JP2004336988A - モータ駆動装置 - Google Patents
モータ駆動装置 Download PDFInfo
- Publication number
- JP2004336988A JP2004336988A JP2004117263A JP2004117263A JP2004336988A JP 2004336988 A JP2004336988 A JP 2004336988A JP 2004117263 A JP2004117263 A JP 2004117263A JP 2004117263 A JP2004117263 A JP 2004117263A JP 2004336988 A JP2004336988 A JP 2004336988A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- mover
- linear vibration
- vibration motor
- spring constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Control Of Linear Motors (AREA)
Abstract
【課題】 可動子を含むバネ振動系が形成されるよう可動子を支持するバネ部材を有するリニア振動モータ100を駆動する装置101aにおいて、運転中の可動子の位置を算出する位置演算に用いるバネ部材のバネ定数kを、個々のリニア振動モータに対応した正確な値として、上記位置演算の精度を向上させる。
【解決手段】 リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、上記自由振動する可動子がある固定点(相対位置)を通過したタイミングを検出する相対位置検出部4aと、該検出部4aの出力情報Dprに基づいて可動子の固有振動周波数fを検知する固有振動周波数検知部5aとを備え、該検知された固有振動周波数fからバネ部材のバネ定数kを決定する。
【選択図】 図1
【解決手段】 リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、上記自由振動する可動子がある固定点(相対位置)を通過したタイミングを検出する相対位置検出部4aと、該検出部4aの出力情報Dprに基づいて可動子の固有振動周波数fを検知する固有振動周波数検知部5aとを備え、該検知された固有振動周波数fからバネ部材のバネ定数kを決定する。
【選択図】 図1
Description
本発明は、モータ駆動装置に関し、特に、可動子及びこれを支持するバネ部材を有するリニア振動モータを駆動するモータ駆動装置に関するものである。
従来からリニア振動モータを用いた機器には、携帯電話などの、機械的振動によって着信を伝える振動発生器や、気体もしくは液体を圧縮循環させるコンプレッサあるいは往復式電気かみそりがあり、コンプレッサや往復式電気かみそりでは、その駆動源に上記リニア振動モータが用いられている。
リニア振動モータの代表的なものは、単相同期モータの構造、つまり永久磁石からなる可動子と鉄心にコイルを巻回してなる固定子とを有し、上記コイルへの交流電圧の印加により可動子が往復運動するようにしたものである。
このように可動子の往復運動により振動を発生させる場合、強い電磁力が必要であるが、リニア振動モータでは、可動子をバネ部材により支持して上記可動子を含むバネ振動系を形成することにより、その駆動に必要なエネルギーを小さく抑えることができる。つまり、上記可動子をバネ部材により支持したリニア振動モータでは、可動子を含むバネ振動系をその固有振動数(共振周波数)で振動させることにより、リニア振動モータを小さいエネルギーで駆動可能である。
ところが、リニア振動モータでは、可動子のストローク長が一定の許容値以上に大きくなると、可動子とモータ筐体との衝突や支持バネの破損といった問題が生ずることから、可動子の位置を検知し制御する必要がある。
そこで、特許文献1(特開平11−324911号公報)には、リニア振動モータを駆動する駆動装置において、リニア振動モータの可動子の位置を検知する位置センサなどの検出部を備え、可動子のストローク長が一定の許容値以上に大きくなると、リニア振動モータの出力を抑制し、つまりリニア振動モータへの印加電圧もしくは印加電流の振幅値を減少させ、これにより、可動子がモータ筐体等と衝突したり、支持バネが限界値以上に伸びたりして、リニア振動モータが破壊するのを防止するものが開示されている。
上記のような位置検知部としては、リニア振動モータにおける可動子と非接触で、可動子中立位置などの可動子基準位置に対する可動子の変位の程度(可動子変位量)を検出可能なセンサ、例えば、渦電流方式を用いた変位計、差動トランスを用いた変位計などが用いられる。
ところが、このようなセンサを用いると、リニア振動モータの製造コストが増大するだけでなく、センサを装着するスペースが必要となり、リニア振動モータの筐体が大きくなってしまう。また、リニア振動モータのアプリケーションとして圧縮機を考えた場合、このようなセンサは、高温かつ高圧のガスにさらされた状態で使用される可能性があるため、センサ自体の信頼性の問題、言い換えると、このようなセンサとしては、高温高圧の雰囲気の下で信頼して使用できるものが要求されるという問題も生じる。
そこで、可動子の位置を検出する方法として、可動子の位置検出を、リニア振動モータ内部に配置される位置センサにより行うという方法ではなく、リニア振動モータに供給される駆動電流及び駆動電圧を直接測定し、その測定値に基づいて可動子の位置を導出する手法が提案されている(例えば、特許文献2参照)。
以下、この公報記載の、リニア振動モータの可動子位置検知方法について説明する。なお、この公報ではリニア振動モータをリニア圧縮機に適用しているため、上記可動子をリニア圧縮機を構成するシリンダ内でガスを圧縮するために往復運動していることから、衝突を防止する対象としてシリンダヘッドを用いて説明を行う。
図11は、可動子を駆動するリニア振動モータの等価回路を示す図である。
図中、Lはリニア振動モータを構成する巻線の等価インダクタンス[H]であり、Rは上記巻線の等価抵抗[Ω]である。また、Vはリニア振動モータに印加される瞬時電圧[V]であり、Iはリニア振動モータに供給される電流[A]である。α×vはリニア振動モータの駆動により生じる誘導起電圧[V]であり、αはリニア振動モータの推力定数[N/A]、vはリニア振動モータの瞬時速度[m/s]である。
図中、Lはリニア振動モータを構成する巻線の等価インダクタンス[H]であり、Rは上記巻線の等価抵抗[Ω]である。また、Vはリニア振動モータに印加される瞬時電圧[V]であり、Iはリニア振動モータに供給される電流[A]である。α×vはリニア振動モータの駆動により生じる誘導起電圧[V]であり、αはリニア振動モータの推力定数[N/A]、vはリニア振動モータの瞬時速度[m/s]である。
ここで、リニア振動モータの推力定数αは、リニア振動モータに単位電流[A]を流したときに生じる力[N]を示している。また、推力定数αの単位は[N/A]により表しているが、この単位は、[Wb/m]、[V・s/m]と同等である。
図11に示す等価回路はキルヒホッフの法則から導出されるものであり、この等価回路から、リニア振動モータの瞬時速度v[m/s]が求められる。
つまり、リニア振動モータに駆動電圧が印加された状態では、リニア振動モータに対する印加電圧(V)が、リニア振動モータの巻線の等価抵抗による降下電圧(I×R)[V]と、上記巻線の等価インダクタンスによる降下電圧(L・dI/dt)[V]と、リニア振動モータの駆動により生じる誘導起電圧(α×v)[V]との和と釣り合うこととなり、下記の(1)式が成立する。
上記(1)式で用いられている係数α[N/A]、R[Ω]、L[H]はモータ固有の定数であり、既知の値となっている。従って、これらの定数と、測定された印加電圧V[V]及び印加電流I[A]から、(1)式に基づいて、瞬時速度v[m/s]が求められる。
また、可動子変位量(不定の基準位置から可動子までの距離)x[m]は、下記の(2)式に示すように、瞬時速度v[m/s]の時間積分により求められる。なお、(2)式における定数Const.は積分開始時の可動子変位量である。
このように上記公報記載の可動子位置検知方法では、リニア振動モータに対する印加電圧の測定値V及び供給電流の測定値Iに対して、上記(1)式に基づいて微分処理を含む演算処理を施して、可動子の瞬時速度vを求め、さらにこの瞬時速度vに対して、上記(2)式に基づいた積分処理を含む演算処理を施して、可動子変位量xを算出することができる。
但し、このように上記(1)式及び(2)式に基づく演算により得られる可動子変位量xは、可動子軸線上のある位置を基準とする変位量であり、この変位量xから直接、可動子が衝突する可能性のあるシリンダヘッドから可動子上死点位置までの距離を求めることはできない。
つまり、リニア振動モータを適用している圧縮機に、負荷がかかっている状態では、可動子往復運動における可動子中心位置(可動子振幅中心位置)は、冷媒ガスの圧力により、可動子中立位置(つまり圧縮室内の圧力が背面圧力に等しい場合の可動子振幅中心位置)に対してオフセットされることとなり、可動子はオフセットされた可動子振幅中心位置を中心として往復動することとなる。言い換えると、(2)式により得られる可動子変位量xは平均成分を含むものとなる。
ところが、実際のアナログ積分器またはディジタル積分器はすべて、定数またはDC入力に対して完全な応答信号を出力する理想的な積分処理を行うものではなく、DC入力に対する応答を制限したものとなっているため、実際の積分器では、上記可動子変位量xに対してその平均成分を反映した積分演算処理を施すことができない。なお、このように実際の積分器をDC応答を制限したものとしているのは、入力信号における避けることのできないDC成分によってその出力が飽和するのを回避するためである。
この結果、実際の積分器による上記(2)式に基づく積分処理により求められる可動子変位量x[m]は、この変位量から、可動子と筐体の間の実際の距離を直接求めることができるものではなく、単に、可動子軸線上のある地点を基準とした可動子位置を示すものである。
このため、(2)式から得られる可動子変位量x[m]は、可動子振幅中心位置に対する可動子位置を示す可動子変位量x’に変換され、さらにこの変換された可動子変位量x’を用いて、可動子振幅中心位置を示す、シリンダヘッドを基準とする可動子変位量xav”を求める演算処理が行われる。
以下、これらの演算処理について詳述する。
図12は、上記リニア振動モータの筐体(ここではシリンダ)内での可動子位置を模式的に示す図である。
なお、図中、Meは可動子,Mcは、該可動子を収容する、リニア振動モータ筐体の内壁面(シリンダ内面)を示している。
図12は、上記リニア振動モータの筐体(ここではシリンダ)内での可動子位置を模式的に示す図である。
なお、図中、Meは可動子,Mcは、該可動子を収容する、リニア振動モータ筐体の内壁面(シリンダ内面)を示している。
まず、図12に示される3つの座標系、つまり第1の座標系X,第2の座標系X’,第3の座標系X”について簡単に説明する。
第1の座標系Xは、上記可動子変位量xを表す座標系であり、可動子軸線上のある地点Paruを原点(x=0)としている。従って、変位量xの絶対値は、上記地点Paruから可動子先端位置Pまでの距離を示す。
第1の座標系Xは、上記可動子変位量xを表す座標系であり、可動子軸線上のある地点Paruを原点(x=0)としている。従って、変位量xの絶対値は、上記地点Paruから可動子先端位置Pまでの距離を示す。
第2の座標系X’は、上記可動子変位量x’ を表す座標系であり、可動子振幅中心位置Pavを原点(x’=0)としている。従って、変位量x’の絶対値は、上記振幅中心位置Pavから可動子先端位置Pまでの距離を表す。
第3の座標系X”は、上記可動子変位量x”を表す座標系であり、可動子軸線上のシリンダヘッドの位置Pshを原点(x”=0)としている。従って、変位量x”の絶対値は、シリンダヘッド位置Pshから可動子先端位置Pまでの距離を表す。
次に、可動子変位量x”を求める演算について説明する。
最も可動子がシリンダヘッドに近づいたときの可動子位置(可動子上死点位置)Ptdは、上記第1の座標系X上では変位量xtdにより示され、最も可動子がシリンダヘッドから遠ざかったときの可動子位置(可動子下死点位置)Pbdは、上記第1の座標系X上では、変位量xbdより示される。そして、上記第1の座標系X上での、可動子上死点位置Ptdに相当する変位量xtdと、上記第1の座標系X上での、可動子下死点位置Pbdに相当する変位量xbdとの差から、可動子ストロークLps[m]が求められる。
最も可動子がシリンダヘッドに近づいたときの可動子位置(可動子上死点位置)Ptdは、上記第1の座標系X上では変位量xtdにより示され、最も可動子がシリンダヘッドから遠ざかったときの可動子位置(可動子下死点位置)Pbdは、上記第1の座標系X上では、変位量xbdより示される。そして、上記第1の座標系X上での、可動子上死点位置Ptdに相当する変位量xtdと、上記第1の座標系X上での、可動子下死点位置Pbdに相当する変位量xbdとの差から、可動子ストロークLps[m]が求められる。
また、可動子が往復動している状態での可動子振幅中心位置Pavは、最も可動子がシリンダヘッドに近づいたときの可動子位置(可動子上死点位置)Ptdの変位量xtdから、可動子ストロークLps[m]の半分の長さ(Lps/2)だけシリンダヘッドから遠ざかった位置である。従って、可動子振幅中心位置Pavは、上記第1の座標系X上では、変位量xav(=(xbd−xtd)/2)により示される。
さらに、(2)式の定数Const.を0とすることにより、可動子振幅中心位置Pavを基準(原点)として、言い換えると第2の座標系X’上にて、可動子先端位置Pを可動子変位量x’[m]により示す新たな関数が導出される。
続いて、シリンダヘッド位置Pshを原点とする第3の座標系X”にて、シリンダヘッドPshから可動子振幅中心位置Pavまでの距離を示す可動子変位量xav”を求める方法について説明する。
リニア圧縮機が冷媒ガスを吸入している状態(吸入状態)では、つまり、吸入弁が開いている状態では、圧縮室内部の圧力と可動子背面の圧力とは共に冷媒の吸入圧となって等しくなる。これは、リニア圧縮機が、吸入弁が開いた状態では差分圧が0となる構造となっているためである。この状態では、冷媒ガスの圧力が可動子に作用する力を無視することができる。つまりこの状態では、可動子に作用する力は、支持バネがたわむことにより生じるバネの反発力と、リニア振動モータに電流を流すことにより生じる電磁力のみである。ニュートンの力学運動法則より、これらの力の和は、運動を行っている可動部材の全質量とその加速度の積に等しくなる。
リニア圧縮機が冷媒ガスを吸入している状態(吸入状態)では、つまり、吸入弁が開いている状態では、圧縮室内部の圧力と可動子背面の圧力とは共に冷媒の吸入圧となって等しくなる。これは、リニア圧縮機が、吸入弁が開いた状態では差分圧が0となる構造となっているためである。この状態では、冷媒ガスの圧力が可動子に作用する力を無視することができる。つまりこの状態では、可動子に作用する力は、支持バネがたわむことにより生じるバネの反発力と、リニア振動モータに電流を流すことにより生じる電磁力のみである。ニュートンの力学運動法則より、これらの力の和は、運動を行っている可動部材の全質量とその加速度の積に等しくなる。
従って、この状態では、可動部材に関する運動方程式として下記の(3)式が成立する。
(3)式において、mは往復運動を行っている可動部材の全質量[kg]、aは上記可動部材の瞬時加速度[m/s/s]、kはリニア振動モータを構成する支持バネのバネ定数[N/m]である。また、xav”は、上述した、可動子振幅中心位置を示す第3の座標系X”での変位量であり、この変位量xav”は、その絶対値が、シリンダヘッド位置Pshから可動子振幅中心位置Pavまでの距離を表すものである。さらに、xini”は、可動子中立位置Piniを示す第3の座標系X”での変位量であり、この変位量xini”は、その絶対値が、上記可動子中立位置(上記支持バネが変形していない状態での可動子の位置)Piniとシリンダヘッド位置Pshとの間の距離[m]を表すものである。
また、可動子振幅中心位置Pavからの可動子先端位置Pまでの距離を示す、第2の座標系X’の変位量x’[m]は、(2)式の定数Const.を0とすることにより求められる。
さらに、可動部材の全質量m[kg]、支持バネのバネ定数k[N/m]、シリンダヘッド位置Pshから可動子中立位置Piniまでの距離を表す、第3の座標系X”の変位量xini”[m]は既知の値であり、駆動電流Iは測定値を用いることができる。
従って、(3)式を用いて、シリンダヘッド位置Pshから可動子振幅中心位置Pavまでの距離を示す、第3の座標系X”の変位量xav”を算出することができる。
また、可動子の上死点位置(可動子がシリンダヘッドに最も近づく位置)Ptdを示す、第3の座標系X”の変位量xtd”[m]は、上記(3)式により求めた第3の座標系X”の変位量xav”(シリンダヘッド位置Pshから可動子振幅中心位置Pavまでの距離)から、既に求めた可動子ストローク長Lps[m]の半分(Lps/2)の距離だけシリンダヘッド側へ遠ざかった位置の変位量として求められる。
このようにして、リニア振動モータに印加される電流I及び電圧Vから可動子のストローク長Lps[m]と、可動子上死点位置Ptdをシリンダヘッド位置Pshからの距離として示す、第3座標系X”の変位量xtd”[m]とが算出される。
また、本件発明者は、可動子の位置を位置センサなしで検出する方法として、上記のようにバネ定数kを用いる方法とは異なり、質量バネ比m/kを用いる手法を提案している(例えば、特許文献3参照)。
特開平11−324911号公報
特表平8−508558号公報
特開2002−354864号公報
しかしながら、上述したように、上記リニア振動モータの駆動電流及び駆動電圧の測定値に基づいた位置演算により可動子の位置を導出する方法では、該位置演算に使用するバネ定数kや質量バネ比m/kの個体間でのバラツキ、経時変化、さらには熱による変化等に起因して、その演算結果に誤差が生じるという問題がある。
具体的には、バネ定数kや質量バネ比m/kの値が10%ばらつくと、算出される可動子の絶対位置は10%以上ばらつく。これでは、上記演算により得られた該可動子の位置に基づいて、可動子とシリンダヘッドとの衝突を回避しようとすると、可動子とシリンダヘッドとのクリアランスに10%以上の余裕を見なければならず、可動子のストロークを、可動子が、演算により得られる可動子の衝突限界位置(つまり可動子がシリンダヘッドに接触する位置)に近接するまで大きくすることができない。
また、支持バネの伸縮の大きさが、該支持バネに対して想定されている伸縮範囲(想定伸縮範囲)を超えない程度の可動子の往復運動は、大きな経時変化を招くものではないが、リニア振動モータの運転の障害時など、可動子の挙動が、支持バネの伸縮の大きさが想定伸縮範囲を超えるようなものとなったときには、バネ定数kや質量バネ比m/kが大きく変化する場合もあると考えられる。
このような場合には、リニア振動モータをそのモータ駆動装置ごと交換することが必要となる。そうすると、リニア振動モータの駆動装置としての信頼性が落ちるという問題がある。
また、上記支持バネを大きくしてリニア振動モータの運転の障害時でも、支持バネの伸縮の大きさが想定範囲を越えないようにすることが考えられるが、こうすると、リニア振動モータの外形が大きくなるだけではなくコストアップにもつながるという問題がある。
本発明は、上記のような従来の課題を解決するためになされたもので、リニア振動モータの可動子の固有振動周波数から得られるバネ定数あるいは質量バネ比に基づいて、高い精度で可動子の位置を算出する位置演算を行うことができるモータ駆動装置を提供することを目的とするものである。
本願請求項1に係る発明は、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記可動子を自由振動させる可動子強制振動部と、上記可動子の自由振動状態に基づいて該可動子の固有振動を示す固有振動パラメータを取得する振動パラメータ取得部と、上記取得された固有振動パラメータを用いて、上記バネ部材のバネ定数を算出するバネ定数決定部と、上記バネ定数決定部により算出されたバネ定数を用いて、上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするものである。
本願請求項2に係る発明は、上記請求項1記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周波数を検知する固有周波数検知部とを有し、上記バネ定数決定部は、上記検知された固有振動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗に上記可動子の質量を乗算して、上記バネ定数を算出する、ことを特徴とするものである。
本願請求項3に係る発明は、請求項1記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有角振動数を検知する固有角振動数検知部とを有し、上記バネ定数決定部は、上記検知された固有角振動数を二乗し、該固有角振動数の二乗に上記可動子の質量を乗算して、上記バネ定数を算出する、ことを特徴とするものである。
本願請求項4に係る発明は、請求項1記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周期を検知する固有振動周期検知部とを有し、上記バネ定数決定部は、上記検知された固有振動周期を円周率の2倍で除算し、その除算結果を二乗し、該除算結果の二乗に上記可動子の質量の逆数を乗算し、該乗算結果の逆数を求めて、上記バネ定数を算出する、ことを特徴とするものである。
本願請求項5に係る発明は、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記リニア振動モータに駆動電圧を印加するモータドライバと、該モータドライバから上記リニア振動モータに供給される電流を検出する電流検出部と、上記モータドライバから上記リニア振動モータに供給される電圧を検出する電圧検出部と、上記検出された電流と上記検出された電圧とから、上記リニア振動モータの共振駆動周波数を検出する共振周波数検出部と、上記共振周波数検出部により検出された共振駆動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗に上記可動子の質量を乗算して、上記バネ定数を算出するバネ定数決定部と、上記バネ定数決定部により算出されたバネ定数を用いて上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするものである。
本願請求項6に係る発明は、請求項1から4のいずれかに記載のモータ駆動装置において、上記タイミング検出部は、上記可動子の自由振動により上記リニア振動モータの巻き線に発生する誘起電圧を利用して、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出する、ことを特徴とするものである。
本願請求項7に係る発明は、請求項1から4のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう該可動子に機械的に力を印加する、ことを特徴とするものである。
本願請求項8に係る発明は、請求項1から4のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう、上記リニア振動モータに供給されている電流を一時的に遮断する、ことを特徴とするものである。
本願請求項9に係る発明は、請求項1から4のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記リニア振動モータに接続されている負荷を、上記可動子が自由振動するよう上記リニア振動モータから切り離す、ことを特徴とするものである。
本願請求項10に係る発明は、請求項1から5のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の開始前に、一時的に動作モードを演算モードとするものであり、上記バネ定数算出部は、上記負荷の運転の開始前の演算モードにて、上記バネ定数を算出し、上記可動子位置演算部は、上記運転モードにて、上記負荷の運転の開始前に算出したバネ定数を使用して上記可動子の位置を算出する、ことを特徴とするものである。
本願請求項11に係る発明は、請求項1から5のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の終了後に、一時的に動作モードを演算モードとするものであり、上記バネ定数算出部は、上記負荷の運転の終了後の演算モードにて、上記バネ定数を算出し、上記可動子位置演算部は、運転モードにて、最近設定された演算モードにて算出したバネ定数を使用して、上記可動子の位置を算出する、ことを特徴とするものである。
本願請求項12に係る発明は、請求項1から5のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部と、上記リニア振動モータの温度を検出する温度検出部と、上記負荷の運転状態でのバネ定数を推定するバネ定数推定部とを備え、上記制御部は、上記負荷の運転の開始前あるいは終了後の少なくともいずれか一方の時点で、一時的に動作モードを演算モードとするものであり、上記バネ定数推定部は、上記演算モードにて、上記算出したバネ定数と、該バネ定数が算出されたときに上記温度検出部により検出された温度とに基づいて、上記リニア振動モータの温度とそのバネ定数との関係を導き、上記運転モードにて、上記温度検出部により検出された温度に基づいて、上記温度とバネ定数の関係から、上記負荷の運転状態でのバネ定数を推定し、上記可動子位置演算部は、上記運転モードにて、上記推定されたバネ定数を用いて上記可動子の位置を算出する、ことを特徴とするものである。
本願請求項13に係る発明は、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記可動子を自由振動させる可動子強制振動部と、上記可動子の自由振動状態に基づいて該可動子の固有振動を示す固有振動パラメータを取得する振動パラメータ取得部と、上記取得された固有振動パラメータを用いて、上記可動子の質量と上記バネ部材のバネ定数との比の値である質量バネ比を算出する質量バネ比決定部と、上記質量バネ比決定部により算出された質量バネ比を用いて、上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするものである。
本願請求項14に係る発明は、上記請求項13記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周波数を検知する固有周波数検知部とを有し、上記質量バネ比決定部は、上記検知された固有振動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する、ことを特徴とするものである。
本願請求項15に係る発明は、請求項13記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出器の出力に基づいて、上記可動子の固有振動パラメータである固有角振動数を検知する固有角振動数検知部とを有し、上記質量バネ比決定部は、上記検知された固有角振動数を二乗し、該固有角振動数の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する、ことを特徴とするものである。
本願請求項16に係る発明は、請求項13記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出器の出力に基づいて、上記可動子の固有振動パラメータである固有振動周期を検知する固有振動周期検知部とを有し、上記質量バネ比決定部は、上記検知された固有振動周期を円周率の2倍で除算し、その除算結果を二乗して、上記質量バネ比を算出する、ことを特徴とするものである。
本願請求項17に係る発明は、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記リニア振動モータに駆動電圧を印加するモータドライバと、該モータドライバから上記リニア振動モータに供給される電流を検出する電流検出部と、上記モータドライバから上記リニア振動モータに供給される電圧を検出する電圧検出部と、上記検出された電流と上記検出された電圧とから、上記リニア振動モータの共振駆動周波数を検出する共振周波数検出部と、上記共振周波数検出部により検出された共振駆動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する質量バネ比決定部と、上記質量バネ比決定部により算出された質量バネ比を用いて上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするものである。
本願請求項18に係る発明は、請求項13から16のいずれかに記載のモータ駆動装置において、上記タイミング検出部は、上記可動子の自由振動により上記リニア振動モータの巻き線に発生する誘起電圧を利用して、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出する、ことを特徴とするものである。
本願請求項19に係る発明は、請求項13から16のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう該可動子に機械的に力を印加する、ことを特徴とするものである。
本願請求項20に係る発明は、請求項13から16のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう、上記リニア振動モータに供給されている電流を一時的に遮断する、ことを特徴とするものである。
本願請求項21に係る発明は、請求項13から16のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記リニア振動モータに接続されている負荷を、上記可動子が自由振動するよう上記リニア振動モータから切り離す、ことを特徴とするものである。
本願請求項22に係る発明は、請求項13から17のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードとのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の開始前に、一時的に動作モードを演算モードとするものであり、上記質量バネ比算出部は、上記負荷の運転の開始前の演算モードにて、上記質量バネ比を算出し、上記可動子位置演算部は、上記運転モードにて、上記負荷の運転の開始前に算出した質量バネ比を使用して上記可動子の位置を算出する、ことを特徴とするものである。
本願請求項23に係る発明は、請求項13から17のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードとのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の終了後に、一時的に動作モードを演算モードとするものであり、上記質量バネ比算出部は、上記負荷の運転の終了後の演算モードにて、上記質量バネ比を算出し、上記可動子位置演算部は、運転モードにて、最近設定された演算モードにて算出した質量バネ比を使用して、上記可動子の位置を算出する、ことを特徴とするものである。
本願請求項24に係る発明は、請求項13から17のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードのいずれかのモードに設定する制御部と、上記リニア振動モータの温度を検出する温度検出部と、上記負荷の運転状態での質量バネ比を推定する質量バネ比推定部とを備え、上記制御部は、上記負荷の運転の開始前あるいは終了後の少なくともいずれか一方の時点で、一時的に動作モードを演算モードとするものであり、上記質量バネ比数推定部は、上記演算モードにて、上記算出した質量バネ比と、該質量バネ比が算出されたときに上記温度検出部により検出された温度とに基づいて、上記リニア振動モータの温度とその質量バネ比との関係を導き、上記運転モードにて、上記温度検出部により検出された温度に基づいて、上記温度と質量バネ比の関係から、上記負荷の運転状態での質量バネ比を推定し、上記可動子位置演算部は、上記運転モードにて、上記推定された質量バネ比を用いて上記可動子の位置を算出する、ことを特徴とするものである。
本願請求項25に係る発明は、シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた空気調和機であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするものである。
本願請求項26に係る発明は、シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた冷蔵庫であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするものである。
本願請求項27に係る発明は、シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた極低温冷凍機であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするものである。
本願請求項28に係る発明は、シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた給湯器であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするものである。
本願請求項29に係る発明は、振動を発生するリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備えた携帯電話であって、上記リニア振動モータは、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するものであり、上記モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするものである。
本願請求項1に係る発明によれば、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記可動子を自由振動させる可動子強制振動部と、上記可動子の自由振動状態に基づいて該可動子の固有振動を示す固有振動パラメータを取得する振動パラメータ取得部と、上記取得された固有振動パラメータを用いて、上記バネ部材のバネ定数を算出するバネ定数決定部と、上記バネ定数決定部により算出されたバネ定数を用いて、上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするので、正確なバネ定数を用いて、可動子の位置を算出する位置演算を精度良く行うことができる効果がある。
つまり、リニア振動モータの駆動中に可動子の位置を算出する位置演算に使用するバネ定数を、固定の値とする従来の方法では、個々のリニア振動モータの間でのバネ定数のバラツキの影響により、上記位置演算により算出される可動子の位置の精度が低いものとなっていたが、本発明では、リニア振動モータ毎にバネ定数が算出されるため、上記位置演算は、個々のリニア振動モータの間でのバネ定数のバラツキの影響を受けることなく行われる。つまり、上記位置演算に使用するバネ定数を、個々のリニア振動モータに対応した正確な値とすることができ、上記位置演算の精度を向上させることができる。
また、本発明では、上記バネ定数を算出する処理は、リニア振動モータの組み立て後に行われることとなるので、上記バネ定数の算出を、リニア振動モータの組み立て時に行う場合と比べると、以下のような効果もある。
つまり、上記可動子の位置演算に使用するバネ定数を、リニア振動モータの組み立て時に決定する方法では、組み立て時にバネ定数を補正する複雑な工程が増えるだけではなく、バネ定数が決定されたリニア振動モータに、該決定されたバネ定数に対応するよう調整されたモータ駆動装置が組み合わせられることとなり、この結果、リニア振動モータもしくはモータ駆動装置のどちらか一方が故障した場合、両方の交換が必要となる。
これに対し、本発明では、バネ定数を算出する処理は、リニア振動モータの組み立て後に行われるので、組み立て時の、バネ定数を補正する工程を必要とせず、さらにはリニア振動モータにモータ駆動装置が組み合わせられた状態で、バネ定数が決定されるため、リニア振動モータと駆動装置の一方が故障した場合でも、故障したものを交換した後にバネ定数の決定が可能であり、故障した部分の交換だけで済むという効果もある。
本願請求項2に係る発明によれば、上記請求項1記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周波数を検知する固有周波数検知部とを有し、上記バネ定数決定部は、上記検知された固有振動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗に上記可動子の質量を乗算して、上記バネ定数を算出する、ことを特徴とするので、個々のリニア振動モータの可動子の固有振動周波数に基づいて、該リニア振動モータに対応した正確なバネ定数を求めることができる。
本願請求項3に係る発明によれば、請求項1記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有角振動数を検知する固有角振動数検知部とを有し、上記バネ定数決定部は、上記検知された固有角振動数を二乗し、該固有角振動数の二乗に上記可動子の質量を乗算して、上記バネ定数を算出する、ことを特徴とするので、個々のリニア振動モータの可動子の固有角振動数に基づいて、該リニア振動モータに対応した正確なバネ定数を求めることができる。
本願請求項4に係る発明によれば、請求項1記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周期を検知する固有振動周期検知部とを有し、上記バネ定数決定部は、上記検知された固有振動周期を円周率の2倍で除算し、その除算結果を二乗し、該除算結果の二乗に上記可動子の質量の逆数を乗算し、該乗算結果の逆数を求めて、上記バネ定数を算出する、ことを特徴とするので、個々のリニア振動モータの可動子の固有振動周期に基づいて、該リニア振動モータに対応した正確なバネ定数を求めることができる。
本願請求項5に係る発明によれば、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記リニア振動モータに駆動電圧を印加するモータドライバと、該モータドライバから上記リニア振動モータに供給される電流を検出する電流検出部と、上記モータドライバから上記リニア振動モータに供給される電圧を検出する電圧検出部と、上記検出された電流と上記検出された電圧とから、上記リニア振動モータの共振駆動周波数を検出する共振周波数検出部と、上記共振周波数検出部により検出された共振駆動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗に上記可動子の質量を乗算して、上記バネ定数を算出するバネ定数決定部と、上記バネ定数決定部により算出されたバネ定数を用いて上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするので、正確なバネ定数を用いて、可動子の位置を算出する位置演算を精度良く行うことができる効果がある。
また、本発明では、上記バネ定数を算出する処理は、リニア振動モータの組み立て後に行うことが可能であるので、上記バネ定数の算出を、リニア振動モータの組み立て時に行う場合と比べると、組み立て時の、バネ定数を補正する工程を必要とせず、さらにはリニア振動モータにモータ駆動装置が組み合わせられた状態で、バネ定数が決定されるため、リニア振動モータと駆動装置の一方が故障した場合でも、故障したものを交換した後にバネ定数の決定が可能であり、故障した部分の交換だけで済むという効果もある。
本願請求項6に係る発明によれば、請求項1から4のいずれかに記載のモータ駆動装置において、上記タイミング検出部は、上記可動子の自由振動により上記リニア振動モータの巻き線に発生する誘起電圧を利用して、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出する、ことを特徴とするので、自由振動する可動子の固有振動周期などを、専用の位置センサを用いずに、既存の電圧検出器などの部品を用いて算出可能となり、その結果、部品点数が減り、サイズやコストを小さく抑えることができるという効果がある。
本願請求項7に係る発明によれば、請求項1から4のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう該可動子に機械的に力を印加する、ことを特徴とするので、上記可動子強制振動部を簡単な機構により実現できる。
本願請求項8に係る発明によれば、請求項1から4のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう、上記リニア振動モータに供給されている電流を一時的に遮断する、ことを特徴とするので、上記可動子強制振動部として専用の部品を用いずに、既存の部品、例えばモータドライバなどを用いて実現することができ、その結果、部品点数が減り、サイズやコストを抑えることができるという効果がある。また、リニア振動モータが密閉されており、例えば、内部の可動子に機械的に力を印加できない場合、本発明の可動子を自由振動させる方式が有効であることは言うまでもない。
本願請求項9に係る発明によれば、請求項1から4のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記リニア振動モータに接続されている負荷を、上記可動子が自由振動するよう上記リニア振動モータから切り離す、ことを特徴とするので、上記可動子強制振動部として専用の部品を用いずに、既存の部品、例えばモータドライバなどを用いて実現することができ、その結果、部品点数が減り、サイズやコストを抑えることができるという効果がある。また、リニア振動モータが密閉されており、例えば、内部の可動子に機械的に力を印加できない場合、本発明の可動子を自由振動させる方式が有効であることは言うまでもない。
本願請求項10に係る発明によれば、請求項1から5のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の開始前に、一時的に動作モードを演算モードとするものであり、上記バネ定数算出部は、上記負荷の運転の開始前の演算モードにて、上記バネ定数を算出し、上記可動子位置演算部は、上記運転モードにて、上記負荷の運転の開始前に算出したバネ定数を使用して上記可動子の位置を算出する、ことを特徴とするので、常にリニア振動モータの最新の状態でのバネ定数を用いて、可動子の位置を算出する演算が行われることとなり、このため、時間経過とともにバネ定数が変化しても、精度の高い位置演算を行うことができるという効果がある
本願請求項11に係る発明によれば、請求項1から5のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の終了後に、一時的に動作モードを演算モードとするものであり、上記バネ定数算出部は、上記負荷の運転の終了後の演算モードにて、上記バネ定数を算出し、上記可動子位置演算部は、運転モードにて、最近設定された演算モードにて算出したバネ定数を使用して、上記可動子の位置を算出する、ことを特徴とするので、常にリニア振動モータの最新の状態でのバネ定数を用いて、可動子の位置を算出する演算が行われることとなり、このため、時間経過とともにバネ定数が変化しても、精度の高い位置演算を行うことができるという効果がある。
また、この発明では、バネ定数の算出は、リニア振動モータの運転直後に行われるため、モータ温度が実際に動作しているときとほぼ同等である状態でバネ定数が算出されることとなる。つまり、バネ定数は温度により変化するが、実際にモータが動作するときの温度でバネ定数を算出することにより、リニア振動モータの運転時の正確なバネ定数を取得することができ、可動子の位置を算出する位置演算をより高い精度で行うことができるという効果がある。
さらに、この発明では、バネ定数の算出を運転終了後に行うため、バネ定数を算出する動作がリニア振動モータの駆動を妨げることがないという効果もある。
本願請求項12に係る発明によれば、請求項1から5のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部と、上記リニア振動モータの温度を検出する温度検出部と、上記負荷の運転状態でのバネ定数を推定するバネ定数推定部とを備え、上記制御部は、上記負荷の運転の開始前あるいは終了後の少なくともいずれか一方の時点で、一時的に動作モードを演算モードとするものであり、上記バネ定数推定部は、上記演算モードにて、上記算出したバネ定数と、該バネ定数が算出されたときに上記温度検出部により検出された温度とに基づいて、上記リニア振動モータの温度とそのバネ定数との関係を導き、上記運転モードにて、上記温度検出部により検出された温度に基づいて、上記温度とバネ定数の関係から、上記負荷の運転状態でのバネ定数を推定し、上記可動子位置演算部は、上記運転モードにて、上記推定されたバネ定数を用いて上記可動子の位置を算出する、ことを特徴とするので、リニア振動モータの運転状態で行われる可動子の位置演算には、常に正確なバネ定数が用いられることとなり、可動子の位置演算の精度を向上させることができる。
また、この発明では、実際にリニア振動モータの運転が行われているときの温度から、運転状態でのリニア振動モータのバネ定数を推定しているので、リニア振動モータの温度変化の大きい状態でも正確なバネ定数を用いて、可動子の位置演算を高い精度で行うことができるという効果がある。
本願請求項13に係る発明によれば、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記可動子を自由振動させる可動子強制振動部と、上記可動子の自由振動状態に基づいて該可動子の固有振動を示す固有振動パラメータを取得する振動パラメータ取得部と、上記取得された固有振動パラメータを用いて、上記可動子の質量と上記バネ部材のバネ定数との比の値である質量バネ比を算出する質量バネ比決定部と、上記質量バネ比決定部により算出された質量バネ比を用いて、上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするので、正確な質量バネ比を用いて、可動子の位置を算出する位置演算を精度良く行うことができる効果がある。
つまり、リニア振動モータの駆動中に可動子の位置を算出する位置演算に使用する質量バネ比を、固定の値とする従来の方法では、個々のリニア振動モータの間での質量バネ比のバラツキの影響により、上記位置演算により算出される可動子の位置の精度が低いものとなっていたが、本発明では、リニア振動モータ毎に質量バネ比が算出されるため、上記位置演算は、個々のリニア振動モータの間での質量バネ比のバラツキの影響を受けることなく行われる。つまり、上記位置演算に使用する質量バネ比を、個々のリニア振動モータに対応した正確な値とすることができ、上記位置演算の精度を向上させることができる。
また、本発明では、上記質量バネ比を算出する処理は、リニア振動モータの組み立て後に行われることとなるので、上記質量バネ比の算出を、リニア振動モータの組み立て時に行う場合と比べると、以下のような効果もある。
つまり、上記可動子の位置演算に使用する質量バネ比を、リニア振動モータの組み立て時に決定する方法では、組み立て時に質量バネ比を補正する複雑な工程が増えるだけではなく、質量バネ比が決定されたリニア振動モータに、該決定された質量バネ比に対応するよう調整されたモータ駆動装置が組み合わせられることとなり、この結果、リニア振動モータもしくはモータ駆動装置のどちらか一方が故障した場合、両方の交換が必要となる。
これに対し、本発明では、質量バネ比を算出する処理は、リニア振動モータの組み立て後に行われるので、組み立て時の、質量バネ比を補正する工程を必要とせず、さらにはリニア振動モータにモータ駆動装置が組み合わせられた状態で、質量バネ比が決定されるため、リニア振動モータと駆動装置の一方が故障した場合でも、故障したものを交換した後に質量バネ比の決定が可能であり、故障した部分の交換だけで済むという効果もある。
本願請求項14に係る発明によれば、上記請求項13記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周波数を検知する固有周波数検知部とを有し、上記質量バネ比決定部は、上記検知された固有振動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する、ことを特徴とするので、個々のリニア振動モータの可動子の固有振動周波数に基づいて、該リニア振動モータに対応した正確な質量バネ比を求めることができる。
本願請求項15に係る発明によれば、請求項13記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出器の出力に基づいて、上記可動子の固有振動パラメータである固有角振動数を検知する固有角振動数検知部とを有し、上記質量バネ比決定部は、上記検知された固有角振動数を二乗し、該固有角振動数の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する、ことを特徴とするので、個々のリニア振動モータの可動子の固有角振動数に基づいて、該リニア振動モータに対応した正確な質量バネ比を求めることができる。
本願請求項16に係る発明によれば、請求項13記載のモータ駆動装置において、上記振動パラメータ取得部は、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、該タイミング検出器の出力に基づいて、上記可動子の固有振動パラメータである固有振動周期を検知する固有振動周期検知部とを有し、上記質量バネ比決定部は、上記検知された固有振動周期を円周率の2倍で除算し、その除算結果を二乗して、上記質量バネ比を算出する、ことを特徴とするので、個々のリニア振動モータの可動子の固有振動周期に基づいて、該リニア振動モータに対応した正確な質量バネ比を求めることができる。
本願請求項17に係る発明によれば、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、上記リニア振動モータに駆動電圧を印加するモータドライバと、該モータドライバから上記リニア振動モータに供給される電流を検出する電流検出部と、上記モータドライバから上記リニア振動モータに供給される電圧を検出する電圧検出部と、上記検出された電流と上記検出された電圧とから、上記リニア振動モータの共振駆動周波数を検出する共振周波数検出部と、上記共振周波数検出部により検出された共振駆動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する質量バネ比決定部と、上記質量バネ比決定部により算出された質量バネ比を用いて上記可動子の位置を算出する可動子位置演算部とを備えた、ことを特徴とするので、正確な質量バネ比を用いて、可動子の位置を算出する位置演算を精度良く行うことができる効果がある。
また、本発明では、上記質量バネ比を算出する処理は、リニア振動モータの組み立て後に行われることとなるので、上記質量バネ比の算出を、リニア振動モータの組み立て時に行う場合と比べると、組み立て時の、質量バネ比を補正する工程を必要とせず、さらにはリニア振動モータにモータ駆動装置が組み合わせられた状態で、質量バネ比が決定されるため、リニア振動モータと駆動装置の一方が故障した場合でも、故障したものを交換した後に質量バネ比の決定が可能であり、故障した部分の交換だけで済むという効果もある。
本願請求項18に係る発明によれば、請求項13から16のいずれかに記載のモータ駆動装置において、上記タイミング検出部は、上記可動子の自由振動により上記リニア振動モータの巻き線に発生する誘起電圧を利用して、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出する、ことを特徴とするので、自由振動する可動子の固有振動周期などを、専用の位置センサを用いずに、既存の電圧検出器などの部品を用いて算出可能となり、その結果、部品点数が減り、サイズやコストを小さく抑えることができるという効果がある。
本願請求項19に係る発明によれば、請求項13から16のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう該可動子に機械的に力を印加する、ことを特徴とするので、上記可動子強制振動部を簡単な機構により実現できる。
本願請求項20に係る発明によれば、請求項13から16のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記可動子が自由振動するよう、上記リニア振動モータに供給されている電流を一時的に遮断する、ことを特徴とするので、上記可動子強制振動部として専用の部品を用いずに、既存の部品、例えばモータドライバなどを用いて実現することができ、その結果、部品点数が減り、サイズやコストを抑えることができるという効果がある。また、リニア振動モータが密閉されており、例えば、内部の可動子に機械的に力を印加できない場合、本発明の可動子を自由振動させる方式が有効であることは言うまでもない。
本願請求項21に係る発明によれば、請求項13から16のいずれかに記載のモータ駆動装置において、上記可動子強制振動部は、上記リニア振動モータに接続されている負荷を、上記可動子が自由振動するよう上記リニア振動モータから切り離す、ことを特徴とするので、上記可動子強制振動部として専用の部品を用いずに、既存の部品、例えばモータドライバなどを用いて実現することができ、その結果、部品点数が減り、サイズやコストを抑えることができるという効果がある。また、リニア振動モータが密閉されており、例えば、内部の可動子に機械的に力を印加できない場合、本発明の可動子を自由振動させる方式が有効であることは言うまでもない。
本願請求項22に係る発明によれば、請求項13から17のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードとのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の開始前に、一時的に動作モードを演算モードとするものであり、上記質量バネ比算出部は、上記負荷の運転の開始前の演算モードにて、上記質量バネ比を算出し、上記可動子位置演算部は、上記運転モードにて、上記負荷の運転の開始前に算出した質量バネ比を使用して上記可動子の位置を算出する、ことを特徴とするので、常にリニア振動モータの最新の状態での質量バネ比を用いて、可動子の位置を算出する演算が行われることとなり、このため、時間経過とともに質量バネ比が変化しても、精度の高い位置演算を行うことができるという効果がある
本願請求項23に係る発明によれば、請求項13から17のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードとのいずれかのモードに設定する制御部を有し、上記制御部は、上記負荷の運転の終了後に、一時的に動作モードを演算モードとするものであり、上記質量バネ比算出部は、上記負荷の運転の終了後の演算モードにて、上記質量バネ比を算出し、上記可動子位置演算部は、運転モードにて、最近設定された演算モードにて算出した質量バネ比を使用して、上記可動子の位置を算出する、ことを特徴とするので、常にリニア振動モータの最新の状態での質量バネ比を用いて、可動子の位置を算出する演算が行われることとなり、このため、時間経過とともに質量バネ比が変化しても、精度の高い位置演算を行うことができるという効果がある。
また、この発明では、質量バネ比の算出は、リニア振動モータの運転直後に行われるため、モータ温度が実際に動作しているときとほぼ同等である状態で質量バネ比が算出されることとなる。つまり、質量バネ比は温度により変化するが、実際にモータが動作するときの温度で質量バネ比を算出することにより、リニア振動モータの運転時の正確な質量バネ比を取得することができ、可動子の位置を算出する位置演算をより高い精度で行うことができるという効果がある。
さらに、この発明では、質量バネ比の算出を運転停止後に行うため、質量バネ比を算出する動作がリニア振動モータの駆動を妨げることがないという効果もある。
本願請求項24に係る発明によれば、請求項13から17のいずれかに記載のモータ駆動装置において、動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードのいずれかのモードに設定する制御部と、上記リニア振動モータの温度を検出する温度検出部と、上記負荷の運転状態での質量バネ比を推定する質量バネ比推定部とを備え、上記制御部は、上記負荷の運転の開始前あるいは終了後の少なくともいずれか一方の時点で、一時的に動作モードを演算モードとするものであり、上記質量バネ比数推定部は、上記演算モードにて、上記算出した質量バネ比と、該質量バネ比が算出されたときに上記温度検出部により検出された温度とに基づいて、上記リニア振動モータの温度とその質量バネ比との関係を導き、上記運転モードにて、上記温度検出部により検出された温度に基づいて、上記温度と質量バネ比の関係から、上記負荷の運転状態での質量バネ比を推定し、上記可動子位置演算部は、上記運転モードにて、上記推定された質量バネ比を用いて上記可動子の位置を算出する、ことを特徴とするので、リニア振動モータの運転状態で行われる可動子の位置演算には、常に正確な質量バネ比が用いられることとなり、可動子の位置演算の精度を向上させることができる。
また、この発明では、実際にリニア振動モータの運転が行われているときの温度から、運転状態でのリニア振動モータの質量バネ比を推定しているので、リニア振動モータの温度変化の大きい状態でも正確な質量バネ比を用いて、可動子の位置演算を高い精度で行うことができるという効果がある。
本願請求項25に係る発明によれば、シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた空気調和機であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするので、リニア振動モータの非運転モードでバネ定数あるいは質量バネ比が算出され、リニア振動モータの運転モードでは、該算出したバネ定数あるいは質量バネ比を用いた演算により、リニア振動モータの可動子の位置が算出されることとなる。このため、リニア振動モータが密閉容器の中に収容され、温度と圧力の変化の激しい環境で用いられる空気調和機では、リニア振動モータの可動子の位置を、位置センサーを用いることなく、バネ定数あるいは質量バネ比を用いた演算により、高い精度で算出することが可能となり、これにより、ピストンとシリンダヘッドとのクリアランスを削減して、圧縮機の小型化、ひいては空気調和機の小型化を図ることができる。
また、この空気調和機では、圧縮機のピストンをリニア振動モータにより駆動するので、従来の回転型モータにより圧縮機のピストンを駆動するものに比べて、摩擦損の低減、さらには冷媒の高圧と低圧とのシール性の向上により圧縮機効率を高めることができる。しかも、摩擦損の低減により回転型モータでは必要不可欠であった潤滑用オイルを大幅に低減することができる。これによってリサイクル性が高まるだけでなく、オイルに溶け込む冷媒の量が減ることから圧縮機に充填する冷媒の量が少なくなって、地球環境の保全にも貢献することができる。
本願請求項26に係る発明によれば、シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた冷蔵庫であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするので、リニア振動モータが密閉容器の中に収容され、温度と圧力の変化の激しい環境で用いられる冷蔵庫では、上記空気調和機と同様に、リニア振動モータの可動子の位置を、位置センサーを用いることなく、バネ定数あるいは質量バネ比を用いた演算により、高い精度で算出することが可能となる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、圧縮機の小型化、ひいては冷蔵庫の小型化を図ることができる。
また、この冷蔵庫では、圧縮機のピストンをリニア振動モータにより駆動するので、従来の回転型モータにより圧縮機のピストンを駆動するものに比べて、摩擦損の低減やシール性の向上により圧縮機効率を高めることができ、しかも、摩擦損の低減による潤滑用オイルの大幅な削減により、リサイクル性が高まるとともに圧縮機の冷媒充填量が少なくなって、地球環境の保全にも貢献することができる。
本願請求項27に係る発明によれば、シリンダ及びピストンを有し、該ピストンの運動によりシリンダ内の流体を圧縮する圧縮機を備えた極低温冷凍機であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを駆動するリニア振動モータと、該リニア振動モータを駆動制御するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするので、リニア振動モータが密閉容器の中に収容され、温度と圧力の変化の激しい環境で用いられる極低温冷凍機では、上記空気調和機と同様に、リニア振動モータの可動子の位置を、位置センサーを用いることなく、バネ定数あるいは質量バネ比を用いた演算により、高い精度で算出することが可能となる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、圧縮機の小型化、ひいては極低温冷凍機の小型化を図ることができる。
また、この極低温冷凍機では、圧縮機のピストンをリニア振動モータにより駆動するので、従来の回転型モータにより圧縮機のピストンを駆動するものに比べて、摩擦損の低減やシール性の向上により圧縮機効率を高めることができ、しかも、摩擦損の低減による潤滑用オイルの大幅な削減により、リサイクル性が高まるとともに圧縮機の冷媒充填量が少なくなって、地球環境の保全にも貢献することができる。
本願請求項28に係る発明によれば、シリンダ及びピストンを有し、該ピストンの運動によりシリンダ内の流体を圧縮する圧縮機を備えた給湯器であって、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを駆動するリニア振動モータと、該リニア振動モータを駆動制御するモータ駆動装置とを備え、該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするので、リニア振動モータが密閉容器の中に収容され、温度と圧力の変化の激しい環境で用いられる給湯器では、上記空気調和機と同様に、リニア振動モータの可動子の位置を、位置センサーを用いることなく、バネ定数あるいは質量バネ比を用いた演算により、高い精度で算出することが可能となる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、圧縮機の小型化、ひいては給湯器の小型化を図ることができる。
また、この給湯器では、圧縮機のピストンをリニア振動モータにより駆動するので、従来の回転型モータにより圧縮機のピストンを駆動するものに比べて、摩擦損の低減やシール性の向上により圧縮機効率を高めることができ、しかも、摩擦損の低減による潤滑用オイルの大幅な削減により、リサイクル性が高まるとともに圧縮機の冷媒充填量が少なくなって、地球環境の保全にも貢献することができる。
本願請求項29に係る発明によれば、振動を発生するリニア振動モータと、該リニア振動モータを駆動制御するモータ駆動装置とを備えた携帯電話であって、上記リニア振動モータは、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するものであり、上記モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、ことを特徴とするので、振動数と振幅(振動)の大きさという2つの自由度で振動を外部に伝えることができ、このため、従来の回転型モータを用いて振動を発生するものに比べて、振動のバリエーションの多彩なものとできる。さらに、モータ駆動装置は、リニア振動モータの非運転モードでバネ定数あるいは質量バネ比を算出し、リニア振動モータの運転モードでは、該算出したバネ定数あるいは質量バネ比を用いて可動子の位置を算出するので、リニア振動モータの運転中には可動子の位置を高い精度で検知することができる。これにより、可動子とその周辺部材とのクリアランスを削減して、リニア振動モータの小型化、ひいては携帯電話の小型化を図ることができる。
以下、本発明の実施の形態について説明する。
(実施の形態1)
図1は、本発明の実施の形態1によるモータ駆動装置を説明するためのブロック図である。
この実施の形態1のモータ駆動装置101aは、リニア振動モータを動作させる2つの動作モードを有している。1つの動作モードは、リニア振動モータ100を、要求されるモータ出力に応じた駆動電圧あるいは駆動電流により駆動して、リニア振動モータ100に接続された負荷を運転する運転モードである。この運転モードでは、モータ駆動装置101aは、上記負荷の運転を行うとともに、該リニア振動モータの可動子の位置を該駆動電圧及び駆動電流に基づいて算出し、算出された可動子の位置に応じてリニア振動モータの駆動を制御する。もう1つの動作モードは、上記リニア振動モータ100の可動子を自由振動させ、該可動子を支持するバネ部材のバネ定数kを求める演算を行う演算モードである。
(実施の形態1)
図1は、本発明の実施の形態1によるモータ駆動装置を説明するためのブロック図である。
この実施の形態1のモータ駆動装置101aは、リニア振動モータを動作させる2つの動作モードを有している。1つの動作モードは、リニア振動モータ100を、要求されるモータ出力に応じた駆動電圧あるいは駆動電流により駆動して、リニア振動モータ100に接続された負荷を運転する運転モードである。この運転モードでは、モータ駆動装置101aは、上記負荷の運転を行うとともに、該リニア振動モータの可動子の位置を該駆動電圧及び駆動電流に基づいて算出し、算出された可動子の位置に応じてリニア振動モータの駆動を制御する。もう1つの動作モードは、上記リニア振動モータ100の可動子を自由振動させ、該可動子を支持するバネ部材のバネ定数kを求める演算を行う演算モードである。
具体的には、この実施の形態1のモータ駆動装置101aは、リニア振動モータ100を、その可動子の位置Pxを示す位置情報Dpcに基づいて駆動制御するモータドライバ1aと、上記可動子の位置Pxを算出する位置演算を、上記リニア振動モータ100のバネ部材のバネ定数kに基づいて行う可動子位置算出部2aとを有している。
上記モータ駆動装置101aは、リニア振動モータ100の可動子が自由振動するよう一時的に力(強制振動力)Ffvを印加する可動子強制振動部3aと、上記可動子の自由振動状態で、該可動子がその振動中心などの振動の基準位置に対する一定の相対位置Prを通過したタイミングを検出し、該検出したタイミングを示すタイミング情報Dprを出力する相対位置検出部4aと、該相対位置検出部4aからのタイミング情報Dprに基づいて、可動子の固有振動周波数fを検知する固有振動周波数検知部5aと、該検知された固有振動周波数fからバネ部材のバネ定数kを決定し、該決定したバネ定数を示すバネ定数情報Dkを上記可動子位置検出部2aに出力するバネ定数決定部6aとを有するものである。なお、上記固有振動周波数fは、厳密には、可動子を含むバネ振動系の固有振動周波数である。
上記モータ駆動装置101aは、ユーザ操作に応じた操作信号等に基づいて、上記モータ駆動装置101aの各部1a,2a,3a,4a,5a,6aを制御する制御部(図示せず)を有しており、リニア振動モータの運転開始直前には、該制御部の制御により、このモータ駆動装置101aの動作モードが一旦、上記バネ定数を算出する演算モードとなり、その後負荷の運転を行う運転モードとなるものである。
以下、上記リニア振動モータ100、並びに上記モータ駆動装置101aを構成するモータドライバ1a, 可動子位置演算部2a,可動子強制振動部3a,相対位置検出部4a,固有振動周波数検知部5a,及びバネ定数決定部6aについて詳しく説明する。
リニア振動モータ100は、固定子及び可動子と、上記可動子を含むバネ振動系が形成されるよう上記可動子を支持するバネ部材とを有するものであり、該リニア振動モータの駆動周波数は、上記可動子の往復運動の共振周波数、つまりバネ振動系の共振振動周波数、あるいはその近傍の振動周波数である。また、上記固定子は鉄心にコイルを巻回してなる電磁石から構成されており、上記可動子は永久磁石から構成されている。
モータドライバ1aは、電源電圧を受け、リニア振動モータ100に駆動電圧Vdrを印加してリニア振動モータ100を駆動するものである。上記リニア振動モータ100には通常、駆動電圧Vdrとして交流電圧が印加され、リニア振動モータ100には駆動電流Cdrとして交流電流が供給される。このモータドライバ1aは、駆動電圧Vdrとして交流電圧をリニア振動モータ100に印加することにより、該リニア振動モータ100の可動子を、該交流電圧の周波数と同じ周波数で往復運動させることができるものである。なお、上記リニア振動モータ100に直流電圧が印加された場合には、上記可動子は一定の電磁力を受けることとなる。また、上記モータドライバ1aは、可動子位置演算部2aでの演算により得られた、上記可動子の位置Pxを示す位置情報Dpcに基づいて、上記駆動電圧(交流電圧)Vdrのレベル(波高値)を決定するものである。
可動子位置演算部2aは、リニア振動モータ100の運転中に、つまり可動子が往復動作を行っている状態で、可動子の位置Pxを演算により求め、該可動子の位置を示す位置情報Dpcを上記モータドライバ1aに出力するものである。
具体的な演算としては、背景技術の説明で挙げた特許文献2(特表平8−508558号公報)に記載のように、リニア振動モータ100の運動方程式から可動子の位置を算出する位置演算が用いられる。このとき、可動子の位置の演算に用いられるバネ定数kは上記バネ定数決定部6aにより決定されたものである。
可動子強制振動部3aは、上記強制振動力Ffvを、リニア振動モータの外部から可動子に機械的に印加するものであり、該強制振動力Ffvが可動子に印加されると、可動子は自由振動する。このような可動子強制振動部3aは、簡単な機構により実現できる。
但し、リニア振動モータ100の筐体(モータ筐体)が密閉されており、モータ筐体の外部から、その内部の可動子に直接力を加えられない場合が考えられる。そのような場合には、可動子強制振動部3aは、リニア振動モータ100に供給される電流により、可動子に電磁力を与えるものとする。可動子に電磁力を与える具体的な方法は、例えば、モータドライバ1aからリニア振動モータ100に供給される電流を瞬時的に停止するという方法が考えられる。つまり、モータドライバ1aからリニア振動モータ100に供給される電流が瞬時的に停止されると、バネ部材に支持された可動子は、自由振動することとなる。このような可動子強制振動部は、専用の部品を用いずに、既存の部品、例えばモータドライバなどを用いて実現することができ、その結果、部品点数が減り、サイズやコストを抑えることができる。
また、このようにリニア振動モータ100に供給される電流を瞬時的に停止するのは、リニア振動モータ100の通常の駆動状態、つまり可動子が往復運動している状態で行ってもよいが、停止しているリニア振動モータ100にモータドライバ1aから直流電流を供給して可動子に電磁力を印加した状態で、該直流電流の供給を停止してもよい。この場合、リニア振動モータ100は運転状態でないため、つまり、リニア振動モータ100に負荷がかかっていないため、可動子の自由振動を、負荷の影響を受けない、所望の振幅の振動とすることができる。
さらに、上記可動子強制振動部3aは、上記リニア振動モータに接続されている負荷を、上記可動子が自由振動するよう上記リニア振動モータから切り離すものであってもよい。この場合、可動子強制振動部3aは、専用の部品を用いずに、既存の部品、例えばモータドライバなどを用いて実現することができ、その結果、部品点数が減り、サイズやコストを抑えることができる。また、このようにリニア振動モータに接続されている負荷を切り離すことにより可動子を自由振動させる可動子強制振動部3aは、リニア振動モータが密閉されており、例えば、内部の可動子に機械的に力を印加できない場合に有効なものであることは言うまでもない。
相対位置検出部4aは、上記リニア振動モータ100の可動子が自由振動している状態で、該可動子が、その振動中心などの基準位置に対する一定の相対位置Prを通過したタイミングを検出し、該検出したタイミングを示すタイミング情報Dprを出力するものである。具体的には、この相対位置検出部4aには、ホール素子等を用いた位置センサを使用することが考えられる。但し、この相対位置検出部4aは、その出力であるタイミング情報Dprから上記可動子の固有振動周波数fを求めることができるものであれば、どのようなものでもよい。言い換えると、この相対位置検出部4aに用いられる位置センサは簡易的なものでよく、タイミング検出精度や周波数応答性のそれほど高いものでなくても十分であるということである。
なお、自由振動する可動子が上記相対位置を通過したことを検出する方法は、上記位置センサを用いる方法の代わりに、リニア振動モータ100の誘起電圧を利用するという方法も考えられる。その具体的な方法は、モータドライバ1aの出力をオープンとした状態で、つまり、モータドライバ1aとリニア振動モータとを非接続とした状態で、可動子の自由振動に伴って、リニア振動モータ100に接続された配線、つまり電磁石を構成する巻き線に発生する誘起電圧を測定する方法である。
固有振動周波数検知部5aは、相対位置検出部4aから出力されたタイミング情報Dprから、可動子の固有振動周波数fを検知するものである。この固有振動周波数検知部5aは、具体的には、相対位置検出部4aからのタイミング情報Dprに基づいて、自由振動する可動子が、ある固定点(つまり上記相対位置)を単位時間当たりに通過する回数を検出するものである。一般的には、上記相対位置Prとしては、可動子の振動中心点が選ばれる。
つまり、この固有振動周波数検知部5aは、上記可動子が、ある固定点(相対位置)を一定時間内に何回通過したかを検知して、上記可動子の固有振動周波数fを検知する。なお、この一定時間を大きくすることで固有振動周波数の検知精度を上げることができる。
なお、この固有振動周波数検知部5aは、上記可動子が相対位置(ある固定点)を通過し、その後再度上記相対位置を通過するまでの時間を計測し、該計測した時間(計測時間)から固有振動の周期を求め、その逆数を固有振動周波数として求めるものであってもよい。この場合も、可動子が上記相対位置を、2回以上、例えば10回あるいは20回といった多くの数回だけ通過するのに要する時間を計測することにより、固有振動周波数の検知精度を上げることができる。
バネ定数決定部6aは、固有振動周波数検知部5aにより検知された固有振動周波数fからバネ定数kを決定するものである。ここで、該バネ定数決定部6aは、具体的には、固有振動周波数fに円周率の2倍を乗算し、該乗算結果を二乗し、さらに、該乗算結果の二乗に上記可動子の質量を乗算する演算処理を行って、上記バネ定数kを算出するものである。
次に動作について説明する。
この実施の形態1のモータ駆動装置101aでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101aの各部1a,2a,3a,4a,5a,6aは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101aの動作モードが一旦、演算モードとなり、その後、上記運転モードとなるよう制御される。
この実施の形態1のモータ駆動装置101aでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101aの各部1a,2a,3a,4a,5a,6aは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101aの動作モードが一旦、演算モードとなり、その後、上記運転モードとなるよう制御される。
以下まず、リニア振動モータ100のバネ部材のバネ定数kを決定する演算モードの動作について説明する。
可動子強制振動部3aは、演算モード、つまりリニア振動モータ100の非運転状態で、制御部(図示せず)からの制御信号に基づいて、リニア振動モータ100の可動子に強制振動力Ffvを一時的に印加して可動子を自由振動させる。
可動子強制振動部3aは、演算モード、つまりリニア振動モータ100の非運転状態で、制御部(図示せず)からの制御信号に基づいて、リニア振動モータ100の可動子に強制振動力Ffvを一時的に印加して可動子を自由振動させる。
相対位置検出部4aは、上記リニア振動モータ100の可動子が自由振動している状態で、該可動子が上記相対位置を通過する度に、該可動子の通過タイミングを示すタイミング情報Dprを出力する。
固有振動周波数検知部5aは、相対位置検出部4aからのタイミング情報Dprに基づいて、可動子の固有振動周波数fを検知する。具体的には、固有振動周波数検知部5aは、上記タイミング情報Dprに基づいて、自由振動する可動子が上記相対位置を一定時間内に何回通過したかを検知して、可動子の固有振動周波数fを求め、該固有振動周波数fを示す振動数情報Dfを出力する。
バネ定数決定部6aは、固有振動周波数検知部5aからの振動数情報Dfに基づいて、該振動数情報Dfが示す固有振動周波数fに円周率の2倍を乗算し、該乗算結果を二乗し、さらに該乗算結果の二乗に上記可動子の質量を乗算する演算処理を行って、バネ定数kを算出し、該バネ定数を示すバネ定数情報Dkを、上記可動子位置演算部2aに出力する。
その後、モータ駆動装置101aの動作モードは、上記演算モードから、リニア振動モータを運転する運転モードに切り替わる。
以下、リニア振動モータ100を駆動する運転モードの動作について説明する。
モータドライバ1aは、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加して、リニア振動モータ100を駆動する。これによりリニア振動モータ100の通常運転が開始される。
モータドライバ1aは、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加して、リニア振動モータ100を駆動する。これによりリニア振動モータ100の通常運転が開始される。
このとき、可動子位置演算部2aは、モータドライバ1aに印加される駆動電流Cdr及び駆動電圧Vdrに基づいて可動子の位置を算出する位置演算を、上記バネ定数決定部6aにより算出されたバネ定数kを用いて行い、該算出された、可動子の位置Pxを示す可動子位置情報Dpcをモータドライバ1aに出力する。
すると、モータドライバ1aは、上記位置情報Dpcに基づいて、リニア振動モータ100へ印加する駆動電圧Vdrの振幅値(電圧レベル)を、往復運動する可動子がその限界位置を超えないよう制御する。
このように本実施の形態1では、リニア振動モータ100を駆動するモータ駆動装置101aにおいて、リニア振動モータ100の可動子を自由振動をさせる可動子強制振動部3aと、上記自由振動する可動子がある固定点(相対位置)を通過したタイミングを検出する相対位置検出部4aと、該検出部4aからのタイミング情報Dprに基づいて可動子の固有振動周波数fを検知する固有振動周波数検知部5aとを備え、該検知された固有振動周波数fからバネ部材のバネ定数kを決定するので、該バネ定数kを用いる位置演算により、可動子の位置を高い精度で算出することができる。
これにより、リニア振動モータ運転時の可動子の位置制御を精度良く行うことができ、可動子とリニア振動モータ筐体との間のクリアランスを小さくしてリニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態1では、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数kを算出するようにしているので、常に最新のリニア振動モータの状態でのバネ定数kを用いて可動子の位置を算出する位置演算が行われることとなる。このため、時間経過とともにバネ定数kが変化しても、上記位置演算により、可動子の位置を精度よく算出することができる効果もある。
また、この実施の形態1では、上記バネ定数の算出は、リニア振動モータにモータ駆動装置が接続されているリニア振動モータの組み立て後に行うこととなるので、上記バネ定数の算出を、リニア振動モータにモータ駆動装置が接続されていないリニア振動モータの組み立て時に行う場合と比べると、以下のような効果もある。
つまり、リニア振動モータの組み立て時に、上記可動子の位置演算に使用するバネ定数を算出する場合、個々のリニア振動モータの、算出したバネ定数の値を、それぞれのリニア振動モータと組み合わせられるモータ駆動装置に保持させる必要が生じる。
例えば、可動子の位置を求める演算をハードウエアにより行うモータ駆動装置では、バネ定数のデフォルト値は、抵抗などの能動部品のボリュームを調整することにより、組み合わせられるリニア振動モータの、算出されたバネ定数の値に設定される。また、可動子の位置を求める演算をソフトウエアにより行うモータ駆動装置では、マイクロコンピュータに記憶されたバネ定数のデフォルト値が、組み立て時に算出されたバネ定数の値に書き換えられる、もしくは上記のような抵抗などの能動部品のボリューム調整により、算出されたバネ定数の値に設定される。
従って、リニア振動モータの組み立て時にバネ定数を算出する場合、その組み立て時に、各モータのバネ定数のデフォルト値を補正するという煩雑な工程が増えることとなる。また、この場合は、モータ駆動装置は、リニア振動モータと組み合わせる際、該モータ駆動装置のバネ定数のデフォルト値が、組み合わせられるリニア振動モータの、算出されたバネ定数の値に設定されるので、リニア振動モータもしくはモータ駆動装置のどちらか一方が故障した場合でも、両方とも交換しなければならなくなる。
一方、本発明の実施の形態1のように、リニア振動モータの組み立て後に、バネ定数を算出する場合は、組み立て時には、モータ駆動装置のバネ定数のデフォルト値を補正する煩雑な工程は不要となる。さらには、モータ駆動装置に保持されるバネ定数の値は、該モータ駆動装置がリニア振動モータに接続された状態で設定されるため、リニア振動モータとモータ駆動装置の一方が故障した場合は、故障したものを交換した後に、モータ駆動装置のバネ定数を設定可能である。つまり、リニア振動モータもしくはモータ駆動装置のどちらか一方が故障した場合には、故障した方を交換するだけで済むという効果もある。
なお、上記実施の形態1では、モータ駆動装置101aは、リニア振動モータ100の運転開始直前に、リニア振動モータ100のバネ定数kを算出するものであるが、モータ駆動装置101aは、リニア振動モータ100の運転終了直後に、リニア振動モータのバネ定数kを算出するものであってもよい。
この場合、リニア振動モータの運転時には、前回のリニア振動モータの運転終了直後に算出したバネ定数kを用いて、可動子の位置を算出する位置演算が行われることとなる。従って、この場合も、常に最新のリニア振動モータの状態でのバネ定数kを用いて可動子の位置を算出する位置演算が行われることとなり、時間経過とともにバネ定数が変化しても、上記位置演算により、可動子の位置を精度よく算出することができるという効果がある。
また、この場合は、バネ定数の演算は、リニア振動モータの運転終了直後に行われるため、モータ温度が実際のリニア振動モータの運転時の温度とほぼ同等である状態でバネ定数が算出されることとなる。つまり、バネ定数は温度により変化するが、実際にモータが動作するときの温度でバネ定数を算出することにより、リニア振動モータの運転時の正確なバネ定数を取得することができ、可動子の位置を算出する位置演算をより高い精度で行うことができるという効果がある。
さらに、上記の場合には、バネ定数の算出をリニア振動モータの運転停止後に行うため、リニア振動モータの動作を妨げることなく、バネ定数を算出することができるという効果もある。
また、上記実施の形態1では、モータ駆動装置101aは、ユーザの操作によりリニア振動モータの運転開始を示す指令信号が制御部に入力されると、動作モードが一時的に演算モードとなった後に運転モードとなるものとしているが、モータ駆動装置はこれに限るものではなく、例えば、モータ駆動装置は、演算モードの動作及び運転モードの動作が、それぞれユーザ操作により発生する指令信号に基づいて独立して行われるものであってもよい。
(実施の形態2)
図2は、本発明の実施の形態2によるモータ駆動装置101bを説明するためのブロック図である。
この実施の形態2のモータ駆動装置101bは、可動子の位置を算出する位置演算に用いるバネ定数kを、可動子の固有角振動数ωに基づいて算出する点のみ、実施の形態1のモータ駆動装置101aと異なっている。
図2は、本発明の実施の形態2によるモータ駆動装置101bを説明するためのブロック図である。
この実施の形態2のモータ駆動装置101bは、可動子の位置を算出する位置演算に用いるバネ定数kを、可動子の固有角振動数ωに基づいて算出する点のみ、実施の形態1のモータ駆動装置101aと異なっている。
すなわち、この実施の形態2のモータ駆動装置101bは、実施の形態1のモータ駆動装置101aの固有振動周波数検知部5aに代わる、自由振動する可動子がある固定点(相対位置)を通過するタイミングに基づいて可動子の固有角振動数(固有角速度)ωを検出する固有角振動数検出部5bと、実施の形態1のモータ駆動装置101aのバネ定数決定部6aに代わる、上記固有角振動数ωに基づいてバネ部材のバネ定数kを算出するバネ定数決定部6bとを備えている。
以下、上記モータ駆動装置101bを構成するモータドライバ1a,可動子位置演算部2a,可動子強制振動部3a,相対位置検出部4b,固有角振動数検知部5b,及びバネ定数決定部6bについて詳しく説明する。
ここで、モータドライバ1a,可動子位置演算部2a,及び可動子強制振動部3aは、上記実施の形態1のモータ駆動装置101aにおけるものと同一のものである。
相対位置検出部4bは、該可動子が、その振動中心などの基準位置に対する2つの相対位置(第1及び第2の相対位置)を通過したタイミングをそれぞれ検出し、該検出したタイミングを示すタイミング情報Dprを出力するものである。
固有角振動数検知部5bは、相対位置検出部4bからの検出情報Dprに基づいて可動子の固有角振動数(固有角速度)ωを検知し、該固有角振動数ωを示す角振動数情報Dωを出力するものである。この固有角振動数ωを検知する具体的な方法には、可動子の速度Mvの最大値Mv0を可動子の変位Mxの最大値Mx0で除算する第1の方法、可動子の加速度Maの最大値Ma0を可動子の速度Mvの最大値Mv0で除算する第2の方法、可動子の加速度Maの最大値Ma0を可動子の変位Mxの最大値Mx0で除算し、該除算により得られる値の平方根をとる第3の方法などがある。但し、ここでは、上記固有角振動数検知部5bは、上記相対位置検知部4bからのタイミング情報Dprが示す、可動子が2つの相対位置を通過したタイミングに基づいて、第1の方法により、つまり可動子の速度Mvの最大値Mv0と変位Mxの最大値Mx0を用いて、可動子の固有角振動数(固有角速度)ωを検知するものとする。
以下、上記第1〜第3の方法について簡単に説明する。
上記可動子の変位Mx,速度Mv,加速度Maは、時間tの関数として、次式(5)〜(7)で表される。
Mx=Mx0・sin(ωt) ・・・(5)
Mv=Mv0・sin(ωt) ・・・(6)
Ma=Ma0・sin(ωt) ・・・(7)
上記可動子の変位Mx,速度Mv,加速度Maは、時間tの関数として、次式(5)〜(7)で表される。
Mx=Mx0・sin(ωt) ・・・(5)
Mv=Mv0・sin(ωt) ・・・(6)
Ma=Ma0・sin(ωt) ・・・(7)
また、速度Mvは変位Mxの微分により得られることから、上記式(6)は、次式(8)のように変形される。
Mv=(Mx)’=Mx0・ω・cos(ωt) ・・・(8)
Mv=(Mx)’=Mx0・ω・cos(ωt) ・・・(8)
また、加速度Maは速度Mvの微分により得られることから、上記式(7)は、次式(9)のように変形される。
Ma=(Mv)’=Mv0・ω・cos(ωt) ・・・(9)
Ma=(Mv)’=Mv0・ω・cos(ωt) ・・・(9)
さらに、加速度Maは変位Mxの2回の微分により得られることから、上記式(7)は、次式(10)のように変形される。
Ma=((Mx)’)’=−Mx0・ω・ω・sin(ωt) ・・・(10)
なお、ここで、()’は微分を示す。
Ma=((Mx)’)’=−Mx0・ω・ω・sin(ωt) ・・・(10)
なお、ここで、()’は微分を示す。
従って、上記(8)より、速度Mvの最大値Mv0は、変位の最大値Mx0と角振動数ωの積となり、角振動数ωは、可動子の速度Mvの最大値Mv0を可動子の変位Mxの最大値Mx0で除算することにより求められる(第1の方法)。
また、上記(9)より、加速度Maの最大値Ma0は、速度の最大値Mv0と角振動数ωの積となり、角振動数ωは、可動子の加速度Maの最大値Ma0を可動子の速度Mvの最大値Mv0で除算することにより求められる(第2の方法)。
また、上記(10)より、加速度Maの最大値Ma0は、変位の最大値Mx0と角振動数ωの二乗の積となり、角振動数ωは、可動子の加速度Maの最大値Ma0を可動子の変位Mxの最大値Mx0で除算し、該除算結果の平方根をとることにより求められる(第3の方法)。
バネ定数決定部6bは、固有角振動数検知部5bが検知した角振動数ωからバネ定数を決定し、該決定したバネ定数kを示すバネ定数情報Dkを出力するものである。具体的には、バネ定数決定部6bでバネ定数k(=ω2・m)を求める演算は、固有角振動数検知部5bからの振動数情報Dωが示す固有角振動数ωを二乗して上記可動子の質量mを乗算する演算である。
次に動作について説明する。
この実施の形態2のモータ駆動装置101bでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態1と同様、上記モータ駆動装置101bの各部1a,2a,3a,4b,5b,6bは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101bの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態2のモータ駆動装置101bでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態1と同様、上記モータ駆動装置101bの各部1a,2a,3a,4b,5b,6bは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101bの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100のバネ部材のバネ定数kを決定する演算モードの動作について説明する。
この実施の形態2のモータ駆動装置101bでは、可動子強制振動部3aは、上記実施の形態1のモータ駆動装置101aと同様に動作する。
この実施の形態2のモータ駆動装置101bでは、可動子強制振動部3aは、上記実施の形態1のモータ駆動装置101aと同様に動作する。
そして、この実施の形態2では、相対位置検出部4bは、上記自由振動する可動子が上記第1の相対位置を通過したタイミング及び可動子が上記第2の相対位置を通過したタイミングを示すタイミング情報Dprを出力する。
固有角振動数検知部5bは、相対位置検出部4bからのタイミング情報Dprに基づいて、可動子の固有角振動周波数ωを検知して、該固有角振動周波数ωを示す角振動数情報Dωを出力する。ここでは、該固有角振動数検知部5bは、相対位置検出部4bからのタイミング情報Dprから可動子の速度の最大値Mv0及び変位の最大値Mx0を求め、可動子の速度の最大値Mv0を可動子の変位の最大値Mx0で除算する演算により、この固有角振動数ωを検知する。
バネ定数決定部6bは、固有角振動数検知部5bからの角振動数情報Dωを受け、該角振動数情報Dωが示す固有角振動数ωを二乗して上記可動子の質量mを乗算する演算を行って、バネ定数k(=ω2・m)を算出し、該バネ定数kを示すバネ定数情報Dkを出力する。
その後、モータ駆動装置101bの動作モードは、上記演算モードから運転モードに切り替わる。
この実施の形態2のモータ駆動装置101bは、運転モードでは、実施の形態1と同様に動作する。
この実施の形態2のモータ駆動装置101bは、運転モードでは、実施の形態1と同様に動作する。
このように本実施の形態2では、リニア振動モータ100を駆動するモータ駆動装置101bにおいて、リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、上記自由振動する可動子が2つの固定点(相対位置)を通過したタイミングをそれぞれ検出する相対位置検出部4bと、該相対位置検出部4bからのタイミング情報Dprに基づいて、可動子の固有角振動数ωを検知する固有角振動数検知部5bとを備え、該検知された固有角振動数ωからバネ部材のバネ定数kを決定するので、該バネ定数kを用いる位置演算により得られる可動子の位置を精度の高いものとでき、実施の形態1と同様、リニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態2では、実施の形態1と同様、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数kを算出するようにしているので、時間経過とともにバネ定数kが変化しても、可動子の位置を、上記バネ定数kを用いた演算により、高い精度で算出することができるという効果もある。
なお、上記実施の形態2では、モータ駆動装置101bは、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数kを算出するものであるが、モータ駆動装置101bは、リニア振動モータ100の運転終了直後に、リニア振動モータのバネ定数kを算出するものであってもよい。
(実施の形態3)
図3は、本発明の実施の形態3によるモータ駆動装置を説明するためのブロック図である。
この実施の形態3のモータ駆動装置101cは、可動子の位置を算出する位置演算に用いるバネ定数kを、可動子の固有振動周期Tに基づいて算出する点のみ、実施の形態1のモータ駆動装置101aと異なっている。
図3は、本発明の実施の形態3によるモータ駆動装置を説明するためのブロック図である。
この実施の形態3のモータ駆動装置101cは、可動子の位置を算出する位置演算に用いるバネ定数kを、可動子の固有振動周期Tに基づいて算出する点のみ、実施の形態1のモータ駆動装置101aと異なっている。
すなわち、この実施の形態3のモータ駆動装置101cは、実施の形態1のモータ駆動装置101aの固有振動周波数検知部5aに代わる、自由振動する可動子がある固定点(相対位置)を通過するタイミングに基づいて可動子の固有振動周期Tを検出する固有振動周期検知部5cと、実施の形態1のモータ駆動装置101aのバネ定数決定部6aに代わる、該固有振動周期Tに基づいてバネ部材のバネ定数kを算出するバネ定数決定部6cとを備えている。
以下、上記モータ駆動装置101cを構成するモータドライバ1a,可動子位置演算部2a,可動子強制振動部3a,相対位置検出部4a,固有振動周期検知部5c,及びバネ定数決定部6cについて詳しく説明する。
ここで、モータドライバ1a,可動子位置演算部2a,可動子強制振動部3a,及び相対位置検出部4aは、上記実施の形態1のモータ駆動装置101aにおけるものと同一のものである。
固有振動周期検知部5cは、相対位置検出部4aからのタイミング情報Dprに基づいて可動子の固有振動周期Tを検知し、該固有振動周期Tを示す周期情報Dtを出力するものである。固有振動周期検知部5cは、具体的には、上記相対位置検知部4aからのタイミング情報Dprに基づいて、可動子がある固定点を通過し、再度ある固定点を同方向に通過するまでの時間を検出するものである。言い換えると、可動子が、振動中心に対する一定の相対位置(一般的には可動子の振動中心そのものを選ぶ)を通過し、再度上記相対位置を通過するまでの時間から固有振動周期を求めるものである。なお、固有振動周期の検知には、可動子が1往復する時間ではなく、複数回往復する時間を用いることにより、検知精度を向上することができ、さらに、複数回往復する時間を用いる場合には、往復する回数が多いほど、検知精度を高めることができる。
なお、固有振動周期を求める方法には、上記のように可動子の1往復に要する時間を直接検出する方法に限らず、例えば、可動子がある固定点を一定時間に何回通過したかを検知して固有振動周波数を検知し、該固有振動周波数から固有振動周期を求める方法もある。この場合、上記一定時間、つまり固定点を可動子が通過する回数を測定する時間を長くすることで、固有振動周期の検知精度を上げることができる。
バネ定数決定部6cは、固有振動周期検知部5cが検知した固有振動周期Tからバネ定数kを決定し、該バネ定数kを示すバネ定数情報Dkを出力するものである。具体的には、バネ定数決定部6cでバネ定数k(=1/((T/2π)2・(1/m))を求める演算は、固有振動周期Tを円周率の2倍で除算し、該除算結果を二乗し、さらに該除算結果の二乗に上記可動子の質量の逆数を乗算し、該乗算結果の逆数を取る演算である。
次に動作について説明する。
この実施の形態3のモータ駆動装置101cでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態1と同様、上記モータ駆動装置101cの各部1a,2a,3a,4a,5c,6cは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101cの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態3のモータ駆動装置101cでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態1と同様、上記モータ駆動装置101cの各部1a,2a,3a,4a,5c,6cは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101cの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100の、バネ定数kを決定する演算モードの動作について説明する。
この実施の形態3のモータ駆動装置101cでは、可動子強制振動部3a及び相対位置検出部4aは、実施の形態1のモータ駆動装置101aと同様に動作する。
この実施の形態3のモータ駆動装置101cでは、可動子強制振動部3a及び相対位置検出部4aは、実施の形態1のモータ駆動装置101aと同様に動作する。
そして、この実施の形態3では、固有振動周期検知部5cは、相対位置検出部4aからのタイミング情報Dprに基づいて、可動子の固有振動周期Tを検知して、該固有振動周期Tを示す周期情報Dtを出力する。例えば、可動子がある固定点を通過し、再度ある固定点を同方向に通過するまでの時間を検出する。
バネ定数決定部6cは、固有振動周期検知部5cからの周期情報Dtを受け、該周期情報Dtが示す固有振動周期Tを円周率の2倍で除算し、該除算結果を二乗し、さらに除算結果の二乗に上記可動子の質量の逆数を乗算し、該乗算結果の逆数を取る演算により、バネ定数k(=1/(T/2π)2・(1/m))を算出し、該バネ定数kを示すバネ定数情報Dkを出力する。
その後、モータ駆動装置101cの動作モードは、上記演算モードから運転モードに切り替わる。
この実施の形態3のモータ駆動装置101cは、運転モードでは、実施の形態1と同様に動作する。
この実施の形態3のモータ駆動装置101cは、運転モードでは、実施の形態1と同様に動作する。
このように本実施の形態3では、リニア振動モータ100を駆動するモータ駆動装置101cにおいて、リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、自由振動する可動子がある固定点(相対位置)を通過するタイミングを検出する相対位置検出部4aと、該検出結果を示すタイミング情報Dprに基づいて、可動子の固有振動周期Tを検知する固有振動周期検知部5cとを備え、該検知された固有振動周期Tからバネ部材のバネ定数kを決定するので、実施の形態1と同様、該バネ定数kを用いる位置演算により得られる可動子の位置を、精度の高いものとでき、リニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態3では、実施の形態1と同様、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数kを算出するようにしているので、時間経過とともにバネ定数kが変化しても、可動子の位置を、上記バネ定数を用いた演算により高い精度で算出することができるという効果もある。
なお、上記実施の形態3では、モータ駆動装置101cは、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数kを算出するものを示したが、モータ駆動装置101cは、リニア振動モータ100の運転終了直後に、リニア振動モータのバネ定数kを算出するものであってもよい。
(実施の形態4)
図4は、本発明の実施の形態4によるモータ駆動装置を説明するためのブロック図である。
この実施の形態4のモータ駆動装置101dは、リニア振動モータを動作させる2つの動作モードを有している。1つの動作モードは、リニア振動モータ100を、要求されるモータ出力に応じた駆動電圧あるいは駆動電流により駆動して、リニア振動モータ100に接続された負荷を運転する運転モードである。もう1つの動作モードは、上記リニア振動モータ100の駆動周波数を調整して共振周波数を検知し、該共振周波数から、該可動子を支持するバネ部材のバネ定数kを算出する演算モードである。上記運転モードでは、モータ駆動装置101dは、上記負荷を運転するとともに、該リニア振動モータの可動子の位置を、上記算出したバネ定数k、駆動電流及び駆動電圧に基づいて算出し、算出された可動子の位置に応じてリニア振動モータの駆動を制御する。
図4は、本発明の実施の形態4によるモータ駆動装置を説明するためのブロック図である。
この実施の形態4のモータ駆動装置101dは、リニア振動モータを動作させる2つの動作モードを有している。1つの動作モードは、リニア振動モータ100を、要求されるモータ出力に応じた駆動電圧あるいは駆動電流により駆動して、リニア振動モータ100に接続された負荷を運転する運転モードである。もう1つの動作モードは、上記リニア振動モータ100の駆動周波数を調整して共振周波数を検知し、該共振周波数から、該可動子を支持するバネ部材のバネ定数kを算出する演算モードである。上記運転モードでは、モータ駆動装置101dは、上記負荷を運転するとともに、該リニア振動モータの可動子の位置を、上記算出したバネ定数k、駆動電流及び駆動電圧に基づいて算出し、算出された可動子の位置に応じてリニア振動モータの駆動を制御する。
具体的には、この実施の形態4のモータ駆動装置101dは、リニア振動モータ100を、その可動子の位置Pxを示す位置情報Dpcに基づいて駆動制御するモータドライバ1dと、上記可動子の位置Pxを算出する位置演算を、上記リニア振動モータ100のバネ部材のバネ定数kに基づいて行う可動子位置算出部2aとを有している。
また、上記モータ駆動装置101dは、リニア振動モータ100に供給される駆動電流Cdrを検出する電流検出部9dと、該リニア振動モータ100に供給される駆動電圧Vdrを検出する電圧検出部10dと、上記検出された駆動電流Cdr及び駆動電圧Vdrに基づいてモータドライバ1dを制御して、リニア振動モータ100の共振駆動周波数f’を検知する共振周波数検知部11dと、該検知された共振駆動周波数f’に基づいてバネ部材のバネ定数kを決定し、該バネ定数kを示すバネ定数情報Dkを上記可動子位置検出部2aに出力するバネ定数決定部6dとを有している。
さらに、この実施の形態4では、上記モータ駆動装置101dは、ユーザ操作に応じた操作信号等に基づいて、上記モータ駆動装置101dの各部1d,2a,6d,9d,10d,11dを制御する制御部(図示せず)を有しており、リニア振動モータの運転開始直前には、該制御部の制御により、このモータ駆動装置101dの動作モードが一旦、バネ定数を算出する演算モードとなり、その後負荷の運転を行う運転モードとなるものである。
以下、上記リニア振動モータ、並びに上記モータ駆動装置101dを構成するモータドライバ1d, 可動子位置演算部2a,電流検出部9d,電圧検出部10d,共振周波数検知部11d,及びバネ定数決定部6dについて詳しく説明する。
ここで、上記リニア振動モータ100及び可動子位置演算部2aは、実施の形態1のものと同一である。
ここで、上記リニア振動モータ100及び可動子位置演算部2aは、実施の形態1のものと同一である。
モータドライバ1dは、リニア振動モータ100に駆動電圧Vdrを印加するとともに、該駆動電圧Vdrを制御するものであり、運転モードでは、リニア振動モータ100に印加される駆動電圧を、その電圧レベルが、該リニア振動モータ100に要求されるモータ出力に応じたレベルとなるよう制御し、演算モードでは、共振周波数検知部11dからの駆動周波数制御信号Sfcに応じて、リニア振動モータ100の駆動周波数が共振周波数となるよう駆動電圧を制御するものである。
なお、上記リニア振動モータ100は、上記駆動電圧として交流電圧を印加した場合、リニア振動モータ100を構成する可動子を、印加した電圧の周波数と同じ周波数で往復運動させることができるものである。また、上記リニア振動モータ100は、上記駆動電圧として直流電圧を印加した場合、上記可動子の一定レベルの推力が発生するものである。
電流検出部9dは、モータドライバ1dからリニア振動モータ100に供給される駆動電流Cdrを検出するものであり、つまり、駆動電流Cdrをモニタして得られる電流モニタ信号Cmntに従って、上記駆動電流を示す電流検出信号Cdを出力するものである。具体的な電流検出方法は、非接触の電流センサを用いる方法や、シャント抵抗を用いる方法が考えられる。
電圧検出部10dは、モータドライバ1dからリニア振動モータ100に供給される駆動電圧Vdrを検出する電圧センサ10d1を有し、該センサ10d1の出力(センサ出力)Vsnsに基づいて、該駆動電圧Vdrを示す電圧検出信号Vdを出力するものである。ここでは、具体的な電圧検出方法としては、電圧センサを用いる方法を示しているが、駆動電圧の検出方法には、リニア振動モータに印加される駆動電圧を直接抵抗分圧して測定する方法や、モータドライバ1d内部で発生する、上記駆動電圧Vdrを示す電圧情報から推定する方法が考えられる。
共振周波数検知部11dは、電流検出部9dの電流検出信号Cd及び電圧検出部10dの電圧検出信号Vdに基づいてリニア振動モータの共振駆動周波数f’を検知するものである。具体的には、上記共振周波数検知部11dは、リニア振動モータ100に供給する駆動電流の振幅値を一定とした状態で、リニア振動モータの駆動周波数が、リニア振動モータへの供給電力が最大になる周波数となるよう、モータドライバ1dを制御し、該供給電力が最大となる駆動周波数からリニア振動モータの共振駆動周波数(以下単に共振周波数ともいう。)f’を検知し、該共振周波数f’を示す共振周波数情報Drfを出力するものとしている。
バネ定数決定部6dは、共振周波数検知部11dにより検知された共振周波数f’からバネ定数kを決定し、該バネ定数kを示すバネ定数情報Dkを出力するものである。具体的には、バネ定数決定部6dは、共振周波数f’に円周率の2倍を乗算し、その乗算結果を二乗し、さらに上記可動子の質量mを乗算する演算により、バネ定数k(=(f’・2π)2・m)を算出するものである。
また、このバネ定数決定部6dによりバネ定数kを決定する動作は、リニア振動モータ100がバネ的な負荷を持たないときに行われることが望ましい。つまり、負荷にバネ的要素があるときは、リニア振動モータのバネ定数と負荷のバネ的要素のバネ定数とが合成されたバネ定数を算出してしまうので、正確なリニア振動モータ100のバネ定数を算出することができない。従って、ここでは、上記バネ定数を算出する演算モードの動作は、無負荷状態で行われるものとする。
次に動作について説明する。
この実施の形態4のモータ駆動装置101dでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101dの各部1d,2a,6d,9d,10d,11dは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101dの動作モードが一旦演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態4のモータ駆動装置101dでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101dの各部1d,2a,6d,9d,10d,11dは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101dの動作モードが一旦演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100のバネ部材のバネ定数kを決定する演算モードの動作について説明する。
モータドライバ1dは、制御部(図示せず)からの制御信号に基づいて、リニア振動モータ100に駆動電圧あるいは駆動電流を供給して該リニア振動モータ100を駆動する。このとき、電圧検出部10dは、電圧センサ10d1からのセンサ出力Vsnsに基づいて駆動電圧Vdrを検知し、電圧検知信号Vdを出力する。また、電流検出部9dは、モータドライバ1dからリニア振動モータ100に供給される駆動電流Cdrを検出し、電流検知信号Cdを出力する。
モータドライバ1dは、制御部(図示せず)からの制御信号に基づいて、リニア振動モータ100に駆動電圧あるいは駆動電流を供給して該リニア振動モータ100を駆動する。このとき、電圧検出部10dは、電圧センサ10d1からのセンサ出力Vsnsに基づいて駆動電圧Vdrを検知し、電圧検知信号Vdを出力する。また、電流検出部9dは、モータドライバ1dからリニア振動モータ100に供給される駆動電流Cdrを検出し、電流検知信号Cdを出力する。
共振周波数検知部11dは、上記電圧検出部10dの出力信号Vd及び電流検出部9dの出力信号Cdに基づいてモータドライバ1dに駆動周波数制御信号Sfcを出力する。すると、該モータドライバ1dは、リニア振動モータ100の駆動周波数が、リニア振動モータ100に供給される電力が最大となる周波数となるよう、リニア振動モータ100に印加する駆動電圧Vdrの周波数を調整し、該リニア振動モータへの供給電力が最大となる周波数である共振周波数f’を検知する。
バネ定数決定部6dは、共振周波数検知部11dにより検知された共振周波数f’を示す周波数情報Drfに基づいて、上記共振周波数f’に円周率の2倍を乗算し、その乗算結果を二乗し、さらに該乗算結果の二乗に上記可動子の質量を乗算する演算を行って、バネ定数kを算出し、該バネ定数を示すバネ定数情報Dkを出力する。
その後、モータ駆動装置101dの動作モードは、上記演算モードから運転モードに切り替わる。
その後、モータ駆動装置101dの動作モードは、上記演算モードから運転モードに切り替わる。
以下、運転モードの動作について説明する。
モータドライバ1dは、制御部(図示せず)の制御により、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加する。これによりリニア振動モータ100が駆動される。
このとき、可動子位置演算部2aは、リニア振動モータ100に印加される駆動電流Cdr及び駆動電圧Vdrに基づいて可動子の位置を算出する位置演算を、上記バネ定数決定部6dにより算出されたバネ定数kを用いて行い、該算出された可動子位置を示す位置情報Dpcをモータドライバ1dに出力する。
モータドライバ1dは、制御部(図示せず)の制御により、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加する。これによりリニア振動モータ100が駆動される。
このとき、可動子位置演算部2aは、リニア振動モータ100に印加される駆動電流Cdr及び駆動電圧Vdrに基づいて可動子の位置を算出する位置演算を、上記バネ定数決定部6dにより算出されたバネ定数kを用いて行い、該算出された可動子位置を示す位置情報Dpcをモータドライバ1dに出力する。
すると、モータドライバ1dは、上記位置情報Dpcに基づいて、リニア振動モータ100へ印加する駆動電圧Vdrの電圧レベルを、往復運動する可動子がその限界位置を超えないよう制御する。
このように本実施の形態4では、リニア振動モータ100を駆動するモータ駆動装置101dにおいて、リニア振動モータ100の駆動電流Cdrを検出する電流検出部9dと、該リニア振動モータ100の駆動電圧Vdrを検出する電圧検出部10dと、上記検出された駆動電流Cdr及び駆動電圧Vdrに基づいてモータドライバ1dを制御して、リニア振動モータ100の共振周波数f'を検知する共振周波数検知部11dとを備え、該検知された共振周波数f’からバネ部材のバネ定数kを決定するので、該バネ定数kを用いる位置演算により、可動子の位置を高い精度で算出することができ、これにより、実施の形態1と同様、リニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態4では、実施の形態1と同様、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数kを算出するようにしているので、時間経過とともにバネ定数kが変化しても、上記位置演算により、可動子の位置を精度よく算出することができるという効果もある。
なお、上記実施の形態4では、モータ駆動装置101dは、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数kを算出するものであるが、モータ駆動装置101dは、リニア振動モータ100の運転終了直後に、リニア振動モータのバネ定数を算出するものであってもよい。
この場合、リニア振動モータの運転時には、前回のリニア振動モータの運転終了直後に算出したバネ定数kを用いて、可動子の位置を算出する位置演算が行われることとなる。従って、この場合も、常に最新のリニア振動モータの状態でのバネ定数kを用いて可動子の位置を算出する位置演算が行われることとなり、時間経過とともにバネ定数が変化しても、上記位置演算により、可動子の位置を精度よく算出することができるという効果がある。
また、この場合は、バネ定数kの演算は、リニア振動モータの運転終了直後に行われるため、モータ温度が実際のリニア振動モータの運転時の温度とほぼ同等である状態でバネ定数kが算出されることとなる。つまり、バネ定数kは温度により変化するが、実際にモータが動作するときの温度でバネ定数kを算出することにより、リニア振動モータの運転時の正確なバネ定数kを取得することができ、可動子の位置を算出する位置演算をより高い精度で行うことができるという効果がある。
さらに、上記の場合には、バネ定数kの算出をリニア振動モータの運転終了後に行うため、リニア振動モータの動作を妨げることなく、バネ定数kを算出することができるという効果もある。
また、上記実施の形態4では、上記共振周波数検知部11dは、リニア振動モータ100に供給する駆動電流の振幅値を一定とした状態で、リニア振動モータの駆動周波数が、リニア振動モータへの供給電力が最大になる周波数となるよう、モータドライバ1dを制御し、該供給電力が最大となる駆動周波数からリニア振動モータの共振周波数f’を検知するものであるが、上記共振周波数検知部11dは、リニア振動モータの共振状態での駆動電流と駆動電圧との位相差から共振周波数を検知するものであってもよい。
簡単に説明すると、駆動電流と駆動電圧との位相差は、常に固定ではなく、駆動電流の振幅値,駆動周波数,誘起電圧値(誘起電圧の振幅値や実効値)から一意に決定されるものである。
そこで、上記共振周波数検知部11dは、上記駆動電圧及び駆動電流の位相差が、駆動電流の振幅値,駆動周波数,誘起電圧値から一意に決定される共振状態での位相差となるよう、モータドライバ1dからの駆動電圧の周波数を制御し、上記駆動電圧及び駆動電流の位相差が該共振状態での位相差となったときの駆動電圧の周波数を、共振周波数として決定するものでもよい。
また、この実施の形態4では、上記モータ駆動装置101dは、運転モードと演算モードの2つの動作モードを有し、運転モードでは、リニア振動モータ100を、要求されるモータ出力に応じた駆動電圧値(あるいは駆動電流値)で駆動し、演算モードでは、リニア振動モータ100の共振周波数を検知し、該共振周波数に基づいてバネ定数を求めるものであるが、上記モータ駆動装置101dは、リニア振動モータの負荷を運転する動作モード(運転モード)のみを有し、該運転モードにて、リニア振動モータの共振周波数を検知し、該リニア振動モータを共振周波数で駆動するとともに、該検知された共振周波数に基づいてバネ定数kを決定するものであってもよい。
(実施の形態5)
図5は、本発明の実施の形態5によるモータ駆動装置を説明するためのブロック図である。
この実施の形態5のモータ駆動装置101eは、リニア振動モータを動作させる2つの動作モードを有している。1つの動作モードは、リニア振動モータ100を、モータ出力に応じた駆動電圧あるいは駆動電流で駆動して、リニア振動モータの負荷を運転する運転モードである。もう1つの動作モードは、リニア振動モータ100のバネ部材のバネ定数kを算出し、該バネ定数kとモータ温度Tとの関係(バネ定数温度関数)Qaを導出する演算モードである。ここで、上記モータ駆動装置101eは、上記運転モードでは、モータ温度Tmに基づいて上記バネ定数温度関数Qaにより運転モードでのリニア振動モータのバネ定数を推定し、推定されたバネ定数k(t)を用いて可動子の位置を算出し、該算出された可動子の位置に応じてリニア振動モータ100の駆動を制御する。
図5は、本発明の実施の形態5によるモータ駆動装置を説明するためのブロック図である。
この実施の形態5のモータ駆動装置101eは、リニア振動モータを動作させる2つの動作モードを有している。1つの動作モードは、リニア振動モータ100を、モータ出力に応じた駆動電圧あるいは駆動電流で駆動して、リニア振動モータの負荷を運転する運転モードである。もう1つの動作モードは、リニア振動モータ100のバネ部材のバネ定数kを算出し、該バネ定数kとモータ温度Tとの関係(バネ定数温度関数)Qaを導出する演算モードである。ここで、上記モータ駆動装置101eは、上記運転モードでは、モータ温度Tmに基づいて上記バネ定数温度関数Qaにより運転モードでのリニア振動モータのバネ定数を推定し、推定されたバネ定数k(t)を用いて可動子の位置を算出し、該算出された可動子の位置に応じてリニア振動モータ100の駆動を制御する。
なお、上記リニア振動モータ100は、実施の形態1のものと同一である。
すなわち、この実施の形態5のモータ駆動装置101eは、リニア振動モータ100を、その可動子の位置Pxを示す位置情報Dpcに基づいて駆動制御するモータドライバ1aと、上記可動子の位置Pxを算出する位置演算を、上記リニア振動モータ100の運転モードにて推定されたバネ定数k(t)に基づいて行う可動子位置算出部2eとを有している。
すなわち、この実施の形態5のモータ駆動装置101eは、リニア振動モータ100を、その可動子の位置Pxを示す位置情報Dpcに基づいて駆動制御するモータドライバ1aと、上記可動子の位置Pxを算出する位置演算を、上記リニア振動モータ100の運転モードにて推定されたバネ定数k(t)に基づいて行う可動子位置算出部2eとを有している。
ここで、上記モータドライバ1aは実施の形態1のものと同一である。また、上記可動子位置演算部2eは、実施の形態1の可動子位置演算部2aと同様、リニア振動モータ100が往復動作を行っているときの可動子の位置Pxを位置演算により求めるものであり、具体的な位置演算は、実施の形態1あるいは従来の技術で説明したように、リニア振動モータ100の運動方程式から可動子の位置Pxを算出するものである。但し、この実施の形態5の可動子位置算出部2eでは、上記位置演算には、バネ定数として、モータ温度Tmから推定された推定バネ定数k(t)が用いられる。
モータ駆動装置101eは、上記リニア振動モータ100の可動子に強制振動力Ffvを印加して、可動子を自由振動させる可動子強制振動部3aと、上記リニア振動モータ100の可動子が自由振動している状態で、該可動子が、その振動中心などの基準位置に対する一定の相対位置を通過したタイミングを検出し、該検出したタイミングを示すタイミング情報Dprを出力する相対位置検出部4aと、該タイミング情報Dprに基づいて、上記バネ振動系の固有振動周波数fpvを検知する固有振動周波数検知部5aとを有している。ここで、上記可動子強制振動部3a,相対位置検出部4a,及び固有振動周波数検知部5aは、上記実施の形態1のものと同一のものである。
モータ駆動装置101eは、該検知された固有振動周波数fpvからバネ部材のバネ定数kを決定し、該バネ定数を示すバネ定数情報Dkを出力するバネ定数決定部6aと、上記リニア振動モータ100のモータ温度Tmを検出し、該検出したモータ温度Tmを示す温度情報Dtmを出力する温度検出部12eと、バネ定数情報Dkと温度情報Dtmに基づいて運転中のリニア振動モータのバネ部材のバネ定数を推定するバネ定数推定部13eとを有している。
ここで、上記温度検出部12eは、リニア振動モータ100に取り付けられ、該モータ温度Tmをモニタする温度センサから構成されている。また、バネ定数決定部6aは、実施の形態1のものと同一のものであり、具体的には、上記固有振動周波数検知部5aにより検知された固有振動周波数fpvに円周率の2倍を乗算し、その乗算結果を二乗し、さらに該乗算結果の二乗に上記可動子の質量を乗算する演算により、上記バネ定数kを決定し、該バネ定数kを示すバネ定数情報Dkを出力するものである。また、バネ定数推定部13eは、上記演算モードでは、バネ定数情報Dkと温度情報Dtmに基づいて、上記バネ定数kとモータ温度Tmとの関係を示すバネ定数温度関数Qaを導出し、上記運転モードでは、検出されたモータ温度Tmから、上記バネ定数温度関数Qaを用いて、負荷運転中のリニア振動モータのバネ定数を推定し、該推定により得られたバネ定数(推定バネ定数)k(t)を示す推定バネ定数情報Dk(t)を出力するものである。ここで、バネ定数推定部13eは、バネ定数温度関数Qaの導出を、温度変化に対するバネ定数の変化の割合を示すバネ部材の温度係数αkに基づいて行うものである。つまり、バネ定数推定部13eは、バネ部材に応じた温度係数αkをその内部メモリに保持しており、演算モードでバネ定数決定部6aにより決定されたバネ部材のバネ定数kと、演算モードで温度検出部12eにより検出されたモータ温度Tmと、内部メモリに保持されているバネ部材の温度係数αkとから、バネ定数kとモータ温度Tmとの対応関係を示す1次関数であるバネ定数温度関数Qaを導出するものである。
なお、上記バネ定数温度関数Qaは、バネ定数kとモータ温度Tmとの対応関係を示す1次関数に限るものではなく、バネ定数kとモータ温度Tmとの対応関係を示す2次元のマトリックスであってもよい。
このように実施の形態5のモータ駆動装置101eは、運転モードでは、リニア振動モータのバネ定数k(t)をモータ温度Tmから推定し、推定されたバネ定数k(t)から可動子の位置を算出し、該算出された可動子の位置に応じてリニア振動モータの駆動を制御するものである。
次に動作について説明する。
この実施の形態5のモータ駆動装置101eでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101eの各部1a,2e,3a,4a,5a,6a,12e,13eは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101eの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態5のモータ駆動装置101eでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101eの各部1a,2e,3a,4a,5a,6a,12e,13eは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101eの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100のバネ部材のバネ定数kを決定する演算モードの動作について説明する。
可動子強制振動部3aは、演算モード、つまりリニア振動モータ100の非運転状態で、制御部(図示せず)からの制御信号に基づいて、リニア振動モータ100の可動子に強制振動力Ffvを一時的に印加して、可動子を自由振動させる。
可動子強制振動部3aは、演算モード、つまりリニア振動モータ100の非運転状態で、制御部(図示せず)からの制御信号に基づいて、リニア振動モータ100の可動子に強制振動力Ffvを一時的に印加して、可動子を自由振動させる。
相対位置検出部4aは、自由振動する可動子がある固定点(相対位置)を通過するタイミングを検出し、該検出したタイミングを示すタイミング情報Dprを出力する。
固有振動周波数検知部5aは、相対位置検出部4aからのタイミング情報Dprに基づいて、バネ振動系の固有振動周波数fを検知する。具体的には、固有振動周波数検知部5aは、自由振動する可動子が、ある固定点(一般的には可動子の振動中心点)を一定時間に何回通過したかを検知して、固有振動周波数fを示す振動数情報Dfを出力する。
固有振動周波数検知部5aは、相対位置検出部4aからのタイミング情報Dprに基づいて、バネ振動系の固有振動周波数fを検知する。具体的には、固有振動周波数検知部5aは、自由振動する可動子が、ある固定点(一般的には可動子の振動中心点)を一定時間に何回通過したかを検知して、固有振動周波数fを示す振動数情報Dfを出力する。
バネ定数決定部6aは、固有振動周波数検知部5aにより検知された固有振動周波数fを用いて、該固有振動周波数fに円周率の2倍を乗算し、その乗算結果を二乗し、さらに該乗算結果の二乗に上記可動子の質量を乗算する演算により、バネ定数kを算出し、該バネ定数を示すバネ定数情報Dkをバネ定数推定部13eに出力する。
また、このとき、温度検出部12eは、上記リニア振動モータ100のモータ温度Tmを検出し、該モータ温度を示す温度情報Dtmをバネ定数推定部13eに出力する。
また、このとき、温度検出部12eは、上記リニア振動モータ100のモータ温度Tmを検出し、該モータ温度を示す温度情報Dtmをバネ定数推定部13eに出力する。
すると、バネ定数推定部13eは、その内部メモリに保持されているバネ部材の温度係数αkと、上記バネ定数情報Dk及び温度情報Dtmとに基づいて、上記バネ定数kとモータ温度Tmとの関係を示すバネ定数温度関数Qaを導出し、該関数Qaのデータを内部メモリに保持する。
その後、モータ駆動装置101eの動作モードは、上記演算モードから運転モードに切り替わる。
その後、モータ駆動装置101eの動作モードは、上記演算モードから運転モードに切り替わる。
以下、運転モードの動作について説明する。
モータドライバ1aが、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加すると、リニア振動モータ100が駆動され、リニア振動モータに接続された負荷の運転が開始される。
モータドライバ1aが、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加すると、リニア振動モータ100が駆動され、リニア振動モータに接続された負荷の運転が開始される。
このとき、上記バネ定数推定部13eには、上記温度検出部12eにより検出されたモータ温度Tmを示す温度情報Dtmが入力されており、該バネ定数推定部13eは、該検出されたモータ温度Tmに基づいて上記バネ定数温度関数Qaから、リニア振動モータの運転状態でのバネ定数を推定し、該推定されたバネ定数k(t)を示す推定バネ定数情報Dk(t)を可動子位置演算部2eに出力する。
すると、該可動子位置演算部2eは、モータドライバ1aに印加される駆動電流Cdr及び駆動電圧Vdrに基づいて可動子の位置を算出する位置演算を、上記推定バネ定数情報Dk(t)が示す推定バネ定数k(t)を用いて行い、該算出された可動子位置Pxを示す位置情報Dpcをモータドライバ1aに出力する。
すると、モータドライバ1aは、上記位置情報Dpcに基づいて、リニア振動モータ100へ印加する駆動電圧Vdrのレベルを、往復運動する可動子がその限界位置を超えないよう制御する。
このように本実施の形態5では、リニア振動モータ100を駆動するモータ駆動装置101eにおいて、リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、上記可動子の自由振動状態に基づいて可動子の固有振動周波数fを検知する固有振動周波数検知部5aと、固有振動周波数fに基づいてバネ定数kを決定するバネ定数決定部6aと、リニア振動モータの温度を検出する温度検出部12eとを備え、演算モードでは、バネ定数の温度係数αkと、上記検出されたモータ温度Tmと、上記決定されたバネ定数kとに基づいて、バネ定数kとモータ温度Tmとの関係Qaを導出し、運転モードでは、負荷の運転状態でのバネ定数k(t)を、バネ定数温度関数Qaを用いて、運転状態で検出されたモータ温度Tmから推定するので、モータの運転状態では、可動子の位置を算出する位置演算が、モータ温度Tmに応じた推定バネ定数k(t)を用いて行われることとなって、モータの運転状態にて可動子の位置をより高い精度で算出することができる。
これにより、モータ運転時の可動子の位置制御をより精度良く行うことができ、可動子とリニア振動モータ筐体との間のクリアランスをより小さくしてリニア振動モータのさらなる小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態5では、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ定数を算出するようにしているので、時間経過とともにリニア振動モータのバネ定数が変化しても、可動子の位置を算出する位置演算により、可動子の位置を精度よく算出することができるという効果もある。
なお、上記実施の形態5では、モータ駆動装置101eは、リニア振動モータ100の運転開始直前に、リニア振動モータ100のバネ定数kの算出及びモータ温度Tmの検出を行って該バネ定数温度関数Qaを導出し、運転時には、運転開始直前に導出したバネ定数温度関数Qaを用いてモータ温度Tmからバネ定数k(t)を推定するものであるが、モータ駆動装置101eは、リニア振動モータ100の運転終了直後に、リニア振動モータ100のバネ定数kの算出及びモータ温度Tmの検出を行ってバネ定数温度関数Qaを導出し、運転時には前回の運転終了時に導出したバネ定数温度関数Qaを用いてモータ温度Tmからバネ定数k(t)を推定するものであってもよい。
また、モータ駆動装置101eは、リニア振動モータ100の運転開始直前及び運転終了直後に、リニア振動モータ100のバネ定数kの算出及びモータ温度Tmの検出を行ってバネ定数温度関数Qaを導出するものであってもよい。
この場合、運転モードで可動子の位置を求める演算は、今回の運転開始直前に導出したバネ定数温度関数Qaから得られるバネ定数と、前回の運転終了直後に導出したバネ定数温度関数Qaから得られるバネ定数との平均値を用いて行うのが望ましい。
さらに、上記実施の形態5では、バネ定数推定部13eは、予めその内部メモリに保持されているバネ部材の温度係数αkを用いてバネ定数温度関数Qaを導出するものであるが、バネ定数温度関数Qaを導出する方法は、バネ部材の温度係数αkを用いる方法に限るものではない。
例えば、バネ定数推定部13eは、リニア振動モータ100の運転開始直前にリニア振動モータ100のバネ定数kの算出、及びモータ温度Tmの検出を行い、さらに、リニア振動モータの運転終了直後に、リニア振動モータ100のバネ定数kの算出、及びモータ温度Tmの検出を行って、異なるモータ温度でのバネ定数からバネ定数温度関数Qaを導出し、次回の運転時には、該導出したバネ定数温度関数Qaを用いて、モータ温度からバネ定数を推定するものであってもよい。
また、バネ定数推定部13eは、新たな温度条件でバネ定数を算出する度に、バネ定数温度関数を更新するものであってもよい。
また、上記実施の形態5では、モータ駆動装置101eは、実施の形態1と同様、バネ定数kを固有振動周波数fに基づいて決定するものであるが、モータ駆動装置は、実施の形態2のように、バネ定数kを固有角振動数ωに基づいて決定するもの、あるいは実施の形態3のように、バネ定数kを固有振動周期Tに基づいて決定するものであってもよく、また、モータ駆動装置101eは、実施の形態4のように、バネ定数kを、検出された駆動電圧及び駆動電流から得られた共振周波数に基づいて決定するものであってもよい。
(実施の形態6)
図6は、本発明の実施の形態6によるモータ駆動装置を説明するためのブロック図である。
この実施の形態6のモータ駆動装置101fは、実施の形態1のモータ駆動装置101aと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態1とは、可動子の位置を求める位置演算を、上記可動子の質量とバネ部材のバネ定数の比の値である上記バネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
図6は、本発明の実施の形態6によるモータ駆動装置を説明するためのブロック図である。
この実施の形態6のモータ駆動装置101fは、実施の形態1のモータ駆動装置101aと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態1とは、可動子の位置を求める位置演算を、上記可動子の質量とバネ部材のバネ定数の比の値である上記バネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
すなわち、この実施の形態6のモータ駆動装置101fは、上記実施の形態1のモータ駆動装置101aのバネ定数決定部6aに代わる、可動子の固有振動周波数fに基づいて上記バネ振動系の質量バネ比rmkを決定する質量バネ比決定部14fと、実施の形態1のモータ駆動装置101aの可動子位置演算部2aに代わる、該決定された質量バネ比rmkに基づいて可動子の位置を求める演算を行う可動子位置演算部2fとを備えている。
以下、上記モータ駆動装置101fを構成するモータドライバ1a,可動子位置演算部2f,可動子強制振動部3a,相対位置検出部4a,固有振動周波数検知部5a,及び質量バネ比決定部14fについて詳しく説明する。
ここで、モータドライバ1a,可動子強制振動部3a,相対位置検出部4a,及び固有振動周波数検知部5aは、上記実施の形態1のモータ駆動装置101aにおけるものと同一のものである。
ここで、モータドライバ1a,可動子強制振動部3a,相対位置検出部4a,及び固有振動周波数検知部5aは、上記実施の形態1のモータ駆動装置101aにおけるものと同一のものである。
質量バネ比決定部14fは、固有振動周波数検知部5aにより検知された可動子の固有振動周波数fから質量バネ比rmkを決定し、該決定した質量バネ比rmkを示す質量バネ比情報Drmkを出力するものである。ここで質量バネ比rmkを決定する具体的な演算は、固有振動周波数fに円周率の2倍を乗算し、その乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を取るものである。
可動子位置演算部2fは、上記実施の形態1の可動子位置演算部2aと同様、リニア振動モータ100の可動子が往復動作を行っているときの可動子の位置Pxを、リニア振動モータ100の運動方程式を用いて演算により求めるものであり、この実施の形態6の可動子位置演算部2fは、上記可動子の位置を求める演算に、質量バネ比決定部14fにより決定された質量バネ比(m/k)を用いる点で、上記実施の形態1の可動子位置演算部2aと異なっている。
次に動作について説明する。
この実施の形態6のモータ駆動装置101fでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態1と同様、上記モータ駆動装置101fの各部1a,2f,3a,4a,5a,14fは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101fの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態6のモータ駆動装置101fでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態1と同様、上記モータ駆動装置101fの各部1a,2f,3a,4a,5a,14fは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101fの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100の、バネ振動系の質量バネ比rmkを決定する演算モードの動作について説明する。
この実施の形態6のモータ駆動装置101fでは、可動子強制振動部3a,相対位置検出部4a,及び固有振動周波数検知部5aは、実施の形態1のモータ駆動装置101aと同様に動作する。
この実施の形態6のモータ駆動装置101fでは、可動子強制振動部3a,相対位置検出部4a,及び固有振動周波数検知部5aは、実施の形態1のモータ駆動装置101aと同様に動作する。
そして、この実施の形態6では、質量バネ比決定部14fが、固有振動周波数検知部5aからの周波数情報Dfに基づいて、該周波数情報Dfが示す固有振動周波数fに円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られた値の逆数を求める演算により、質量バネ比rmk(=1/(f・2π)2=m/k)を算出し、該質量バネ比rmkを示す質量バネ比情報Dmkを出力する。
その後、モータ駆動装置101fの動作モードは、上記演算モードから運転モードに切り替わる。
この実施の形態6のモータ駆動装置101fの運転モードでは、実施の形態1と同様、モータドライバ1aがリニア振動モータ100に交流電圧(駆動電圧)Vdrを印加し、リニア振動モータ100を駆動する。
この実施の形態6のモータ駆動装置101fの運転モードでは、実施の形態1と同様、モータドライバ1aがリニア振動モータ100に交流電圧(駆動電圧)Vdrを印加し、リニア振動モータ100を駆動する。
このとき、可動子位置演算部2fは、モータドライバ1aの駆動電流Cdr及び駆動電圧Vdrに基づいて可動子の位置を算出する位置演算を、上記質量バネ比決定部14fにより決定された質量バネ比rmkを用いて行い、該算出された可動子位置Pxを示す位置情報Dpcをモータドライバ1aに出力する。
すると、モータドライバ1aは、上記位置情報Dpcに基づいて、リニア振動モータ100へ印加する駆動電圧Vdrのレベルを、往復運動する可動子がその限界位置を超えないよう制御する。
このように本実施の形態6では、リニア振動モータ100を駆動するモータ駆動装置101fにおいて、リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、上記自由振動する可動子がある固定点(相対位置)を通過したタイミングを検出する相対位置検出部4aと、該検出部のタイミング情報Dprに基づいて可動子の固有振動周波数fを検知する固有振動周波数検知部5aとを備え、該検知された固有振動周波数fからバネ振動系の質量バネ比rmkを決定するので、該バネ振動系の質量バネ比rmkを用いる位置演算により得られる可動子の位置を、精度の高いものとでき、実施の形態1と同様に、リニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態6では、実施の形態1と同様、リニア振動モータ100の運転開始直前に、リニア振動モータの質量バネ比rmkを算出するようにしているので、常に最新のリニア振動モータの状態での質量バネ比rmkを用いて可動子の位置Pxを算出する演算が行われることとなり、このため、時間経過とともに質量バネ比が変化しても、可動子の位置を、上記質量バネ比rmkを用いた演算により高い精度で算出することができるという効果もある。
なお、上記実施の形態6では、モータ駆動装置101fは、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ振動系の質量バネ比rmkを算出するものであるが、モータ駆動装置101fは、リニア振動モータ100の運転終了直後に、リニア振動モータのバネ振動系の質量バネ比rmkを算出するものであってもよい。
この場合、リニア振動モータの運転時には、前回のリニア振動モータの運転終了直後に算出した質量バネ比rmkを用いて、可動子の位置を算出する位置演算が行われることとなる。従って、この場合も、常に最新のリニア振動モータの状態での質量バネ比rmkを用いて可動子の位置を算出する位置演算が行われることとなり、時間経過とともにリニア振動モータのバネ部材の質量バネ比が変化しても、上記位置演算により、可動子の位置を精度よく算出することができるという効果がある。
また、この場合は、質量バネ比の演算は、リニア振動モータの運転終了直後に行われるため、モータ温度が実際のリニア振動モータの運転時の温度とほぼ同等である状態で質量バネ比が算出されることとなる。つまり、質量バネ比は温度により変化するが、実際にモータが動作するときの温度で質量バネ比を算出することにより、リニア振動モータの運転時の正確な質量バネ比を取得することができ、可動子の位置を算出する位置演算をより高い精度で行うことができるという効果がある。
さらに、上記の場合には、質量バネ比の算出をリニア振動モータの運転終了後に行うため、リニア振動モータの動作を妨げることなく、質量バネ比を算出することができるという効果もある。
(実施の形態7)
図7は、本発明の実施の形態7によるモータ駆動装置を説明するためのブロック図である。
この実施の形態7のモータ駆動装置101gは、実施の形態2のモータ駆動装置101bと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態2とは、可動子の位置を算出する位置演算を、上記リニア振動モータのバネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
図7は、本発明の実施の形態7によるモータ駆動装置を説明するためのブロック図である。
この実施の形態7のモータ駆動装置101gは、実施の形態2のモータ駆動装置101bと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態2とは、可動子の位置を算出する位置演算を、上記リニア振動モータのバネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
すなわち、この実施の形態7のモータ駆動装置101gは、上記実施の形態2のモータ駆動装置101bのバネ定数決定部6bに代わる、可動子の固有角振動数(角速度)ωに基づいて上記バネ振動系の質量バネ比rmkを決定する質量バネ比決定部14gと、実施の形態2のモータ駆動装置101bの可動子位置演算部2aに代わる、該決定された質量バネ比rmkに基づいて可動子の位置を求める演算を行う可動子位置演算部2gとを備えている。
以下、上記モータ駆動装置101gを構成するモータドライバ1a,可動子位置演算部2g,可動子強制振動部3a,相対位置検出部4b,固有角振動数検知部5b,及び質量バネ比決定部14gについて詳しく説明する。
ここで、モータドライバ1a,可動子強制振動部3a,相対位置検出部4b,及び固有角振動数検知部5bは、上記実施の形態2のモータ駆動装置101bにおけるものと同一のものであり、上記可動子位置演算部2gは、上記実施の形態6のモータ駆動装置101fの可動子位置演算部2fと同一である。
質量バネ比決定部14gは、固有角振動数検知部5bにより検知された固有角振動数ωから質量バネ比rmkを決定し、該決定した質量バネ比rmkを示す質量バネ比情報Dmkを出力するものである。質量バネ比決定部14gで質量バネ比rmk(=1/ω2)を求める演算は、具体的には、固有角振動数ωを二乗し、さらにこの乗算結果の逆数を取るものである。
次に動作について説明する。
この実施の形態7のモータ駆動装置101gでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態2と同様、上記モータ駆動装置101gの各部1a,2g,3a,4b,5b,14gは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101gの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態7のモータ駆動装置101gでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態2と同様、上記モータ駆動装置101gの各部1a,2g,3a,4b,5b,14gは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101gの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100の、質量バネ比rmkを決定する演算モードの動作について説明する。
この実施の形態7のモータ駆動装置101gでは、可動子強制振動部3a,相対位置検出部4b,固有角振動数検知部5bは、実施の形態2のモータ駆動装置101bと同様に動作する。
この実施の形態7のモータ駆動装置101gでは、可動子強制振動部3a,相対位置検出部4b,固有角振動数検知部5bは、実施の形態2のモータ駆動装置101bと同様に動作する。
そして、この実施の形態7では、質量バネ比決定部14gは、固有角振動数検知部5bからの振動数情報Dωに基づいて、該振動数情報Dωが示す固有角振動数ωを二乗し、該乗算結果の逆数をとる演算により、質量バネ比rmk(=1/ω2)を算出し、該質量バネ比rmkを示す質量バネ比情報Dmkを出力する。
その後、モータ駆動装置101gの動作モードは、上記演算モードから運転モードに切り替わる。
この実施の形態7のモータ駆動装置101gは、運転モードでは、実施の形態2と同様に動作する。
この実施の形態7のモータ駆動装置101gは、運転モードでは、実施の形態2と同様に動作する。
このように本実施の形態7では、リニア振動モータ100を駆動するモータ駆動装置101gにおいて、リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、自由振動する可動子が2つの固定点(相対位置)を通過したタイミングをそれぞれ検出する相対位置検出部4bと、該相対位置検出部4bからのタイミング情報Dprに基づいて、可動子の固有角振動数ωを検知する固有角振動数検知部5bとを備え、該検知された固有角振動数ωから上記バネ振動系の質量バネ比rmkを決定するので、該質量バネ比rmkを用いる位置演算により得られる可動子の位置Pxを、精度の高いものとでき、実施の形態6と同様、リニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態7では、実施の形態6と同様、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ振動系の質量バネ比rmkを算出するようにしているので、時間経過とともに質量バネ比rmkが変化しても、可動子の位置を、上記質量バネ比rmkを用いた演算により、高い精度で算出することができるという効果もある。
なお、上記実施の形態7では、モータ駆動装置101gは、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ振動系の質量バネ比rmkを算出するものを示したが、モータ駆動装置101gは、リニア振動モータ100の運転終了直後に、上記バネ振動系の質量バネ比rmkを算出するものであってもよい。
(実施の形態8)
図8は、本発明の実施の形態8によるモータ駆動装置を説明するためのブロック図である。
この実施の形態8のモータ駆動装置101hは、実施の形態3のモータ駆動装置101cと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態3とは、可動子の位置を算出する位置演算を、上記リニア振動モータのバネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
図8は、本発明の実施の形態8によるモータ駆動装置を説明するためのブロック図である。
この実施の形態8のモータ駆動装置101hは、実施の形態3のモータ駆動装置101cと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態3とは、可動子の位置を算出する位置演算を、上記リニア振動モータのバネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
すなわち、この実施の形態8のモータ駆動装置101hは、上記実施の形態3のモータ駆動装置101cのバネ定数決定部6cに代わる、可動子(バネ振動系)の固有振動周期Tに基づいて上記バネ振動系の質量バネ比rmkを決定する質量バネ比決定部14hと、実施の形態3のモータ駆動装置101cの可動子位置演算部2aに代わる、該決定された質量バネ比rmkに基づいて可動子の位置Pxを求める位置演算を行う可動子位置演算部2hとを備えている。
以下、上記モータ駆動装置101hを構成するモータドライバ1a,可動子位置演算部2h,可動子強制振動部3a,相対位置検出部4a,固有振動周期検知部5c,及び質量バネ比決定部14hについて詳しく説明する。
ここで、モータドライバ1a,可動子強制振動部3a,相対位置検出部4a,及び固有振動周期検知部5cは、上記実施の形態3のモータ駆動装置101cにおけるものと同一のものであり、上記可動子位置演算部2hは、上記実施の形態6のモータ駆動装置101fの可動子位置演算部2fと同一である。
質量バネ比決定部14hは、固有振動周期検知部5cにより検知された可動子の固有振動周期Tから質量バネ比rmkを決定し、該決定した質量バネ比rmkを示す質量バネ比情報Dmkを出力するものである。この質量バネ比決定部14hで質量バネ比rmk(=(T/2π)2)を求める演算は、具体的には、固有振動周期Tを円周率の2倍で除算し、その結果を二乗するものである。
次に動作について説明する。
この実施の形態8のモータ駆動装置101hでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態3と同様、上記モータ駆動装置101hの各部1a,2h,3a,4a,5c,14hは、制御部(図示せず)からの制御信号に基づいて、リニア振動モータの運転開始時には、このモータ駆動装置101hの動作モードが一旦、演算モードとなり、その後上記運転モードとなるよう制御される。
この実施の形態8のモータ駆動装置101hでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、実施の形態3と同様、上記モータ駆動装置101hの各部1a,2h,3a,4a,5c,14hは、制御部(図示せず)からの制御信号に基づいて、リニア振動モータの運転開始時には、このモータ駆動装置101hの動作モードが一旦、演算モードとなり、その後上記運転モードとなるよう制御される。
以下まず、リニア振動モータ100のバネ振動系の質量バネ比rmkを決定する演算モードの動作について説明する。
この実施の形態8のモータ駆動装置101hでは、可動子強制振動部3a,相対位置検出部4a,固有振動周期検知部5cは、実施の形態3のモータ駆動装置101cと同様に動作する。
この実施の形態8のモータ駆動装置101hでは、可動子強制振動部3a,相対位置検出部4a,固有振動周期検知部5cは、実施の形態3のモータ駆動装置101cと同様に動作する。
そして、この実施の形態8では、バネ定数決定部14hが、固有振動周期検知部5cからの周期情報Dtに基づいて、該周期情報Dtが示す固有振動周期Tを円周率の2倍で除算し、その結果を二乗する演算を行って、質量バネ比rmk(=(2π/T)2)を算出し、該質量バネ比rmkを示す質量バネ比情報Dmkを出力する。
その後、モータ駆動装置101hの動作モードは、上記演算モードから運転モードに切り替わる。
この実施の形態8のモータ駆動装置101hでは、運転モードでは実施の形態3と同様に動作する。
この実施の形態8のモータ駆動装置101hでは、運転モードでは実施の形態3と同様に動作する。
このように本実施の形態8では、リニア振動モータ100を駆動するモータ駆動装置101hにおいて、リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、上記自由振動する可動子がある固定点(相対位置)を通過するタイミングを検出する相対位置検出部4aと、該検出結果を示すタイミング情報Dprに基づいて、可動子の固有振動周期Tを検知する固有振動周期検知部5cとを備え、該検知された固有振動周期Tから質量バネ比rmkを決定するので、該質量バネ比rmkを用いる位置演算により得られる可動子の位置Pxを、精度の高いものとでき、実施の形態6と同様、リニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態8では、実施の形態6と同様、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ振動系の質量バネ比を算出するようにしているので、時間経過とともに質量バネ比が変化しても、可動子の位置を、上記質量バネ比を用いた演算により高い精度で算出することができるという効果もある。
なお、上記実施の形態8では、モータ駆動装置101hは、リニア振動モータ100の駆動開始直前に、リニア振動モータのバネ振動系の質量バネ比を算出するものを示したが、モータ駆動装置101hは、リニア振動モータ100の運転終了直後に、リニア振動モータのバネ振動系の質量バネ比を算出するものであってもよい。
(実施の形態9)
図9は、本発明の実施の形態9によるモータ駆動装置を説明するためのブロック図である。
この実施の形態9のモータ駆動装置101iは、実施の形態4のモータ駆動装置101dと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態4とは、可動子の位置を求める位置演算を、上記リニア振動モータ100のバネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
図9は、本発明の実施の形態9によるモータ駆動装置を説明するためのブロック図である。
この実施の形態9のモータ駆動装置101iは、実施の形態4のモータ駆動装置101dと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態4とは、可動子の位置を求める位置演算を、上記リニア振動モータ100のバネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
すなわち、この実施の形態9のモータ駆動装置101iは、上記実施の形態4のモータ駆動装置101dのバネ定数決定部6dに代わる、共振状態のバネ振動系の共振周波数f’に基づいてバネ振動系の質量バネ比rmkを決定する質量バネ比決定部14iと、実施の形態4のモータ駆動装置101dの可動子位置演算部2aに代わる、該決定された質量バネ比rmkに基づいて可動子の位置を求める演算を行う可動子位置演算部2iとを備えている。
以下、上記モータ駆動装置101iを構成するモータドライバ1d,可動子位置演算部2i,電流検出部9d,電圧検出部10d,共振周波数検出部11d,及び質量バネ比決定部14iについて詳しく説明する。
ここで、モータドライバ1d,電流検出部9d,電圧検出部10d,共振周波数検出部11dは、上記実施の形態4のモータ駆動装置101dにおけるものと同一のものであり、上記可動子位置演算部2iは、上記実施の形態6のモータ駆動装置101fの可動子位置演算部2fと同一のものである。
質量バネ比決定部14iは、上記共振周波数検知部11dにより検知された共振周波数f’から質量バネ比rmkを決定し、該決定した質量バネ比rmkを示す質量バネ比情報Dmkを出力するものである。ここで、上記質量バネ比決定部14iで質量バネ比(=1/(f’・2π)2)を求める演算は、共振周波数f’に円周率の2倍を乗算し、該乗算結果を二乗し、さらに該乗算結果の二乗により得られる値の逆数を取るものである。
次に動作について説明する。
この実施の形態9のモータ駆動装置101iでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101iの各部1d,2i,9d,10d,11d,14iは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101iの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態9のモータ駆動装置101iでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101iの各部1d,2i,9d,10d,11d,14iは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101iの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100の、質量バネ比rmkを決定する演算モードの動作について説明する。
この実施の形態9のモータ駆動装置101iでは、モータドライバ1d,電流検出部9d,電圧検出部10d,及び共振周波数検知部11dは、上記実施の形態4のモータ駆動装置101dと同様に動作する。
この実施の形態9のモータ駆動装置101iでは、モータドライバ1d,電流検出部9d,電圧検出部10d,及び共振周波数検知部11dは、上記実施の形態4のモータ駆動装置101dと同様に動作する。
そしてこの実施の形態9では、質量バネ比決定部14iが、共振周波数検知部11dにより検知された共振周波数f’を示す周波数情報Drfに基づいて、上記共振周波数f’に円周率の2倍を乗算し、該乗算結果を二乗し、さらに該乗算結果の二乗により得られる値の逆数を取る演算を行って、質量バネ比rmkを算出し、該質量バネ比rmkを示す質量バネ比情報Dmkを出力する。
その後、モータ駆動装置101iの動作モードは、上記演算モードから運転モードに切り替わる。
この実施の形態9のモータ駆動装置101iは、運転モードでは、実施の形態4と同様に動作する。
この実施の形態9のモータ駆動装置101iは、運転モードでは、実施の形態4と同様に動作する。
このように本実施の形態9では、リニア振動モータ100を駆動するモータ駆動装置101iにおいて、リニア振動モータ100の駆動電流Cdrを検出する電流検出部9dと、該リニア振動モータ100の駆動電圧Vdrを検出する電圧検出部10dと、上記検出された駆動電流Cdr及び駆動電圧Vdrに基づいてモータドライバ1dを制御して、リニア振動モータ100の共振周波数f’を検知する共振周波数検知部11dとを備え、該検知された共振周波数f’からバネ振動系の質量バネ比rmkを決定するので、実施の形態6と同様、該質量バネ比rmkを用いる位置演算により得られる可動子の位置Pxを、精度の高いものとでき、リニア振動モータの小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態9では、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ振動系の質量バネ比rmkを算出するようにしているので、時間経過とともに質量バネ比rmkが変化しても、上記位置演算により、可動子の位置を精度よく算出することができるという効果もある。
なお、上記実施の形態9では、モータ駆動装置101iは、リニア振動モータ100の運転開始直前に、リニア振動モータのバネ振動系の質量バネ比rmkを算出するものであるが、モータ駆動装置101iは、リニア振動モータ100の運転終了直後に、リニア振動モータの質量バネ比rmkを算出するものであってもよい。
この場合、リニア振動モータの運転時には、前回のリニア振動モータの運転終了直後に算出した質量バネ比rmkを用いて、可動子の位置を算出する位置演算が行われることとなる。従って、この場合も、常に最新のリニア振動モータの状態での質量バネ比rmkを用いて可動子の位置を算出する位置演算が行われることとなり、時間経過とともに質量バネ比rmkが変化しても、上記位置演算により、可動子の位置を精度よく算出することができるという効果がある。
また、この場合は、質量バネ比rmkの演算は、リニア振動モータの運転終了直後に行われるため、モータ温度が実際のリニア振動モータの運転時の温度とほぼ同等である状態で質量バネ比rmkが算出されることとなる。つまり、質量バネ比rmkは温度により変化するが、実際にモータが動作するときの温度で質量バネ比rmkを算出することにより、リニア振動モータの運転時の正確な質量バネ比rmkを取得することができ、可動子の位置を算出する位置演算をより高い精度で行うことができるという効果がある。
さらに、上記の場合には、質量バネ比rmkの算出をリニア振動モータの運転終了後に行うため、リニア振動モータの動作を妨げることなく、質量バネ比rmkを算出することができるという効果もある。
また、上記実施の形態9では、上記共振周波数検知部11dは、リニア振動モータ100に供給する駆動電流の振幅値を一定とした状態で、リニア振動モータの駆動周波数が、リニア振動モータへの供給電力が最大になる周波数となるよう、モータドライバ1dを制御し、該供給電力が最大となる駆動周波数からリニア振動モータの共振周波数f’を検知するものとしているが、上記共振周波数検知部11dは、実施の形態4と同様、リニア振動モータの共振状態での駆動電流と駆動電圧との位相差から共振周波数を検知するものであってもよい。
また、この実施の形態9では、上記モータ駆動装置101iは、運転モードと演算モードの2つの動作モードを有し、運転モードでは、リニア振動モータ100を、要求されるモータ出力に応じた駆動周波数で駆動し、演算モードでは、共振周波数検知部11dからの駆動周波数制御信号Sfcに応じて、リニア振動モータ100を共振周波数で駆動するものとしているが、上記モータ駆動装置101iは、実施の形態4で示したように、リニア振動モータの負荷を運転する動作モード(運転モード)のみを有し、該運転モードにて、リニア振動モータの共振周波数を検知し、該リニア振動モータを共振周波数で駆動するとともに、該検知された共振周波数に基づいて質量バネ比rmkを決定するものであってもよい。
(実施の形態10)
図10は、本発明の実施の形態10によるモータ駆動装置を説明するためのブロック図である。
この実施の形態10のモータ駆動装置101jは、上記実施の形態5のモータ駆動装置101eと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態5とは、可動子の位置を算出する位置演算を、上記バネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
図10は、本発明の実施の形態10によるモータ駆動装置を説明するためのブロック図である。
この実施の形態10のモータ駆動装置101jは、上記実施の形態5のモータ駆動装置101eと同様、リニア振動モータ100を可動子の位置に応じて駆動制御するものであり、上記実施の形態5とは、可動子の位置を算出する位置演算を、上記バネ振動系の質量バネ比rmkを用いて行う点のみ異なっている。
すなわち、この実施の形態10のモータ駆動装置101jは、上記実施の形態5のモータ駆動装置101eのバネ定数決定部6aに代わる、バネ振動系の固有振動周波数fに基づいてバネ振動系の質量バネ比rmkを決定する質量バネ比決定部14jと、実施の形態5のモータ駆動装置101eのバネ定数推定部13eに代わる、該決定された質量バネ比rmkとモータ温度Tmに基づいて、可動状態のモータの質量バネ比rmk(t)を推定する質量バネ比推定部15jと、実施の形態5のモータ駆動装置101eの可動子位置演算部2eに代わる、該推定された質量バネ比rmk(t)に基づいて可動子の位置Pxを求める演算を行う可動子位置演算部2jとを備えている。
言い換えると、上記モータ駆動装置101jは、演算モードでは、バネ振動系の固有振動周波数fに基づいてバネ振動系の質量バネ比rmkを算出し、検出されたモータ温度Tmと、該算出された質量バネ比rmkとから質量バネ比温度関数Qbを求め、運転モードでは、モータ温度Tmに基づいて、上記質量バネ比温度関数Qbにより駆動中のリニア振動モータの質量バネ比を推定し、推定された質量バネ比rmk(t)を用いて可動子の位置を算出し、該算出された可動子の位置に応じてリニア振動モータ100の駆動を制御するものである。
以下、上記モータ駆動装置101jを構成するモータドライバ1a,可動子位置演算部2j,可動子強制振動部3a,相対位置検出部4a,固有振動周波数検知部5a,温度検出部12e,質量バネ比決定部14j,及び質量バネ比推定部15jについて詳しく説明する。
ここで、モータドライバ1a,可動子強制振動部3a,相対位置検出部4a,固有振動周波数検知部5a,及び温度検出部12eは、上記実施の形態5のモータ駆動装置101eにおけるものと同一のものである。
質量バネ比決定部14jは、上記固有振動周波数検知部5aにより検知された固有振動周波数fから質量バネ比rmkを決定し、該決定した質量バネ比rmkを示す質量バネ比情報Dmkを出力するものである。ここで、質量バネ比rmkを求める具体的な演算は、固有振動周波数fに円周率の2倍を乗算し、その乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を取るものである。
質量バネ比推定部15jは、演算モードでは、質量バネ比決定部14jにより決定された質量バネ比rmkと、温度検出部12eにより検出されたモータ温度Tmとから、質量バネ比温度関数Qbを導出し、運転モードでは、リニア振動モータ100が動作しているときの質量バネ比を、検出されたモータ温度Tmに基づいて、上記質量バネ比温度関数Qbから推定し、該推定した質量バネ比(推定質量バネ比)rmk(t)を示す推定質量バネ比情報Dmk(t)を出力するものである。
ここで、上記質量バネ比温度関数Qbは、質量バネ比rmkとモータ温度Tmとの関係を示す1次関数であっても、あるいは2次元のマトリックスであってもよい。
次に動作について説明する。
この実施の形態10のモータ駆動装置101jでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101jの各部1a,2j,3a,4a,5a,12e,14j,15jは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101jの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
この実施の形態10のモータ駆動装置101jでは、ユーザ操作により、リニア振動モータの運転開始を指令する指令信号が制御部に入力されると、上記モータ駆動装置101jの各部1a,2j,3a,4a,5a,12e,14j,15jは、制御部(図示せず)からの制御信号に基づいて、このモータ駆動装置101jの動作モードが一旦、演算モードとなり、その後運転モードとなるよう制御される。
以下まず、リニア振動モータ100のバネ部材の質量バネ比rmkを決定する演算モードの動作について説明する。
この実施の形態10のモータ駆動装置101jでは、可動子強制振動部3a,相対位置検出部4a,及び固有振動周波数検知部5aは、実施の形態5のモータ駆動装置101eと同様に動作する。
この実施の形態10のモータ駆動装置101jでは、可動子強制振動部3a,相対位置検出部4a,及び固有振動周波数検知部5aは、実施の形態5のモータ駆動装置101eと同様に動作する。
そして、この実施の形態10では、質量バネ比決定部14jは、固有振動周波数検知部5aにより検知された固有振動周波数fを用いて、該固有振動周波数fに円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を求める演算を行って、質量バネ比rmkを算出し、該質量バネ比rmkを示す質量バネ比情報Dmkを質量バネ比推定部15jに出力する。
また、このとき、温度検出部12eは、上記リニア振動モータ100の温度(モータ温度)Tmを検出し、該検出温度を示す温度情報Dtmを質量バネ比推定部15jに出力する。
また、このとき、温度検出部12eは、上記リニア振動モータ100の温度(モータ温度)Tmを検出し、該検出温度を示す温度情報Dtmを質量バネ比推定部15jに出力する。
すると、質量バネ比推定部15jは、質量バネ比情報Drmk及び温度情報Dtmに基づいて、上記質量バネ比rmkとモータ温度Tmとの関係を示す質量バネ比温度関数Qbを導出し、該質量バネ比温度関数Qbのデータを内部メモリに保持する。
その後、モータ駆動装置101jの動作モードは、上記演算モードから運転モードに切り替わる。
その後、モータ駆動装置101jの動作モードは、上記演算モードから運転モードに切り替わる。
以下、運転モードの動作について説明する。
モータドライバ1aは、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加してリニア振動モータ100を駆動する。
モータドライバ1aは、リニア振動モータ100に交流電圧(駆動電圧)Vdrを印加してリニア振動モータ100を駆動する。
このとき、上記質量バネ比推定部15jには、上記温度検出部12eにより検出されたモータ温度Tmを示す温度情報Dtmが入力されており、該質量バネ比推定部15jは、該検出されたモータ温度Tmに基づいて上記質量バネ比温度関数Qbから、リニア振動モータの運転状態での質量バネ比を推定し、該推定された質量バネ比rmk(t)を示す推定質量バネ比情報Dmk(t)を可動子位置演算部2jに出力する。
すると、該可動子位置演算部2jは、モータドライバ1aに印加される駆動電流Cdr及び駆動電圧Vdrに基づいて可動子の位置を算出する位置演算を、上記質量バネ比推定部14jからの推定質量バネ比情報Dmk(t)が示す推定質量バネ比rmk(t)を用いて行い、該算出された可動子位置Pxを示す可動子位置情報Dpcをモータドライバ1aに出力する。
すると、モータドライバ1aは、上記可動子位置情報Dpcに基づいて、リニア振動モータ100へ印加する駆動電圧Vdrの振幅値(電圧レベル)を、往復運動する可動子がその限界位置を超えないよう制御する。
このように本実施の形態10では、リニア振動モータ100を駆動するモータ駆動装置101jにおいて、リニア振動モータ100の可動子を自由振動させる可動子強制振動部3aと、上記可動子の自由振動状態に基づいて可動子の固有振動周波数fを検知する固有振動周波数検知部5aと、固有振動周波数fに基づいて質量バネ比rmkを決定する質量バネ比決定部14jと、リニア振動モータの温度を検出する温度検出部12eとを備え、演算モードでは、質量バネ比の温度係数αmkと、上記検出されたモータ温度Tmと、上記決定された質量バネ比rmkとに基づいて、質量バネ比rmkとモータ温度Tmとの関係Qbを導出し、運転モードでは、負荷の運転状態での質量バネ比rmk(t)を、質量バネ比温度関数Qbを用いて、運転状態で検出されたモータ温度Tmから推定するので、モータの運転状態では、可動子の位置を算出する位置演算が、モータ温度Tmに応じた推定質量バネ比rmk(t)を用いて行われることとなって、モータの運転状態にて可動子の位置をより高い精度で算出することができる。
これにより、モータ運転時の可動子の位置制御をより精度良く行うことができ、可動子とリニア振動モータ筐体との間のクリアランスをより小さくしてリニア振動モータのさらなる小型化あるいは高出力化を図ることができる効果がある。
また、この実施の形態10では、リニア振動モータ100の運転開始直前に、リニア振動モータの質量バネ比rmkを算出するようにしているので、時間経過とともにリニア振動モータの質量バネ比rmkが変化しても、可動子の位置を算出する位置演算により、可動子の位置を精度よく算出することができるという効果もある。
なお、上記実施の形態10では、モータ駆動装置101jは、リニア振動モータ100の運転開始直前に、リニア振動モータ100の質量バネ比rmkの算出及びモータ温度Tmの検出を行って質量バネ比温度関数Qbを導出し、運転時には、運転開始直前に導出した質量バネ比温度関数Qbを用いてモータ温度Tmから質量バネ比rmk(t)を推定するものであるが、モータ駆動装置101jは、リニア振動モータ100の運転終了直後に、リニア振動モータ100の質量バネ比rmkの算出及びモータ温度Tmの検出を行って質量バネ比温度関数Qbを導出し、運転時には前回の運転終了時に導出した質量バネ比温度関数Qbを用いてモータ温度Tmから質量バネ比rmk(t)を推定するものであってもよい。
また、モータ駆動装置101jは、リニア振動モータ100の運転開始直前及び運転終了直後に、リニア振動モータ100の質量バネ比rmkの算出及びモータ温度Tmの検出を行って質量バネ比温度関数Qbを導出するものであってもよい。
この場合、運転モードで可動子の位置を求める演算は、今回の運転開始直前に導出した質量バネ比温度関数Qbから得られる質量バネ比と、前回の運転終了直後に導出した質量バネ比温度関数Qbから得られる質量バネ比との平均値を用いて行うのが望ましい。
さらに、上記実施の形態10では、質量バネ比推定部15jは、その内部メモリに保持されている質量バネ比の温度係数αmkを用いて質量バネ比温度関数Qbを導出するものであるが、質量バネ比温度関数Qbを導出する方法は、質量バネ比の温度係数αmkを用いる方法に限るものではない。
例えば、質量バネ比推定部15jは、リニア振動モータ100の運転開始直前にリニア振動モータ100の質量バネ比rmkの算出、及びモータ温度Tmの検出を行い、さらに、リニア振動モータの運転終了直後に、リニア振動モータ100の質量バネ比rmkの算出、及びモータ温度Tmの検出を行って、異なるモータ温度での質量バネ比から質量バネ比温度関数Qbを導出し、次回の運転時には、該導出した質量バネ比温度関数Qbを用いて、モータ温度から質量バネ比rmk(t)定数を推定するものであってもよい。
また、質量バネ比推定部15jは、新たな温度条件で質量バネ比rmkを算出する度に、質量バネ比温度関数を更新するものであってもよい。
また、質量バネ比推定部15jは、新たな温度条件で質量バネ比rmkを算出する度に、質量バネ比温度関数を更新するものであってもよい。
また、上記実施の形態10では、モータ駆動装置101jは、実施の形態6と同様、質量バネ比rmkを固有振動周波数fに基づいて決定するものであるが、モータ駆動装置は、実施の形態7のように質量バネ比rmkを、バネ振動系の固有角振動数ωに基づいて決定するもの、あるいは実施の形態8のように、質量バネ比rmkを、バネ振動系の固有振動周期Tに基づいて決定するものであってもよく、またモータ駆動装置101jは、実施の形態9のように、質量バネ比rmkを、検出された駆動電圧及び駆動電流から得られた共振周波数に基づいて決定するものであってもよい。
さらに上記各実施の形態1〜10で示したリニア振動モータ及びモータ駆動装置は、上述したように、圧縮機などの動力部として用いられるものであり、例えば、リニア振動モータが密閉容器の中に収容され、温度と圧力の変化の激しい環境で用いられる空気調和機や冷蔵庫などの機器では、有効なものであり、位置センサを用いることなく、リニア振動モータの可動子の位置を高い精度で算出することができる。
以下、実施の形態1のリニア振動モータ及びモータ駆動装置を用いた圧縮機、並びに該圧縮機を用いた空気調和機、冷蔵庫、極低温冷凍機、及び給湯器について詳しく説明する。
(実施の形態11)
図13は、本発明の実施の形態11による圧縮機駆動装置を説明する模式図である。
この実施の形態11の圧縮機駆動装置211は、空気やガスなどを圧縮する圧縮機40を駆動するものである。ここで、該圧縮機40の動力源は、リニア振動モータ46であり、これは実施の形態1のリニア振動モータ100と同じものである。また、上記圧縮機駆動装置211は、該リニア振動モータ46を駆動するモータ駆動装置であり、実施の形態1のモータ駆動装置101aと同じ構成を有している。なお、以下、この実施の形態11の圧縮機40はリニア圧縮機と呼び、このリニア圧縮機40について簡単に説明する。
図13は、本発明の実施の形態11による圧縮機駆動装置を説明する模式図である。
この実施の形態11の圧縮機駆動装置211は、空気やガスなどを圧縮する圧縮機40を駆動するものである。ここで、該圧縮機40の動力源は、リニア振動モータ46であり、これは実施の形態1のリニア振動モータ100と同じものである。また、上記圧縮機駆動装置211は、該リニア振動モータ46を駆動するモータ駆動装置であり、実施の形態1のモータ駆動装置101aと同じ構成を有している。なお、以下、この実施の形態11の圧縮機40はリニア圧縮機と呼び、このリニア圧縮機40について簡単に説明する。
このリニア圧縮機40は、所定の軸線に沿って並ぶシリンダ部41aと、モータ部41bとを有している。該シリンダ部41a内には、上記軸線方向に沿って摺動自在に支持されたピストン42が配置されている。シリンダ部41aとモータ部41bとにまたがって、その一端がピストン42の背面側に固定されたピストンロッド42aが配置され、ピストンロッド42aの他端側には、該ピストンロッド42aを軸線方向に付勢する支持ばね43が設けられている。ここで、該支持バネ43は、上記実施の形態1で示したリニア振動モータ100のバネ部材に相当する。
また、上記ピストンロッド42aには、マグネット44が取り付けられており、上記モータ部41bの、マグネット44に対向する部分には、アウターヨーク45aとこれに埋設されたステータコイル45bとからなる電磁石45が取り付けられている。このリニア圧縮機40では、電磁石45と、上記ピストンロッド42aに取り付けられたマグネット44とによりリニア振動モータ46が構成されている。従って、このリニア圧縮機40では、この電磁石45とマグネット44との間で発生する電磁力及び上記ばね43の弾性力により、上記ピストン42がその軸線方向に沿って往復運動する。ここで、ピストン42、ピストンロッド42a、及びマグネット44は、上記実施の形態1で示したリニア振動モータ100の可動子に相当する。
さらに、シリンダ部41a内には、シリンダ上部内面47a、ピストン圧縮面42b、及びシリンダ周壁面47bにより囲まれた密閉空間である圧縮室48が形成されている。シリンダ上部内面47aには、圧縮室48に低圧ガスLgを吸入するための吸入管40aの一端が開口している。また、上記シリンダ上部内面47aには、上記圧縮室48から高圧ガスHgを吐出するための吐出管40bの一端が開口している。上記吸入管40a及び吐出管40bには、ガスの逆流を防止する吸入弁49a及び吐出弁49bが取り付けられている。
このような構成のリニア圧縮機40では、モータ駆動装置211からリニア振動モータ46への駆動電圧の印加により、ピストン42がその軸線方向に往復動し、圧縮室48への低圧ガスLgの吸入、圧縮室48でのガスの圧縮、及び圧縮された高圧ガスHgの圧縮室48からの排出が繰り返し行われる。
本実施の形態11のリニア圧縮機40では、モータ駆動装置211は、実施の形態1のモータ駆動装置101aと同様、リニア振動モータが非運転状態となる演算モードで、バネ部材のバネ定数を算出し、リニア振動モータの運転が行われる運転モードでは、該算出したバネ定数を用いてリニア振動モータの可動子の位置を算出するので、リニア圧縮機40の運転中にはピストンの位置を高い精度で検知することができる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、リニア圧縮機を小型化することができる。
なお、上記実施の形態11では、圧縮機40を構成するモータ駆動装置は、実施の形態1と同一のものであるが、この圧縮機40のモータ駆動装置は、実施の形態1のものに限らず、実施の形態2〜10のいずれのものであってもよい。
(実施の形態12)
図14は本発明の実施の形態12による空気調和機を説明するブロック図である。
この実施の形態12の空気調和機212は、室内機55及び室外機56を有し、冷暖房を行う空気調和機である。この空気調和機212は、冷媒を室内機55と室外機56の間で循環させるリニア圧縮機50aと、該リニア圧縮機50aを駆動する圧縮機駆動装置50bとを有している。ここで、上記圧縮機50aは、上記実施の形態11の、リニア振動モータ46を有するリニア圧縮機40と同一のものである。また、圧縮機駆動装置50bは、該リニア圧縮機50aのリニア振動モータに駆動電圧Vdを印加するモータ駆動部で、実施の形態11のモータ駆動装置211と同一の構成を有している。
図14は本発明の実施の形態12による空気調和機を説明するブロック図である。
この実施の形態12の空気調和機212は、室内機55及び室外機56を有し、冷暖房を行う空気調和機である。この空気調和機212は、冷媒を室内機55と室外機56の間で循環させるリニア圧縮機50aと、該リニア圧縮機50aを駆動する圧縮機駆動装置50bとを有している。ここで、上記圧縮機50aは、上記実施の形態11の、リニア振動モータ46を有するリニア圧縮機40と同一のものである。また、圧縮機駆動装置50bは、該リニア圧縮機50aのリニア振動モータに駆動電圧Vdを印加するモータ駆動部で、実施の形態11のモータ駆動装置211と同一の構成を有している。
以下詳述すると、実施の形態12の空気調和機212は、冷媒循環経路を形成するリニア圧縮機50a,四方弁54,絞り装置(膨張弁)53,室内側熱交換器51及び室外側熱交換器52を有するとともに、該リニア圧縮機50aの駆動源であるリニア振動モータを駆動するモータ駆動部50bを有している。
ここで、室内側熱交換器51は上記室内機55を構成しており、絞り装置53,室外側熱交換器52,リニア圧縮機50a,四方弁54及びモータ駆動部50bは上記室外機56を構成している。
上記室内側熱交換器51は、熱交換の能力を上げるための送風機51aと、該熱交換器51の温度もしくはその周辺温度を測定する温度センサ51bとを有している。上記室外側熱交換器52は、熱交換の能力を上げるための送風機52aと、該熱交換器52の温度もしくはその周辺温度を測定する温度センサ52bとを有している。
そして、この実施の形態12では、上記室内側熱交換器51と室外側熱交換器52との間の冷媒経路には、リニア圧縮機50a及び四方弁54が配置されている。つまりこの空気調和機212は、冷媒が矢印Aの方向に流れ、室外側熱交換器52を通過した冷媒がリニア圧縮機50aに吸入され、該リニア圧縮機50aから吐出された冷媒が室内側熱交換器51へ供給される状態と、冷媒が矢印Bの方向に流れ、室内側熱交換器51を通過した冷媒がリニア圧縮機50aに吸入され、リニア圧縮機50aから吐出された冷媒が室外側熱交換器52へ供給される状態とが、上記四方弁54により切り替えられるものである。
また、上記絞り装置53は、循環する冷媒の流量を絞る絞り作用と、冷媒の流量を自動調整する弁の作用とをあわせ持つものである。つまり、絞り装置53は、冷媒が冷媒循環経路を循環している状態で、凝縮器から蒸発器へ送り出された液冷媒の流量を絞って該液冷媒を膨張させるとともに、蒸発器に必要とされる量の冷媒を過不足なく供給するものである。
なお、上記室内側熱交換器51は暖房運転では凝縮器として、冷房運転では蒸発器として動作するものであり、上記室外側熱交換器52は、暖房運転では蒸発器として、冷房運転では凝縮器として動作するものである。凝縮器では、内部を流れる高温高圧の冷媒ガスは、送り込まれる空気により熱を奪われて徐々に液化し、凝縮器の出口付近では高圧の液冷媒となる。これは、冷媒が大気中に熱を放熱して液化することと等しい。また、蒸発器には絞り装置53で低温低圧となった液冷媒が流れ込む。この状態で蒸発器に部屋の空気が送り込まれると、液冷媒は空気から大量の熱を奪って蒸発し、低温低圧のガス冷媒に変化する。蒸発器にて大量の熱を奪われた空気は空調機の吹きだし口から冷風となって放出される。
そして、この空気調和機212では、モータ駆動部50bは、空気調和機の運転状態、つまり空気調和機に対して設定された目標温度、実際の室温及び外気温に基づいて、リニア圧縮機50aのリニア振動モータの出力を制御する。
次に動作について説明する。
この実施の形態12の空気調和機212では、モータ駆動部50bからリニア圧縮機50aに駆動電圧Vdが印加されると、冷媒循環経路内で冷媒が循環し、室内機55の熱交換器51及び室外機56の熱交換器52にて熱交換が行われる。つまり、上記空気調和機212では、冷媒の循環閉路に封入された冷媒をリニア圧縮機50aにより循環させることにより、冷媒の循環閉路内に周知のヒートポンプサイクルが形成される。これにより、室内の暖房あるいは冷房が行われる。
この実施の形態12の空気調和機212では、モータ駆動部50bからリニア圧縮機50aに駆動電圧Vdが印加されると、冷媒循環経路内で冷媒が循環し、室内機55の熱交換器51及び室外機56の熱交換器52にて熱交換が行われる。つまり、上記空気調和機212では、冷媒の循環閉路に封入された冷媒をリニア圧縮機50aにより循環させることにより、冷媒の循環閉路内に周知のヒートポンプサイクルが形成される。これにより、室内の暖房あるいは冷房が行われる。
例えば、空気調和機212の暖房運転を行う場合、ユーザの操作により、上記四方弁54は、冷媒が矢印Aで示す方向に流れるよう設定される。この場合、室内側熱交換器51は凝縮器として動作し、上記冷媒循環経路での冷媒の循環により熱を放出する。これにより室内が暖められる。
逆に、空気調和機212の冷房運転を行う場合、ユーザの操作により、上記四方弁54は、冷媒が矢印Bで示す方向に流れるよう設定される。この場合、室内側熱交換器51は蒸発器として動作し、上記冷媒循環経路での冷媒の循環により周辺空気の熱を吸収する。これにより室内が冷やされる。
ここで、空気調和機212では、モータ駆動部50bにより、空気調和機に対して設定された目標温度、実際の室温及び外気温に基づいて、リニア圧縮機50aのリニア振動モータの出力が制御される。これにより、空気調和機212では、快適な冷暖房が行われる。
このように本実施の形態12の空気調和機212では、冷媒の圧縮及び循環を行う圧縮機には、リニア振動モータを動力源とする圧縮機(リニア圧縮機)50aを用いているので、回転型モータを動力源とする圧縮機を用いた空気調和機に比べて、圧縮機での摩擦損が低減し、さらには圧縮機の、高圧冷媒と低圧冷媒とをシールするシール性が高まることとなり、圧縮機効率の向上を図ることができる。
さらに、本実施の形態12のリニア振動モータを用いた圧縮機50aでは、摩擦損が低減されることから、回転型モータを用いた圧縮機で必要不可欠であった潤滑用オイルの使用量を大幅に低減することができる。これにより、リサイクル処理などが必要なる廃油の発生量を少なく抑えることができるだけでなく、オイルに溶け込む冷媒量が減ることから圧縮機に充填する冷媒量を削減することができ、これにより地球環境の保全にも貢献することができる。
また、本実施の形態12の空気調和機212では、モータ駆動部50bは、実施の形態11のモータ駆動装置211と同様、リニア振動モータが非運転状態となる演算モードで、バネ部材のバネ定数kを算出し、リニア振動モータの運転が行われる運転モードでは、該算出したバネ定数kを用いてリニア振動モータの可動子の位置を算出するので、 リニア圧縮機50aの運転中にはピストンの位置を高い精度で検知することができる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、リニア圧縮機の小型化、ひいては空気調和機の小型化を図ることができる。
(実施の形態13)
図15は本発明の実施の形態13による冷蔵庫を説明するブロック図である。
この実施の形態13の冷蔵庫213は、リニア圧縮機60a,圧縮機駆動装置60b,凝縮器61,冷蔵室蒸発器62,及び絞り装置63から構成されている。
図15は本発明の実施の形態13による冷蔵庫を説明するブロック図である。
この実施の形態13の冷蔵庫213は、リニア圧縮機60a,圧縮機駆動装置60b,凝縮器61,冷蔵室蒸発器62,及び絞り装置63から構成されている。
ここで、リニア圧縮機60a,凝縮器61,絞り装置63,及び冷蔵室蒸発器62は、冷媒循環経路を形成するものであり、圧縮機駆動装置60bは、上記リニア圧縮機60aの駆動源であるリニア振動モータを駆動するモータ駆動部である。なお、上記リニア圧縮機60a及びモータ駆動部60bはそれぞれ、上記実施の形態11のリニア圧縮機40及びモータ駆動装置211と同一のものである。
絞り装置63は、上記実施の形態12の空気調和機212の絞り装置53と同様、冷媒が冷媒循環経路を循環している状態で、凝縮器61から送り出された液冷媒の流量を絞って該液冷媒を膨張させるとともに、冷蔵室蒸発器62に、必要とされる量の冷媒を過不足なく供給するものである。
凝縮器61は、内部を流れる高温高圧の冷媒ガスを凝縮させて、冷媒の熱を外気に放出するものである。該凝縮器61に送り込まれた冷媒ガスは、外気により熱を奪われて徐々に液化し、凝縮器の出口付近では高圧の液冷媒となる。
冷蔵室蒸発器62は、低温の冷媒液を蒸発させて冷蔵庫内の冷却を行うものである。この冷蔵室蒸発器62は、熱交換の効率を上げるための送風機62aと、庫内の温度を検出する温度センサ62bとを有している。
そして、この冷蔵庫213では、モータ駆動部60bは、冷蔵庫の運転状態、つまり冷蔵庫に対して設定された目標温度、及び冷蔵庫内の温度に基づいて、リニア圧縮機60aのリニア振動モータの出力を制御する。
次に動作について説明する。
この実施の形態13の冷蔵庫213では、モータ駆動部60bからリニア圧縮機60aのリニア振動モータに駆動電圧Vdが印加されると、リニア圧縮機60aが駆動して冷媒循環経路内で冷媒が矢印Cの方向に循環し、凝縮器61及び冷蔵室蒸発器62にて熱交換が行われる。これにより、冷蔵庫内が冷却される。
この実施の形態13の冷蔵庫213では、モータ駆動部60bからリニア圧縮機60aのリニア振動モータに駆動電圧Vdが印加されると、リニア圧縮機60aが駆動して冷媒循環経路内で冷媒が矢印Cの方向に循環し、凝縮器61及び冷蔵室蒸発器62にて熱交換が行われる。これにより、冷蔵庫内が冷却される。
つまり、凝縮器61で液状となった冷媒は、絞り装置63にてその流量が絞られることにより膨張して、低温の冷媒液となる。そして、冷蔵室蒸発器62へ低温の液冷媒が送り込まれると、冷蔵室蒸発器62では、低温の冷媒液が蒸発して、冷蔵庫内の冷却が行われる。このとき、冷蔵室蒸発器62には、送風機62aにより強制的に冷蔵室内の空気が送り込まれており、冷蔵室蒸発器62では、効率よく熱交換が行われる。
また、この実施の形態13の冷蔵庫213では、モータ駆動部60bにより、該冷蔵庫213に対して設定された目標温度及び冷蔵庫内の室温に基づいて、リニア圧縮機60aのリニア振動モータの出力が制御される。これにより、冷蔵庫213では、冷蔵庫内の温度が目標温度に維持される。
このように本実施の形態13の冷蔵庫213では、冷媒の圧縮及び循環を行う圧縮機には、リニア振動モータを動力源とするリニア圧縮機60aを用いているので、実施の形態12の空気調和機212と同様、回転型モータを駆動源とする圧縮機に比べて、圧縮機での摩擦損が低減し、さらには圧縮機の冷媒をシールするシール性が向上して、圧縮機の動作効率を高めることができる。
さらに、本実施の形態13の冷蔵庫213では、圧縮機での摩擦損が低減できることから、上記実施の形態12の空気調和機212と同様に、使用済み潤滑オイルである廃油の発生量や圧縮機に充填する冷媒の量が削減されることとなる。このため、地球環境の保全に貢献することができるという効果もある。
また、本実施の形態13の冷蔵庫213では、モータ駆動部60bは、実施の形態11のモータ駆動装置211と同様、リニア振動モータが非運転状態となる演算モードで、バネ部材のバネ定数kを算出し、リニア振動モータの運転が行われる運転モードでは、該算出したバネ定数kを用いてリニア振動モータの可動子の位置を算出するので、リニア圧縮機60aの運転中にはピストンの位置を高い精度で検知することができる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、リニア圧縮機の小型化、ひいては冷蔵庫の小型化を図ることができる。
(実施の形態14)
図16は本発明の実施の形態14による極低温冷凍機を説明するブロック図である。
この実施の形態14の極低温冷凍機214は、冷凍室(図示せず)を有し、該冷凍室内部を極低温状態(−50°C以下)となるよう冷却するものである。この極低温冷凍機214を用いて冷却する冷却対象物には、超電導素子として用いる抵抗,コイル,磁石などの電気磁気回路素子、赤外線センサ用の低温参照部などの電子部品、血液や内臓といった医療用のもの、さらに、冷凍マグロなど冷凍食品がある。
図16は本発明の実施の形態14による極低温冷凍機を説明するブロック図である。
この実施の形態14の極低温冷凍機214は、冷凍室(図示せず)を有し、該冷凍室内部を極低温状態(−50°C以下)となるよう冷却するものである。この極低温冷凍機214を用いて冷却する冷却対象物には、超電導素子として用いる抵抗,コイル,磁石などの電気磁気回路素子、赤外線センサ用の低温参照部などの電子部品、血液や内臓といった医療用のもの、さらに、冷凍マグロなど冷凍食品がある。
電子部品を極低温状態にするのは、動作効率アップ,あるいは熱雑音の除去による感度アップのためであり、食料品などでは、生鮮食品を輸送したり、鮮度維持や乾燥を行ったりするためである。
また、冷凍温度は用途により異なるが、−50度以下、特に、超伝導の用途などでは0〜100K(ケルビン)の広い範囲にわたっている。例えば、この極低温冷凍機の冷却温度は、高温超電導の用途では、50から100K程度に、通常の超電導の用途では、0〜50K程度の極低温状態に設定される。また、食品などの生鮮維持に用いられる場合は、この極低温冷凍装置の冷却温度は−50°C弱に設定される。
以下、具体的に説明する。
この実施の形態14の極低温冷凍機214は、リニア圧縮機70a,圧縮機駆動装置70b,放熱器71,蓄冷器72,及び絞り装置73から構成されている。
ここで、リニア圧縮機70a,放熱器71,絞り装置73,及び蓄冷器72は、冷媒循環経路を形成する。圧縮機駆動装置70bは、上記リニア圧縮機70aの駆動源であるリニア振動モータを駆動制御するモータ駆動部である。なお、上記リニア圧縮機70a及びモータ駆動部70bはそれぞれ、上記実施の形態11のリニア圧縮機40及びモータ駆動装置211と同一のものである。
この実施の形態14の極低温冷凍機214は、リニア圧縮機70a,圧縮機駆動装置70b,放熱器71,蓄冷器72,及び絞り装置73から構成されている。
ここで、リニア圧縮機70a,放熱器71,絞り装置73,及び蓄冷器72は、冷媒循環経路を形成する。圧縮機駆動装置70bは、上記リニア圧縮機70aの駆動源であるリニア振動モータを駆動制御するモータ駆動部である。なお、上記リニア圧縮機70a及びモータ駆動部70bはそれぞれ、上記実施の形態11のリニア圧縮機40及びモータ駆動装置211と同一のものである。
絞り装置73は、上記実施の形態12の絞り装置53と同様、放熱器71から蓄冷器72へ送り出された液冷媒を絞り膨張させる装置である。
放熱器71は、上記実施の形態13の冷蔵庫213の凝縮器61と同様、内部を流れる高温高圧の冷媒ガスを凝縮させて、冷媒の熱を外気に放出するものである。
放熱器71は、上記実施の形態13の冷蔵庫213の凝縮器61と同様、内部を流れる高温高圧の冷媒ガスを凝縮させて、冷媒の熱を外気に放出するものである。
蓄冷器72は、上記実施の形態13の冷蔵室蒸発器62と同様、低温の冷媒液を蒸発させて冷凍室内の冷却を行い、冷却対象物を極低温状態とするものであり、冷却対象物の温度を検出する温度センサ72bを備えている。なお、蓄冷器72は、図16に示すように、熱交換の効率を上げるための送風機72aを有するものであってもよい。
そして、この極低温冷凍機214では、モータ駆動部70bは、極低温冷凍機の運転状態、つまり極低温冷凍機に対して設定された目標温度、及び冷凍対象物の温度に基づいて、リニア圧縮機70aのリニア振動モータの出力を制御する。
この実施の形態14の極低温冷凍機214では、モータ駆動部70bからリニア圧縮機70aのリニア振動モータに交流電圧Vdが印加されると、リニア圧縮機70aが駆動して冷媒循環経路内で冷媒が矢印Dの方向に循環し、放熱器71及び蓄冷器72にて熱交換が行われる。これにより、冷凍室内の冷却が行われ、その内部の冷却対象物が冷却される。
つまり、放熱器71で液状となった冷媒は、絞り装置73にてその流量が絞られることにより膨張して、低温の冷媒液となる。そして、蓄冷器72へ低温の液冷媒が送り込まれると、蓄冷器72では、低温の冷媒液が蒸発して、冷凍室の冷却が行われる。
また、この実施の形態14の極低温冷凍機214では、モータ駆動部70bにより、該極低温冷凍機214に対して設定された目標温度及び冷凍対象物の温度に基づいて、リニア圧縮機70aのリニア振動モータの出力が制御される。これにより、極低温冷凍機214では、冷凍対象物の温度が目標温度に維持される。
このように本実施の形態14の極低温冷凍機214では、冷媒の圧縮及び循環を行う圧縮機には、リニア振動モータを動力源とするリニア圧縮機70aを用いているので、実施の形態12の空気調和機212と同様、回転型モータを駆動源とする圧縮機に比べて、圧縮機での摩擦損が低減し、さらには圧縮機の冷媒をシールするシール性が向上して、圧縮機の動作効率を高めることができる。
さらに、本実施の形態14の極低温冷凍機214では、圧縮機での摩擦損が低減できることから、上記実施の形態12の空気調和機212と同様に、使用済み潤滑オイルである廃油の発生量や圧縮機に充填する冷媒量が削減されることとなる。このため、地球環境の保全に貢献することができるという効果もある。
また、本実施の形態14の極低温冷凍機214では、モータ駆動部70bは、実施の形態11のモータ駆動装置211と同様、リニア振動モータが非運転状態となる演算モードで、バネ定数kを算出し、リニア振動モータの運転が行われる運転モードでは、該算出したバネ定数kを用いてリニア振動モータの可動子の位置を算出するので、リニア圧縮機70aの運転中にはピストンの位置を高い精度で検知することができる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、リニア圧縮機の小型化、ひいては極低温冷凍機の小型化を図ることができる。
(実施の形態15)
図17は本発明の実施の形態15による給湯器を説明するブロック図である。
この実施の形態15の給湯器215は、供給された水を加熱して温水を排出する冷凍サイクル装置81aと、冷凍サイクル装置81aから排出された温水を貯める貯湯槽81bと、これらを連結する水配管86a,86b,87a,及び87bとを有している。
図17は本発明の実施の形態15による給湯器を説明するブロック図である。
この実施の形態15の給湯器215は、供給された水を加熱して温水を排出する冷凍サイクル装置81aと、冷凍サイクル装置81aから排出された温水を貯める貯湯槽81bと、これらを連結する水配管86a,86b,87a,及び87bとを有している。
上記冷凍サイクル装置81aは、リニア圧縮機80a,圧縮機駆動装置80b,空気熱交換器82,絞り装置83,及び水熱交換器85を有している。
ここで、リニア圧縮機80a,空気熱交換器82,絞り装置83,及び水熱交換器85は、冷媒循環経路を形成している。
ここで、リニア圧縮機80a,空気熱交換器82,絞り装置83,及び水熱交換器85は、冷媒循環経路を形成している。
圧縮機駆動装置80bは、上記リニア圧縮機80aの駆動源であるリニア振動モータ(図示せず)を駆動するものである。なお、上記リニア圧縮機80aは、上記実施の形態11の、リニア振動モータ46を有するリニア圧縮機40と同一のものである。また、圧縮機駆動装置80bは、実施の形態11のモータ駆動装置211と同一の構成を有するモータ駆動部である。
絞り装置83は、上記実施の形態12の空気調和機212の絞り装置53と同様、水熱交換器85から空気熱交換器82へ送り出された液冷媒の流量を絞って、該液冷媒を膨張させるものである。
水熱交換器85は、冷凍サイクル装置81aに供給された水を加熱する凝縮器であり、加熱された水の温度を検出する温度センサ85aを有している。空気熱交換器82は、周辺雰囲気から熱を吸収する蒸発器であり、熱交換の能力を上げるための送風機82aと、該周辺温度を検出する温度センサ82bとを有している。
なお、図中、84は、上記冷媒を、リニア圧縮機80a,水熱交換器85,絞り装置83,及び空気熱交換器82により形成される冷媒循環経路に沿って循環させる冷媒配管である。該冷媒配管84には、リニア圧縮機80aから吐出された冷媒を、水熱交換器85及び絞り装置83をバイパスして空気熱交換器82に供給する除霜バイパス管84aが接続されており、該バイパス管84aの一部には除霜バイパス弁84bが設けられている。
上記貯湯槽81bは、水あるいは温水を貯める貯湯タンク88を有している。該貯湯タンク88の受水口88c1には、該貯湯タンク88内へ水を外部から供給する給水配管88cが接続され、上記貯湯タンク88の湯出口88d1には、該貯湯タンク88から浴槽へ湯を供給する浴槽給湯管88dが接続されている。また、上記貯湯タンク88の水出入口88aには、該タンク88に貯められた湯を外部に供給する給湯管89が接続されている。
上記貯湯タンク88と冷凍サイクル装置81aの水熱交換器85とは、配管86a,86b,87a,及び87bにより接続されており、貯湯タンク88と水熱交換器85との間には水の循環路が形成されている。
ここで、水配管86bは、水を貯湯タンク88から水熱交換器85へ供給する配管であり、その一端は、貯湯タンク88の水出口88bに接続され、その他端は、ジョイント部分87b1を介して、水熱交換器85の入水側配管87bに接続されている。また、この水配管86bの一端側には、貯湯タンク88内の水あるいは温水を排出するための排水弁88b1が取り付けられている。上記水配管86aは、水を水熱交換器85から貯湯タンク88へ戻す配管であり、その一端は、貯湯タンク88の水出入口88aに接続され、その他端は、ジョイント部分87a1を介して水熱交換器85の排出側配管87aに接続されている。
そして、水熱交換器85の入水側配管87bの一部には、上記水循環路内で水を循環させるポンプ87が設けられている。
さらに、この給湯器215では、モータ駆動部80bは、給湯器の運転状態、つまり給湯器に対して設定された温水の目標温度、貯湯槽81bから冷凍サイクル装置81aの水熱交換器85に供給される水の温度、及び外気温に基づいて、リニア圧縮機80aのリニア振動モータに要求されるモータ出力を決定する。
さらに、この給湯器215では、モータ駆動部80bは、給湯器の運転状態、つまり給湯器に対して設定された温水の目標温度、貯湯槽81bから冷凍サイクル装置81aの水熱交換器85に供給される水の温度、及び外気温に基づいて、リニア圧縮機80aのリニア振動モータに要求されるモータ出力を決定する。
次に動作について説明する。
リニア圧縮機80aのリニア振動モータ(図示せず)にモータ駆動部80bから交流電圧Vdが印加され、リニア圧縮機80aが駆動すると、リニア圧縮機80aにより圧縮された高温冷媒は、矢印Eが示す方向に循環し、つまり冷媒配管84を通り、水熱交換器85に供給される。また、水循環路のポンプ87が駆動すると、貯湯タンク88から水が水熱交換器85に供給される。
リニア圧縮機80aのリニア振動モータ(図示せず)にモータ駆動部80bから交流電圧Vdが印加され、リニア圧縮機80aが駆動すると、リニア圧縮機80aにより圧縮された高温冷媒は、矢印Eが示す方向に循環し、つまり冷媒配管84を通り、水熱交換器85に供給される。また、水循環路のポンプ87が駆動すると、貯湯タンク88から水が水熱交換器85に供給される。
すると、水熱交換器85では、冷媒と貯湯タンク88から供給された水との間で熱交換が行われ、熱が冷媒から水へ移動する。つまり供給された水が加熱され、加熱された水は、貯湯タンク88へ供給される。このとき、加熱された水の温度は凝縮温度センサ85aにて監視されている。
また、水熱交換器85では、冷媒は上記熱交換により凝縮し、凝縮した液冷媒は、その流量が絞り装置83により絞られることにより膨張し、空気熱交換器82に送り込まれる。この給湯器215では、該空気熱交換器82は、蒸発器として働く。つまり、該空気熱交換器82は、送風機82bにより送り込まれた外気から熱を吸収し、低温の冷媒液を蒸発させる。このとき、上記空気熱交換器82の周辺雰囲気の温度は温度センサ82bにより監視されている。
また、冷凍サイクル装置81aでは、空気熱交換器82に霜がついた場合は、除霜バイパス弁84bが開き、高温の冷媒が除霜バイパス路84aを介して空気熱交換器82に供給される。これにより空気熱交換器82の除霜が行われる。
一方、貯湯槽81bには、冷凍サイクル装置81aの水熱交換器85から温水が配管87a及び86aを介して供給され、供給された温水が貯湯タンク88に貯められる。貯湯タンク88内の温水は、必要に応じて、給湯管89を通して外部に供給される。特に、浴槽へ給湯する場合は、貯湯タンク内の温水は浴槽用給湯管88dを通して浴槽に供給される。
また、貯湯タンク88内の水あるいは温水の貯蓄量が一定量以下となった場合には、外部から給水管88cを介して水が補給される。
そして、この実施の形態15の給湯器215では、モータ駆動部80bにより、該給湯器215に対して設定された温水の目標温度、水熱交換機85に供給される水の温度、及び外気温に基づいて、リニア圧縮機80aのリニア振動モータの出力が制御される。これにより、給湯器215では、目標温度の温水の供給が行われる。
そして、この実施の形態15の給湯器215では、モータ駆動部80bにより、該給湯器215に対して設定された温水の目標温度、水熱交換機85に供給される水の温度、及び外気温に基づいて、リニア圧縮機80aのリニア振動モータの出力が制御される。これにより、給湯器215では、目標温度の温水の供給が行われる。
このように本実施の形態15の給湯器215では、冷凍サイクル装置81aにて冷媒の圧縮及び循環を行う圧縮機には、リニア振動モータを動力源とするリニア圧縮機80aを用いているので、実施の形態12の空気調和機212と同様、回転型モータを動力源とする圧縮機に比べて、圧縮機での摩擦損が低減し、さらには圧縮機の冷媒をシールするシール性が向上して、圧縮機の動作効率を高めることができる。
さらに、本実施の形態15の給湯器215では、圧縮機での摩擦損が低減できることから、上記実施の形態12の空気調和機212と同様に、使用済み潤滑オイルである廃油の発生量や圧縮機に充填される冷媒の量が削減されることとなる。このため、地球環境の保全に貢献することができるという効果もある。
また、本実施の形態15の給湯器215では、モータ駆動部80bは、実施の形態11のモータ駆動装置211と同様、リニア振動モータが非運転状態となる演算モードでバネ定数kを算出し、リニア振動モータの運転が行われる運転モードでは、該算出したバネ定数kを用いてリニア振動モータの可動子の位置を算出するので、リニア圧縮機80aの運転中にはピストンの位置を高い精度で検知することができる。これにより、ピストンとシリンダヘッドとのクリアランスを削減して、リニア圧縮機の小型化、ひいては給湯器の小型化を図ることができる。
なお、上記空気調和機、冷蔵庫、極低温冷凍機、及び給湯器の動力源として用いるリニア振動モータを駆動するモータ駆動装置は、実施の形態1のものに限らず、実施の形態2〜10のいずれのものであってもよい。
(実施の形態16)
図18は本発明の実施の形態16による携帯電話を説明するブロック図である。
この実施の形態16の携帯電話216は、機械的に振動する振動器90aと、該振動部90aを駆動する駆動装置90bとを有し、着信等を振動によりユーザに伝えるものである。
図18は本発明の実施の形態16による携帯電話を説明するブロック図である。
この実施の形態16の携帯電話216は、機械的に振動する振動器90aと、該振動部90aを駆動する駆動装置90bとを有し、着信等を振動によりユーザに伝えるものである。
ここで、上記振動器90aは、そのケース91内に配置され、バネ部材92により振動可能に支持された重り部材93と、該重り部材93の一部に固着されたマグネット93aと、上記ケース91内に上記重り部材93のマグネット93aに対向するよう配置され、コイル94aが埋め込まれたステータ94とを有している。そして、上記重り部材93に取り付けられたマグネット93aと、上記ステータ94に埋め込まれたコイル94aとから、リニア振動モータ95が構成されており、このリニア振動モータ95の可動子は、重り部材93及びマグネット93aにより構成されている。このリニア振動モータ95では、このコイル94aとマグネット93aとの間で発生する電磁力及び上記ばね部材92の弾性力により、上記重り部材93がバネ部材92の伸縮方向に沿って往復運動する。
そして、この実施の形態16の駆動装置90bは、携帯電話216に搭載されたバッテリー(図示せず)を電源とし、上記振動器90aのリニア振動モータ95を駆動するモータ駆動部90bであり、実施の形態1のモータ駆動装置101aと同じ構成を有している。
このような構成の携帯電話216では、着信時には、モータ駆動部90bから振動器90aのリニア振動モータ95への通電により、重り部材93がバネ部材92の伸縮方向に往復動し、振動器90aが振動する。
つまり、コイル94aに交流電圧Vdが印加されると、ステータ94には交流の磁界が発生し、この磁界にマグネット93aが引き付けられ、マグネット93aと、マグネット93aが固着されている重り部材93が往復運動を開始する。
このように本実施の形態16の携帯電話216では、機械的な振動をリニア振動モータ95により発生するので、回転型モータにより振動を発生させる場合に比べて、機械的な振動を、振動数と振幅の大きさという2つの自由度でもって変化させることができ、振動により着信等をユーザに知らせる振動器91を、振動のバリエーションの多彩なものとできる。
また、本実施の形態16の携帯電話216では、モータ駆動部90bは、実施の形態1のモータ駆動装置101aと同様、リニア振動モータが非運転状態となる演算モードでバネ定数kを算出し、リニア振動モータの運転が行われる運転モードでは、該算出したバネ定数kを用いて可動子の位置を算出するので、リニア振動モータ95の運転中には、可動子の位置を高い精度で検知することができる。これにより、可動子とケースとのクリアランスを削減して、リニア振動モータの小型化、ひいては携帯電話の小型化を図ることができる。
なお、上記実施の形態16では、モータ駆動部90bには、実施の形態1のモータ駆動装置101aを用いたが、このモータ駆動部には、実施の形態2ないし10のモータ駆動装置101bないし101jを用いてもよい。
また、上記実施の形態16では、実施の形態1のリニア振動モータ及びその駆動装置を、携帯電話における着信を振動により知らせる振動器及びその駆動制御部として用いた場合を示したが、この実施の形態1のリニア振動モータ及びその駆動装置は、往復式電気かみそりの動力源及びその駆動部にも用いることができ、さらに、実施の形態2〜10のモータ駆動装置101bないし101jは往復式電気かみそりの駆動部として用いることができることは言うまでもない。
本発明に係るモータ駆動装置は、リニア振動モータの可動子の固有振動周波数からバネ定数あるいは質量バネ比を算出し、これによりバネ定数あるいは質量バネ比を用いて算出される可動子の位置の精度を高めて可動子とモータ筐体とのクリアランスを削減することができるものであり、リニア振動モータの小型化を図る上で極めて有用なものである。
1a,1d モータドライバ
2a,2e,2f,2g,2h,2i,2j 可動子位置演算部
3a 可動子強制振動部
4a 相対位置検出部
5a 固有振動周波数検知部
5b 固有角振動数検知部
5c 固有振動周期検知部
6a,6b,6c,6d バネ定数決定部
9d 電流検出部
10d 電圧検出部
10d1 電圧センサ
11d 共振周波数検知部
12e 温度検出部
13e バネ定数推定部
14f,14g,14h,14i,14j 質量バネ比決定部
15j 質量バネ比推定部
40,50a,60a,70a,80a リニア圧縮機
41a シリンダ部
41b モータ部
42 ピストン
43,92 支持ばね
44 マグネット
45 電磁石
46,95,100 リニア振動モータ
50b,60b,70b,80b,90b モータ駆動部
51 室内側熱交換器
51b,52b,62b,72b,82b,85a 温度センサ
52 室外側熱交換器
53,63,73,83 絞り装置
54 四方弁
55 室内機
56 室外機
61 凝縮器
62 冷蔵室蒸発器
71 放熱器
72 蓄冷器
81a 冷凍サイクル装置
81b 貯湯槽
82 空気熱交換器
85 水熱交換器
87 ポンプ
88 貯湯タンク
90a 振動器
91 ケース
93 重り部材
93a マグネット
94 ステータ
94a コイル
100 リニア振動モータ
101a,101b,101c,101d,101e,101f,101g,101h,101i,101j,211 モータ駆動装置
212 空気調和機
213 冷蔵庫
214 極低温冷凍機
215 給湯器
216 携帯電話
Cd 電流検知信号
Cdr 駆動電流
Cmnt 電流モニタ信号
Df 振動数情報
Dk バネ定数情報
Dk(t) 推定バネ定数情報
Dpc 位置情報
Dpr タイミング情報
Drf 共振周波数情報
Drmk 質量バネ比情報
Drmk(t) 推定質量バネ比情報
Dt 周期情報
Dtm モータ温度情報
Dω 固有角振動数情報
f 固有振動周波数
f’ 共振周波数
Ffv 強制振動力
k バネ定数
k(t) 推定バネ定数
L 巻線の等価インダクタンス
Lps 可動子ストローク
P 可動子先端位置
Paru ある地点
Pav 可動子振幅中心位置
Pini 可動子中立位置
Psh シリンダヘッドの位置
Pbd 下死点位置
Ptd 上死点位置
Px 可動子の位置
R 巻線の等価抵抗
rmk 質量バネ比
rmk(t) 推定質量バネ比
Sfc 駆動周波数制御信号
T 固有振動周期
Tm モータ温度
Vd 電圧検知信号
Vdr 駆動電圧
Vsns 電圧センサ出力
X,X’,X” 座標系
x,x’,x” 可動子変位量
ω 固有角振動数(固有角速度)
2a,2e,2f,2g,2h,2i,2j 可動子位置演算部
3a 可動子強制振動部
4a 相対位置検出部
5a 固有振動周波数検知部
5b 固有角振動数検知部
5c 固有振動周期検知部
6a,6b,6c,6d バネ定数決定部
9d 電流検出部
10d 電圧検出部
10d1 電圧センサ
11d 共振周波数検知部
12e 温度検出部
13e バネ定数推定部
14f,14g,14h,14i,14j 質量バネ比決定部
15j 質量バネ比推定部
40,50a,60a,70a,80a リニア圧縮機
41a シリンダ部
41b モータ部
42 ピストン
43,92 支持ばね
44 マグネット
45 電磁石
46,95,100 リニア振動モータ
50b,60b,70b,80b,90b モータ駆動部
51 室内側熱交換器
51b,52b,62b,72b,82b,85a 温度センサ
52 室外側熱交換器
53,63,73,83 絞り装置
54 四方弁
55 室内機
56 室外機
61 凝縮器
62 冷蔵室蒸発器
71 放熱器
72 蓄冷器
81a 冷凍サイクル装置
81b 貯湯槽
82 空気熱交換器
85 水熱交換器
87 ポンプ
88 貯湯タンク
90a 振動器
91 ケース
93 重り部材
93a マグネット
94 ステータ
94a コイル
100 リニア振動モータ
101a,101b,101c,101d,101e,101f,101g,101h,101i,101j,211 モータ駆動装置
212 空気調和機
213 冷蔵庫
214 極低温冷凍機
215 給湯器
216 携帯電話
Cd 電流検知信号
Cdr 駆動電流
Cmnt 電流モニタ信号
Df 振動数情報
Dk バネ定数情報
Dk(t) 推定バネ定数情報
Dpc 位置情報
Dpr タイミング情報
Drf 共振周波数情報
Drmk 質量バネ比情報
Drmk(t) 推定質量バネ比情報
Dt 周期情報
Dtm モータ温度情報
Dω 固有角振動数情報
f 固有振動周波数
f’ 共振周波数
Ffv 強制振動力
k バネ定数
k(t) 推定バネ定数
L 巻線の等価インダクタンス
Lps 可動子ストローク
P 可動子先端位置
Paru ある地点
Pav 可動子振幅中心位置
Pini 可動子中立位置
Psh シリンダヘッドの位置
Pbd 下死点位置
Ptd 上死点位置
Px 可動子の位置
R 巻線の等価抵抗
rmk 質量バネ比
rmk(t) 推定質量バネ比
Sfc 駆動周波数制御信号
T 固有振動周期
Tm モータ温度
Vd 電圧検知信号
Vdr 駆動電圧
Vsns 電圧センサ出力
X,X’,X” 座標系
x,x’,x” 可動子変位量
ω 固有角振動数(固有角速度)
Claims (29)
- 往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、
上記可動子を自由振動させる可動子強制振動部と、
上記可動子の自由振動状態に基づいて該可動子の固有振動を示す固有振動パラメータを取得する振動パラメータ取得部と、
上記取得された固有振動パラメータを用いて、上記バネ部材のバネ定数を算出するバネ定数決定部と、
上記バネ定数決定部により算出されたバネ定数を用いて、上記可動子の位置を算出する可動子位置演算部とを備えた、
ことを特徴とするモータ駆動装置。 - 上記請求項1記載のモータ駆動装置において、
上記振動パラメータ取得部は、
自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、
該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周波数を検知する固有周波数検知部とを有し、
上記バネ定数決定部は、上記検知された固有振動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗に上記可動子の質量を乗算して、上記バネ定数を算出する、
ことを特徴とするモータ駆動装置。 - 請求項1記載のモータ駆動装置において、
上記振動パラメータ取得部は、
自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、
該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有角振動数を検知する固有角振動数検知部とを有し、
上記バネ定数決定部は、上記検知された固有角振動数を二乗し、該固有角振動数の二乗に上記可動子の質量を乗算して、上記バネ定数を算出する、
ことを特徴とするモータ駆動装置。 - 請求項1記載のモータ駆動装置において、
上記振動パラメータ取得部は、
自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、
該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周期を検知する固有振動周期検知部とを有し、
上記バネ定数決定部は、上記検知された固有振動周期を円周率の2倍で除算し、その除算結果を二乗し、該除算結果の二乗に上記可動子の質量の逆数を乗算し、該乗算結果の逆数を求めて、上記バネ定数を算出する、
ことを特徴とするモータ駆動装置。 - 往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、
上記リニア振動モータに駆動電圧を印加するモータドライバと、
該モータドライバから上記リニア振動モータに供給される電流を検出する電流検出部と、
上記モータドライバから上記リニア振動モータに供給される電圧を検出する電圧検出部と、
上記検出された電流と上記検出された電圧とから、上記リニア振動モータの共振駆動周波数を検出する共振周波数検出部と、
上記共振周波数検出部により検出された共振駆動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗に上記可動子の質量を乗算して、上記バネ定数を算出するバネ定数決定部と、
上記バネ定数決定部により算出されたバネ定数を用いて上記可動子の位置を算出する可動子位置演算部とを備えた、
ことを特徴とするモータ駆動装置。 - 請求項1から4のいずれかに記載のモータ駆動装置において、
上記タイミング検出部は、上記可動子の自由振動により上記リニア振動モータの巻き線に発生する誘起電圧を利用して、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出する、
ことを特徴とするモータ駆動装置。 - 請求項1から4のいずれかに記載のモータ駆動装置において、
上記可動子強制振動部は、上記可動子が自由振動するよう該可動子に機械的に力を印加する、
ことを特徴とするモータ駆動装置。 - 請求項1から4のいずれかに記載のモータ駆動装置において、
上記可動子強制振動部は、上記可動子が自由振動するよう、上記リニア振動モータに供給されている電流を一時的に遮断する、
ことを特徴とするモータ駆動装置。 - 請求項1から4のいずれかに記載のモータ駆動装置において、
上記可動子強制振動部は、上記リニア振動モータに接続されている負荷を、上記可動子が自由振動するよう上記リニア振動モータから切り離す、
ことを特徴とするモータ駆動装置。 - 請求項1から5のいずれかに記載のモータ駆動装置において、
動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部を有し、
上記制御部は、上記負荷の運転の開始前に、一時的に動作モードを演算モードとするものであり、
上記バネ定数算出部は、上記負荷の運転の開始前の演算モードにて、上記バネ定数を算出し、
上記可動子位置演算部は、上記運転モードにて、上記負荷の運転の開始前に算出したバネ定数を使用して上記可動子の位置を算出する、
ことを特徴とするモータ駆動装置。 - 請求項1から5のいずれかに記載のモータ駆動装置において、
動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部を有し、
上記制御部は、上記負荷の運転の終了後に、一時的に動作モードを演算モードとするものであり、
上記バネ定数算出部は、上記負荷の運転の終了後の演算モードにて、上記バネ定数を算出し、
上記可動子位置演算部は、運転モードにて、最近設定された演算モードにて算出したバネ定数を使用して、上記可動子の位置を算出する、
ことを特徴とするモータ駆動装置。 - 請求項1から5のいずれかに記載のモータ駆動装置において、
動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記バネ部材のバネ定数を算出する演算モードのいずれかのモードに設定する制御部と、
上記リニア振動モータの温度を検出する温度検出部と、
上記負荷の運転状態でのバネ定数を推定するバネ定数推定部とを備え、
上記制御部は、上記負荷の運転の開始前あるいは終了後の少なくともいずれか一方の時点で、一時的に動作モードを演算モードとするものであり、
上記バネ定数推定部は、
上記演算モードにて、上記算出したバネ定数と、該バネ定数が算出されたときに上記温度検出部により検出された温度とに基づいて、上記リニア振動モータの温度とそのバネ定数との関係を導き、
上記運転モードにて、上記温度検出部により検出された温度に基づいて、上記温度とバネ定数の関係から、上記負荷の運転状態でのバネ定数を推定し、
上記可動子位置演算部は、上記運転モードにて、上記推定されたバネ定数を用いて上記可動子の位置を算出する、
ことを特徴とするモータ駆動装置。 - 往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、
上記可動子を自由振動させる可動子強制振動部と、
上記可動子の自由振動状態に基づいて該可動子の固有振動を示す固有振動パラメータを取得する振動パラメータ取得部と、
上記取得された固有振動パラメータを用いて、上記可動子の質量と上記バネ部材のバネ定数との比の値である質量バネ比を算出する質量バネ比決定部と、
上記質量バネ比決定部により算出された質量バネ比を用いて、上記可動子の位置を算出する可動子位置演算部とを備えた、
ことを特徴とするモータ駆動装置。 - 上記請求項13記載のモータ駆動装置において、
上記振動パラメータ取得部は、
自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、
該タイミング検出部の出力に基づいて、上記可動子の固有振動パラメータである固有振動周波数を検知する固有周波数検知部とを有し、
上記質量バネ比決定部は、上記検知された固有振動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する、
ことを特徴とするモータ駆動装置。 - 請求項13記載のモータ駆動装置において、
上記振動パラメータ取得部は、
自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、
該タイミング検出器の出力に基づいて、上記可動子の固有振動パラメータである固有角振動数を検知する固有角振動数検知部とを有し、
上記質量バネ比決定部は、上記検知された固有角振動数を二乗し、該固有角振動数の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する、
ことを特徴とするモータ駆動装置。 - 請求項13記載のモータ駆動装置において、
上記振動パラメータ取得部は、
自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出するタイミング検出部と、
該タイミング検出器の出力に基づいて、上記可動子の固有振動パラメータである固有振動周期を検知する固有振動周期検知部とを有し、
上記質量バネ比決定部は、上記検知された固有振動周期を円周率の2倍で除算し、その除算結果を二乗して、上記質量バネ比を算出する、
ことを特徴とするモータ駆動装置。 - 往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するリニア振動モータを駆動するモータ駆動装置であって、
上記リニア振動モータに駆動電圧を印加するモータドライバと、
該モータドライバから上記リニア振動モータに供給される電流を検出する電流検出部と、
上記モータドライバから上記リニア振動モータに供給される電圧を検出する電圧検出部と、
上記検出された電流と上記検出された電圧とから、上記リニア振動モータの共振駆動周波数を検出する共振周波数検出部と、
上記共振周波数検出部により検出された共振駆動周波数に円周率の2倍を乗算し、該乗算結果を二乗し、該乗算結果の二乗により得られる値の逆数を求めて、上記質量バネ比を算出する質量バネ比決定部と、
上記質量バネ比決定部により算出された質量バネ比を用いて上記可動子の位置を算出する可動子位置演算部とを備えた、
ことを特徴とするモータ駆動装置。 - 請求項13から16のいずれかに記載のモータ駆動装置において、
上記タイミング検出部は、上記可動子の自由振動により上記リニア振動モータの巻き線に発生する誘起電圧を利用して、自由振動する可動子が、その振動の基準位置に対する一定の相対位置を通過するタイミングを検出する、
ことを特徴とするモータ駆動装置。 - 請求項13から16のいずれかに記載のモータ駆動装置において、
上記可動子強制振動部は、上記可動子が自由振動するよう該可動子に機械的に力を印加する、
ことを特徴とするモータ駆動装置。 - 請求項13から16のいずれかに記載のモータ駆動装置において、
上記可動子強制振動部は、上記可動子が自由振動するよう、上記リニア振動モータに供給されている電流を一時的に遮断する、
ことを特徴とするモータ駆動装置。 - 請求項13から16のいずれかに記載のモータ駆動装置において、
上記可動子強制振動部は、上記リニア振動モータに接続されている負荷を、上記可動子が自由振動するよう上記リニア振動モータから切り離す、
ことを特徴とするモータ駆動装置。 - 請求項13から17のいずれかに記載のモータ駆動装置において、
動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードとのいずれかのモードに設定する制御部を有し、
上記制御部は、上記負荷の運転の開始前に、一時的に動作モードを演算モードとするものであり、
上記質量バネ比算出部は、上記負荷の運転の開始前の演算モードにて、上記質量バネ比を算出し、
上記可動子位置演算部は、上記運転モードにて、上記負荷の運転の開始前に算出した質量バネ比を使用して上記可動子の位置を算出する、
ことを特徴とするモータ駆動装置。 - 請求項13から17のいずれかに記載のモータ駆動装置において、
動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードとのいずれかのモードに設定する制御部を有し、
上記制御部は、上記負荷の運転の終了後に、一時的に動作モードを演算モードとするものであり、
上記質量バネ比算出部は、上記負荷の運転の終了後の演算モードにて、上記質量バネ比を算出し、
上記可動子位置演算部は、運転モードにて、最近設定された演算モードにて算出した質量バネ比を使用して、上記可動子の位置を算出する、
ことを特徴とするモータ駆動装置。 - 請求項13から17のいずれかに記載のモータ駆動装置において、
動作モードを、上記リニア振動モータを駆動して該リニア振動モータに接続された負荷を運転する運転モードと、上記質量バネ比を算出する演算モードのいずれかのモードに設定する制御部と、
上記リニア振動モータの温度を検出する温度検出部と、
上記負荷の運転状態での質量バネ比を推定する質量バネ比推定部とを備え、
上記制御部は、上記負荷の運転の開始前あるいは終了後の少なくともいずれか一方の時点で、一時的に動作モードを演算モードとするものであり、
上記質量バネ比数推定部は、
上記演算モードにて、上記算出した質量バネ比と、該質量バネ比が算出されたときに上記温度検出部により検出された温度とに基づいて、上記リニア振動モータの温度とその質量バネ比との関係を導き、
上記運転モードにて、上記温度検出部により検出された温度に基づいて、上記温度と質量バネ比の関係から、上記負荷の運転状態での質量バネ比を推定し、
上記可動子位置演算部は、上記運転モードにて、上記推定された質量バネ比を用いて上記可動子の位置を算出する、
ことを特徴とするモータ駆動装置。 - シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた空気調和機であって、
往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、
該リニア振動モータを駆動するモータ駆動装置とを備え、
該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、
ことを特徴とする空気調和機。 - シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた冷蔵庫であって、
往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、
該リニア振動モータを駆動するモータ駆動装置とを備え、
該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、
ことを特徴とする冷蔵庫。 - シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた極低温冷凍機であって、
往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、
該リニア振動モータを駆動するモータ駆動装置とを備え、
該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、
ことを特徴とする極低温冷凍機。 - シリンダ及びピストンを有し、該ピストンの往復運動によりシリンダ内の流体を圧縮する圧縮機を備えた給湯器であって、
往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有し、上記ピストンを往復運動させるリニア振動モータと、
該リニア振動モータを駆動するモータ駆動装置とを備え、
該モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、
ことを特徴とする給湯器。 - 振動を発生するリニア振動モータと、該リニア振動モータを駆動するモータ駆動装置とを備えた携帯電話であって、
上記リニア振動モータは、往復運動可能に設けられた可動子と、上記可動子を支持するバネ部材とを有するものであり、
上記モータ駆動装置は、請求項1,5,13,17のいずれかに記載のモータ駆動装置である、
ことを特徴とする携帯電話。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004117263A JP2004336988A (ja) | 2003-04-14 | 2004-04-12 | モータ駆動装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003109394 | 2003-04-14 | ||
JP2004117263A JP2004336988A (ja) | 2003-04-14 | 2004-04-12 | モータ駆動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004336988A true JP2004336988A (ja) | 2004-11-25 |
Family
ID=33513136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004117263A Withdrawn JP2004336988A (ja) | 2003-04-14 | 2004-04-12 | モータ駆動装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004336988A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013525688A (ja) * | 2010-05-05 | 2013-06-20 | ワールプール,ソシエダッド アノニマ | 共鳴リニアコンプレッサのピストンの制御システム、共鳴リニアコンプレッサのピストンの制御方法および共鳴リニアコンプレッサ |
WO2014013659A1 (ja) * | 2012-07-18 | 2014-01-23 | パナソニック 株式会社 | 除毛器具、及び除毛器具の駆動方法 |
CN105704340A (zh) * | 2016-01-19 | 2016-06-22 | 瑞声光电科技(常州)有限公司 | 多功能振动系统、振动方法以及应用该系统的通讯终端 |
WO2017203858A1 (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日立製作所 | リニアモータシステム及び圧縮機 |
CN117590883A (zh) * | 2024-01-16 | 2024-02-23 | 中北大学 | 一种用于监测电机温度的传感测控系统 |
-
2004
- 2004-04-12 JP JP2004117263A patent/JP2004336988A/ja not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013525688A (ja) * | 2010-05-05 | 2013-06-20 | ワールプール,ソシエダッド アノニマ | 共鳴リニアコンプレッサのピストンの制御システム、共鳴リニアコンプレッサのピストンの制御方法および共鳴リニアコンプレッサ |
WO2014013659A1 (ja) * | 2012-07-18 | 2014-01-23 | パナソニック 株式会社 | 除毛器具、及び除毛器具の駆動方法 |
US9537441B2 (en) | 2012-07-18 | 2017-01-03 | Panasonic Intellectual Property Management Co., Ltd. | Epilator and method for driving epilator |
CN105704340A (zh) * | 2016-01-19 | 2016-06-22 | 瑞声光电科技(常州)有限公司 | 多功能振动系统、振动方法以及应用该系统的通讯终端 |
WO2017203858A1 (ja) * | 2016-05-27 | 2017-11-30 | 株式会社日立製作所 | リニアモータシステム及び圧縮機 |
US10784809B2 (en) | 2016-05-27 | 2020-09-22 | Hitachi, Ltd. | Linear motor system and compressor |
US11411522B2 (en) | 2016-05-27 | 2022-08-09 | Hitachi, Ltd. | Linear motor system and compressor |
CN117590883A (zh) * | 2024-01-16 | 2024-02-23 | 中北大学 | 一种用于监测电机温度的传感测控系统 |
CN117590883B (zh) * | 2024-01-16 | 2024-03-29 | 中北大学 | 一种用于监测电机温度的传感测控系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100626899B1 (ko) | 모터 구동 장치, 공기 조화기, 냉장고, 극저온 냉동기,급탕기, 및 휴대 전화기 | |
KR100632140B1 (ko) | 모터 구동 장치와, 이것을 포함한 공기 조절 장치,냉동기, 극저온 냉동기, 온수 공급 유닛 및 휴대 전화 | |
KR100628588B1 (ko) | 모터 구동 장치, 공기 조화기, 냉장고, 극저온 냉동기,급탕기 및 휴대 전화 | |
JP3540311B2 (ja) | モータ駆動制御装置 | |
KR101466402B1 (ko) | 리니어 압축기 | |
KR20030079784A (ko) | 냉동 사이클 장치와, 그것을 구비하는 공기 조화기,냉장고, 온수 공급기 및 극저온 냉동 장치 | |
Jomde et al. | Modeling and measurement of a moving coil oil-free linear compressor performance for refrigeration application using R134a | |
KR100865434B1 (ko) | 리니어 압축기의 구동제어방법 및 차량용 리니어 압축기의구동제어방법 | |
JP3762469B2 (ja) | リニアコンプレッサの駆動装置 | |
JP2004336988A (ja) | モータ駆動装置 | |
JP2004003827A (ja) | 冷凍サイクル装置 | |
KR20100008307A (ko) | 리니어 압축기 | |
JP3540314B2 (ja) | モータ駆動装置 | |
JPH09126147A (ja) | リニアコンプレッサの駆動装置 | |
JP2004274997A (ja) | モータ駆動装置 | |
JP2003314919A (ja) | スターリング冷凍機 | |
KR101718020B1 (ko) | 리니어 압축기의 제어 장치, 제어 방법, 및 이들을 구비한 냉장고 | |
KR101637441B1 (ko) | 리니어 압축기의 제어 장치, 제어 방법, 및 이들을 구비한 냉동 시스템 | |
KR102341828B1 (ko) | 냉장고 및 이의 제어 방법 | |
CN113874627B (zh) | 直线压缩机和设定点控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090316 |