2016-02-01 セイコーエプソン株式会社 生体情報検出装置
US9179849B1 (en) 2014-07-25 2015-11-10 Impact Sports Technologies, Inc. Mobile plethysmographic device
CN109599161B (zh) 2014-09-02 2023-09-29 苹果公司 身体活动和健身监视器
KR102299361B1 (ko) 2014-09-03 2021-09-07 삼성전자주식회사 혈압을 모니터링하는 장치 및 방법, 혈압 모니터링 기능을 갖는 웨어러블 디바이스
KR20160047838A (ko) * 2014-10-23 2016-05-03 삼성전자주식회사 생체 신호 처리 방법 및 그 장치
TWI533839B (zh) * 2014-11-12 2016-05-21 優盛醫學科技股份有限公司 心律不整的檢測設備與檢測方法
US10090068B2 (en) 2014-12-23 2018-10-02 Cerner Innovation, Inc. Method and system for determining whether a monitored individual's hand(s) have entered a virtual safety zone
US10524722B2 (en) 2014-12-26 2020-01-07 Cerner Innovation, Inc. Method and system for determining whether a caregiver takes appropriate measures to prevent patient bedsores
US11275757B2 (en) 2015-02-13 2022-03-15 Cerner Innovation, Inc. Systems and methods for capturing data, creating billable information and outputting billable information
US10091463B1 (en) 2015-02-16 2018-10-02 Cerner Innovation, Inc. Method for determining whether an individual enters a prescribed virtual zone using 3D blob detection
JP6464004B2 (ja) 2015-03-19 2019-02-06 株式会社東芝 測定装置、測定方法およびプログラム
JP2016195747A (ja) * 2015-04-06 2016-11-24 セイコーエプソン株式会社 生体情報処理装置、生体情報処理システム、生体情報処理方法及び生体情報処理プログラム
US10342478B2 (en) 2015-05-07 2019-07-09 Cerner Innovation, Inc. Method and system for determining whether a caretaker takes appropriate measures to prevent patient bedsores
WO2016183515A1 (en) 2015-05-13 2016-11-17 Alivecor, Inc. Discordance monitoring
US9892611B1 (en) 2015-06-01 2018-02-13 Cerner Innovation, Inc. Method for determining whether an individual enters a prescribed virtual zone using skeletal tracking and 3D blob detection
EP4327731A3 (en) 2015-08-20 2024-05-15 Apple Inc. Exercise-based watch face
US10226215B2 (en) 2015-08-28 2019-03-12 Covidien Lp Cable management feature for wearable medical monitor
JP2017051554A (ja) * 2015-09-11 2017-03-16 株式会社東芝 脈波計測装置、脈波計測システム、および信号処理方法
US9892311B2 (en) 2015-12-31 2018-02-13 Cerner Innovation, Inc. Detecting unauthorized visitors
US11216119B2 (en) 2016-06-12 2022-01-04 Apple Inc. Displaying a predetermined view of an application
KR102655671B1 (ko) 2016-10-12 2024-04-05 삼성전자주식회사 생체정보 추정 장치 및 방법
EP3318184B1 (en) 2016-11-08 2024-01-10 Heart2Save Oy System for determining a probability for a person to have arrhythmia
TWI604327B (zh) * 2016-11-09 2017-11-01 鄧先巧 量測心臟血流脈波以檢測心室供血異常之方法
KR101809149B1 (ko) * 2016-11-25 2017-12-14 한국과학기술연구원 순환계질환 발생잠재도를 판단하는 장치 및 그 방법
TWI644650B (zh) * 2016-12-01 2018-12-21 國立臺灣大學 偵測心律異常的方法及裝置
US10743777B2 (en) * 2016-12-08 2020-08-18 Qualcomm Incorporated Cardiovascular parameter estimation in the presence of motion
US10147184B2 (en) 2016-12-30 2018-12-04 Cerner Innovation, Inc. Seizure detection
CN109953756A (zh) * 2017-12-22 2019-07-02 成都心吉康科技有限公司 房颤监测系统及可穿戴设备
US10643446B2 (en) 2017-12-28 2020-05-05 Cerner Innovation, Inc. Utilizing artificial intelligence to detect objects or patient safety events in a patient room
US10482321B2 (en) 2017-12-29 2019-11-19 Cerner Innovation, Inc. Methods and systems for identifying the crossing of a virtual barrier
KR20190082532A (ko) * 2018-01-02 2019-07-10 한양대학교 산학협력단 Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치
US10617331B1 (en) * 2018-04-11 2020-04-14 Life Fitness, Llc Systems and methods for detecting if a treadmill user is running or walking
US11317833B2 (en) 2018-05-07 2022-05-03 Apple Inc. Displaying user interfaces associated with physical activities
DK179992B1 (en) 2018-05-07 2020-01-14 Apple Inc. DISPLAY OF USER INTERFACES ASSOCIATED WITH PHYSICAL ACTIVITIES
KR102570783B1 (ko) 2018-07-02 2023-08-25 삼성전자 주식회사 전자 장치 및 이를 이용한 생체 신호에 기초하여 개인화된 생체 정보 제공 방법
US10953307B2 (en) 2018-09-28 2021-03-23 Apple Inc. Swim tracking and notifications for wearable devices
US10922936B2 (en) 2018-11-06 2021-02-16 Cerner Innovation, Inc. Methods and systems for detecting prohibited objects
CN109875541A (zh) * 2018-12-28 2019-06-14 北京津发科技股份有限公司 脉搏测量方法、脉搏测量装置及存储介质
CN110301907A (zh) * 2019-06-25 2019-10-08 浙江工业大学 一种可穿戴脉搏波检测装置及血压检测方法
CN113908480B (zh) * 2021-09-14 2023-05-12 淮海工业集团有限公司 一种灭火弹初速度测量系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135029A (ja) * 1983-12-23 1985-07-18 松下電工株式会社 血流・脈拍検出装置
JPH02289230A (ja) * 1989-04-28 1990-11-29 Nippon Seiki Co Ltd 脈波計
JPH04285530A (ja) * 1991-03-14 1992-10-09 Omron Corp 波形判別装置
JPH07227383A (ja) * 1993-12-20 1995-08-29 Seiko Instr Inc 脈拍計

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639212B2 (ja) * 1975-01-18 1981-09-11
US3996928A (en) * 1975-05-28 1976-12-14 Marx Alvin J Patient vital-signs automated measuring apparatus
DE2819757A1 (de) * 1978-05-03 1979-11-15 Herwig Frhr Von Di Nettelhorst Vorrichtung zum erkennen von arrhythmien
US4338950A (en) * 1980-09-22 1982-07-13 Texas Instruments Incorporated System and method for sensing and measuring heart beat
JPH05288869A (ja) * 1992-04-06 1993-11-05 Seiko Epson Corp 多機能ウォッチ
JPH0880285A (ja) * 1994-09-14 1996-03-26 Matsushita Electric Ind Co Ltd 監視装置
JP3605216B2 (ja) * 1995-02-20 2004-12-22 セイコーエプソン株式会社 脈拍計
JPH08317912A (ja) * 1995-03-23 1996-12-03 Seiko Instr Inc 脈拍計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135029A (ja) * 1983-12-23 1985-07-18 松下電工株式会社 血流・脈拍検出装置
JPH02289230A (ja) * 1989-04-28 1990-11-29 Nippon Seiki Co Ltd 脈波計
JPH04285530A (ja) * 1991-03-14 1992-10-09 Omron Corp 波形判別装置
JPH07227383A (ja) * 1993-12-20 1995-08-29 Seiko Instr Inc 脈拍計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0841034A4 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119564A (ja) * 1997-06-27 1999-01-19 Seiko Epson Corp 心機能診断装置
JPH11128186A (ja) * 1997-10-31 1999-05-18 Seiko Epson Corp 一回拍出量検出装置および心機能診断装置
JP3843462B2 (ja) * 1997-11-20 2006-11-08 セイコーエプソン株式会社 脈波診断装置
JP2000037360A (ja) * 1998-07-22 2000-02-08 Seiko Instruments Inc 脈波検出装置
JP2002049979A (ja) * 2000-08-03 2002-02-15 Seiko Precision Inc 自動緊急警報装置及び自動緊急警報出力方法
JP4674212B2 (ja) * 2003-11-26 2011-04-20 カーディオネット インコーポレーテッド 心臓不整脈の識別および治療を容易にするために不整脈情報を処理して、表示するシステムおよび方法
JP2007516024A (ja) * 2003-11-26 2007-06-21 カーディオネット インコーポレーテッド 心臓不整脈の識別および治療を容易にするために不整脈情報を処理して、表示するシステムおよび方法
US8801621B2 (en) 2007-04-05 2014-08-12 Konica Minolta Sensing, Inc. Method, system and program product for analyzing pulse wave data
JP2009213551A (ja) * 2008-03-07 2009-09-24 Denso Corp 心電波形処理装置、心拍数測定装置
JP2013055982A (ja) * 2011-09-07 2013-03-28 Seiko Epson Corp 心房細動判定装置、心房細動判定方法およびプログラム
JP2014054448A (ja) * 2012-09-13 2014-03-27 Omron Healthcare Co Ltd 脈拍測定装置、ならびに、脈拍測定方法および脈拍測定プログラム
US12094604B2 (en) 2013-12-04 2024-09-17 Apple Inc. Wellness aggregator
US12080421B2 (en) 2013-12-04 2024-09-03 Apple Inc. Wellness aggregator
JP2017504414A (ja) * 2014-01-16 2017-02-09 ノキア テクノロジーズ オサケユイチア 医学的データのエントロピーの程度の検出の方法およびデバイス
JP2015150095A (ja) * 2014-02-12 2015-08-24 株式会社エー・アンド・デイ 血圧計
US10842396B2 (en) 2015-04-17 2020-11-24 Taiyo Yuden Co., Ltd. Vibration waveform sensor and waveform analysis device
JP2015163220A (ja) * 2015-04-24 2015-09-10 セイコーエプソン株式会社 解析システム、脈波解析装置、およびプログラム
US11672464B2 (en) 2015-10-27 2023-06-13 Cardiologs Technologies Sas Electrocardiogram processing system for delineation and classification
US11331034B2 (en) 2015-10-27 2022-05-17 Cardiologs Technologies Sas Automatic method to delineate or categorize an electrocardiogram
US11147500B2 (en) 2015-10-27 2021-10-19 Cardiologs Technologies Sas Electrocardiogram processing system for delineation and classification
US11246501B2 (en) 2016-04-15 2022-02-15 Omron Corporation Biological information analysis device, system, and program
JPWO2017179694A1 (ja) * 2016-04-15 2019-02-21 オムロン株式会社 生体情報分析装置、システム、プログラム、及び、生体情報分析方法
JPWO2017179693A1 (ja) * 2016-04-15 2019-02-21 オムロン株式会社 生体情報分析装置、生体情報分析システム、プログラム、及び、生体情報分析方法
US11363961B2 (en) 2016-04-15 2022-06-21 Omron Corporation Biological information analysis device, system, and program
US11617516B2 (en) 2016-04-15 2023-04-04 Omron Corporation Biological information analysis device, biological information analysis system, program, and biological information analysis method
WO2017179693A1 (ja) * 2016-04-15 2017-10-19 オムロン株式会社 生体情報分析装置、生体情報分析システム、プログラム、及び、生体情報分析方法
WO2017179694A1 (ja) * 2016-04-15 2017-10-19 オムロン株式会社 生体情報分析装置、システム、プログラム、及び、生体情報分析方法
US11918857B2 (en) 2016-06-11 2024-03-05 Apple Inc. Activity and workout updates
US12036018B2 (en) 2016-09-22 2024-07-16 Apple Inc. Workout monitor interface
JP2018166883A (ja) * 2017-03-30 2018-11-01 ルネサスエレクトロニクス株式会社 脈拍計測装置、脈拍計測方法、及びプログラム
EP4265182A3 (en) * 2017-05-15 2023-12-27 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US12039146B2 (en) 2017-05-15 2024-07-16 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US11826150B2 (en) 2017-08-25 2023-11-28 Koninklijke Philips N.V. User interface for analysis of electrocardiograms
US11950916B2 (en) 2018-03-12 2024-04-09 Apple Inc. User interfaces for health monitoring
JP2020110422A (ja) * 2019-01-15 2020-07-27 エイアイビューライフ株式会社 情報処理装置
US12016694B2 (en) 2019-02-04 2024-06-25 Cardiologs Technologies Sas Electrocardiogram processing system for delineation and classification
US11972853B2 (en) 2019-05-06 2024-04-30 Apple Inc. Activity trends and workouts
US11979467B2 (en) 2019-06-01 2024-05-07 Apple Inc. Multi-modal activity tracking user interface
US11985506B2 (en) 2020-02-14 2024-05-14 Apple Inc. User interfaces for workout content
US11678831B2 (en) 2020-08-10 2023-06-20 Cardiologs Technologies Sas Electrocardiogram processing system for detecting and/or predicting cardiac events
US11992730B2 (en) 2021-05-15 2024-05-28 Apple Inc. User interfaces for group workouts
US11938376B2 (en) 2021-05-15 2024-03-26 Apple Inc. User interfaces for group workouts
US11931625B2 (en) 2021-05-15 2024-03-19 Apple Inc. User interfaces for group workouts
US12023567B2 (en) 2022-06-05 2024-07-02 Apple Inc. User interfaces for physical activity information
US11977729B2 (en) 2022-06-05 2024-05-07 Apple Inc. Physical activity information user interfaces
WO2024122104A1 (ja) * 2022-12-09 2024-06-13 オムロンヘルスケア株式会社 血圧計

Also Published As

Publication number Publication date
DE69723946T2 (de) 2004-07-15
TW376312B (en) 1999-12-11
US6095984A (en) 2000-08-01
JP3635663B2 (ja) 2005-04-06
CN1155332C (zh) 2004-06-30
EP0841034B1 (en) 2003-08-06
CN1195277A (zh) 1998-10-07
EP0841034A1 (en) 1998-05-13
EP0841034A4 (en) 1998-11-04
DE69723946D1 (de) 2003-09-11

Similar Documents

Publication Publication Date Title
JP3635663B2 (ja) 不整脈検出装置
JP3843462B2 (ja) 脈波診断装置
JP3627243B2 (ja) 生体状態測定装置およびリラックス指導装置
JP5855004B2 (ja) 腕部装着式血圧計
CN212521748U (zh) 睡眠生理系统
WO2016031179A1 (ja) 生体情報検出装置
JP2020517322A (ja) 非観血血圧の測定およびモニタリング
EP1334693A1 (en) Exercise intensity measuring device
US20060264771A1 (en) Apparatus for evaluating cardiovascular functions
JP3940150B2 (ja) カフレス電子血圧計
WO1999009884A1 (fr) Procede et appareil de mesure, de detection et de diagnostic d&#39;un signal impulsionnel, de la fonction cardiaque et de l&#39;intensite de mouvement
CA2992508A1 (en) Processing biological data
RU2712844C2 (ru) Обрабатывающее устройство, система и способ обработки сигналов акселерометра для использования при мониторинге жизненных показателей субъекта
JP3728895B2 (ja) 運動強度検出装置
JP3301294B2 (ja) 健康状態管理装置
JP3747552B2 (ja) 脈波診断装置
US20210378585A1 (en) Fetal health monitoring system and method for using the same
JP3794410B2 (ja) 健康状態管理装置
JP3870514B2 (ja) 一回拍出量検出装置および心機能診断装置
JPH08299443A (ja) 居眠り防止装置
JP3666188B2 (ja) 心機能診断装置
JP3562469B2 (ja) 健康状態管理装置
JP6565401B2 (ja) 睡眠時鼾解析装置、睡眠時鼾解析方法及びそのプログラム
JP3858379B2 (ja) 心拍出量検出装置および心機能診断装置
JPH11104089A (ja) 心機能診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190673.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997917411

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08981349

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997917411

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997917411

Country of ref document: EP