Nothing Special   »   [go: up one dir, main page]

CN100539390C - 电动机驱动控制装置 - Google Patents

电动机驱动控制装置 Download PDF

Info

Publication number
CN100539390C
CN100539390C CNB031438644A CN03143864A CN100539390C CN 100539390 C CN100539390 C CN 100539390C CN B031438644 A CNB031438644 A CN B031438644A CN 03143864 A CN03143864 A CN 03143864A CN 100539390 C CN100539390 C CN 100539390C
Authority
CN
China
Prior art keywords
mentioned
current
electric motor
linear vibration
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031438644A
Other languages
English (en)
Other versions
CN1477767A (zh
Inventor
植田光男
中田秀樹
吉田诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1477767A publication Critical patent/CN1477767A/zh
Application granted granted Critical
Publication of CN100539390C publication Critical patent/CN100539390C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种电动机驱动控制装置,利用交流电流驱动控制弹性支撑转子的直线振动电动机(100),不用采用检测其转子的变位、速度、加速度等的传感器,就可以将直线振动电动机(100)的驱动频率控制为共振频率。上述电动机驱动控制装置(101)具有基于动作状态生成成为直线振动电动机的驱动电流(Cd)的基准的比较电流波形的波形生成部分(8)、检测上述驱动电流的电流检测部分(3)、将直线振动电动机的驱动电压(Vd)控制为与上述比较电流波形和电流检测部分(3)的检测输出的波形差为零的控制部分(9),基于上述比较电流波形,将上述驱动电流(Cd)的频率调整为接近直线振动电动机的共振频率。

Description

电动机驱动控制装置
技术领域
本发明涉及电动机驱动控制装置,特别是涉及基于其驱动电流对直线振动电动机进行控制并高效驱动的电动机驱动控制装置。
背景技术
以前,直线电动机用于往返振动的产生源(例如,参考专利文献1)。在该文献中公开了产生往返振动的直线电动机(以下称为直线振动电动机)。
像这样的直线振动电动机形成为具有由棒状永磁铁构成的转子和由电磁铁构成的定子的单相同步电动机。在此,上述电磁铁是在U字形铁心的各片上分别卷绕线圈。
交流电源的输出电压由全波整流电路变换为具有该交流电源电压的频率的2倍频率的全波整流电压,若将该全波整流电压提供给上述直线振动电动机的线圈,则在该直线振动电动机中,转子往返运动并产生振动。
像这样,由转子的往返运动产生振动时,需要较强的电磁力,但上述直线振动电动机中,为了形成含有转子的弹簧振动系统而弹性支撑转子,用与该固有振动频率一致的频率(共振频率)振动该弹簧振动系统时,可以减少驱动直线振动电动机所需的能量。
但是,如上所述,用与弹簧振动系统的固有振动频率一致的频率驱动直线振动电动机的方法中,具有在直线振动电动机有负荷时,转子的往返运动的振幅不稳定的问题。
另一方面,有检测出直线振动电动机的转子的变位、速度、以及加速度中的至少一个,根据该检测输出来调整对电磁铁的线圈的供电的直线振动电动机的驱动控制方法(例如参考专利文献2),该公报公开的驱动控制方法中,即使固有振动频率(共振频率)因负荷变动等某些原因而变化,也可以基于转子的变位、速度、或加速度,将对线圈的供电调整为一直以共振状态驱动直线振动电动机。
〔专利文献1〕
特开平2-52692号公报(图1)
〔专利文献2〕
特开平10-243622号公报(图2)
但是,专利文献2公开的直线振动电动机的驱动控制方法中,施加给直线振动电动机的负荷很大,因此转子的振幅、速度、加速度等降低很多,利用传感器不能检测出转子的变位、速度、或加速度时,不能以共振状态驱动直线振动电动机,驱动效率降低很多。
另外,上述文献公开的直线振动电动机的驱动控制方法中,由于在直线振动电动机内必需组装检测转子的变位等的传感器,所以直线振动电动机的容积相应变大传感器的体积部分,而且,必需保证温度等恶劣的动作条件下的该传感器的动作可靠性。
发明内容
本发明是鉴于上述问题而提出的,其目的在于提供一种不用采用检测直线振动电动机转子的变位、速度、加速度等的传感器,可以与负荷变动无关,用共振频率或接近共振频率的频率高效驱动直线振动电动机的电动机驱动控制装置。
本发明1的一种电动机驱动控制装置,对具有定子和转子、为了形成含有该转子的弹簧振动系统而弹性支撑该转子的直线振动电动机进行驱动控制,所述电动机驱动控制装置的特征在于包括:电压输出部分,向上述直线振动电动机输出作为交流电压的驱动电压;电流检测部分,检测提供给上述直线振动电动机的驱动电流;电流波形生成部分,基于上述直线振动电动机的动作状态,生成成为上述驱动电流的基准的第1交流电流波形;和控制部分,控制上述电压输出部分输出的直线振动电动机的驱动电压,以使上述第1交流电流波形和作为上述电流检测部分的检测输出的第2交流电流波形之差变小,上述控制部分基于上述第1交流电流波形,将作为上述驱动电流的交流电流的频率调整为上述直线振动电动机的共振驱动频率,上述控制部分面调整上述第1交流电流波形的振幅值或有效值,使上述第2交流电流波形的振幅值或有效值保持一定,一面调整上述第2交流电流波形的振幅值或有效值,使上述第1交流电流波形的振幅值或有效值最大。
本发明2的如本发明1所述的电动机驱动控制装置,其特征在于:上述控制部分别重复进行基于上述第1交流电流波形和上述第2交流电流波形的差确定上述直线振动电动机的驱动电压的电压确定处理、调整上述第1交流电流波形的第1电流调整处理、以及调整上述第2交流电流波形的第2电流调整处理,驱动控制上述直线振动电动机,上述第1电流调整处理调整上述第1交流电流波形的振幅值或有效值使上述第2交流电流波形的振幅值或有效值保持一定,并以重复上述电压确定处理的周期长或与之相等的周期重复进行,上述第2电流调整处理调整上述第2交流电流波形的频率,使上述第1交流电流波形的振幅值或有效值最大,并以比重复上述第1电流调整处理的周期长或与之相等的周期重复进行。
本发明3的如本发明2所述的电动机驱动控制装置,其特征在于:上述第1电流调整处理是根据上述直线振动电动机的运转状态改变上述保持一定的第2交流电流波形的振幅值或有效值的目标值。
本发明4的电动机驱动控制装置,对具有定子和转子、为了形成含有该转子的弹簧振动系统而弹性支撑该转子的直线振动电动机进行驱动控制,所述电动机驱动控制装置的特征在于包括:电压输出部分,向上述直线振动电动机输出作为交流电压的驱动电压;电流检测部分,检测提供给上述直线振动电动机的驱动电流;电流波形生成部分,基于上述直线振动电动机的动作状态,生成成为上述驱动电流的基准的第1交流电流波形;和控制部分,控制上述电压输出部分输出的直线振动电动机的驱动电压,以使上述第1交流电流波形和作为上述电流检测部分的检测输出的第2交流电流波形之差变小,上述控制部分基于上述第1交流电流波形,将作为上述驱动电流的交流电流的频率调整为上述直线振动电动机的共振驱动频率,上述控制部分调整上述第2交流电流波形的频率,以便一边使上述第1交流电流波形的振幅值或有效值保持一定,一边使上述第2交流电流波形的振幅值或有效值接近上述第1交流电流波形的振幅值或有效值的一半。
本发明5的如本发明4所述的电动机驱动控制装置,其特征在于:上述控制部分别重复进行基于上述第1交流电流波形和上述第2交流电流波形的差确定上述直线振动电动机的驱动电压的电压确定处理、以及调整上述第2交流电流波形的电流调整处理,来控制上述直线振动电动机,上述电流调整处理调整上述第2交流电流波形的频率以便一边使上述第1交流电流波形的振幅值或有效值保持一定一边使上述第2交流电流波形的振幅值或有效值接近上述第1交流电流波形的振幅值或有效值的一半,并以比重复上述电压确定处理的周期长或与之相等的周期重复进行。
本发明6的如本发明5所述的电动机驱动控制装置,其特征在于:上述电流调整处理是根据上述直线振动电动机的运转状态改变上述保持一定的第1交流电流波形的振幅值或有效值的目标值。
本发明7的一种空调机,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述空调机的特征在于包括:备有定子和转子、为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和驱动控制该直线振动电动机的电动机驱动控制部分,该电动机驱动控制部分是技术方案1至6中任一项所述的电动机驱动控制装置。
本发明8的一种冷藏库,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述冷藏库的特征在于包括:备有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和驱动控制该直线振动电动机的电动机驱动控制部分;该电动机驱动控制部分是技术方案1至6中任一项所述的电动机驱动控制装置。
本发明9的一种超低温冷冻机,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述超低温冷冻机的特征在于包括:备有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和驱动控制该直线振动电动机的电动机驱动控制部分,该电动机驱动控制部分是技术方案1至6中任一项所述的电动机驱动控制装置。
本发明10的一种供水器,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述供水器的特征在于包括:备有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和驱动控制该直线振动电动机的电动机驱动控制部分;该电动机驱动控制部分是技术方案1至6中任一项所述的电动机驱动控制装置。
本发明11的一种便携式电话,包括:产生振动的直线振动电动机;和驱动控制该直线振动电动机的电动机驱动控制部分,所述便携式电话的特征在于:上述直线振动电动机具有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子,上述电动机驱动控制部分是技术方案1至6中任一项所述的电动机驱动控制装置。
附图说明
图1是用于说明本发明的实施例1的电动机驱动控制装置101的框图。
图2是表示构成上述实施例1的电动机驱动控制装置101的反馈驱动控制系统的要素的框图。
图3是表示用于上述实施例1的直线振动电动机的驱动控制的比较电流波形Wcc、实际电流波形Wcd、以及外加电压波形Wvd的图。
图4是用于说明本发明的实施例2的电动机驱动控制装置102的框图。
图5是表示构成上述实施例2的电动机驱动控制装置102的反馈驱动控制系统的要素的框图。
图6是表示上述实施例2的电动机驱动控制装置102的驱动频率确定部分6b的处理流程的图。
图7是表示提供给上述实施例2的直线振动电动机的实际电流的振幅值i和供电Pa的关系的3个例子(图(a)~图(c))的图。
图8是用于说明本发明的实施例3的电动机驱动控制装置103的框图。
图9是表示利用上述实施例3的电动机驱动控制装置103控制直线振动电动机的动作流程的一例(图(a))和该动作流程的另一例(图(b))的图。
图10是表示上述实施例3的电动机驱动控制装置103的驱动频率确定部分6c的处理流程的图。
图11是说明本发明的实施例4的电动机驱动控制装置104的模式图。
图12是说明本发明的实施例5的空调50的模式图。
图13是说明本发明的实施例6的冷藏库60的模式图。
图14是说明本发明的实施例7的超低温冷冻机70的模式图。
图15是说明本发明的实施例8的供水器80的模式图。
图16是说明本发明的实施例9的便携式电话90的模式图。
附图附号说明
Vd反相器供给电压;VDC电源电压;Dra检测振幅值信号;Cd反相器供给电流;Oam振幅值指令信号;Dca比较振幅值信号;Scm电流监视器输出;Fcw比较电流波形信号;10电流传感器;Dsc供给电流检测信号;Ofr频率指令信号;101电动机驱动控制装置;Sic控制信号;8a、9a、9b运算器;30电流检测部分;Wcc比较电流波形;Wcd实际电流(反相器供给电流)波形;Wvd外加电压(反相器供给电压)波形;102电动机驱动控制装置;40直线压缩机;41a汽缸部分;41b电动机部分;42活塞;43支持弹簧;44磁铁;45电磁铁;46直线振动电动机;50空调机;50a直线压缩机;51室内侧热交换器;52室外侧热交换器;53节流装置;54四通阀;55室内机;56室外机;60冷藏库;60a直线压缩机;61凝缩器;62冷藏室蒸发器;63节流装置;70b电动机驱动控制部分;70超低温冷冻机;70a直线压缩机;71散热器;72蓄冷气;73节流装置;80b电动机驱动控制部分;80供水器;80a;直线压缩机;81a;冷冻循环装置;81b贮水槽;82空气热交换器;82b温度传感器;84冷冻介质配管;84a除霜旁路;84b除霜旁路阀;83节流装置;85水热交换器;85a凝缩温度传感器;86a、86b、87a、87b水管;87泵;88贮水容器;88a出入口;88b出水口;90便携式电话;90a振动器;91机壳;92弹簧部分件(支持弹簧);93重物部分件;93a磁铁;94定子;94a线圈;95直线振动电动机;
具体实施方式
本发明人等发现了通过由直线振动电动机的驱动状态生成作为驱动电流的交流电流基准的比较电流波形(第1交流电流波形),基于该比较电流波形调整上述交流电流的频率,可以高效驱动直线振动电动机。
即,本发明的基本原理是从直线振动电动机的驱动状态确定比较电流波形(第1交流电流波形)的振幅值,基于该比较电流波形的振幅值,调整作为上述驱动电流的交流电流的频率,利用由该调整确定的频率的交流电流来驱动直线振动电动机,用以下的实施例1、2具体说明该原理的理论根据。
另外,本发明人等发现了通过在将作为提供给直线振动电动机的驱动电流的交流电流的振幅值设成一定的状态下,为使直线振动电动机的供电最大,调整该交流电流的频率,可以高效驱动直线振动电动机。
即,本发明的基本原理是一边将作为驱动电流提供给直线振动电动机的交流电流的振幅值保持一定,一边为使将直线振动电动机的供电最大而调整该驱动电流的频率,利用该调整确定的频率的交流电流驱动直线振动电动机,用以下的实施例3说明该原理的理论根据。
以下,说明本发明的实施例。
(实施例1)
图1是用于说明本发明的实施例1的电动机驱动控制装置的框图。
该实施例1的电动机驱动控制装置101具有定子和转子,基于成为该驱动电流基准的比较电流波形(第1交流电流波形)反馈驱动控制为形成包含该转子的振动控制系统而支持该转子的直线振动电动机100。另外,上述定子和转子的一个由电磁铁构成,另一个由电磁铁或永磁铁构成。
即,该电动机驱动控制装置101具有作为电源电压产生直流电压VDC的电源1,将上述电源电压VDC变换为规定频率的交流电压Vd并提供给直线振动电动机100的反相器2,监视上述直线振动电动机100的驱动电流的电流传感器10,基于该电流传感器10的监视器输出Scm,检测作为提供给上述直线振动电动机100的交流电流的驱动电流(反相器供给电流)Cd、输出表示该瞬时值(第2交流电流波形)I(t)的供给电流检测信号Dsc的供给电流检测器3,和基于该供给电流检测信号Dsc检测上述反相器供给电流Cd的振幅值I(实际振幅值),输出表示该实际振幅值i的检测振幅值信号Dra的电流振幅值检测器11。
电动机驱动控制装置101具有从上述直线振动电动机100的负荷状态判断上述直线振动电动机100要求的输出,输出表示上述反相器供给电流的目标振幅值i"的振幅值指令信号Oam的供给电流振幅值确定部分7和;基于来自上述电流振幅值检测器11的检测振幅值信号Dra和来自供给电流振幅值确定部分7的振幅值指令信号Oam,确定用于直线振动电动机100的控制的比较电流波形的振幅值(比较振幅值)i′,输出表示该比较振幅值i′的比较振幅值信号Dca的比较电流振幅值确定部分12。
电动机驱动控制装置101具有基于来自上述比较电流振幅值确定部分12的比较振幅值信号Dca,确定上述反相器2提供给直线振动电动机的电流(反相器供给电流)Cd的频率(驱动频率)ω,输出表示该驱动频率ω的频率指令信号Ofr的驱动频率确定部分6a和;基于上述频率指令信号Ofr和比较振幅值信号Dca,生成振幅值与上述比较振幅值i′一致、且频率与上述驱动频率ω一致的比较电流波形(比较电流瞬时值)I′(t),输出表示该比较电流波形的比较电流波形信号Fcw的比较电流波形生成部分8。
电动机驱动控制装置101具有基于来自上述供给电流检测器3的供给电流检测信号Dsc和来自比较电流波形生成部分8的比较电流波形信号Fcw,从检测出的反相器供给电流的瞬时值(第2交流电流波形)I(t)和比较电流的瞬时值(第1交流电流波形)I′(t)之差确定上述反相器2的输出电压Vd,利用控制信号Sic控制上述反相器2产生上述确定的输出电压Vd的反相器控制器9。
另外,如图2所示,在该电动机驱动控制装置101中,由上述供给电流检测器3和电流传感器10构成的电流检测部分30、电流振幅值检测器11、比较电流振幅值确定部分12、驱动频率确定部分6a、比较电流波形生成部分8、以及反相器控制器9构成直线振动电动机100的反馈驱动控制系统。另外,实施例1中,上述电动机驱动控制装置101的检测器3、11、确定部分6a、7、12、生成部分8、以及反相器控制器9由软件构成。
图2中,8a是构成上述比较电流波形生成部分8的运算器,该运算器8a生成振幅值与比较振幅值信号Dca所示的振幅值i′一致、且频率与上述频率指令信号Ofr所示的驱动频率ω一致的正弦波波形(比较电流波形)I′(t)(=i′·sin(ωt+δ))。9a和9b是构成上述反相器控制器9的运算器。运算器9a是通过上述正弦波波形I′(t)、和上述供给电流检测信号Dsc所示的供给电流波形I(t)(=i·sin(ωt))的减法处理生成这些差波形ΔI(t)的减法器。运算器9b是通过对该差波形ΔI(t)的P控制,产生驱动电压波形V(t)(=v·sin(ωt+θ))的运算器。另外,δ是供给电流波形(检测电流瞬时值)I(t)和比较电流波形(比较电流瞬时值)I′(t)的相位差,θ是供给电流波形(检测电流瞬时值)I(t)和驱动电压波形(检测电压瞬时值)V(t)的相位差。
接着,具体说明上述直线振动电动机驱动控制装置101的各部分结构。
首先,具体说明电源1。
上述电源1是对反相器2提供直流电流VDC,代表的有采用了商用的交流电压(电流)的输入电源。这样的输入电源有由整流商用的交流电压(电流)、例如二极管桥电路和高效率转换器等整流电路和平滑该整流电路的输出的平滑用电容器构成的输入电源。
下面,说明供给电流检测器3和电流传感器10。
供给电流检测器3基于作为电流传感器10的监视器输出的电流监视器信号Scm,检测反相器2提供给直线振动电动机100的电流(反相器供给电流)Cd。从该供给电流检测器3向直线振动电动机100实时输出与供给电流Cd成正比的供给电流检测信号Dsc。另外,输入给反相器控制器9的供给电流检测信号Dsc不限于模拟信号,也可以是数字信号。
在此,上述电流传感器10采用使用了磁体和孔元件的磁性电流检测传感器、和产生对应直线振动电动机100的驱动电流(反相器供给电流)Cd的电压的电流变压器等。另外,作为检测直线振动电动机100的驱动电流(反相器供给电流)Cd的方法除了上述的采用电流传感器的方法之外,还有从反相器2至直线振动电动机100的电流供给路径上配置的分路阻抗产生的电压算出上述反相器供给电流Cd的方法。
下面,说明电流振幅值检测器11。
该电流振幅值检测器11基于从供给电流检测器3输出的供给电流检测信号Dsc,求出上述反相器供给电流Cd的振幅值i。
一般,由于输入给直线振动电动机100的驱动电流是正弦波状的交流电流,所以可以从波峰值求出该振幅值。作为该求法例如一直监视根据时间经过变化的上述供给电流检测信号Dsc,保持其最大值或最小值的方法。
另外,作为将上述反相器供给电流Cd的振幅值i从其波峰值求出的其它方法有从输入电流(反相器供给电流)Cd的相位为90度或270度时的供给电流检测信号Dsc的值求出的方法。在此,作为检测反相器供给电流Cd的相位为90度和或270度时的相位定时(90度和270度相位定时)的方法有各种方法。例如,以该供给电流Cd的零交叉定时(即,供给电流Cd的相位成为0度或180度时的相位定时)为基准,从反相器2的驱动频率ω,即该驱动周期T(=2π/ω)求出90和270度相位定时的方法。另外,还有从以上述供给电流Cd的零交叉定时为基准,输入到反相器控制器9的比较电流波形信号Fcw的相位求出90度和270度相位定时的方法。
由于在上述比较电流和实际流过的反相器供给电流Cd之间有相位差δ,所以若利用各零交叉定时求出两者的相位差,则可以从比较电流的相位高精度地求出供给电流Cd的相位成为90度和270度的定时。
另外,在提供给直线振动电动机100的电流Cd为叠加了直流的交流电流时,即使如上述求出反相器供给电流的90度和270度相位定时的波峰值,也不能成为该反相器供给电流的振幅值。
因此,在此采用一直监视时间上变化的上述供给电流检测信号Dsc,同时测定其最大值和最小值,从该平均值求出交流分量的振幅值的方法。另外,与上述方法同样,上述叠加了直流的反相器供给电流的振幅值也可以从该供给电流的相位为90度和270度的电流值的平均值求出。
另外,上述实施例1的电动机驱动控制装置101也可以代替检测供给电流的振幅值的电流振幅值检测器11,具有检测供给电流的平均值或有效值的检测器。
下面,说明供给电流振幅值确定部分7。
该供给电流振幅值确定部分7将表示提供给直线振动电动机100的电流的目标振幅值i"的振幅值指令信号Oam输出给比较电流振幅确定部分12。在此,上述反相器供给电流Cd的目标振幅值i"是预定的1个电流振幅值。
另外,上述供给电流振幅值确定部分7输出的振幅值指令信号Oam不限于一直表示已定的1个电流振幅值,该振幅值指令信号Oam也可以是随着时间经过,例如根据从直线振动电动机的驱动开始的经过时间等,依次表示预定的几种电流振幅值。换言之,上述供给电流振幅值确定部分7也可以是根据时间的经过,依次指定几种电流振幅值,输出对应指定的电流振幅值的振幅值指令信号Oam。
另外,供给电流振幅值确定部分7不限于只输出如上述表示预定的电流振幅值的振幅值指令信号Oam。例如,供给电流振幅值确定部分7也可以是从直线据动电动机100要求的运转状态、或其负荷状态确定上述反相器供给电流Cd的目标电流振幅值i",输出表示该确定的目标电流振幅值i"的振幅值指令信号Oam。在此,不仅可以将直线振动电动机100以适合于其负荷状态的运转状态运转,还可以进行对应直线振动电动机要求的能力的驱动控制。
在此,上述直线振动电动机100的运转状态是直线振动电动机的转子的振幅大小等,这样的转子的振幅大小可以通过采用了位置传感器的转子的位置检测、或采用驱动电流运算转子的冲程的运算处理等求出。
另外,直线振动电动机100的负荷状态根据其适用的形态有多种,例如将本实施例的直线振动电动机100和电动机驱动控制装置101适用于压缩机时,负荷状态是压缩的流体的压力、温度,特别是该压缩机是空调上搭载的压缩机时,负荷状态是室内温度和室外温度。另外,上述压缩机是冷藏库上搭载的压缩机时,上述负荷状态是库内温度等。
将直线振动电动机100和电动机驱动控制装置101适用于剃须刀时,上述负荷状态是胡须的浓度。
另外,上述直线振动电动机要求的运转状态(能力)也根据该直线振动电动机的适用形态有各种,例如将直线振动电动机100和电动机驱动控制装置101适用于便携式电话时,对上述直线振动电动机要求的能力是将向用户通知来电的振动的强弱改变为节奏的功能等。
下面说明比较电流确定部分12。
该比较电流确定部分12接收来自上述电流振幅值检测器11的检测振幅值信号Dra和来自供给电流振幅值确定部分件7的振幅值指令信号Oam,基于检测振幅值信号Dra所示的反相器供给电流的振幅值i和上述指令信号Oam所示的目标振幅值i",确定比较电流振幅振幅值i′,输出表示该确定的比较电流振幅值i′的比较振幅值信号Dca。在该比较电流确定部分12调整比较电流振幅值i′,以使上述反相器供给电流Cd的振幅值i一定,即保持目标振幅值i",。
在此,调整上述比较电流振幅值i′的电流调整处理以固定周期重复进行。另外,作为确定上述比较电流振幅值i′的方法一般是进行将与目标电流振幅值i"和实际振幅值i的误差成正比的值(Pk·(i"-i))和与该误差的积分值成正比的值(∑Ik·((i"-i))的和作为比较电流振幅值i′的PI控制(比例积分控制)的方法。在此,Pk是P(比例)增益,Ik是I(积分)增益。通过采用该PI控制(比例积分控制),可以确定使目标电流振幅值i"和供给电流振幅值i的误差为零的比较电流振幅值i′。
另外,在代替确定上述供给电流的振幅值i的电流振幅值确定部分11,采用确定供给电流Cd的平均值或有效值的部分件时,需要代替上述比较电流振幅值i′,采用比较电流的平均值或有效值。
下面,说明驱动频率确定部分6a。
该驱动频率确定部分6a用于为了使比较电流振幅值确定部分12确定的比较电流振幅值i′最大而确定驱动直线振动电动机100的反相器2的输出电流(反相器供给电流)Cd的频率ω。
反相器供给电流的频率ω和上述比较电流振幅值i′的关系成为具有1个极值的凸函数。从而,作为求出比较电流振幅值i′最大值的频率(最大振幅频率)ωimax的方法,一般可以举出最大坡度法(登山法)。
具体说来,求出上述最大振幅频率ωimax的登山法是重复进行基于以当前的驱动频率ω为基准并将该频率ω改变固定变化量(±Δω)时的比较电流振幅值i′而调整频率的频率调整处理,为使该比较电流振幅值i′更大而改变驱动频率的方法。即,通过重复该频率调整处理,驱动频率ω最终成为比较电流振幅值i′最大的最大振幅频率ωimax,换言之成为直线振动电动机的共振频率ωreso。在此,上述频率调整处理是以比调整上述比较电流振幅值i′的电流调整处理的重复周期长的或相等的周期重复进行。
另外,作为该登山法的缺点有局部分稳定的问题,但由于上述频率ω和振幅值i′的关系是只有1个极值的函数,所以上述频率的控制中不会引起局部分稳定的问题。但是,有可能根据直线振动电动机100的负荷状态产生理论上不会引起的局部分稳定。为了避免这样的理论上不会引起的局部分稳定的产生,作为发展该登山法的方法,有效的是采用遗传算法的登山方法。
例如,采用遗传算法的登山法是利用通常的登山法,在驱动频率ω在比较电流振幅值i′最大的频率附近的值的稳定的状态下,以某个定时,将频率ω变大固定量,对该变换后的频率再次适用登山法的方法。这样,即使驱动频率的反馈控制陷入局部分稳定,也可以将驱动频率跟踪到真正的共振频率。
下面,说明比较电流波形生成部分8。
该比较电流波形生成部分8基于上述比较电流振幅值确定部分12的输出信号(比较振幅值信号)Dca和工作频率确定部分6a的输出信号(频率指令信号)Ofr,生成反相器2的控制所需的比较电流波形I′(t)。在此,在上述比较电流波形生成部分8生成振幅值与上述比较电流振幅值确定部分12确定的比较电流振幅值i′一致、频率与驱动频率确定部分6a确定的驱动频率ω一致的交流电流波形I′(t)。
另外,代替确定上述供给电流Cd的振幅值i的电流振幅值确定部分11,采用确定供给电流Cd的平均值或有效值的部分件时,需要代替输出表示比较电流的振幅值i′的指令信号Oam的供给电流振幅值确定部分7,采用输出表示比较电流的平均值或有效值的指令信号的部分件。
在上述比较电流波形生成部分8生成的交流电流波形I′(t)不限于正弦波,也可以包含各种谐波。
在需要对直线振动电动机100提供叠加了直流的电流时,在上述比较电流波形生成部分8需要对生成的交流电流波形I′(t)叠加直流分量。
下面,说明反相器控制器9。
该反相器控制器9为了对直线振动电动机100提供必要的功率,控制反相器2向直线振动电动机输出驱动电压Vd。
以下进行具体说明。
上述反相器控制器9是通过对由上述比较电流波形生成部分8生成的比较电流瞬时值(第1交流电流波形)I′(t)(=i′·sin(ω·t+δ))和由供给电流检测部分3检测出的供给电流瞬时值(第2交流电流波形)I(t)(=i·sin(ω·t))的差、乘以比例增益P,确定输入给直线振动电动机100的反相器供给电压Vd的瞬时值V(=v·sin(ω·t+θ)),控制反相器2输出确定的输出电压Vd。用该反相器控制器9确定反相器供给电压的电压确定处理以比调整并确定上述比较电流振幅值i′的电流调整处理的重复周期短,或相同的周期重复进行。
一般,作为该控制方法是基于输入到反相器2的直流电压VDC和反相器2输出的供给电压Vd的比,确定驱动反相器2的脉冲信号的占空比,利用确定的占空比的脉冲信号驱动反相器2的方法。另外,反相器控制方法不限于这样的PWM(Pulse Width Modulation),即改变脉宽的方法。例如,反相器控制方法也可以是PAM(Pulse Amplitude Modulation)、即改变脉冲振幅的方法,或PDM(Pulse Density Modulation)、即改变脉冲密度的方法。
下面说明动作。
首先,概要说明本实施例1的电动机驱动控制装置101的动作。
本实施例1的电动机驱动控制装置101中,在反相器2由来自反相器控制器9的控制信号Sic进行将电源电压VDC变换为规定的交流电压Vd的处理,将该交流电压Vd作为驱动电压提供给直线振动电动机100时,直线电动机100进行驱动。
作为直线振动电动机100的驱动电流的交流电流(反相器供给电流)Cd由电流传感器10监视。上述供给电流检测器3中,基于该电流传感器10的监视器输出Scm检测出提供给直线振动电动机100的电流(反相器供给电流)Cd,将表示该供给电流Cd的瞬时值(第2交流电流波形)I(t)的供给电流检测信号Dsc输出到电流振幅值检测器11和反相器控制器9。电流振幅值检测器11中,基于上述供给电流检测信号Dsc,检测出上述反相器供给电流Cd的振幅值(实际振幅值)i,将表示该实际振幅值i的检测振幅值信号Dra输出给比较电流振幅值确定部分12。
另外,在供给电流振幅值确定部分7中,确定反相器供给电流Cd的目标振幅值(目标电流振幅值)i",将表示该目标电流振幅值i"的振幅值指令信号Oam输出给比较电流振幅值确定部分12。
在该比较电流振幅值确定部分12中,基于来自上述电流振幅值检测器11的检测振幅值信号Dra和供给电流振幅值确定部分7的振幅值指令信号Oam,确定用于直线振动电动机100的控制的比较电流波形(第1交流电流波形)的振幅值(比较振幅值)i′,将表示该比较振幅值i′的比较振幅值信号Dca输出给比较电流波形生成部分8和驱动频率确定部分6a。
在该驱动频率确定部分6a中,一从比较电流振幅值确定部分12输入比较振幅值信号Dca,就进行调整上述反相器供给电流Cd的频率(驱动频率)ω的频率处理,以使该比较振幅值信号Dca表示的比较电流振幅值i′最大,将表示该频率调整处理确定的驱动频率ω的频率指令信号Ofr输出给比较电流波形生成部分8。
接着,在上述比较电流波形生成部分8中,基于上述比较电流振幅值确定部分12的输出信号(比较振幅值信号)Dca和工作频率确定部分6a的输出信号(频率指令信号)Ofr,生成反相器2的控制所需的比较电流波形,将表示该比较电流波形的比较电流波形信号Fcw输出给反相器控制器9。在此,上述比较电流波形是其振幅值与上述比较振幅值信号Dca表示的比较电流振幅值i′一致、其频率与驱动频率确定部分6a确定的驱动频率ω一致的交流电流波形I′(t)。
反相器控制器9中,通过对作为上述比较电流的瞬时值的比较电流波形I′(t)和由供给电流检测部分件3检测出的供给电流Cd的瞬时值I(t)的差、乘以比例增益P,生成输入给直线振动电动机100的反相器供给电压Vd的瞬时值V(t)。
反相器2由来自反相器控制器9的控制信号Sic控制,将反相输出电压Vd施加给直线振动电动机100。
下面,采用表示理论根据的(式1)~(式4)说明本实施例1的直线振动电动机的控制方法的特征。
该实施例1的直线振动电动机的驱动控制方法中,将输入给直线振动电动机的电压(反相器供给电压)Vd通过对作为驱动电流实际流过直线振动电动机100的实际电流(反相器供给电流)Cd的波形和成为该实际电流的基准的比较电流波形的差、乘以比例增益P来确定。
〔式1〕
上述式(1)示出上述反相器供给电压(外加电压)Vd的瞬时值V(t)、实际电流(反相器供给电流)Cd的瞬时值(实际电流波形)I(t)、以及比较电流的瞬时值(比较电流波形)I′(t)的关系。
另外,上述外加电压瞬时值V(t)、比较电流瞬时值I′(t)、以及实际电流瞬时值I(t)具体在下面的式(2a)~式(2c)示出。
〔式2〕
在此,v为外加电压Vd的振幅值,i′为比较电流的振幅值,i为实际电流Cd的振幅值,ω为驱动频率,θ为实际电流Cd和外加电压Vd的相位差,δ为实际电流Cd和比较电流的相位差。
图3示出比较电流波形Wcc(比较电流瞬时值I′(t))、实际电流Cd的波形Wcd(实际电流瞬时值I(t))、以及外加电压Vd的波形Wvd(外加电压瞬时值V(t))的变化。
若在上述式(1)代入式(2a)~式(2c),则得到以下的式(3a),整理式(3a),得到式(3b)。
〔式3〕
要使上述式(3b)与变量(ω·t)无关而一直成立时,式(3b)的左边第1项的sinωt的系数部分、以及左边第2项的cosωt的系数部分必需为零。另外,由于比较电流和实际电流Cd的相位差δ接近零,所以sinδ可以近似为δ,第2项的cosωt的系数部分一直为零。这是因为式(1)所示的比例控制中,P·i′·δ与v·sinθ相等。
另外,从上述式(3b)的左边第1项导出以下式(4)。
〔式4〕
在此,由于如上所述比较电流和实际电流Cd的相位差δ接近零,所以cosδ可以近似为1,从而,提供给直线振动电动机的功率Pa(=v·i×cosθ)由下述式(5)表示。
〔式5〕
上述式(5)的比例增益P为常数,该实施例1的直线振动电动机的驱动控制方法中,通过调整比较电流振幅值i′,以使实际振幅值i一定,从而通过频率ω变化而变化的变量只有比较振幅值i′。
从上述式(5)可知,提供给直线振动电动机100的功率Pa(=v·i×cosθ)和比较电流振幅值i′是单调增加的关系。从而,要使直线振动电动机的供电Pa(=v·i×cosθ)最大,则将频率ω调整为使比较电流振幅值i′最大值即可,结果,可以作为直线振动电动机的共振频率ωreso检测出比较电流振幅值i′最大值的频率ωimax。
另外,如一般所知,直线振动电动机中,其驱动频率ω和其供电Pa的关系成为具有1个极值的凸函数,该供电Pa为最大值的频率ωpmax成为共振频率ωreso。即,单调增加或减小驱动频率时,只在1个特定频率处,供电最大。
因此,比较电流振幅值i′和驱动频率ω的关系也成为具有1个极值的凸函数,比较电流振幅值i′取最大值的频率ωimax是供电最大的频率ωpmax,这与直线振动电动机的共振频率ωreso一致。
像这样,本实施例1中,在利用交流电流驱动控制直线振动电动机100的电动机驱动控制装置101中,具有检测直线振动电动机100的驱动电流(反相器供给电流)Cd的检测器3,基于直线振动电动机的动作状态生成成为直线振动电动机100的驱动电流的基准的比较电流波形的波形生成部分8,和为使上述比较电流波形和检测出的供给电流Cd的波形的差成为零,反馈控制直线振动电动机的驱动电压的反相器控制部分9,由于将上述供给电流Cd的频率ω调整为比较电流波形的振幅值i′最大,所以不用如位置传感器的装置,就可以使直线振动电动机的驱动频率一直成为共振频率或接近的频率。
另外,由于调整直线振动电动机的驱动电流的频率的处理是基于直线振动电动机的驱动电流进行的,所以可以将直线振动电动机的驱动电流的检测输出原样用于驱动控制,不需要对检测出的驱动电流的运算处理。
另外,实施例1的电动机驱动控制装置101中,检测器3、11、确定部分6a、7、生成部分8、12、以及反相器控制器9由软件构成,但这些也可以由硬件构成。
(实施例2)
图4是表示本发明的实施例2的电动机驱动控制装置的框图。
该实施例2的直线振动电动机驱动控制装置102中,代替实施例1的比较电流振幅值确定部分12和驱动频率确定部分6a,具有从供给电流振幅值确定部分7确定的反相器供给电流Cd的目标振幅值i"和电流振幅值检测部分件11检测出的反相器供给电流Cd的实际振幅值i,确定反相器供给电压Vd的驱动频率ω的驱动频率确定部分6b。
该实施例2的电源1、反相器2、供给电流检测器3、供给电流振幅值确定部分7、比较电流波形生成部分8、反相器控制器9、电流传感器10、以及电流振幅值检测器11分别与实施例1相同。
但是,该实施例2中,输入到上述比较电流波形生成部分8的振幅值信号不是如实施例1那样表示基于反相器供给电流的实际振幅值i和目标振幅值i"生成的比较电流振幅值i′的比较振幅值信号Dca,而是表示上述目标振幅值i"的振幅值指令信号Oam。该实施例2的比较电流波形生成部分8将振幅值指令信号Oam表示的目标振幅值i"用于实施例1的比较振幅值i′,生成振幅值与该比较振幅值i′一致、且频率与驱动频率确定部分6b确定的驱动频率ω一致的交流电流波形I′(t)。因此,驱动频率确定部分6b中,将上述目标振幅值i"看作与实施例1的比较振幅值i′相同。
该电动机驱动控制装置102中,如图5所示,由上述供给电流检测器3和电流传感器10构成的电流检测部分30、电流振幅值检测器11、驱动频率确定部分6b、比较电流波形生成部分8、以及反相器控制器9构成直线振动电动机100的反馈驱动控制系统。图5中,与图2相同的标号表示与实施例1的相同部分。
下面说明动作。
该实施例2的电动机驱动控制装置102由于只有基于供给电流振幅值7的指令输出Oam和电流振幅值检测器11的检测输出Dra,确定反相器供给电流Cd的频率(驱动频率)的动作与实施例1的电动机驱动控制装置101不同,所以以下具体说明确定上述驱动频率的动作。
对上述驱动频率确定部分6b输入由电流振幅值检测器11检测出的表示反相器供给电流Cd的振幅值i的检测振幅值信号Dra和表示供给电流振幅值确定器7b确定的目标振幅值i"的振幅值指令信号Oam。
接着,在驱动频率确定部分6b进行将驱动频率ω调整为使供给电流振幅值i成为作为目标振幅值i"的比较振幅值i′的一半的频率调整处理,通过该调整处理确定驱动频率ω。
但是,有时根据电动机驱动控制装置的动作状态改变驱动频率ω,供给电流振幅值i也成不了比较振幅值i′的一半值。在这样的情况下,在供给电流振幅值i一直取比较电流振幅值i′的一半以上的值的状态下,调整驱动频率ω,以使供给电流振幅值i成为最小值。相反,在供给电流振幅值i一直取比较电流振幅值i′的一半以下的值的状态下,确定驱动频率ω,以使供给电流振幅值i最大值。
图6是具体示出由驱动频率确定部分6b确定驱动频率的处理的流程的一例的图。
首先,在驱动频率确定部分6b中,从作为输入信息的供给电流振幅值(实际振幅值)i和比较电流振幅值i′(目标振幅值i")比较实际振幅值i和比较振幅值i′的一半值(i′/2)的大小。
具体说来,首先判断实际振幅值i是否大于比较振幅值i′的一半(步骤P1)。该判断结果,在实际振幅值i大于比较振幅值i′的一半时,进行驱动频率的调整处理(步骤P3),在实际振幅值i不大于比较振幅值i′的一半时,进一步进行判断处理(步骤P2)。
即,在实际振幅值i不大于比较振幅值i′的一半时,判断实际振幅值i是否小于比较振幅值i′的一半(步骤P2)。在此,判断为小时,进行驱动频率的调整处理(步骤P4)。
另外,在上述步骤P2的判断结果,判断为不小时,驱动频率维持现状,结束驱动频率的确定处理。即,在上述步骤P2的判断结果,判断为不小时,由于在步骤P1的判断处理中判断为不大,所以实际振幅值i与比较振幅值i′的一半相比不大也不小,即与这些值相等,从而驱动频率维持当前值。
另一方面,在步骤P1的判断处理中,判断为实际振幅值i大于比较振幅值i′的一半时,将驱动频率ω只改变变化量Δω部分,以使输入电流振幅值(实际振幅值)i比当前小而(步骤P3),结束目标频率的确定处理。
另外,在步骤P2的判断处理中,判断为实际振幅值i小于比较振幅值i′的一半时,将驱动频率ω只改变变化量Δω部分,以使输入电流振幅值(实际振幅值)i比当前大(步骤P4),结束目标频率的确定处理。
该驱动频率的确定处理以一定周期重复进行,具有比上述反相器控制器9确定反相器供给电压的电压确定处理的周期要长或相等的周期。
另外,在有供给电流振幅值i成为比较振幅值i′的一半的最佳驱动频率时,通过重复进行驱动频率的确定处理,驱动频率ω接近该最佳驱动频率。另外,在实际振幅值i一直大于比较振幅值i′的一半时,通过重复频率确定处理,驱动频率ω接近实际振幅值i成为最小的最佳驱动频率。在实际振幅值i一直小于比较振幅值i′的一半时,通过重复频率确定处理,驱动频率ω接近实际振幅值i最大的最佳驱动频率。
图6所示的驱动频率的确定处理的流程示出了判断实际振幅值i是否大于比较振幅值i′的一半的处理(步骤P1)之后,判断实际振幅值i是否小于比较振幅值i′的一半的处理(步骤P2)的场合,但也可以交换步骤P1和步骤P2的判断处理的顺序,此时也可以得到同样的判断结果。
下面,采用表示理论根据的(数6)说明该实施例2的直线振动电动机的驱动控制方法的特征。
该实施例2中,与上述实施例1同样,由于将输入给直线振动电动机的电压Vd通过对比较电流波形和作为驱动电流实际流过直线振动电动机的实际电流(反相器供给电流)Cd的波形的差、乘以比例增益P来确定,所以直线振动电动机的输入功率由式(5)表示。
但是,本实施例2中,与实施例1不同,在使比较振幅值i′为一定的条件下,即,将比较振幅值i′设为目标振幅值i"的条件下进行直线振动电动机的控制。
以下的式(6)是比较振幅值i′、和作为常数变形了式(5)的公式。
〔式6〕
图7是用曲线表示式(6)所示的关系的图。
作为改变驱动频率ω时的实际电流振幅值i的变化图形,考虑了图7(a)~(c)所示的3个图形。
图7(a)表示即使改变驱动频率ω,实际电流振幅值(供给电流Cd的振幅值)i也一直不下降到指令电流振幅值(比较电流Cc的振幅值)i′的一半时的变化图形。该图形中,实际电流振幅值i为最小的驱动频率是共振频率。
图7(b)表示若改变驱动频率ω,则实际电流振幅值i跨过指令电流振幅值i′的一半并变化的图形。该图形中,实际电流振幅值i为指令电流振幅值i′的一半的驱动频率是共振频率。
图7(c)表示即使改变驱动频率ω,实际电流振幅值i也一直不上升到指令电流振幅值i′的一半时的图形。该图形中,实际电流振幅值i为最大的驱动频率是共振频率。
从而可知,要使反相器2提供给直线振动电动机100的功率Pa(=v·i×cosθ)最大,则使实际电流的振幅值i成为比较电流的振幅值i′的一半即可,但由于实际电流的振幅值i作为直线振动电动机的动作结果出现,所以其取值范围有限。因此,不一定能够使实际电流的振幅值i成为比较电流振幅值i′的一半。
如从图7可知,在实际电流振幅值i一直大于比较电流振幅值i′的一半时,实际振幅值i最小的频率是功率最大的频率,即共振频率。相反,在实际电流振幅值i一直小于比较电流振幅值i′时,实际振幅值i最大的频率是共振频率。
如一般所知,直线振动电动机中,该驱动频率和供给电流的关系成为具有1个极值的凸函数,供电取最大值的频率是共振频率。即,单调增加或单调减小驱动频率时,功率最大的频率只有1个。
像这样,本实施例2中,利用交流电流Cd驱动控制直线振动电动机100的电动机驱动控制装置中,具有检测直线振动电动机100的驱动电流(反相器供给电流)Cd的检测器3,基于直线振动电动机的动作状态生成成为直线振动电动机100的驱动电流的基准的振幅值一定的比较电流波形的比较电流波形生成部分8,为使上述比较电流波形和检测出的供给电流Cd的波形的差成为零,反馈控制直线振动电动机的驱动电压的反相器控制部分9,由于将上述驱动电流的频率ω调整为上述检测出的驱动电流的振幅值i接近上述比较电流振幅值i′的一半,所以不用如位置传感器的装置,将可以使直线振动电动机的驱动频率成为共振频率或接近的频率,而且可以稳定控制直线振动电动机的驱动频率。
(实施例3)
图7是说明本发明的实施例3的电动机驱动控制装置的框图。
该实施例3的电动机驱动控制装置103与实施例1的电动机驱动控制装置101同样,具有定子和转子,将为了形成包含该转子的弹簧振动系统而弹性支撑了该转子的直线振动电动机100基于驱动电压和驱动电流进行反馈驱动控制。该实施例3中,与实施例1的不同之处是,将作为上述驱动电流的交流电流的频率不是基于直线振动电动机的驱动电流确定,而是基于提供给直线振动电动机的功率确定。另外,上述定子和转子的一个由电磁铁构成,另一个由电磁铁或永磁铁构成。
该电动机驱动控制装置103具有产生电源电压(直流电压)VDC的电源1,将上述电源电压VDC变换为规定频率的交流电压Vd并提供给直线振动电动机100的反相器2,和监视上述直线振动电动机100的驱动电流的电流传感器10。
电动机驱动控制装置103具有基于该电流传感器10的电流监视器输出Scm,检测出作为反相器2提供给直线振动电动机100的交流电流(反相器供给电流)Cd的驱动电流,输出表示该瞬时值(检测电流瞬时值)I(t)的供给电流检测信号Dsc的供给电流检测器3;和检测出作为上述反相器2的输出电压(反相器供给电压)Vd的上述直线振动电动机100的驱动电压,输出表示该瞬时值(检测电压瞬时值)V(t)的供给电压检测信号Dsv的供给电压检测器4。
电动机驱动控制装置103具有从由上述供给电流检测器3得到的反相器供给电流Cd的瞬时值(检测电流瞬时值)I(t)和由上述供给电压检测器4得到的反相器供给电压Vd的瞬时值(检测电压瞬时值)V(t),计算出上述反相器2提供给上述直线振动电动机100的供电Pa,输出表示该供电Pa的供电计算出信号Osp的供电计算器5。
电动机驱动控制装置103具有基于来自上述供电计算器5的供电算出信号Osp,确定上述反相器2提供给直线振动电动机100的电流(反相器供给电流)Cd的频率(驱动频率)ω,输出表示该驱动频率ω的频率指令信号Ofr的驱动频率确定部分6c;和输出表示上述反相器供给电流Cd的目标振幅值(目标电流振幅值)i"的振幅值指令信号Oam的供给电流振幅值确定部分7。
电动机驱动控制装置103具有生成具有与上述振幅值指令信号Oam表示的目标电流振幅值i"一致的振幅值(比较振幅值)i′、其频率与上述驱动频率信号Of表示的驱动频率ω一致的成为上述反相器供给电流Cd的基准的比较电流波形,输出表示该比较电流波形(比较电流瞬时值)I’(t)的比较电流波形信号Fcw的比较电流波形生成部分8。
电动机驱动控制装置103具有基于来自上述供给电流检测器3的输出信号Dsc和比较电流波形生成部分8的输出信号Fcw,确定使上述反相器供给电流Cd的瞬时值(检测电流瞬时值)I(t)和上述比较电流瞬时值I’(t)的误差小的上述反相器2的输出电压(反相器供给电压)Vd,为使上述反相器2产生上述确定的输出电压Vd,利用控制信号Sic控制的反相器控制器9。
该电动机驱动控制装置103中,由上述供给电流检测器3、供给电压检测器4、供电计算器5、驱动频率确定部分6c、比较电流波形生成部分8、以及反相器控制器9构成直线振动电动机100的反馈驱动控制系统。另外,实施例3中,电动机驱动控制装置103的上述检测器3、4、计算器5、确定部分6c、7、生成部分8、以及反相器控制器9由软件构成。
下面,具体说明上述直线振动电动机驱动控制装置103的各部分的结构。
在此,上述电源1与实施例1的电动机驱动控制装置101的电源1相同。
下面,具体说明供给电流检测器3、电流传感器10、以及供给电压检测器4。
供给电流检测器3基于作为电流传感器10的监视器输出的电流监视器信号Scm,检测出作为直线振动电动机100的驱动电流的反相器2的输出电流(反相器供给电流)Cd,将表示其瞬时值(检测电流瞬时值)I(t)的供给电流检测信号Dsc输出给供电计算部分5和反相器控制器9。在此,上述电流传感器10与实施例1的电动机驱动控制装置101的电流传感器相同。
供给电压检测器4检测出反相器2施加给直线振动电动机100的驱动电压(反相器供给电压)Vd,将表示其瞬时值(检测电压瞬时值)V(t)的供给电压检测信号Dsv输出给供电计算器5。在此,作为上述反相器供给电压Vd的检测方法一般是分压线间电压并测定的方法。但是,在反相器2为电压形PWM(PulseWidth Modulation)反相器时,由于供给电压Vd的波形为PWM波形,所以难以直接测定。因此,作为电压形PWM反相器的供给电压的测定方法采用以下方法,即,采用由晶体管、电容器、阻抗作成的低通滤波器等,对反相器供给电压Vd进行PWM波形的整形处理,测定实施了波形整形处理的供给电压的方法。另外,上述反相器供给电压Vd的检测方法不限于使用上述的低通滤波器的方法,也可以采用从输入给反相器2的直流电压VDC和反相器2输出的PWM电压的脉宽计算出上述反相器供给电压Vd的方法。
下面,具体说明供电计算器5。
该供电计算器5是从提供给直线振动电动机100的电压Vd和电流Cd计算出对直线振动电动机的平均供电Pa。具体说来,供电计算器5从上述供给电流检测器3的检测输出Dsc表示的检测电流瞬时值I(t)和上述供给电压检测器4的检测输出Dsv表示的检测电压瞬时值V(t)的乘积计算出供电瞬时值P(t),在驱动频率的1个周期或其整数倍的期间,对计算出的供电瞬时值P(t)进行相加,通过将相加的功率瞬时值除以表示上述期间的时间,计算出对直线振动电动机100的平均供电Pa。另外,上述供电Pa的计算处理也可以是用低通滤波器平均供电瞬时值P(t),并求出上述供电Pa的处理。
下面,具体说明供给电流振幅值确定部分7。
该供给电流振幅值确定部分7与实施例1的供给电流振幅值确定部分相同,即,输出表示提供给直线振动电动机100的电流(反相器供给电流)Cd的目标振幅值(目标电流振幅值)i"的振幅值指令信号Oam,在此,上述反相器供给电流Cd的目标振幅值i"是预定的1个电流振幅值。
但是,上述振幅值指令信号Oam不限于一直示出已定的1个电流振幅值,也可以是随着时间经过,依次示出预定的多种电流振幅值。
另外,供给电流振幅值确定部分7不限于如上述那样输出表示预定的电流振幅值的振幅值指令信号Oam,也可以是例如从直线振动电动机100要求的运转状态、或其负荷状态确定上述反相器供给电流Cd的目标振幅值i",输出表示该确定的目标电流振幅值i"的振幅值指令信号Oam。在此,与上述实施例1同样,对直线振动电动机100不仅能以适于其负荷状态的运转状态进行驱动控制,而且还能以直线振动电动机要求的运转状态进行驱动控制。
在此,上述直线振动电动机100的运转状态是直线振动电动机的转子的振幅大小等,这样的转子的振幅达小可以通过采用了位置传感器的转子的位置检测、或采用驱动电流运算转子的冲程的运算处理等求出。
另外,直线振动电动机100的负荷状态根据其适用的形态有各种,例如将本实施例的直线振动电动机100和电动机驱动控制装置103适用于压缩机时,负荷状态是压缩的流体的压力、温度,特别是该压缩机是空调上搭载的压缩机时,负荷状态是室内温度和室外温度。另外,上述压缩机是冷藏库上搭载的压缩机时,上述负荷状态是库内温度等。
将直线振动电动机100和电动机驱动控制装置103适用于剃须刀时,上述负荷状态是胡须的浓度。
上述直线振动电动机要求的运转状态(能力)也根据该直线振动电动机的适用形态有各种,例如将直线振动电动机100和电动机驱动控制装置103适用于便携式电话时,对上述直线振动电动机要求的能力是将向用户通知来电的振动的强弱改变为节奏的功能等。
下面,具体说明驱动频率确定部分6c。
该驱动频率确定部分6c基于由上述供电计算部分5算出的对直线振动电动机100的供电Pa,确定提供给直线振动电动机100的电流Cd的频率(驱动频率)ω,重复进行将该反相器供给电流Cd的频率ω调整为接近直线振动电动机100的共振频率ωreso的频率调整处理。
具体说来,上述驱动频率确定部分6c为使上述比较电流波形的振幅值i′与供给电流振幅值确定部分7确定的目标电流振幅值i"一致而保持一定的状态下,为使供电计算器5计算的对直线振动电动机100的供电Pa最大而调整驱动频率ω。
下面,具体说明比较电流波形生成部分8。
该比较电流波形生成部分8生成具有与上述供给电流振幅值确定部分7确定的目标电流振幅值i"一致的振幅值(比较振幅值)i′、频率与驱动频率确定部分6确定的驱动频率ω一致的比较电流波形(第1交流电流波形),将表示该比较电流波形(比较电流瞬时值)I′(t)的比较电流波形信号Fcw输出给反相器控制器9。在此,上述比较电流的相位对应于上述反相器供给电流Cd的相位。
最后,具体说明反相器控制器9。
该反相器控制器9为了减小供给电流检测器3的检测信号Dsc所示的反相器供给电流Cd的瞬时值I(t)和在比较电流波形生成部分8生成的比较电流的瞬时值I′(t)的偏差,调整反相器供给电压Vd,确定该偏差最小的值。例如,上述反相器供给电压Vd的调整是通过利用控制信号Sic调整上述反相器2的输出脉冲电压的PWM宽度来进行。
另外,上述反相器输出电压的具体确定方法有具有适当增益的P(比例)控制或PI(比例积分)控制的方法。例如,上述P(比例)控制的方法是将表示检测电流瞬时值I(t)的检测电流波形和表示比较电流瞬时值I′(t)的比较电流波形的波形偏差ΔI(=I′(t)-I(t))和适当增益P的相乘值作为上述反相器输出电压Vd。另外,上述PI(比例积分)控制的方法是将上述波形偏差ΔI(=I′(t)-I(t))和适当增益P的相乘值和波形偏差ΔI(=I′(t)-I(t))的积分值的相加值作为上述反相器输出电压Vd。
下面,说明动作。
图9(a)示出本实施例的电动机驱动控制装置103驱动控制直线振动电动机100的动作的流程。
本实施例3中,电动机驱动控制装置103为了在反相器2提供给直线振动电动机100的电流(反相器供给电流)Cd的振幅值i保持规定的比较振幅值i′(=目标振幅值i")的状态下,对直线振动电动机100的供电Pa最大,调整该反相器供给电流Cd的频率,驱动直线振动电动机100。
下面首先说明电动机驱动控制装置103的整体动作。
本实施例1的电动机驱动控制装置101中,在反相器2进行利用来自反相器控制器9的控制信号Sic,将电源电压VDC变换为规定的交流电流的处理,该交流电流作为驱动电流提供给直线振动电动机100。从而,驱动直线振动电动机100。
作为直线振动电动机100的驱动电流的反相器供给电流Cd由电流传感器10监视,在该供给电流检测器3中,基于该电流传感器10的监视器输出Scm检测出提供给直线振动电动机100的电流(反相器供给电流)Cd,将表示该供给电流Cd的瞬时值I(t)的供给电流检测信号Dsc输出给供电计算器5和反相器控制器9。另外,该供给电压检测器4检测出直线振动电动机100的驱动电压Vd,将表示该驱动电压Vd的瞬时值V(t)的供给电压检测信号Dsv提供给供电计算器5。
在该电动机驱动控制装置103按照图9(a)所示的动作流程进行直线振动电动机100的驱动控制,即控制使对反相器的供电Pa最大的驱动电流的频率的频率追踪控制。
在供给电流振幅值确定部分7中,从存储器读出目标电流振幅值i"(步骤S1),输出表示该目标电流振幅值i"的振幅值指令信号Oam。另外,在根据直线振动电动机100的负荷状态改变上述目标电流振幅值i"时,在上述供给电流振幅值确定部分7生成对应上述负荷状态的目标电流振幅值i",输出表示该生成的目标电流振幅值i"的振幅值指令信号Oam。
接着,比比较电流波形生成部分8基于来自供给电流振幅值确定部分7的振幅值指令信号Oam、和来自驱动频率确定部分6c的频率指令信号Ofr,生成具有与振幅值指令信号Oam表示的目标电流振幅值i"一致的振幅值(比较振幅值)i′、且频率与频率指令信号Ofr示出的驱动频率ω一致的比较电流波形,输出表示该比较电流波形(比较电流瞬时值)I′(t)的比较电流波形信号Fcw(步骤S2)。其中,在刚刚开始驱动直线振动电动机之后的由驱动频率确定部分6c没有确定驱动频率ω的状态下,作为该驱动频率ω,采用预先定义的驱动频率的初始值ωinti。
反相器控制器9中,接收来自上述供给电流检测器3的检测信号Dsc和来自比较电流波形生成部分8的波形信号Fcw,基于该检测信号Dsc所示的检测电压瞬时值I(t)和波形信号Fcw所示的比较电流瞬时值I′(t),确定上述反相器2的输出电压(反相器供给电压)Vd。上述反相器2通过来自反相器控制器9的控制信号Sic产生上述输出电压Vd,将该输出电压Vd作为驱动电压施加给直线振动电动机100。换言之,对直线振动电动机100提供对应上述比较电流波形的电流(步骤S3)。
上述供电计算器5进行从供给电压检测器4的检测输出Dsv和供给电流检测器3的检测输出Dsc计算出提供给直线振动电动机100的功率Pa的运算处理(步骤S4)。
上述驱动频率确定部分6c中,在提供给直线振动电动机100的交流电流(反相器供给电流)Cd的振幅值i一定的状态下,即,该振幅值i保持上述目标振幅值i"(=比较振幅值i′)的状态下,调整反相器供给电流Cd的频率ω,搜索对反相器的供电Pa最大的最大功率频率ωpmax(步骤S5)。
接着,上述驱动频率确定部分6c判断提供给直线振动电动机的功率Pa是否是反相器供给电流Cd的振幅值i保持当前的目标振幅值i"的状态下的最大值(步骤S6),该判断结果,在对直线振动电动机的供电不是最大时,再次搜索最大功率频率ωpmax(步骤S2~S6)。另一方面,在步骤S6的判断结果,对直线振动电动机的供电Pa是最大时,再次确定目标电流振幅值i"(步骤S1),接着,在反相器供给电流Cd的振幅值i保持再次确定的目标电流振幅值i"(=比较振幅值i′)的状态下,搜索供电Pa最大的最大功率频率ωpmax(步骤S2~S6)。
下面,具体说明驱动频率确定部分6c的动作。
图10是示出驱动频率确定部分6c的动作流程的图。
在提供给直线振动电动机100的交流电流(反相器供给电流)Cd的振幅值i保持一定的状态下,该反相器供给电流的频率ω和对电动机的供电Pa的关系成为2次凸函数。从而,作为搜索供电Pa最大的频率ωpmax的方法,由于2次凸函数只有1个极值,所以快速梯度法(登山法)有效。
以下,说明利用2个变量,即频率调整处理周期Padju和频率变化量Δω,和1个标记Fcd化,利用快速梯度法,搜索供电Pa最大的频率(最大功率频率)ωpmax的处理。
在此,上述反相器供给电流的最大功率频率ωpmax与直线振动电动机的共振频率ωreso相等。另外,上述频率调整处理周期Padju是驱动频率确定部分6c进行频率调整处理(即,确定驱动频率ω的处理)的周期,频率变化量是驱动频率确定部分6c在1次频率调整处理中变化的驱动频率ω的变化量Δω。标记Fcd化表示驱动频率确定部分6c确定的驱动频率的变化方向,该标记Fcd化的值〔1〕表示频率增加,标记Fcd化的值〔-1〕表示频率减小。
首先,在驱动频率确定部分6c进行比较供给电力Pa1和Pa2的处理,Pa1是在反相器供给电流Cd的频率为由再前一次频率调整处理确定的频率时,由供电计算器5计算出的对直线振动电动机100的供给电力;Pa2是反相器供给电流Cd的频率为由前一次频率调整处理确定的频率时,由供电计算器5计算出的供给电力(步骤S10)。
在前一次取得的电力Pa2小于再前一次取得的电力Pa1时,正负翻转驱动频率变化方向标记Fcd化的值(步骤S11)。这是因为前一次取得的电力Pa2小于再前一次取得的电力Pa1是表示前一次处理中,对直线振动电动机100的供给电流的频率ω朝远离直线振动电动机的共振频率ωreso的方向改变。另外,在前一次取得的电力Pa2相等或大于再前一次取得的电力Pa1时,原样保持驱动频率变化方向标记Fcd化的值(步骤S12)。这是因为前一次取得的电力Pa2等于或大于再前一次取得的电力Pa1是表示前一次确定的驱动频率ω朝接近直线振动电动机的共振频率ωrsns的方向,或朝驱动频率ω和直线振动电动机100的共振频率ωrsns的差没有变化的方向改变。
接着,工作频率确定部分6c判断驱动频率变化方向标记Fcd化的值是否为负(步骤S13)。该判断结果,在标记Fcd化的值不为负时,直线振动电动机100的驱动频率ω改变为增加了驱动频率变化量Δω的值,并将改变的驱动频率确定为新的工作频率ω(步骤S14)。相反,在驱动频率变化方向标记Fcd化的值为负时,直线振动电动机100的驱动频率ω改变为减少了驱动频率变化量Δω的值,并将改变的驱动频率确定为新的工作频率ω(步骤S15)。
驱动频率确定部分6c结束这一次的频率调整处理之后,其动作在一定期间成为等待状态(步骤S16),经过该一定时间之后,进行下一次的频率调整处理(步骤S10~16)。在此,驱动频率确定部分6的动作成为等待状态的期间是从频率调整处理Padju减去一次频率调整处理所需的时间的时间。
另外,驱动频率确定部分6c中,在直线振动电动机的开始工作状态等,不存在对应前一次或再前一次的频率调整处理的功率值时,采用预设的已定值。
像这样,在驱动频率确定部分6c在每个频率调整处理Padju,进行将提供给直线振动电动机100的交流电流的驱动频率ω改变频率变化量Δω的频率调整处理,通过该频率调整处理,该驱动频率跟踪提供给直线振动电动机100的功率Pa最大的频率(最大功率驱动频率)ωpmax。
另外,在直线振动电动机100的负荷不稳定时,有时即使不改变驱动频率ω,提供给直线振动电动机100的功率Pa也变化,因此,驱动频率确定部分6有时将直线振动电动机100的驱动频率ω向偏离最大功率频率ωpmax的方向变化。
因此,驱动频率确定部分6c也可以将在1个方向改变驱动频率ω的频率调整处理持续进行至少2次以上的规定次数,其结果,在供电Pa变化到规定的基准变化量以上时,保持进行该规定次数的频率调整处理以前的驱动频率,即,直至负荷稳定为止不改变驱动频率。
通过进行上述处理,在负荷不稳定的状态下,减少驱动频率确定部分6c将驱动频率ω在偏离最大功率频率ωpmax的方向改变,可以使上述直线振动电动机稳定工作。另外,成为通过上述的连续的规定次数的频率调整处理而变化的供电变化量的基准的规定基准量也可以是预定的一定值,也可以是基于确定的时刻的实际供电的值,具体是在通过频率调整处理来确定驱动频率的时刻的供电10%的值等。
另外,在上述频率调整处理的功率变化量大时,由于认为该时刻的驱动频率ω较大偏离最大功率频率ωpmax,所以缩短频率调整处理周期Padju即可,相反,在上述频率调整处理的供电变化量小时,由于认为直线振动电动机以接近最大功率频率ωmax的驱动频率ω驱动,所以延长频率调整处理周期Padju即可。这样,可以高速、稳定地进行驱动频率跟踪最大功率频率的控制。
另外,上述的电动机驱动控制装置中,由于驱动频率确定部分6c一直改变驱动频率ω,监视功率最大的驱动频率ωpmax,所以有时驱动频率ω以频率调整处理周期Padju,以功率最大的驱动频率ωmax为中心,只变动频率变化量Δω。因此,不能忽视驱动频率ω偏离可得到最大功率的驱动频率ωpmax的区域的直线振动电动机的驱动。
因此,频率调整处理的供电变化量大时,认为驱动频率ω由最大功率频率ωpmax较大偏离,所以使驱动频率变化量Δω变大即可,在频率调整处理的供电变化量小时,认为直线振动电动机以接近最大功率偏离ωpmax的驱动频率ω驱动,所以使驱动频率变化量Δω变小即可。这样,驱动频率ω可以高速且正确地跟踪最大功率频率ωpmax。
以下采用表示理论根据的式(7)和式(8)说明本实施例3的直线振动电动机的控制方法。
给直线振动电动机100输入的能量(供电)和从直线振动电动机100输出的能量的关系可以用下式表示
〔式7〕。
在此,Pout为直线振动电动机的平均输出能量,Pin为直线振动电动机的平均输入能量,R为直线振动电动机内存在的等效阻抗、i为提供给直线振动电动机的交流电流(反相器供给电流)Cd的实际振幅值。另外,直线振动电动机的平均输入能量Pin相当于上述的反相器2的供电,即上述供电计算器5计算的功率Pa。
如从上述式(7)可知,在直线振动电动机100的损失是直线振动电动机内存在的等效阻抗R产生的焦耳热,若认为等效阻抗R的值不变,则与供给电流Cd的频率ω无关,只由其振幅值i确定。
另外,直线振动电动机的平均输出能量Pout和平均输入能量Pin的比η(以下,也称为综合效率)用下式表示
〔式8〕。
由于以共振状态驱动直线振动电动机100与以最高效率驱动直线振动电动机同等,所以通过将直线振动电动机的驱动频率ω控制为使综合效率η最大,从而可以找出上述共振频率ωreso。
从上述式(8)可知,要使直线振动电动机的综合效率η最大,则在固定了供给电流Cd的振幅值i的情况下,使其平均输入电流能量Pin最大即可。
从上述式(7)可知,在供给电流Cd的振幅值i固定时,使对直线振动电动机的平均输入能量Pin最大与使平均示出能量Pout最大是等效的。
从上述,理论上可知,通过在将提供给直线振动电动机100的交流电流(反相器供给电流)Cd的振幅值i设为一定的状态下,调整使对直线振动电动机的平均输入能量(即,反相器供电)Pa最大的供给电流的频率ω,从而能以共振频率ωreso驱动直线振动电动机100,可以高效运转直线振动电动机。
用其它表现说明找出该共振频率的方法。
由于提供给直线振动电动机100的电流(反相器供给电流)Cd、与振动直线振动电动机100的转子的力成正比,所以在将供给电流Cd的振幅值i设为一定的状态下、改变上述反相器供给电流的频率ω,与在保持一定的振动力的状态下、改变转子的振动频率同等。从而,一边将供给电流的振幅值保持一定、一边调整使对直线振动电动机的平均输入能量(即,反相器供电)Pa最大的供给电流的频率ω、找出最大功率频率ωpmax,与一边将振动力保持一定、一边调整使工作最佳的振动频率、找出共振频率ωreso相同。在此,直线振动电动机工作最佳与直线振动电动机的转子的速度最快、或直线振动电动机的输出能量最大同等。
像这样,本实施例3具有基于提供给直线振动电动机100的电流Cd和电压Vd的检测输出Dsc和Dsv,计算出对直线振动电动机100的供电Pa的计算器5,确定提供给直线振动电动机的电流Cd的目标振幅值i"的确定部分7,和一边将上述供给电流的振幅值i保持目标振幅值i",一边将驱动频率ω调整为接近使该计算出的供电Pa最大的共振频率的确定部分6c,由于反相器2控制施加给直线振动电动机的电压Vd,以使具有上述调整的驱动频率ω与上述目标振幅值i"一致的振幅值i’的比较电流波形I’(t)、与对直线振动电动机的供给电流的波形I(t)一致,所以不用采用检测直线振动电动机100的转子的变位、速度、加速度等的传感器,就可以高精度地检测出直线振动电动机的共振频率。这样,可以避免内置传感器的大型化、且不用受到确保传感器的动作可靠性的不必要的制约,就可以实现与负荷变动无关的高效运转直线振动电动机的驱动控制。
而且,实施例3的电动机驱动控制装置103中,检测器3、4、计算器5、确定部分6、7、生成部分8、以及反相器控制器9由软件构成,但这些也可以由硬件构成。
另外,上述实施例3中示出了作为供给电流振幅值确定部分7,将根据直线振动电动机100的运转状态或其负荷状态确定目标电流振幅值i"的振幅值确定处理在每次判断出反相器供给电流Cd的频率成为在确定的目标电流振幅值i"供电最大的最大功率频率时进行,但上述供给电流振幅值确定部分7也可以将上述振幅值确定处理不仅在反相器供给电流Cd的频率成为在确定的目标电流振幅值i"的最大功率频率时进行,在进行前一次振幅值确定处理之后经过了一定时间时进行。
在此,如图9(b)所示,驱动频率确定部分6c在反相器供给电流Cd的频率是否成为在确定的目标电流振幅值i"的最大功率频率的频率判断处理(步骤S6)之前,进行前一次振幅值确定处理(步骤S1)之后是否经过了一定时间的时间判断处理(步骤S6a)。供给电流振幅值确定部分7中,不仅在反相器供给电流Cd的频率成为在确定的目标电流振幅值i"的最大功率频率时进行,在前一次振幅值确定处理(步骤S1)之后经过了一定时间时,也进行根据直线振动电动机100的运转状态或其负荷状态确定目标电流振幅值i"的振幅值确定处理。
图9(b)的步骤S1~6与图9(a)所示的实施例3的步骤相同。
在像这样前一次振幅值确定处理之后经过了一定时间以上时,通过与反相器供给电流Cd的频率是否成为在确定的目标电流振幅值i"的最大功率频率无关,进行振幅值确定处理,可以提高直线振动电动机的驱动控制的响应性。
例如,通过将实际振幅值(反相器供给电流Cd的振幅值)保持为确定的的目标电流振幅值i"的状态下的频率调整处理,使反相器供给电流Cd的频率与最大功率频率ωpmax一致要花费时间时,或直线振动电动机100的运转状态或其负荷状态的变化大时,确定的目标电流振幅值i"已经不是对应直线振动电动机100的运转状态或其负荷状态的振幅值,不能充分保持直线振动电动机的驱动控制的稳定性和响应性。
像这样,在将反相器供给电流Cd的频率跟踪最大功率频率ωpmax要花费时间等的情况下,如图9(b)所示,通过与反相器供给电流Cd的频率是否成为在上述确定的目标电流振幅值i"的最大功率频率无关,每个一定周期重复进行振幅值确定处理,可以保持直线振动电动机的驱动控制的较高的稳定性和响应性。
〔实施例4〕
图11是说明本发明的实施例4的压缩机驱动装置的模式图。
该实施例4的压缩机驱动装置104驱动控制压缩空气和气体等的压缩机40。在此,该压缩机40的动力源为直线振动电动机46,它与实施例1的直线振动电动机100相同。另外,上述压缩机驱动装置104是驱动控制该直线振动电动机46的电动机驱动控制装置,具有与实施例3的电动机驱动控制装置103相同的结构。以下,将该实施例4的压缩机40称为直线压缩机,简单说明该直线压缩机40。
该直线压缩机40具有沿着规定的轴线排列的汽缸41a和电动机部分41b。在该汽缸部分41a内配置有沿着上述轴线方向自由滑动地支持的活塞42。跨过汽缸部分41a和电动机部分41b配置有其一端固定在活塞42的背面侧的活塞杆42a,在活塞杆42a的另一端侧设置有对该活塞杆42a向轴线方向赋能的支持弹簧(共振弹簧)43。
另外,在上述活塞杆42a安装有磁铁44,在上述电动机部分41b的与磁铁44对置的部分安装有由外轭45a、和被该外轭埋入的定子线圈45b构成的电磁铁45。在该直线压缩机40中,由电磁铁45和安装在上述活塞杆42a的磁铁44构成直线振动电动机46。从而,在该直线压缩机40中,通过该电磁铁45和磁铁44之间产生的电磁力和上述弹簧43的弹力,上述活塞42沿着其轴线方向往返运动。
另外,在汽缸部分41a内形成有作为由汽缸上部分里面47、活塞压缩面42b、以及汽缸周壁面41a1所围的密闭空间的压缩室48。在汽缸上部分里面47,为了从气体侧流通路径向压缩室48吸入低压气体Lg,气体侧吸入管40a的一端开口。另外,在上进汽缸上部分里面47,为了从上述压缩室48向气体侧流通路径吐出高压气体Hg,吐出管40b的一端开口。在上述吸入管40a和吐出管40b安装有防止气体逆流的吸入阀49和吐出阀50。
该实施例4的电动机驱动控制装置104向该压缩机40的直线振动电动机46提供驱动电流Cd和驱动电压Vd。即,电动机驱动控制装置104与实施例3同样,如图8所示,具有电源1、反相器2、供给电流检测器3、供给电压检测器4、供电计算器5、驱动频率确定部分6c、供给电流振幅值确定部分7、比较电流波形生成部分8、以及反相器控制部分9。该电动机驱动装置104基于对直线振动电动机46的供给电流Cd和外加电压Vd,计算出对直线振动电动机46的供电Pa,将作为上述供给电流Cd的交流电流的振幅值i保持为目标振幅值i",调整并确定使上述计算出的供电Pa最大的该交流电流Cd的频率ω。
这种结构的直线压缩机40中,通过从电动机驱动控制装置104对直线振动电动机46的驱动电流的断续通电,活塞42向其轴线方向往返移动,重复进行压缩室48吸入低压气体Lg、在压缩室48压缩气体、以及从压缩室48排出压缩的高压气体Hg。另外,在直线压缩机40的动作状态下,检测出对作为其驱动源的直线振动电动机46的供给电流Cd和外加电压Vd,基于该检测出的供给电流Cd和外加电压Vd,计算出对直线振动电动机46的供电Pa,另外,将作为上述供给电流Cd的交流电流的频率ω确定为在将该交流电流Cd的振幅值i保持为目标振幅值i"的状态下,使上述计算出的供电Pa最大。
像这样,本实施例4的直线压缩机40中,提供给作为其动力源的直线振动电动机46的交流电流Cd的频率ω与实施例3同样,确定为在将作为上述供给电流Cd的交流电流的振幅值i保持目标振幅值i"的状态下使上述计算出的供电Pa最大,所以不用采用检测其转子的变位、速度、加速度等的传感器,就可以高精度地检测出直线振动电动机46的共振频率。这样,可以避免内置转子的位置传感器的大型化而驱动控制与负荷变动无关地高效运转作为动力源的直线振动电动机46,且可以实现不用受到确保传感器的动作可靠性的不必要的制约的直线压缩机40。
(实施例5)
图12是说明本发明的实施例5的空调的框图。
该实施例5的空调50是具有室内机55和室外机56,具有制冷和制热功能的空调。该空调50具有在室内机55和室外机56之间循环致冷剂的压缩机50a、和驱动该压缩机50a的压缩机驱动装置50b。在此,上述压缩机50a与上述实施例4的具有直线振动电动机46的直线压缩机40相同。另外,压缩机驱动装置50b驱动控制该直线压缩机50a的直线振动电动机,具有与实施例4的电动机驱动控制装置104相同的结构。另外,以下的实施例5的说明中,上述压缩机50a称为直线压缩机50a,上述压缩机驱动装置50b称为电动机驱动控制部分50b。
以下具体说明,实施例5的空调50具有形成致冷剂循环路径的直线压缩机50a、节流装置(膨胀阀)53、室内侧热交换器51、和室外侧热交换器52,还具有驱动控制作为该直线压缩机50a的驱动源的电动机的电动机驱动控制部分50b。在此,室内侧热交换器51构成上述室内机55,节流装置53、室外侧热交换器52、直线压缩机50a、四通阀54以及电动机驱动控制部分50b构成上述室外机52。
在此,上述室内侧热交换器51具有用于提高热交换能力的送风机51a、和测定该热交换器51的温度或其周边温度的温度传感器51b。上述室外侧热交换器52具有用于提高热交换能力的送风机52a和测定该热交换器52的温度或其周边温度的温度传感器52b。
该实施例5中,在上述室内侧热交换器51和室外侧热交换器52之间的致冷剂路径配置有直线压缩机50a和四通阀54。即,该空调50利用上述四通阀54切换通过室外侧热交换器52的致冷剂吸入到直线压缩机50a、将从该直线压缩机50a吐出的致冷剂提供给室内侧热交换器51的状态(即,致冷剂向箭头A的方向流动的状态)和将通过了室内侧热交换器51的致冷剂吸入到轴线压缩机50a、将从直线压缩机50a吐出的致冷剂提供给室外侧热交换器52的状态(即,致冷剂向箭头B的方向流动的状态)。
另外,上述节流装置53具有节流循环的致冷剂的流量的节流作用和自动控制致冷剂的流量的阀(自动调整阀)的作用。即,节流装置53在致冷剂在致冷剂循环路径内循环的状态下,节流从凝缩器向蒸发器送出的液体致冷剂的流量,膨胀该液体致冷剂,同时向蒸发器适当提供必要量的致冷剂。
另外,上述室内侧热交换器51在暖风运转时作为凝缩器、在冷风运转时作为蒸发器工作,上述室外侧热交换器52在暖风运转时作为蒸发器、在冷风运转时作为凝缩器工作。凝缩器中,在内部分流动的高温高压的致冷剂气体被送入的空气夺去热量而渐渐液化,在凝缩器的出口附近成为高压的液体致冷剂。这与致冷剂在大气中放热并液化相同。另外,向蒸发器流入节流装置53中成为低温低压的液体致冷剂。在该状态下,若向蒸发器送入房间的空气,则液体致冷剂被空气夺去大量的热量并蒸发,变成低温低压的气体致冷剂。被蒸发器夺去大量热量的空气成为冷气并从空调机的吹风口放出。
下面说明动作。
该实施例5的空调50中,若从电动机驱动控制部分50b对直线压缩机50a施加驱动电流Cd,则致冷剂在致冷剂循环路径内循环,在室内机55的热交换器51和室外机56的热交换器52进行热交换。即,在上述空调50中,通过将封入致冷剂的循环闭路的致冷剂利用直线压缩机50a循环,在致冷剂的循环闭路内形成周知的散热泵循环。这样,进行室内的制冷或制热。
例如,在空调50进行制热运转时,通过用户的操作,上述四通阀54设定为致冷剂向箭头A所示的方向流动。在此,室内侧交换器51作为凝缩器工作,通过致冷剂在上述致冷剂循环路径内循环来放热。这样,室内变暖。
相反,在空调50进行制冷运转时,通过用户的操作,上述四通阀54设定为致冷剂向箭头B所示的方向流动。在此,室内侧交换器51作为蒸发器工作,通过致冷剂在上述致冷剂循环路径循环来吸收周边空气的热量。这样,室内变冷。
在此,致冷剂的循环量的控制是采用对上述空调设定的目标温度、实际的室温以及室外部分气体温进行。
像这样,本实施例5的空调50中,由于进行致冷剂的压缩和循环的压缩机采用将直线振动电动机作为动力源的压缩机(直线压缩机)50a,所以与采用了将转动型电动机作为动力源的压缩机的空调相比,减小压缩机的摩损,并且提高密封高压致冷剂和低压致冷剂的密封性,从而可以提高压缩机效率。
另外,采用了本实施例5的直线振动电动机的压缩机50a中,由于摩损降低,所以可以大幅度降低采用转动型电动机的压缩机中必不可少的润滑油的使用量。这样,不仅可以抑制产生较少量的需要再循环等的废油,而且由于溶入油中的致冷剂量减少,所以可以削减填入压缩机的致冷剂量,从而可以对地球环保作贡献。
另外,由于压缩机内部分成为高温高压,并再填入油、致冷剂等化学物质,所以采用检测转子的位置等的位置传感器的情况下,其可靠性成为问题,但本实施例5中,将作为直线振动电动机的驱动电流的交流电流的频率ω确定为在将该交流电流的振幅值i保持为目标振幅值i"的状态下,从驱动电流Cd和驱动电压Vd计算出的供电Pa最大,所以可以不用检测其转子的变位、速度、加速度等的传感器,就可以高效驱动直线振动电动机。
其结果,可以避免内置传感器导致的压缩机的大型化和成本上升,且不受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
(实施例6)
图13是说明本发明的实施例6的冷藏库的框图。
该实施例6的冷藏库60由直线压缩机60a、压缩机驱动装置60b、凝缩器61、冷藏室蒸发器62、以及节流装置63构成。
在此,直线压缩机60a、凝缩器61、节流装置63、以及冷藏室蒸发器62形成致冷剂循环路径,压缩机驱动装置60b驱动控制作为上述直线压缩机60a的驱动源的直线振动电动机。另外,上述直线压缩机60a与上述实施例4的具有直线振动电动机46的直线压缩机40相同。该实施例6的压缩机驱动装置60b具有与实施例4的电动机驱动控制装置104相同的结构,以下该实施例6的说明中称为电动机驱动控制部分60b。
节流装置63与上述实施例5的空调的节流装置53同样,在致冷剂在致冷剂循环路径内循环的状态下,节流从凝缩器61送出的液体致冷剂的流量,并膨胀该液体致冷剂,同时对冷藏室蒸发器62适当供给所需量的致冷剂。
凝缩器61凝缩在内部分流动的高温高压的致冷剂气体,将致冷剂的热量向外部分气体排放。送入该凝缩器61的致冷剂气体被外部分气体夺去热量而渐渐液化,在凝缩器的出口附近成为高压的液体致冷剂。
冷藏室蒸发器62蒸发低温的致冷剂液体,并进行冷藏库内的冷却。该冷藏室蒸发器62具有用于提高热交换的效率的送风机62a、和检测库内温度的温度传感器62b。
下面说明动作。
该实施例6的冷藏库60中,若电动机驱动控制部分60b对直线压缩机60a的直线振动电动机施加驱动电流Cd和驱动电压Vd,则直线振动电动机60a驱动并在致冷剂循环路径内致冷剂向箭头C的方向循环,在凝缩器61和冷藏室蒸发器62进行热交换。这样,冷藏库内被冷却。
即,在凝缩器61成为液状的致冷剂通过在节流装置63节流其流量而膨胀,成为低温的致冷剂。另外,若对冷藏室蒸发器62送入低温的液体致冷剂,则冷藏室蒸发器62中,低温的致冷剂液体蒸发,进行冷藏库内的冷却。在此,在冷藏室蒸发器62由送风机62a强制送入冷藏室内的空气,在冷藏室蒸发器62高效进行热交换。
像这样,本实施例6的冷藏库60中,由于进行致冷剂的压缩和循环的压缩机采用将直线振动电动机作为动力源的压缩机(直线压缩机)60a。所以与实施例5的空调同样,与采用将转动型电动机作为驱动源的压缩机的冷藏库相比,降低压缩机的磨耗,并且提高压缩机的密封致冷剂的密封性,从而可以提高压缩机的工作效率。
另外,在采用本实施例6的直线压缩机60a的冷藏库60中,由于可以降低磨耗,所以与上述实施例5的空调50同样,可以削减作为用完的润滑油的废油的产生量、和填入压缩机的致冷剂量。因此,可以对地球环保作贡献。
另外,本实施例6中,由于将作为直线振动电动机的驱动电流Cd的交流电流的频率ω确定为在将该交流电流的振幅值i保持为目标振幅值i"的状态下,从驱动电流Cd和驱动电压Vd计算出的供电Pa最大,所以与上述实施例5同样,可以避免内置传感器导致的压缩机的大型化和成本上升,不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
(实施例7)
图14是说明本发明的实施例7的超低温冷冻机的框图。
该实施例7的超低温冷冻机70具有冷冻室(未图示),冷却该冷冻室内部分成为超低温状态(-50℃以下)。采用该超低温冷冻机70冷却的物质(冷却对象物),有超导电用的元件(阻抗、线圈、磁石等电磁电路元件)、红外线传感器用的低温参照部分等电子部分件、如血液和内脏的医疗用的物质、以及冷冻金枪鱼等冷冻食品。
使电子部分件成为超低温状态是为了提高动作效率、或除去热噪声而提高灵敏度,对于食品等,是为了运输海鲜食品、和保持新鲜、进行干燥。
另外,冷冻温度根据用途而不同,在-50度以下,特别是在超传导的用途等为0~100K(绝对温度)的较大范围。例如,该超低温冷冻机的冷却温度在高温超导电的用途,设定为50至100K程度,在通常的超导电的用途,设定为0~50K程度的超低温状态。另外,用于维持食品等的新鲜时,该超低温冷冻装置的冷却温度设定为-50℃(摄氏)。
下面具体说明。
该实施例7的超低温冷冻机70由直线压缩机70a、压缩机驱动装置70b、散热器71、蓄冷器72、节流装置73构成。
在此,直线压缩机70a、散热器71、节流装置73、以及蓄冷器72形成致冷剂循环路径。压缩机驱动装置70b驱动控制作为上述直线压缩机70a的驱动源的直线振动电动机。另外,上述直线压缩机70a与上述实施例4的具有直线振动电动机46的直线压缩机40相同。另外,该实施例7的压缩机驱动装置70b具有与实施例4的电动机驱动控制装置104相同的结构,以下,在该实施例7的说明中称为电动机驱动控制部分70b。
节流装置73与上述实施例5的节流装置53同样,是节流并膨胀从散热器71送给蓄冷器72的液体致冷剂的装置。
散热器71与上述实施例6的凝缩器61同样,凝缩在内部分流动的高温高压的致冷剂气体,将致冷剂的热量向外部分气体放出。
蓄冷器72与上述实施例6的冷藏室蒸发器62同样,蒸发低温的致冷剂液体并对冷却室内进行冷却,使冷却对象物成为超低温状态,具有检测冷却对象物的温度的温度传感器72b。另外,蓄冷器72如图14所示,也可以具有用于提高热交换效率的送风机72a。
该实施例7的超低温冷冻机70中,若从电动机驱动控制部分70b对直线压缩机70a的直线振动电动机施加驱动电流Cd和驱动电压Vd,则直线压缩机70a驱动并在致冷剂循环路径内致冷剂向接头D的方向循环,在散热器71和蓄冷器72进行热交换。这样,进行冷却室内的冷却,其内部分的冷却对象物被冷却。
即,在散热器71成为液状的致冷剂通过在节流装置73节流其流量而膨胀,成为低温的致冷剂液体。接着,若对蓄冷器72送入低温的液体致冷剂,则蓄冷器72中,低温的致冷剂液体蒸发,进行冷冻室的冷却。
像这样,本实施例7的超低温冷冻机70中,由于进行致冷剂的压缩和循环的压缩机采用将直线振动电动机作为动力源的压缩机(直线压缩机)70a,所以与实施例5的空调50同样,与采用将转动型电动机作为驱动源的压缩机的超低温冷冻机相比,降低压缩机的磨耗,并且提高压缩机的密封致冷剂的密封性,从而可以提高压缩机的工作效率。
另外,在采用本实施例7的直线压缩机的超低温冷冻机70中,由于可以降低磨耗,所以与上述实施例5的空调50同样,可以削减作为用完的润滑油的废油的产生量和填入压缩机的致冷剂量。因此,可以对地球环保作贡献。
另外,本实施例7中,由于将作为直线振动电动机的驱动电流Cd的交流电流的频率ω确定为在将该交流电流的振幅值i保持在目标振幅值i"的状态下,从驱动电流Cd和驱动电压Vd计算出的供电Pa最大,所以与上述实施例5同样,可以避免内置传感器导致的压缩机的大型化和成本上升,并且不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
(实施例8)
图15是说明本发明的实施例8的供水器的框图。
该实施例8的供水器80具有对提供的水进行加热并排出温水的冷冻循环装置81a、储存从冷冻循环装置81a排出的温水的贮水槽81b和连结这些的水管86a、86b、87a、以及87b。
上述冷冻循环装置81a具有直线压缩机80a、压缩机驱动装置80b、空气热交换器82、节流装置83、以及水热交换器85。
在此,直线压缩机80a、空气热交换器82、节流装置83、以及水热交换器85形成致冷剂循环路径。
压缩机驱动装置80b驱动控制作为上述直线压缩机80a的驱动源的直线振动电动机(未图示)。另外,上述直线压缩机80a与上述实施例4的具有直线振动电动机46的直线压缩机40相同。压缩机驱动装置80b具有与实施例4的电动机驱动控制装置104相同的结构,以下该实施例8中称为电动机驱动控制部分80b。
节流装置83与上述实施例5的节流装置53同样,节流从水热交换器85送给空气热交换器82的液体致冷剂的流量,膨胀该液体致冷剂。
水热交换器85加热提供给冷冻循环装置81a的水,具有检测加热的水(温水)的温度的温度传感器(凝缩温度传感器)85a。空气热交换器82从周边空气吸收热量,具有用于提高热交换能力的送风机82a和检测该周边温度的温度传感器82b。
图中,84是将上述致冷剂沿着由直线压缩机80a、水热交换器85、节流装置83、以及空气热交换器82形成的致冷剂循环路径循环的致冷剂配管。在该致冷剂配管84连接有将从直线压缩机80a吐出的致冷剂经水热交换器85和节流装置83提供给空气热交换器82的旁路配管(除霜旁路)84a。在该旁路配管84a的一部分设置有(除霜旁路阀)84b。
上述贮水槽81b具有储存水或温水的贮水容器88。在该贮水容器88的进水口88c1连接有从外部分向该贮水容器88提供水的配管(供水管)88c,在上述贮水容器88的出水口88d1连接有从该贮水容器88向浴缸供水的配管(浴缸供水管)88d。另外,在上述贮水容器88的水出入口88a连接有将储存在该容器88的水提供给外部分的供水管89。
上述贮水容器88和冷冻循环装置81a的水热交换器85通过配管86a、86b、87a、以及87b连接,在贮水容器88和水热交换器85之间形成水的循环路径。
在此,水管86b是将水从贮水容器88提供给水热交换器85的配管,其一端与贮水容器88的出水口88b连接,另一端经接头部分87b1与水热交换器85的入水侧配管87b连接。另外,在该水管86b的一端侧安装有用于排出贮水容器88内的水或温水的排水阀88b1。上述水管86a是将水从水热交换器85返回到贮水容器88的配管,其一端与贮水容器88的水出入口88a连接,另一端经接头部分87a1与水热交换器85的排出侧配管87a连接。
另外,在水热交换器85的入水侧配管87b的一部分设置有使水在上述水循环路径内循环的泵87。
下面说明动作。
电动机驱动控制部分80b对直线压缩机80a的直线振动电动机(未图示)施加驱动电流Cd和驱动电压Vd,直线振动电动机80a一驱动,由直线压缩机80a压缩的高温致冷剂就向箭头E所示的方向循环,即,经致冷剂配管84提供给水热交换器85。另外,水循环路径的泵87一驱动,从贮水容器88就将水提供给水热交换器85。
这样,水热交换器85中,在致冷剂和从贮水容器88提供的水之间进行热交换,热从致冷剂向水转移。即,加热提供的水,并将加热的水(温水)提供给贮水容器88。在此,用凝缩温度传感器85a监视加热的水(温水)的温度。
另外,在水热交换器85中,致冷剂通过上述热交换凝缩,凝缩的液体致冷剂的流量通过由节流装置83节流而膨胀,送入空气热交换器82。该供水器80中,该空气热交换器82作为蒸发器工作。即,该空气热交换器82从由送风机82b送入的外部分气体吸收热,蒸发低温的致冷剂液体。此时,用温度传感器82b监视上述空气热交换器82的周边空气的温度。
另外,在冷冻循环装置81a中,在空气热交换器82有霜时,打开除霜旁路阀84b,高温的致冷剂经除霜旁路84a提供给空气热交换器82。这样,进行空气热交换器82的除霜。
另一方面,从冷冻循环装置81a的水热交换器85经配管87a和86a对贮水槽81b提供温水,将提供的温水储存到贮水容器88。贮水容器88内的温水根据需要经供水管89提供给外部分。特别是,在对浴缸供水时,贮水容器内的温水经浴缸用供水管88d提供给浴缸。
另外,贮水容器88内的水或温水的储存量少于一定量时,从外部分经供水管88c补充水。
像这样,本实施例8的供水器80中,在冷冻循环装置81a进行致冷剂的压缩和循环的压缩机采用将直线振动电动机作为动力源的压缩机(直线压缩机)80a,所以与实施例5的空调同样,与采用将转动型电动机作为动力源的压缩机的供水器相比,降低压缩机的磨耗,并且提高密封压缩机的致冷剂的密封性,从而可以提高压缩机的工作效率。
另外,本实施例8的作为冷冻循环装置的压缩机采用直线压缩机的供水器中,由于可以降低在压缩机的磨耗,所以与上述实施例5的空调50同样,削减作为用完的润滑油的废油的产生量、和填入压缩机的致冷剂量。因此,可以对地球环保作贡献。
本实施例8中,由于将作为直线振动电动机的驱动电流Cd的交流电流的频率ω确定为在将该交流电流的振幅值i保持在目标振幅值i"的状态下,从驱动电流Cd和驱动电压Vd计算出的供电Pa最大,所以与上述实施例5同样,可以避免内置传感器导致的压缩机的大型化和成本上升,不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
(实施例9)
图16是说明本发明的实施例9的便携式电话的框图。
该实施例9的便携式电话90具有机械振动的振动器90a、和驱动该振动部分90a的驱动装置90b,将来电等通过振动传达给用户。
在此,上述振动器90a配置在其外壳91内,具有弹簧部分件92可振动地支持的重物部分件93,固定在该重物部分件93的一部分的磁铁93a,在上述外壳91内与上述重物部分件93的磁铁93a对置配置、埋入线圈94a的定子94。由安装在上述重物部分件93的磁铁93a和埋入上述定子94的线圈94a构成直线振动电动机95。在该直线振动电动机95中,通过在该线圈94a和磁铁93a之间产生的电磁力和上述弹簧部分件92的弹力,上述重物部分件93沿着弹簧部分件92的伸缩方向往返运动。
另外,该实施例9的驱动装置90b对上述驱动器90a的直线振动电动机95提供驱动电流Cd和驱动电压Vd,以下在该实施例9中称为电动机驱动控制部分90b。该电动机驱动控制部分90b与实施例3的电动机驱动控制装置103同样,具有图8所示的电源1、反相器2、供给电流检测器3、供给电压检测器4、供电计算器5、驱动频率确定部分6c、供给电流振幅值确定部分7、比较电流波形生成部分8、以及反相器控制部分9。另外,该电动机驱动控制部分90b与实施例3的电动机驱动控制装置103同样,基于对直线振动电动机95的供给电流Cd和外加电压Vd,计算出对直线振动电动机95的供电Pa,将作为上述供给电流Cd的交流电流的振幅值i保持为目标振幅值i",确定使上述计算出的供电Pa最大的该交流电流Cd的频率ω。
这种结构的便携式电话90中,在来电时,通过从电动机驱动控制部分90b向振动器90a的直线振动电动机95通电,重物部分件93向弹簧部分件92的伸缩方向往返运动,振动器90a振动。
即,若对线圈94a施加交流电流Cd,则在定子94产生交流磁场,磁铁93a被该磁场吸引,磁铁93a、和固定有磁铁93a的重物部分件93开始往返运动。
接着,在振动部分90a的动作状态下,检测出对作为其驱动源的直线振动电动机95的供给电流Cd和外加电压Vd,基于该检测出的供给电流Cd和外加电压Vd,计算出对直线振动电动机95的供电Pa。另外,确定在该交流电流Cd的振幅值i保持为目标振幅值i"的状态下,上述计算出的供电Pa为最大的作为上述供给电流Cd的交流电流的频率ω。
像这样确定交流电流Cd的频率,振动器90a的振动状态成为重物部分件93的往返运动的振动频率、和支持该重物部分件93的弹簧部分件92的共振频率一致的共振状态时,重物部分件93的往返运动加速,振动器90a的振动变大。
便携式电话90通过像这样使振动部分90a成为直线振动电动机95的共振状态,产生大的振动,将来电传达给用户。
像这样,本实施例9的便携式电话90中,由于利用直线振动电动机95产生机械振动,所以与利用转动型电动机产生振动时相比,可以以2个自由度,即振动频率、和振幅(振动)的大小来改变机械振动,可以使利用振动将来电等通知给用户的振动器91具有多种振动。
另外,根据便携式电话放置的状况,即放置在桌子上等对振动的负荷小的状况和放入兜里等对振动的负荷大的状况等,直线振动电动机的共振频率会变化,但本实施例9中,由于将作为直线振动电动机的驱动电流的交流电流的频率ω确定为将该交流电流的振幅值i保持在目标振幅值i"的状态下,计算出的供电Pa最大,所以可以不用位置传感器,就可以检测出对应负荷变动的直线振动电动机的共振频率。
其结果,可以避免内置传感器导致的压缩机的大型化和成本上升,不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
另外,上述实施例9中,示出了将实施例3的直线振动电动机和其驱动控制装置用于便携式电话的利用振动通知来电的振动器及其驱动控制部分,但当然也可以将实施例3的直线振动电动机及其驱动控制装置用于往返式剃头刀的动力源及其驱动控制部分。
另外,上述实施例5~9中,作为电动机驱动控制部分采用了与实施例3的电动机驱动控制装置103相同的结构,但实施例5~9的电动机驱动控制装置也可以具有与实施例1的电动机驱动控制装置101或实施例2的电动机驱动控制装置102相同的结构。
发明效果
如上所述,根据本发明(权利要求1)的电动机驱动控制装置,其特征在于,具有定子和转子,利用交流电流驱动控制为了形成含有该转子的振动系统而弹性支撑该转子的直线振动电动机的电动机驱动控制装置,具有向上述直线振动电动机输出作为交流电压的驱动电压的电压输出部分;检测提供给上述直线振动电动机的驱动电流的电流检测部分;基于上述直线振动电动机的动作状态,生成成为上述驱动电流的基准的第1交流电流波形的电流波形生成部分;控制上述电压输出部分输出的直线振动电动机的驱动电压,以使上述第1交流电流波形和作为上述电流检测部分的检测输出的第2交流电流波形之差变小的控制部分,上述控制部分基于上述第1交流电流波形,将作为上述驱动电流的交流电流的频率调整为上述直线振动电动机的共振驱动频率,因此,不用采用检测转子的位置等的位置传感器等,就可以一直使直线振动电动机的驱动频率成为共振频率或接近共振频率的频率。
这样,可以避免内置传感器导致的压缩机的大型化,不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
另外,由于调整直线振动电动机的驱动电流的频率的处理是基于直线振动电动机的驱动电流进行,所以可以将直线振动电动机的驱动电流的检测输出原样用于驱动控制,对检测出的驱动电流不需要进行运算处理。
根据本发明2,如本发明1所述的电动机驱动控制装置,其特征在于,上述控制部分调整上述第1交流电流波形的振幅值或有效值,使上述第2交流电流波形的振幅值或有效值保持一定,调整上述第2交流电流波形的频率,使上述第1交流电流波形的振幅值或有效值最大,因此,可以稳定进行直线振动电动机的驱动频率的控制。
根据本发明3,如本发明2所述的电动机驱动控制装置,其特征在于,上述控制部分别重复进行基于上述第1交流电流波形和上述第2交流电流波形的差确定上述直线振动电动机的驱动电压的电压确定处理、调整上述第1交流电流波形的第1电流调整处理、以及调整上述第2交流电流波形的第2电流调整处理,驱动控制上述直线振动电动机,上述第1电流调整处理具有比重复上述电压确定处理的周期长或相等的周期,调整上述第1交流电流波形的振幅值或有效值,使上述第2交流电流波形的振幅值或有效值保持一定,上述第2电流调整处理具有比重复上述第1电流调整处理的周期长或相等的周期,调整上述第2交流电流波形的频率,使上述第1交流电流波形的振幅值或有效值最大,因此,可以进行稳定、跟踪性较好的直线振动电动机的驱动频率的控制。
根据本发明4,如本发明3所述的电动机驱动控制装置,其特征在于,上述第1电流调整处理是根据上述直线振动电动机的运转状态改变上述保持一定的第2交流电流波形的振幅值或有效值的目标值,因此,可以进行能对应直线振动电动机要求的直线振动电动机的驱动控制。
根据本发明5,如本发明1所述的电动机驱动控制装置,其特征在于,上述控制部分调整上述第2交流电流波形的频率,一边使上述第1交流电流波形的振幅值或有效值保持一定,一边使上述第2交流电流波形的振幅值或有效值接近上述第1交流电流波形的振幅值或有效值的一半,因此,可以稳定进行直线振动电动机的驱动频率的控制,而且可以根据运转状态一直最高效驱动直线振动电动机。
根据本发明6,如本发明5所述的电动机驱动控制装置,其特征在于,上述控制部分别重复进行基于上述第1交流电流波形和上述第2交流电流波形的差确定上述直线振动电动机的驱动电压的电压确定处理、以及调整上述第2交流电流波形的电流调整处理,控制上述直线振动电动机的驱动,上述电流调整处理具有比重复上述电压确定处理的周期长或相等的周期,调整上述第2交流电流波形的频率,一边使上述第1交流电流波形的振幅值或有效值保持一定,一边使上述第2交流电流波形的振幅值或有效值接近上述第1交流电流波形的振幅值或有效值的一半,因此,可以进行稳定、跟踪性较好的直线振动电动机的驱动频率的控制。
根据本发明7,如本发明6所述的电动机驱动控制装置,其特征在于,上述电流调整处理是根据上述直线振动电动机的运转状态改变上述保持一定的第1交流电流波形的振幅值或有效值的目标值,因此,可以进行能对应直线振动电动机要求的直线振动电动机的驱动控制。
根据本发明8的空调,是具有形成致冷剂的循环路径的第1和第2热交换器和;具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机的空调,其特征在于,具有备有定子和转子、为了形成包含该转子的弹簧振动系统而弹性支撑该转子的往返运动上述活塞的直线振动电动机和驱动控制该直线振动电动机的电动机驱动控制部分,该电动机驱动控制部分是本发明1至7的任一项记载的电动机驱动控制装置,因此,与采用了将转动型电动机作为动力源的压缩机的空调相比,减小压缩机的摩损,并且提高密封高压致冷剂和低压致冷剂的密封性,从而可以提高压缩机效率。
另外,采用了本发明的直线振动电动机的压缩机中,由于摩损降低,所以可以大幅度降低采用转动型电动机的压缩机中必不可少的润滑油的使用量。这样,不仅可以抑制产生较少量的需要再循环等的废油,而且由于溶入油中的致冷剂量减少,所以可以削减填入压缩机的致冷剂量,从而可以对地球环保作贡献。
另外,由于压缩机内部分是高温高压,并往压缩机内再填入油、致冷剂等化学物质,所以采用检测转子的位置等的位置传感器的情况下,其可靠性成为问题,但本发明中,将作为直线振动电动机的驱动电流的交流电流的频率确定为在将该交流电流的振幅值保持为目标振幅值的状态下,对直线振动电动机的供给电流或供电最大,所以可以不用检测其转子的变位、速度、加速度等的传感器,就能以共振频率高效驱动直线振动电动机。
其结果,可以避免内置传感器导致的压缩机的大型化和成本上升,且不受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
根据本发明9的冷藏库,是具有形成致冷剂的循环路径的第1和第2热交换器和;具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机的冷藏库,其特征在于,具有备有定子和转子、为了形成包含该转子的弹簧振动系统而弹性支撑该转子的往返运动上述活塞的直线振动电动机和驱动控制该直线振动电动机的电动机驱动控制部分,该电动机驱动控制部分是本发明1至7的任一项记载的电动机驱动控制装置,因此,与采用将转动型电动机用于压缩机的电动机的冷藏库相比,降低压缩机的磨耗,并且提高压缩机的密封致冷剂的密封性,从而可以提高压缩机的工作效率。
本发明的将直线振动电动机用于压缩机的电动机的冷藏库中,由于可以降低压缩机的磨耗,所以与上述本发明8的空调同样,可以削减作为用完的润滑油的废油的产生量、和对压缩机的致冷剂充填量,从而可以对地球环保作贡献。
另外,本发明的冷藏库中,由于将作为直线振动电动机的驱动电流的交流电流的频率确定为在将该交流电流的振幅值保持为目标振幅值的状态下,对直线振动电动机的供电最大,所以与本发明8所述的空调同样,可以避免内置传感器导致的压缩机的大型化和成本上升,不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
相据本发明10的超低温冷冻机,是具有形成致冷剂的循环路径的第1和第2热交换器和;具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机的超低温冷冻机,其特征在于,具有备有定子和转子、为了形成包含该转子的弹簧振动系统而弹性支撑该转子的往返运动上述活塞的直线振动电动机和驱动控制该直线振动电动机的电动机驱动控制部分,该电动机驱动控制部分是本发明1至7的任一项记载的电动机驱动控制装置,因此,与采用将转动型电动机用于压缩机的电动机的超低温冷冻机相比,降低压缩机的磨耗,并且提高压缩机的密封致冷剂的密封性,从而可以提高压缩机的工作效率。
另外,本发明的将直线振动电动机用于压缩机的电动机的超低温冷冻机中,由于可以降低压缩机的磨耗,所以与上述本发明8所述的空调同样,可以削减作为用完的润滑油的废油的产生量和对压缩机的致冷剂充填量,从而可以对地球环保作贡献。
另外,本发明的超低温冷冻机中,由于将作为直线振动电动机的驱动电流Cd的交流电流的频率确定为在将该交流电流的振幅值保持在目标振幅值的状态下,对直线振动电动机的供电最大,所以与上述本发明8的空调同样,可以避免内置传感器导致的压缩机的大型化和成本上升,并且不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
根据本发明11的供水器,是具有形成致冷剂的循环路径的第1和第2热交换器和;具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机的供水器,其特征在于,具有备有定子和转子、为了形成包含该转子的弹簧振动系统而弹性支撑该转子的往返运动上述活塞的直线振动电动机和驱动控制该直线振动电动机的电动机驱动控制部分,该电动机驱动控制部分是本发明1至7的任一项记载的电动机驱动控制装置,因此,与采用将转动型电动机用于压缩机的电动机的供水器相比,降低压缩机的磨耗,并且提高密封压缩机的致冷剂的密封性,从而可以提高压缩机的工作效率。
另外,本发明的作为冷冻循环装置的压缩机采用直线压缩机的供水器中,由于可以降低在压缩机的磨耗,所以与上述本发明8的空调同样,削减作为用完的润滑油的废油的产生量、和对压缩机的致冷剂充填量,从而可以对地球环保作贡献。
本发明的供水器中,由于将作为直线振动电动机的驱动电流Cd的交流电流的频率确定为在将该交流电流的振幅值保持在目标振幅值的状态下,对直线振动电动机的供电最大,所以与上述本发明8的空调同样,可以避免内置传感器导致的压缩机的大型化和成本上升,不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
根据本发明12的便携式电话,是具有产生振动的直线振动电动机和驱动控制该直线振动电动机的电动机驱动控制部分的便携式电话,上述直线振动电动机具有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子,其特征在于,上述电动机驱动控制部分是本发明1至7的任一项记载的电动机驱动控制装置,因此,可以不用采用检测转子的位置等的位置传感器,就可以进行检测便携式电话上搭载的直线振动电动机的共振频率,这样,可以避免内置传感器导致的压缩机的大型化,不用受确保传感器的动作可靠性的不必要的制约,就可以实现与压缩机的负荷变动无关、高效驱动直线振动电动机的驱动控制。
【式1】
V(t)=P(I′(t)—I(t))            …(1)
【式2】
V ( t ) = v · sin ( ωt - θ ) · · · ( 2 a ) I , ( t ) = i , · sin ( ωt - δ ) · · · ( 2 b ) I ( t ) = i · sin ωt · · · ( 2 c )
【式3】
v·sin(ωt—θ)=P[i′·sin(ωt—δ)—i·sin(ωt)} …(3a)
sinωt·(v·cosθ—P·i’cosδ+P·i)
                                  …(3b)
+cosωt·(—v·sinθ+P·i’·sinδ)=0
【式4】
v·cosθ—P·i′cosδ+P·i=0        …(4)
【式5】
v·icosθ=P·i×(i′—i)          …(5)
【式6】
v · i cos θ = - P × ( i - i , 2 ) 2 + P · i , 2 4 · · · ( 6 )
【式7】
P in = P out + 1 2 × R × i 2 · · · ( 7 )
【式8】
η = P out P in = 1 - 1 2 × R × i 2 P in · · · ( 8 )

Claims (11)

1.一种电动机驱动控制装置,对具有定子和转子、为了形成含有该转子的弹簧振动系统而弹性支撑该转子的直线振动电动机进行驱动控制,所述电动机驱动控制装置的特征在于包括:
电压输出部分,向上述直线振动电动机输出作为交流电压的驱动电压;
电流检测部分,检测提供给上述直线振动电动机的驱动电流;
电流波形生成部分,基于上述直线振动电动机的动作状态,生成成为上述驱动电流的基准的第1交流电流波形;和
控制部分,控制上述电压输出部分输出的直线振动电动机的驱动电压,以使上述第1交流电流波形和作为上述电流检测部分的检测输出的第2交流电流波形之差变小,
上述控制部分基于上述第1交流电流波形,将作为上述驱动电流的交流电流的频率调整为上述直线振动电动机的共振驱动频率,
上述控制部分调整上述第1交流电流波形的振幅值或有效值,使上述第2交流电流波形的振幅值或有效值保持一定,调整上述第2交流电流波形的频率,使上述第1交流电流波形的振幅值或有效值最大。
2.如权利要求1所述的电动机驱动控制装置,其特征在于:
上述控制部分别重复进行基于上述第1交流电流波形和上述第2交流电流波形的差确定上述直线振动电动机的驱动电压的电压确定处理、调整上述第1交流电流波形的第1电流调整处理、以及调整上述第2交流电流波形的第2电流调整处理,来驱动控制上述直线振动电动机,
上述第1电流调整处理调整上述第1交流电流波形的振幅值或有效值使上述第2交流电流波形的振幅值或有效值保持一定,并以比重复上述电压确定处理的周期长或与之相等的周期重复进行,
上述第2电流调整处理调整上述第2交流电流波形的频率使上述第1交流电流波形的振幅值或有效值最大,并以比重复上述第1电流调整处理的周期长或与之相等的周期重复进行。
3.如权利要求2所述的电动机驱动控制装置,其特征在于:
上述第1电流调整处理是根据上述直线振动电动机的运转状态改变上述保持一定的第2交流电流波形的振幅值或有效值的目标值。
4.一种电动机驱动控制装置,对具有定子和转子、为了形成含有该转子的弹簧振动系统而弹性支撑该转子的直线振动电动机进行驱动控制,所述电动机驱动控制装置的特征在于包括:
电压输出部分,向上述直线振动电动机输出作为交流电压的驱动电压;
电流检测部分,检测提供给上述直线振动电动机的驱动电流;
电流波形生成部分,基于上述直线振动电动机的动作状态,生成成为上述驱动电流的基准的第1交流电流波形;和
控制部分,控制上述电压输出部分输出的直线振动电动机的驱动电压,以使上述第1交流电流波形和作为上述电流检测部分的检测输出的第2交流电流波形之差变小,
上述控制部分基于上述第1交流电流波形,将作为上述驱动电流的交流电流的频率调整为上述直线振动电动机的共振驱动频率,
上述控制部分调整上述第2交流电流波形的频率,以便一边使上述第1交流电流波形的振幅值或有效值保持一定,一边使上述第2交流电流波形的振幅值或有效值接近上述第1交流电流波形的振幅值或有效值的一半。
5.如权利要求4所述的电动机驱动控制装置,其特征在于:
上述控制部分别重复进行基于上述第1交流电流波形和上述第2交流电流波形的差来确定上述直线振动电动机的驱动电压的电压确定处理、以及调整上述第2交流电流波形的电流调整处理,来控制上述直线振动电动机,
上述电流调整处理调整上述第2交流电流波形的频率以便一边使上述第1交流电流波形的振幅值或有效值保持一定一边使上述第2交流电流波形的振幅值或有效值接近上述第1交流电流波形的振幅值或有效值的一半,并以比重复上述电压确定处理的周期长或与之相等的周期重复进行。
6.如权利要求5所述的电动机驱动控制装置,其特征在于:
上述电流调整处理是根据上述直线振动电动机的运转状态改变上述保持一定的第1交流电流波形的振幅值或有效值的目标值。
7.一种空调机,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述空调机的特征在于包括:
备有定子和转子、为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和
驱动控制该直线振动电动机的电动机驱动控制部分,
该电动机驱动控制部分是权利要求1至6中任一项所述的电动机驱动控制装置。
8.一种冷藏库,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述冷藏库的特征在于包括:
备有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和
驱动控制该直线振动电动机的电动机驱动控制部分;
该电动机驱动控制部分是权利要求1至6中任一项所述的电动机驱动控制装置。
9.一种超低温冷冻机,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述超低温冷冻机的特征在于包括:
备有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和
驱动控制该直线振动电动机的电动机驱动控制部分,
该电动机驱动控制部分是权利要求1至6中任一项所述的电动机驱动控制装置。
10.一种供水器,包括:形成致冷剂的循环路径的第1和第2热交换器;和具有汽缸和活塞、利用该活塞的往返运动循环上述循环路径内的致冷剂的压缩机,所述供水器的特征在于包括:
备有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子的、往返运动上述活塞的直线振动电动机;和
驱动控制该直线振动电动机的电动机驱动控制部分;
该电动机驱动控制部分是权利要求1至6中任一项所述的电动机驱动控制装置。
11.一种便携式电话,包括:产生振动的直线振动电动机;和驱动控制该直线振动电动机的电动机驱动控制部分,所述便携式电话的特征在于:
上述直线振动电动机具有定子和转子,为了形成包含该转子的弹簧振动系统而弹性支撑该转子,
上述电动机驱动控制部分是权利要求1至6中任一项所述的电动机驱动控制装置。
CNB031438644A 2002-05-31 2003-05-30 电动机驱动控制装置 Expired - Fee Related CN100539390C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP160560/2002 2002-05-31
JP2002160560 2002-05-31

Publications (2)

Publication Number Publication Date
CN1477767A CN1477767A (zh) 2004-02-25
CN100539390C true CN100539390C (zh) 2009-09-09

Family

ID=31884268

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031438644A Expired - Fee Related CN100539390C (zh) 2002-05-31 2003-05-30 电动机驱动控制装置

Country Status (4)

Country Link
US (1) US7148636B2 (zh)
JP (1) JP3540311B2 (zh)
KR (1) KR100545536B1 (zh)
CN (1) CN100539390C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291038A (zh) * 2010-05-31 2011-12-21 佳能株式会社 控制振动马达的方法
TWI688839B (zh) * 2018-03-09 2020-03-21 荷蘭商Asml荷蘭公司 用於微影裝置之定位系統

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941422B1 (ko) * 2003-08-04 2010-02-10 삼성전자주식회사 리니어 압축기 및 그 제어 장치
JP4007309B2 (ja) * 2003-10-28 2007-11-14 日産自動車株式会社 モータ制御装置及びモータ制御方法
DE102004010846A1 (de) * 2004-03-05 2005-09-22 BSH Bosch und Siemens Hausgeräte GmbH Vorrichtung zur Regelung des Ankerhubs in einem reversierenden Linearantrieb
JP4315044B2 (ja) * 2004-04-19 2009-08-19 パナソニック電工株式会社 リニア振動モータ
DE602005016494D1 (de) * 2004-06-14 2009-10-22 Matsushita Electric Works Ltd Antriebseinheit
GB0415511D0 (en) * 2004-07-10 2004-08-11 Trw Ltd Motor drive voltage-boost control
KR100652590B1 (ko) * 2004-12-10 2006-12-01 엘지전자 주식회사 왕복동식 압축기의 모터 구동장치 및 방법
DE102004062300A1 (de) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linearverdichter
US7825672B2 (en) * 2006-06-19 2010-11-02 Mrl Industries, Inc. High accuracy in-situ resistance measurements methods
US7613540B2 (en) * 2007-05-04 2009-11-03 Teknic, Inc. Method and system for vibration avoidance for automated machinery
US8774972B2 (en) * 2007-05-14 2014-07-08 Flowserve Management Company Intelligent pump system
KR101043146B1 (ko) * 2007-12-20 2011-06-20 두산디에스티주식회사 구동전류 측정을 이용한 기어박스 불량위치 판별 장치 및방법
JP5391579B2 (ja) * 2008-05-15 2014-01-15 船井電機株式会社 振動素子
US9018864B2 (en) 2008-11-21 2015-04-28 Hadar Magali Rebound-effector
US20100313425A1 (en) * 2009-06-11 2010-12-16 Christopher Martin Hawes Variable amplitude vibrating personal care device
JP4985723B2 (ja) 2009-07-27 2012-07-25 三菱電機株式会社 空気調和機
CN102227619B (zh) * 2009-09-30 2013-08-28 松下电器产业株式会社 轮胎状态检测装置以及轮胎状态检测方法
KR101101471B1 (ko) * 2010-01-08 2012-01-03 엘에스산전 주식회사 인버터 시스템의 운전 제어장치 및 방법
JP5601879B2 (ja) * 2010-01-28 2014-10-08 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー リニア振動モータの駆動制御回路
JP5715759B2 (ja) * 2010-01-28 2015-05-13 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー リニア振動モータの駆動制御回路
EP2529480A2 (de) * 2010-01-30 2012-12-05 Ebm-Papst St. Georgen Gmbh & Co. Kg Verfahren zur verbesserung des wirkungsgrades bei einem mehrphasigen motor, und motor zur durchführung eines solchen verfahrens
WO2011155976A2 (en) * 2010-06-04 2011-12-15 Chauncey Sayre Phase change pulse engine
BRPI1013472B1 (pt) * 2010-07-14 2019-10-22 Embraco Ind De Compressores E Solucoes Em Refrigeracao Ltda método de controle para um compressor linear ressonante e sistema de controle eletrônico para um compressor linear ressonante aplicados a um sistema de refrigeração
US20120065806A1 (en) * 2011-05-06 2012-03-15 General Electric Company Method for measuring energy usage in an appliance
JP5638699B2 (ja) * 2011-09-30 2014-12-10 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
US8970158B1 (en) * 2012-03-28 2015-03-03 Flir Systems, Inc. High-efficiency-direct-drive cryocooler driver
KR20150011779A (ko) * 2013-07-23 2015-02-02 한국해양과학기술원 필터와 결합된 전류검출센서의 시간 지연보상기법을 적용한 모터의 구동장치
CN103532333A (zh) * 2013-09-22 2014-01-22 西安交通大学 一种往复电机
US10208741B2 (en) 2015-01-28 2019-02-19 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
DE102015212080B4 (de) * 2015-06-29 2017-06-14 Continental Automotive Gmbh Verfahren zum Ermitteln der Abweichungen der gemessenen Stromist- von Stromsollwerten in einer Anzahl parallel geschalteter, stromgeregelter Schaltpfade
US9890778B2 (en) * 2015-11-04 2018-02-13 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
CN105258721A (zh) * 2015-11-04 2016-01-20 广州杰赛科技股份有限公司 一种球状检测装置及电机的驱动方法
US10174753B2 (en) 2015-11-04 2019-01-08 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
JP2017103860A (ja) * 2015-11-30 2017-06-08 オムロン株式会社 非接触給電装置
JP6803685B2 (ja) * 2016-05-27 2020-12-23 日本電産コパル株式会社 振動アクチュエータ
CN106052851B (zh) * 2016-05-31 2024-03-26 国家电网公司 高压输电线路微风振动传感器的准确度试验装置
US10128776B2 (en) * 2016-07-11 2018-11-13 Mitsubishi Electric Corporation Inverter device
DE102016011803B4 (de) * 2016-10-04 2020-07-02 Dräger Safety AG & Co. KGaA Testvorrichtung und Verfahren zur Überprüfung eines in einem Gerät angeordneten Vibrationsmotors
JP6749205B2 (ja) * 2016-10-13 2020-09-02 日立グローバルライフソリューションズ株式会社 リニアモータ制御装置及びこれを搭載した圧縮機
US10830230B2 (en) 2017-01-04 2020-11-10 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
US10276002B2 (en) 2017-01-13 2019-04-30 Intel Corporation Apparatus and method for modifying a haptic output of a haptic device
JP6800041B2 (ja) * 2017-02-23 2020-12-16 日立グローバルライフソリューションズ株式会社 リニアモータ制御システム
WO2018183579A1 (en) 2017-03-28 2018-10-04 NAITO, Allison Superconducting magnet engine
US10641263B2 (en) 2017-08-31 2020-05-05 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
US10670008B2 (en) 2017-08-31 2020-06-02 Haier Us Appliance Solutions, Inc. Method for detecting head crashing in a linear compressor
FR3072461B1 (fr) * 2017-10-17 2020-07-03 Valeo Siemens Eautomotive France Sas Capteur pour la mesure d'un courant de sortie d'un systeme electrique
JP6964022B2 (ja) * 2018-03-12 2021-11-10 日立Astemo株式会社 リニア圧縮機及びリニア圧縮機制御システム
JP7297489B2 (ja) * 2019-03-26 2023-06-26 キヤノン株式会社 振動型アクチュエータおよび振動型アクチュエータの駆動装置
JP7143272B2 (ja) * 2019-12-24 2022-09-28 ツインバード工業株式会社 フリーピストン型スターリング冷凍機
CN111005063A (zh) * 2019-12-27 2020-04-14 沈阳工程学院 一种高精度晶体生长粉料给定控制装置
CN113708704B (zh) * 2020-05-22 2024-05-28 北京小米移动软件有限公司 马达震感控制方法及装置、电子设备、存储介质
EP3960309A1 (de) * 2020-08-31 2022-03-02 Siemens Aktiengesellschaft Resonanzverfahren für ein schwingungssystem, einen umrichter, eine anregungseinheit und das schwingungssystem
US20220154714A1 (en) * 2020-11-19 2022-05-19 Haier Us Appliance Solutions, Inc. Linear compressor and internal collision mitigation
CN113942804A (zh) * 2021-11-10 2022-01-18 北京航空航天大学 一种基于直线电机的物流运输系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698576A (en) * 1986-06-20 1987-10-06 North American Philips Corporation Tri-state switching controller for reciprocating linear motors
US5130619A (en) * 1990-12-26 1992-07-14 Kubota Corporation Drive control apparatus for an ultrasonic motor
CN1059989C (zh) * 1997-02-25 2000-12-27 松下电工株式会社 线性振动电动机的驱动控制方法
US20010005320A1 (en) * 1999-11-30 2001-06-28 Matsushita Elecric Industrial Co., Ltd. Linear compressor driving device, medium and information assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822333A1 (de) 1988-07-01 1990-01-04 Philips Patentverwaltung Kleines haushaltsvibrationsgeraet zum abschneiden von koerperhaaren
US5142872A (en) * 1990-04-26 1992-09-01 Forma Scientific, Inc. Laboratory freezer appliance
US5758514A (en) * 1995-05-02 1998-06-02 Envirotherm Heating & Cooling Systems, Inc. Geothermal heat pump system
JP3554269B2 (ja) 1999-11-30 2004-08-18 松下電器産業株式会社 リニアモータ駆動装置、媒体、および情報集合体
JP2001193993A (ja) 2000-01-07 2001-07-17 Matsushita Electric Ind Co Ltd 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698576A (en) * 1986-06-20 1987-10-06 North American Philips Corporation Tri-state switching controller for reciprocating linear motors
US5130619A (en) * 1990-12-26 1992-07-14 Kubota Corporation Drive control apparatus for an ultrasonic motor
CN1059989C (zh) * 1997-02-25 2000-12-27 松下电工株式会社 线性振动电动机的驱动控制方法
US20010005320A1 (en) * 1999-11-30 2001-06-28 Matsushita Elecric Industrial Co., Ltd. Linear compressor driving device, medium and information assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291038A (zh) * 2010-05-31 2011-12-21 佳能株式会社 控制振动马达的方法
US9000691B2 (en) 2010-05-31 2015-04-07 Canon Kabushiki Kaisha Method of controlling vibration motor
TWI688839B (zh) * 2018-03-09 2020-03-21 荷蘭商Asml荷蘭公司 用於微影裝置之定位系統

Also Published As

Publication number Publication date
JP2004056994A (ja) 2004-02-19
KR20030094038A (ko) 2003-12-11
KR100545536B1 (ko) 2006-01-25
US7148636B2 (en) 2006-12-12
CN1477767A (zh) 2004-02-25
JP3540311B2 (ja) 2004-07-07
US20040108824A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
CN100539390C (zh) 电动机驱动控制装置
CN1307784C (zh) 直线振动电机的控制系统
CN100568684C (zh) 马达驱动装置
US8858186B2 (en) Linear compressor
CN1551466B (zh) 电动机驱动装置
KR101904870B1 (ko) 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
JPH09236367A (ja) 線形圧縮機を具備した冷蔵庫制御装置
US8528353B2 (en) Refrigerator and the controlling method
CN103917833A (zh) 用于控制低温冷却系统的装置和方法
US8596082B2 (en) Refrigerator and the controlling method
CN103225601B (zh) 用于控制压缩机的装置及具有该装置的冰箱
CN107402042A (zh) 压缩机参数测试方法及装置
US7816873B2 (en) Linear compressor
US20130098089A1 (en) Device and method for controlling compressor, and refrigerator including same
Wang et al. Characteristics of linear compressors under current source excitation
JP3540314B2 (ja) モータ駆動装置
KR101718020B1 (ko) 리니어 압축기의 제어 장치, 제어 방법, 및 이들을 구비한 냉장고
KR102350512B1 (ko) 압축기의 제어 장치 및 방법
JP2004336988A (ja) モータ駆動装置
JP2008109722A (ja) モータ駆動装置
Kim et al. Dynamic performance improvement of oscillating linear motors via efficient parameter identification
CN116717927A (zh) 一种磁制冷与电卡制冷耦合的制冷装置及制冷循环系统
JP2013002803A (ja) トレーラ用冷凍装置
KR101694540B1 (ko) 압축기 구동장치 및 그 구동방법
JP2020118408A (ja) モータの制御装置並びにそれを用いた圧縮機及び冷蔵庫

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20180530