Nothing Special   »   [go: up one dir, main page]

US20170227854A1 - Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method - Google Patents

Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method Download PDF

Info

Publication number
US20170227854A1
US20170227854A1 US15/497,883 US201715497883A US2017227854A1 US 20170227854 A1 US20170227854 A1 US 20170227854A1 US 201715497883 A US201715497883 A US 201715497883A US 2017227854 A1 US2017227854 A1 US 2017227854A1
Authority
US
United States
Prior art keywords
polarization
illumination
optical
light
modulating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/497,883
Inventor
Osamu Tanitsu
Koji Shigematsu
Hiroyuki Hirota
Tomoyuki Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to US15/497,883 priority Critical patent/US20170227854A1/en
Publication of US20170227854A1 publication Critical patent/US20170227854A1/en
Priority to US16/055,452 priority patent/US20180341185A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Definitions

  • the present invention relates to a polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method and, more particularly, to an exposure apparatus for production of microdevices such as semiconductor elements, image pickup elements, liquid crystal display elements, and thin-film magnetic heads by lithography.
  • a beam emitted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source as a substantial surface illuminant consisting of a number of light sources.
  • Beams from the secondary light source (generally, an illumination pupil distribution formed on or near an illumination pupil of the illumination optical apparatus) are limited through an aperture stop disposed near the rear focal plane of the fly's eye lens and then enter a condenser lens.
  • the beams condensed by the condenser lens superposedly illuminate a mask on which a predetermined pattern is formed.
  • the light passing through the pattern of the mask is focused on a wafer through a projection optical system.
  • the mask pattern is projected for exposure (or transcribed) onto the wafer.
  • the pattern formed on the mask is a highly integrated pattern, and, in order to accurately transcribe this fine pattern onto the wafer, it is indispensable to obtain a uniform illuminance distribution on the wafer.
  • Japanese Patent No. 3246615 owned by the same Applicant of the present application discloses the following technology for realizing the illumination condition suitable for faithful transcription of the fine pattern in arbitrary directions: the secondary light source is formed in an annular shape on the rear focal plane of the fly's eye lens and the beams passing the secondary light source of the annular shape are set to be in a linearly polarized state with a direction of polarization along the circumferential direction thereof (hereinafter referred to as a “azimuthal polarization state”).
  • An object of the embodiment is to transform incident light in a linearly polarized state having a direction of polarization virtually along a single direction, into light in a azimuthal polarization state having a direction of polarization virtually along a circumferential direction, while suppressing the loss of light quantity.
  • Another object of the embodiment is to form an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity, using a polarization-modulating element capable of transforming incident light in a linearly polarized state having a direction of polarization virtually along a single direction, into light in a azimuthal polarization state having a direction of polarization virtually along a circumferential direction.
  • Another object of the embodiment is to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput, using an illumination optical apparatus capable of forming an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.
  • a first aspect of the embodiment is to provide a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state
  • the polarization-modulating element being made of an optical material with optical activity and having a circumferentially varying thickness profile.
  • a second aspect of the embodiment is to provide an illumination optical apparatus comprising a light source for supplying illumination light, and the polarization-modulating element of the first aspect disposed in an optical path between the light source and a surface to be illuminated.
  • a third aspect of the embodiment is to provide an illumination optical apparatus for illuminating a surface to be illuminated, based on illumination light supplied from a light source,
  • RSP h (Ave) is an average specific polarization rate about polarization in a first direction in a predetermined effective light source region in a light intensity distribution formed in an illumination pupil plane of the illumination optical apparatus or in a plane conjugate with the illumination pupil plane
  • RSP v (Ave) is an average specific polarization rate about polarization in a second direction in the predetermined effective light source region.
  • RSP h (Ave) Ix (Ave)/( Ix+Iy )Ave
  • RSP v (Ave) Iy (Ave)/( Ix+Iy )Ave.
  • Ix(Ave) represents an average intensity of a polarization component in the first direction in a bundle of rays passing through the predetermined effective light source region and arriving at a point on an image plane
  • Iy(Ave) an average intensity of a polarization component in the second direction in a bundle of rays passing through the predetermined effective light source region and arriving at a point on the image plane
  • (Ix+Iy)Ave an average intensity of an entire beam passing through the predetermined effective light source region.
  • the illumination pupil plane of the illumination optical apparatus can be defined as a plane in the optical relation of Fourier transform with the surface to be illuminated and, where the illumination optical apparatus is combined with a projection optical system, it can be defined as a plane in the illumination optical apparatus optically conjugate with an aperture stop of the projection optical system.
  • the plane conjugate with the illumination pupil plane of the illumination optical apparatus is not limited to a plane in the illumination optical apparatus, but, for example, in a case where the illumination optical apparatus is combined with a projection optical system, it may be a plane in the projection optical system, or may be a plane in a polarization measuring device for measuring a polarization state in the illumination optical apparatus (or in the projection exposure apparatus).
  • a fourth aspect of the embodiment is to provide an exposure apparatus comprising the illumination optical apparatus of the second aspect or the third aspect, the exposure apparatus projecting a pattern onto a photosensitive substrate through the illumination optical apparatus.
  • a fifth aspect of the embodiment is to provide an exposure method of projecting a pattern onto a photosensitive substrate, using the illumination optical apparatus of the second aspect or the third aspect.
  • a sixth aspect of the embodiment is to provide a production method of a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state, comprising:
  • a step of providing the optical material with a circumferentially varying thickness profile is a step of providing the optical material with a circumferentially varying thickness profile.
  • the polarization-modulating element of the embodiment is made of the optical material with optical activity, for example, like crystalline quartz, and has the circumferentially varying thickness profile.
  • the thickness profile herein is set, for example, so that light in a linearly polarized state having a direction of polarization virtually along a single direction is transformed into light in a azimuthal polarization state having a direction of polarization virtually along the circumferential direction.
  • the embodiment realizes the polarization-modulating element capable of transforming the incident light in the linearly polarized state having the direction of polarization virtually along a single direction, into light in the azimuthal polarization state having the direction of polarization virtually along the circumferential direction, while suppressing the loss of light quantity.
  • the polarization-modulating element is made of the optical material with optical activity, the invention has the advantage that the polarization-modulating element is extremely easy to produce, for example, as compared with wave plates.
  • the illumination optical apparatus of the embodiment uses the polarization-modulating element capable of transforming the incident light in the linearly polarized state having the direction of polarization virtually along a single direction, into the light in the azimuthal polarization state having the direction of polarization virtually along the circumferential direction, it is able to form an illumination pupil distribution of an annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
  • the exposure apparatus and exposure method of the embodiment use the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, they are able to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput and, eventually, to produce good devices with high throughput.
  • FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is an illustration to illustrate the action of a conical axicon system on a secondary light source of an annular shape.
  • FIG. 3 is an illustration to illustrate the action of a zoom lens on a secondary light source of an annular shape.
  • FIG. 4 is a perspective view schematically showing an internal configuration of a polarization monitor in FIG. 1 .
  • FIG. 5 is an illustration schematically showing a configuration of a polarization-modulating element in FIG. 1 .
  • FIG. 6 is an illustration to illustrate the optical activity of crystalline quartz.
  • FIG. 7 is an illustration schematically showing a secondary light source of an annular shape set in a azimuthal polarization state by the action of the polarization-modulating element.
  • FIG. 8 is an illustration schematically showing a secondary light source of an annular shape set in a radially polarized state by the action of the polarization-modulating element.
  • FIG. 9 is an illustration showing a modification example in which a plurality of polarization-modulating elements are arranged in a replaceable state.
  • FIG. 10 is an illustration showing plural types of polarization-modulating elements 10 a - 10 c mounted on a turret 10 T as a replacing mechanism in FIG. 9 .
  • FIGS. 11A, 11B, 11C, 11D and 11E are illustrations showing respective configurations of plural types of polarization-modulating elements 10 a - 10 e , respectively.
  • FIGS. 12A, 12B and 12C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element, respectively.
  • FIG. 13 is an illustration schematically showing a configuration of polarization-modulating element 10 f arranged rotatable around the optical axis AX.
  • FIGS. 14A, 14B and 14C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of polarization-modulating element 10 f , respectively.
  • FIGS. 15A, 15B and 15C are illustrations schematically showing examples of the secondary light source obtained when the polarization-modulating element composed of elementary elements of a sector shape is arranged rotatable around the optical axis AX, respectively.
  • FIG. 16 is an illustration showing an example in which the polarization-modulating element is located at a position immediately before conical axicon system 8 (or at a position near the entrance side), among locations near the pupil of the illumination optical apparatus.
  • FIG. 17 is an illustration for explaining Conditions (1) and (2) to be satisfied in the modification example shown in FIG. 16 .
  • FIG. 18 is an illustration showing an example in which the polarization-modulating element is located near the pupil position of imaging optical system 15 , among locations near the pupil of the illumination optical apparatus.
  • FIG. 19 is an illustration showing a schematic configuration of wafer surface polarization monitor 90 for detecting a polarization state and light intensity of light illuminating a wafer W.
  • FIG. 20 is an illustration showing a secondary light source 31 of an annular shape obtained when a quartered polarization-modulating element 10 f is used to implement quartered, circumferentially polarized annular illumination.
  • FIG. 21 is a flowchart of a procedure of producing semiconductor devices as microdevices.
  • FIG. 22 is a flowchart of a procedure of producing a liquid crystal display element as a microdevice.
  • FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention.
  • the Z-axis is defined along a direction of a normal to a wafer W being a photosensitive substrate, the Y-axis along a direction parallel to the plane of FIG. 1 in the plane of the wafer W, and the X-axis along a direction of a normal to the plane of FIG. 1 in the plane of wafer W.
  • the exposure apparatus of the present embodiment is provided with a light source 1 for supplying exposure radiation (light) [(illumination light)].
  • the light source 1 can be, for example, a KrF excimer laser light source for supplying light with the wavelength of 248 nm, an ArF excimer laser light source for supplying light with the wavelength of 193 nm, or the like.
  • a nearly parallel beam emitted along the Z-direction from the light source 1 has a cross section of a rectangular shape elongated along the X-direction, and is incident to a beam expander 2 consisting of a pair of lenses 2 a and 2 b .
  • the lenses 2 a and 2 b have a negative refracting power and a positive refracting power, respectively, in the plane of FIG. 1 (or in the YZ plane). Therefore, the beam incident to the beam expander 2 is enlarged in the plane of FIG. 1 and shaped into a beam having a cross section of a predetermined rectangular shape.
  • the nearly parallel beam passing through the beam expander 2 as a beam shaping optical system is deflected into the Y-direction by a bending mirror 3 , and then travels through a quarter wave plate 4 a , a half wave plate 4 b , a depolarizer (depolarizing element) 4 c , and a diffractive optical element 5 for annular illumination to enter an afocal lens 6 .
  • the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c constitute a polarization state converter 4 , as described later.
  • the afocal lens 6 is an afocal system (afocal optic) set so that the front focal position thereof approximately coincides with the position of the diffractive optical element 5 and so that the rear focal position thereof approximately coincides with the position of a predetermined plane 7 indicated by a dashed line in the drawing.
  • a diffractive optical element is constructed by forming level differences with the pitch of approximately the wavelength of exposure light (illumination light) in a substrate and has the action of diffracting an incident beam at desired angles.
  • the diffractive optical element 5 for annular illumination has the following function: when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of an annular shape in its far field (or Fraunhofer diffraction region).
  • the nearly parallel beam incident to the diffractive optical element 5 as a beam transforming element forms a light intensity distribution of an annular shape on the pupil plane of the afocal lens 6 and then emerges as a nearly parallel beam from the afocal lens 6 .
  • a conical axicon system 8 arranged on or near the pupil plane thereof, and the detailed configuration and action thereof will be described later.
  • the fundamental configuration and action will be described below, in disregard of the action of the conical axicon system 8 .
  • the beam through the afocal lens 6 travels through a zoom lens 9 for variation of ⁇ -value and a polarization-modulating element 10 and then enters a micro fly's eye lens (or fly's eye lens) 11 as an optical integrator.
  • the configuration and action of the polarization-modulating element 10 will be described later.
  • the micro fly's eye lens 11 is an optical element consisting of a number of micro lenses with a positive refracting power arranged lengthwise and breadthwise and densely.
  • a micro fly's eye lens is constructed, for example, by forming a micro lens group by etching of a plane-parallel plate.
  • each micro lens forming the micro fly's eye lens is much smaller than each lens element forming a fly's eye lens.
  • the micro fly's eye lens is different from the fly's eye lens consisting of lens elements spaced from each other, in that a number of micro lenses (micro refracting surfaces) are integrally formed without being separated from each other.
  • the micro fly's eye lens is a wavefront splitting optical integrator of the same type as the fly's eye lens.
  • the position of the predetermined plane 7 is arranged near the front focal position of the zoom lens 9 , and the entrance surface of the micro fly's eye lens 11 is arranged near the rear focal position of the zoom lens 9 .
  • the zoom lens 9 arranges the predetermined plane 7 and the entrance surface of the micro fly's eye lens 11 substantially in the relation of Fourier transform and eventually arranges the pupil plane of the afocal lens 6 and the entrance surface of the micro fly's eye lens 11 approximately optically conjugate with each other.
  • an illumination field of an annular shape centered around the optical axis AX is formed on the entrance surface of the micro fly's eye lens 11 , as on the pupil plane of the afocal lens 6 .
  • the entire shape of this annular illumination field similarly varies depending upon the focal length of the zoom lens 9 .
  • Each micro lens forming the micro fly's eye lens 11 has a rectangular cross section similar to a shape of an illumination field to be formed on a mask M (eventually, a shape of an exposure region to be formed on a wafer W).
  • the beam incident to the micro fly's eye lens 11 is two-dimensionally split by a number of micro lenses to form on or near the rear focal plane (eventually on the illumination pupil) a secondary light source having much the same light intensity distribution as the illumination field formed by the incident beam, i.e., a secondary light source consisting of a substantial surface illuminant of an annular shape centered around the optical axis AX.
  • Beams from the secondary light source formed on or near the rear focal plane of the micro fly's eye lens 11 travel through beam splitter 12 a and condenser optical system 13 to superposedly illuminate a mask blind 14 .
  • an illumination field of a rectangular shape according to the shape and focal length of each micro lens forming the micro fly's eye lens 11 is formed on the mask blind 14 as an illumination field stop.
  • the internal configuration and action of polarization monitor 12 incorporating a beam splitter 12 a will be described later. Beams through a rectangular aperture (light transmitting portion) of the mask blind 14 are subject to light condensing action of imaging optical system 15 and thereafter superposedly illuminate the mask M on which a predetermined pattern is formed.
  • the imaging optical system 15 forms an image of the rectangular aperture of the mask blind 14 on the mask M.
  • a beam passing through the pattern of mask M travels through a projection optical system PL to form an image of the mask pattern on the wafer W being a photosensitive substrate.
  • the pattern of the mask M is sequentially printed in each exposure area on the wafer W through full-wafer exposure or scan exposure with two-dimensional drive control of the wafer W in the plane (XY plane) perpendicular to the optical axis AX of the projection optical system PL.
  • the quarter wave plate 4 a is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it transforms incident light of elliptical polarization into light of linear polarization.
  • the half wave plate 4 b is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it changes the plane of polarization of linearly polarized light incident thereto.
  • the depolarizer 4 c is composed of a wedge-shaped crystalline quartz prism and a wedge-shaped fused silica prism having complementary shapes.
  • the crystalline quartz prism and the fused silica prism are constructed as an integral prism assembly so as to be set into and away from the illumination optical path.
  • the light source 1 is the KrF excimer laser light source or the ArF excimer laser light source
  • light emitted from these light sources typically has the degree of polarization of 95% or more and light of almost linear polarization is incident to the quarter wave plate 4 a .
  • a right-angle prism as a back-surface reflector is interposed in the optical path between the light source 1 and the polarization state converter 4 , the linearly polarized light will be changed into elliptically polarized light by virtue of total reflection in the right-angle prism unless the plane of polarization of the incident, linearly polarized light agrees with the P-polarization plane or S-polarization plane.
  • the polarization state converter 4 for example, even if light of elliptical polarization is incident thereto because of the total reflection in the right-angle prism, light of linear polarization transformed by the action of the quarter wave plate 4 a will be incident to the half wave plate 4 b .
  • the crystallographic axis of the half wave plate 4 b is set at an angle of 0° or 90° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will pass as it is, without change in the plane of polarization.
  • the crystallographic axis of the half wave plate 4 b is set at an angle of 45° relative to the plane of polarization of the incident, linearly polarized light
  • the light of linear polarization incident to the half wave plate 4 b will be transformed into light of linear polarization with change of polarization plane of 90°.
  • the crystallographic axis of the crystalline quartz prism in the depolarizer 4 c is set at an angle of 45° relative to the polarization plane of the incident, linearly polarized light
  • the light of linear polarization incident to the crystalline quartz prism will be transformed (or depolarized) into light in an unpolarized state.
  • the polarization state converter 4 is arranged as follows: when the depolarizer 4 c is positioned in the illumination optical path, the crystallographic axis of the crystalline quartz prism makes the angle of 45° relative to the polarization plane of the incident, linearly polarized light. Incidentally, where the crystallographic axis of the crystalline quartz prism is set at the angle of 0° or 90° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will pass as it is, without change of the polarization plane.
  • the crystallographic axis of the half wave plate 4 b is set at an angle of 22.5° relative to the polarization plane of incident, linearly polarized light
  • the light of linear polarization incident to the half wave plate 4 b will be transformed into light in an unpolarized state including a linear polarization component directly passing without change of the polarization plane and a linear polarization component with the polarization plane rotated by 90°.
  • the polarization state converter 4 is arranged so that light of linear polarization is incident to the half wave plate 4 b , as described above, and, for easier description hereinafter, it is assumed that light of linear polarization having the direction of polarization (direction of the electric field) along the Z-axis in FIG. 1 (hereinafter referred to as “Z-directionally polarized light”) is incident to the half wave plate 4 b .
  • the depolarizer 4 c When the depolarizer 4 c is positioned in the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane (direction of polarization) of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b passes as kept as Z-directionally polarized light without change of the polarization plane and enters the crystalline quartz prism in the depolarizer 4 c .
  • the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the crystalline quartz prism is transformed into light in an unpolarized state.
  • the light depolarized through the crystalline quartz prism travels through the quartz prism as a compensator for compensating the traveling direction of the light and is incident into the diffractive optical element 5 while being in the depolarized state.
  • the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will be rotated in the polarization plane by 90° and transformed into light of linear polarization having the polarization direction (direction of the electric field) along the X-direction in FIG.
  • X-directionally polarized light (hereinafter referred to as “X-directionally polarized light”) and the X-directionally polarized light will be incident to the crystalline quartz prism in the depolarizer 4 c . Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the incident, X-directionally polarized light as well, the light of X-directional polarization incident to the crystalline quartz prism is transformed into light in the depolarized state, and the light travels through the quartz prism to be incident in the depolarized state into the diffractive optical element 5 .
  • the depolarizer 4 c when the depolarizer 4 c is set away from the illumination optical path, if the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will pass as kept as Z-directionally polarized light without change of the polarization plane, and will be incident in the Z-directionally polarized state into the diffractive optical element 5 .
  • the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto on the other hand, the light of Z-directional polarization incident to the half wave plate 4 b will be transformed into light of X-directional polarization with the polarization plane rotated by 90°, and will be incident in the X-directionally polarized state into the diffractive optical element 5 .
  • the light in the depolarized state can be made incident to the diffractive optical element 5 when the depolarizer 4 c is set and positioned in the illumination optical path.
  • the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the Z-directionally polarized state can be made incident to the diffractive optical element 5 .
  • the depolarizer 4 c when the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the X-directionally polarized state can be made incident to the diffractive optical element 5 .
  • the polarization state converter 4 is able to switch the polarization state of the incident light into the diffractive optical element 5 (therefore, the polarization state of light to illuminate the mask M and wafer W) between the linearly polarized state and the unpolarized state through the action of the polarization state converter consisting of the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c , and, in the case of the linearly polarized state, it is able to switch between mutually orthogonal polarization states (between the Z-directional polarization and the X-directional polarization).
  • the polarization state converter 4 when the polarization state converter 4 is so set that the half wave plate 4 b and depolarizer 4 c both are set away from the illumination optical path and that the crystallographic axis of the quarter wave plate 4 a makes a predetermined angle relative to the incident, elliptically polarized light, light in a circularly polarized state can be made incident to the diffractive optical element 5 .
  • the polarization state of incident light to the diffractive optical element 5 can also be set in a linearly polarized state having a direction of polarization along an arbitrary direction by the action of the half wave plate 4 b.
  • the conical axicon system 8 is composed of a first prism member 8 a whose plane is kept toward the light source and whose refracting surface of a concave conical shape is kept toward the mask, and a second prism member 8 b whose plane is kept toward the mask and whose refracting surface of a convex conical shape is kept toward the light source, in order from the light source side.
  • the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are formed in a complementary manner so as to be able to be brought into contact with each other.
  • At least one of the first prism member 8 a and the second prism member 8 b is arranged movable along the optical axis AX, so that the spacing can be varied between the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b.
  • the conical axicon system 8 functions as a plane-parallel plate and has no effect on the secondary light source of the annular shape formed.
  • the conical axicon system 8 functions a so-called beam expander. Therefore, the angle of the incident beam to the predetermined plane 7 varies according to change in the spacing of the conical axicon system 8 .
  • FIG. 2 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape.
  • the secondary light source 30 a of the minimum annular shape formed in a state where the spacing of the conical axicon system 8 is zero and where the focal length of the zoom lens 9 is set at the minimum (this state will be referred to hereinafter as a “standard state”) is changed into secondary light source 30 b of an annular shape with the outside diameter and inside diameter both enlarged and without change in the width (half of the difference between the inside diameter and the outside diameter: indicated by arrows in the drawing) when the spacing of the conical axicon system 8 is increased from zero to a predetermined value.
  • an annular ratio (inside diameter/outside diameter) and size (outside diameter) both vary through the action of the conical axicon system 8 , without change in the width of the secondary light source of the annular shape.
  • FIG. 3 is an illustration to illustrate the action of the zoom lens on the secondary light source of the annular shape.
  • the secondary light source 30 a of the annular shape formed in the standard state is changed into secondary light source 30 c of an annular shape whose entire shape is similarly enlarged by increasing the focal length of the zoom lens 9 from the minimum to a predetermined value.
  • the width and size (outside diameter) both vary through the action of zoom lens 9 , without change in the annular ratio of the secondary light source of the annular shape.
  • FIG. 4 is a perspective view schematically showing the internal configuration of the polarization monitor shown in FIG. 1 .
  • the polarization monitor 12 is provided with a first beam splitter 12 a disposed in the optical path between the micro fly's eye lens 11 and the condenser optical system 13 .
  • the first beam splitter 12 a has, for example, the form of a non-coated plane-parallel plate made of quartz glass (i.e., raw glass), and has a function of taking reflected light in a polarization state different from a polarization state of incident light, out of the optical path.
  • the light taken out of the optical path by the first beam splitter 12 a is incident to a second beam splitter 12 b .
  • the second beam splitter 12 b has, for example, the form of a non-coated plane-parallel plate made of quartz glass as the first beam splitter 12 a does, and has a function of generating reflected light in a polarization state different from the polarization state of incident light.
  • the polarization monitor is so set that the P-polarized light for the first beam splitter 12 a becomes the S-polarized light for the second beam splitter 12 b and that the S-polarized light for the first beam splitter 12 a becomes the P-polarized light for the second beam splitter 12 b.
  • first light intensity detector 12 c Light transmitted by the second beam splitter 12 b is detected by first light intensity detector 12 c , while light reflected by the second beam splitter 12 b is detected by second light intensity detector 12 d .
  • Outputs from the first light intensity detector 12 c and from the second light intensity detector 12 d are supplied each to a controller (not shown).
  • the controller drives the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c constituting the polarization state converter 4 , according to need.
  • the reflectance for the P-polarized light and the reflectance for the S-polarized light are substantially different in the first beam splitter 12 a and in the second beam splitter 12 b .
  • the reflected light from the first beam splitter 12 a includes the S-polarization component (i.e., the S-polarization component for the first beam splitter 12 a and P-polarization component for the second beam splitter 12 b ), for example, which is approximately 10% of the incident light to the first beam splitter 12 a , and the P-polarization component (i.e., the P-polarization component for the first beam splitter 12 a and S-polarization component for the second beam splitter 12 b ), for example, which is approximately 1% of the incident light to the first beam splitter 12 a.
  • the S-polarization component i.e., the S-polarization component for the first beam splitter 12 a and P-polarization component for the second beam splitter 12 b
  • the P-polarization component i.e., the P
  • the P-polarization component i.e., the P-polarization component for the first beam splitter 12 a and S-polarization component for the second beam splitter 12 b
  • the S-polarization component i.e., the S-polarization component for the first beam splitter 12 a and P-polarization component for the second beam splitter 12 b
  • the first beam splitter 12 a has the function of extracting the reflected light in the polarization state different from the polarization state of the incident light out of the optical path in accordance with its reflection characteristic.
  • the polarization state degree of polarization
  • the polarization state of the illumination light to the mask M, based on the output from the first light intensity detector 12 c (information about the intensity of transmitted light from the second beam splitter 12 b , i.e., information about the intensity of light virtually in the same polarization state as that of the reflected light from the first beam splitter 12 a ).
  • the polarization monitor 12 is so set that the P-polarized light for the first beam splitter 12 a becomes the S-polarized light for the second beam splitter 12 b and that the S-polarized light for the first beam splitter 12 a becomes the P-polarized light for the second beam splitter 12 b .
  • the controller determines that the illumination light to the mask M (eventually, to the wafer W) is not in the desired unpolarized state, linearly polarized state, or circularly polarized state, based on the detection result of the polarization monitor 12 , it drives and adjusts the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c constituting the polarization state converter 4 so that the state of the illumination light to the mask M can be adjusted into the desired unpolarized state, linearly polarized state, or circularly polarized state.
  • Quadrupole illumination can be implemented by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
  • the diffractive optical element for quadrupole illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a quadrupole shape in the far field thereof. Therefore, the beam passing through the diffractive optical element for quadrupole illumination forms an illumination field of a quadrupole shape consisting of four circular illumination fields centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 11 .
  • the secondary light source of the same quadrupole shape as the illumination field formed on the entrance surface is also formed on or near the rear focal plane of the micro fly's eye lens 11 .
  • ordinary circular illumination can be implemented by setting a diffractive optical element for circular illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
  • the diffractive optical element for circular illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a circular shape in the far field. Therefore, a beam passing through the diffractive optical element for circular illumination forms a circular illumination field centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 11 .
  • the secondary light source of the same circular shape as the illumination field formed on the entrance surface is also formed on or near the rear focal plane of the micro fly's eye lens 11 .
  • multipole illuminations dipole illumination, octapole illumination, etc.
  • diffractive optical elements for multipole illuminations (not shown), instead of the diffractive optical element 5 for annular illumination.
  • modified illuminations in various forms can be implemented by setting diffractive optical elements with appropriate characteristics (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
  • FIG. 5 is an illustration schematically showing the configuration of the polarization-modulating element shown in FIG. 1 .
  • FIG. 6 is an illustration to illustrate the optical activity of crystalline quartz.
  • FIG. 7 is an illustration schematically showing the secondary light source of the annular shape set in the azimuthal polarization state by the action of the polarization-modulating element.
  • the polarization-modulating element 10 according to the present embodiment is located immediately before the micro fly's eye lens 11 , i.e., on or near the pupil of the illumination optical apparatus (1 to PL). Therefore, in the case of the annular illumination, the beam having an approximately annular cross section centered around the optical axis AX is incident to the polarization-modulating element 10 .
  • the polarization-modulating element 10 has an effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of eight elementary elements of a sector shape as circumferentially equally divided around the optical axis AX.
  • the eight elementary elements include four types of elementary elements 10 A- 10 D two each with different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (Y-direction).
  • the thickness of the first elementary elements 10 A is the largest
  • the thickness of the fourth elementary elements 101 D is the smallest
  • the thickness of the second elementary elements 10 B is set larger than the thickness of the third elementary elements 10 C.
  • one surface (e.g., the entrance surface) of the polarization-modulating element 10 is planar, while the other surface (e.g., the exit surface) is uneven because of the differences among the thicknesses of the elementary elements 10 A- 10 D. It is also possible to form the both surfaces (the entrance surface and exit surface) of the polarization-modulating element 10 in an uneven shape.
  • each elementary element 10 A- 10 D is made of crystalline quartz as a crystalline material being an optical material with optical activity, and the crystallographic axis of each elementary element 10 A- 10 D is set to be approximately coincident with the optical axis AX, i.e., with the traveling direction of incident light.
  • the optical activity of crystalline quartz will be briefly described below with reference to FIG. 6 .
  • an optical member 100 of a plane-parallel plate shape made of crystalline quartz and in a thickness d is arranged so that its crystallographic axis coincides with the optical axis AX.
  • linearly polarized light incident thereto emerges in a state in which its-polarization direction is rotated by ⁇ around the optical axis AX.
  • the rotation angle (angle of optical rotation) ⁇ of the polarization direction due to the optical activity of the optical member 100 is represented by Eq (a) below, using the thickness d of the optical member 100 and the rotatory power ⁇ of crystalline quartz.
  • the rotatory power ⁇ of crystalline quartz has wavelength dependence (a property that the value of the optical rotatory power differs depending upon the wavelength of light used: optical rotatory dispersion) and, specifically, it tends to increase with decrease in the wavelength of light used.
  • the rotatory power ⁇ of crystalline quartz for light having the wavelength of 250.3 nm is 153.9°/mm.
  • the first elementary elements 10 A are designed in such a thickness dA that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +180° rotation of the Z-direction around the Y-axis, i.e., along the Z-direction.
  • the polarization direction of beams passing through a pair of arc (bow shape) regions 31 A formed by beams subject to the optical rotating action of a pair of first elementary elements 10 A, in the secondary light source 31 of the annular shape shown in FIG. 7 is the Z-direction.
  • the second elementary elements 10 B are designed in such a thickness dB that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +135° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from ⁇ 45° rotation of the Z-direction around the Y-axis.
  • the polarization direction of beams passing through a pair of arc (bow shape) regions 31 B formed by beams subject to the optical rotating action of a pair of second elementary elements 10 B, in the secondary light source 31 of the annular shape shown in FIG. 7 is a direction obtained by rotating the Z-direction by ⁇ 45° around the Y-axis.
  • the third elementary elements 10 C are designed in such a thickness dC that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +90° rotation of the Z-direction around the Y-axis, i.e., along the X-direction.
  • the polarization direction of beams passing through a pair of arc (bow shape) regions 31 C formed by beams subject to the optical rotating action of a pair of third elementary elements 10 C, in the secondary light source 31 of the annular shape shown in FIG. 7 is the X-direction.
  • the fourth elementary elements 10 D are designed in such a thickness dD that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +45° rotation of the Z-direction around the Y-axis.
  • the polarization direction of beams passing through a pair of are (bow shape) regions 31 D formed by beams subject to the optical rotating action of a pair of fourth elementary elements 10 D, in the secondary light source 31 of the annular shape shown in FIG. 7 , is a direction obtained by rotating the Z-direction by +45° around the Y-axis.
  • the polarization-modulating element 10 can be constructed by combining the eight elementary elements prepared separately, or the polarization-modulating element 10 can also be constructed by forming the required uneven shape (level differences) in a crystalline quartz substrate of a plane-parallel plate shape.
  • the polarization-modulating element 10 is provided with a central region 10 E of a circular shape in the size not less than 3/10, preferably, not less than 1 ⁇ 3 of the radial size of the effective region of the polarization-modulating element 10 and without optical activity.
  • the central region 10 E may be made of an optical material without optical activity, for example, like quartz, or may be simply a circular aperture. It is, however, noted that the central region 10 E is not an essential element for the polarization-modulating element 10 .
  • the size of the central region 10 E determines the boundary between the region in the azimuthal polarization state and the other region.
  • the linearly polarized light having the polarization direction along the Z-direction is made incident to the polarization-modulating element 10 .
  • the secondary light source of the annular shape (illumination pupil distribution of annular shape) 31 is formed on or near the rear focal plane of the micro fly's eye lens 11 , and beams passing through this secondary light source 31 of the annular shape are set in the azimuthal polarization state.
  • the beams passing through the respective arc (bow shape) regions 31 A- 31 D constituting the secondary light source 31 of the annular shape turn into a linearly polarized state having the polarization direction approximately coincident with a tangential direction to a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 31 A- 31 D.
  • the present embodiment different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the optical rotating action of the polarization-modulating element 10 .
  • the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
  • the present embodiment uses the polarizing action of the optical elements, it has the excellent effect that the polarization-modulating element itself is extremely easy to produce and, typically, the thickness tolerance of each elementary element can be set to be extremely loose.
  • the light illuminating the wafer W as a last surface to be illuminated is in a polarized state in which the principal component is S-polarized light.
  • the S-polarized light is linearly polarized light having the polarization direction along a direction normal to the plane of incidence (i.e., polarized light with the electric vector oscillating in the direction normal to the plane of incidence).
  • the plane of incidence is defined as follows: when light arrives at a boundary surface of a medium (surface to be illuminated: surface of wafer W), the plane of incidence is a plane including a normal to the boundary surface at that point and the direction of incidence of light.
  • the circumferentially polarized annular illumination realizes an improvement in the optical performance (depth of focus and the like) of the projection optical system and enables formation of a mask pattern image with high contrast on the wafer (photosensitive substrate).
  • the exposure apparatus of the present embodiment uses the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, it is able to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput.
  • the present embodiment enables radially polarized annular illumination (modified illumination in which beams passing through the secondary light source of the annular shape are set in a radially polarized state) by injecting linearly polarized light having the polarization direction along the X-direction into the polarization-modulating element 10 and thereby setting the beams passing through the secondary light source 32 of the annular shape in the radially polarized state as shown in FIG. 8 .
  • beams passing through the respective arc (bow shape) regions 32 A- 32 D constituting the secondary light source 32 of the annular shape are in the linearly polarized state having the polarization direction approximately coincident with a radial direction of a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 32 A- 32 D.
  • the light illuminating the wafer W as a last surface to be illuminated is in a polarized state in which the principal component is P-polarized light.
  • the P-polarized light herein is linearly polarized light having the polarization direction along a direction parallel to the plane of incidence defined as described above (i.e., polarized light with the electric vector oscillating in the direction parallel to the plane of incidence).
  • the radially polarized annular illumination enables formation of a good mask pattern image on the wafer (photosensitive substrate) while keeping the reflectance of light low on the resist applied onto the wafer W.
  • the above-described embodiment realizes the circumferentially polarized annular illumination and the radially polarized annular illumination by switching the beam incident to the polarization-modulating element 10 between the linearly polarized state having the polarization direction along the Z-direction and the linearly polarized state having the polarization direction along the X-direction.
  • it is also possible to realize the circumferentially polarized annular illumination and the radially polarized annular illumination for example, by switching the polarization-modulating element 10 between a first state shown in FIG. 5 and a second state resulting from 90° rotation around the optical axis AX, for the incident beam in the linearly polarized state having the polarization direction along the Z-direction or along the X-direction.
  • the polarization-modulating element 10 is located immediately before the micro fly's eye lens 11 .
  • the polarization-modulating element 10 can also be located generally on or near the pupil of the illumination optical apparatus (1 to PL), e.g., on or near the pupil of the projection optical system PL, on or near the pupil of the imaging optical system 15 , or immediately before the conical axicon system 8 (on or near the pupil of afocal lens 6 ).
  • the required effective diameter (clear aperture diameter) of the polarization-modulating element 10 is prone to become large, and it is rather undesirable in view of the current circumstances in which it is difficult to obtain a large crystalline quartz substrate with high quality.
  • the required effective diameter (clear aperture diameter) of the polarization-modulating element 10 can be kept small.
  • the distance is long to the wafer W being the last surface to be illuminated, and an element to change the polarization state like an antireflection coat on a lens or a reflecting film on a mirror is likely to be interposed in the optical path to the wafer. Therefore, this arrangement is not so preferable.
  • the antireflection coat on the lens or the reflecting film on the mirror is likely to cause the difference of reflectance depending upon the polarization states (P-polarization and S-polarization) and angles of incidence and, in turn, to change the polarization state of light.
  • At least one surface of the polarization-modulating element 10 is formed in the uneven shape and, therefore, the polarization-modulating element 10 has a thickness profile discretely (discontinuously) varying in the circumferential direction.
  • at least one surface of the polarization-modulating element 10 can also be formed in such a curved shape that the polarization-modulating element 10 has a thickness profile virtually discontinuously varying in the circumferential direction.
  • the polarization-modulating element 10 is composed of the eight elementary elements of the sector shape corresponding to the division of the effective region of the annular shape into eight segments.
  • the polarization-modulating element 10 can also be composed, for example, of eight elementary elements of a sector shape corresponding to division of the effective region of a circular shape into eight segments, or of four elementary elements of a sector shape corresponding to division of the effective region of a circular shape or annular shape into four segments, or of sixteen elementary elements of a sector shape corresponding to division of the effective region of a circular shape or annular shape into sixteen segments.
  • a variety of modification examples can be contemplated as to the shape of the effective region of the polarization-modulating element 10 , the number of segments in the division of the effective region (the number of elementary elements), and so on.
  • each elementary element 10 A- 10 D (therefore, the polarization-modulating element 10 ) is made of crystalline quartz.
  • each elementary element can also be made of another appropriate optical material with optical activity.
  • the polarization-modulating element 10 is fixedly provided in the illumination optical path, but the polarization-modulating element 10 may be arranged to be set into and away from the illumination optical path.
  • the above embodiment showed the example as a combination of the annular illumination with the S-polarized light for the wafer W, but it is also possible to combine the S-polarized light for the wafer W with multipole illumination, such as dipole or quadrupole illumination, and with circular illumination.
  • the illumination conditions for the mask M and the imaging conditions (numerical aperture, aberrations, etc.) for the wafer W can be automatically set, for example, according to the type of the pattern on the mask M or the like.
  • FIG. 9 shows a modification example in which a plurality of polarization-modulating elements are arranged in a replaceable state.
  • the modification example of FIG. 9 has a configuration similar to the embodiment shown in FIG. 1 , but it is different in that it has a turret 10 T enabling replacement of the plurality of polarization-modulating elements.
  • FIG. 10 is an illustration showing plural types of polarization-modulating elements 10 a - 10 e mounted on the turret 10 T as a replacing mechanism in FIG. 9 .
  • the plural types of polarization-modulating elements 10 a - 10 e are provided on the turret 10 T rotatable around an axis along a direction parallel to the optical axis AX, and these plural types of polarization-modulating elements 10 a - 10 e are arranged replaceable by rotation operation of the turret 10 T.
  • FIG. 10 is an illustration showing plural types of polarization-modulating elements 10 a - 10 e mounted on the turret 10 T as a replacing mechanism in FIG. 9 .
  • the plural types of polarization-modulating elements 10 a - 10 e are provided on the turret 10 T rotatable around an axis along a direction parallel to the optical axis AX, and these plural types of polarization-modulating elements 10 a -
  • the replacing mechanism for the polarization-modulating elements is not limited to the turret 10 T, but may be, for example, a slider.
  • FIGS. 11A-11E are illustrations showing respective configurations of the plural types of polarization-modulating elements 10 a - 10 e .
  • the first polarization-modulating element 10 a has the same configuration as the polarization-modulating element 10 of the embodiment shown in FIG. 5 .
  • the second polarization-modulating element 10 b has a configuration similar to the polarization-modulating element 10 a shown in FIG. 11A , but is different in that it is provided with a depolarizing member 104 c in central region 10 E.
  • This depolarizing member 104 c has a configuration similar to the depolarizer 4 c shown in FIG. 1 , and has a function of transforming incident light of linear polarization into light in a depolarized state.
  • the third polarization-modulating element 10 c has a configuration similar to the polarization-modulating element 10 a shown in FIG. 11A , but is different in that the size of the central region 10 E is larger (i.e., in that the width of the first to fourth elementary elements 10 A- 10 D is smaller).
  • the fourth polarization-modulating element 10 d has a configuration similar to the polarization-modulating element 10 c shown in FIG. 11C , but is different in that a depolarizing member 104 c is provided in the central region 10 E.
  • the fifth polarization-modulating element 10 e is constructed by combining six elementary elements 10 C, 10 F, 10 G, different from the eight elementary elements.
  • the fifth polarization-modulating element 10 e has the effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of six elementary elements 10 C, 10 F, 10 G of a sector shape as equally divided in the circumferential direction around the optical axis AX.
  • a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic.
  • the six elementary elements 10 C, 10 F, 10 G include three types of elementary elements 10 C, 10 F, 10 G with mutually different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (the Y-direction) two each.
  • the elementary elements 10 C are members having the same function as the third elementary elements 10 C shown in FIG. 7 , and thus the description of the function thereof is omitted herein.
  • the elementary elements 10 F are designed in such a thickness dF that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +1500 rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from ⁇ 30° rotation of the Z-direction around the Y-axis.
  • the elementary elements 10 G are designed in such a thickness dG that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +30° rotation of the Z-direction around the Y-axis.
  • a depolarizing member 104 c may be provided in place of the central region 10 E.
  • FIGS. 12A-12C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element.
  • the polarization-modulating element is also illustrated in a superimposed manner in order to facilitate understanding.
  • FIG. 12A shows the secondary light source 33 of an octapole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of an octapole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5 , and where the polarization-modulating element 10 a or 10 b is located in the illumination optical path. Beams passing through the secondary light source 33 of the octapole shape are set in the azimuthal polarization state.
  • a diffractive optical element beam transforming element
  • the beams passing through the respective eight circular regions 33 A- 33 D constituting the secondary light source 33 of the octapole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these eight circular regions 33 A- 33 D, i.e., with a tangential direction to the circle connecting these eight circular regions 33 A- 33 D.
  • FIG. 12A shows the example wherein the secondary light source 33 of the octapole shape is composed of the eight circular regions 33 A- 33 D, but the shape of the eight regions is not limited to the circular shape.
  • FIG. 12B shows the secondary light source 34 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5 , and where the polarization-modulating element 10 c or 10 d is located in the illumination optical path. Beams passing through the secondary light source 34 of the quadrupole shape are set in the azimuthal polarization state.
  • a diffractive optical element beam transforming element
  • the beams passing through the respective four regions 34 A, 34 C constituting the secondary light source 34 of the quadrupole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these four regions 34 A, 34 C, i.e., with a tangential direction to the circle connecting these four regions 34 A, 34 C.
  • FIG. 12B shows the example wherein the secondary light source 34 of the quadrupole shape is composed of four regions 34 A, 34 C of an almost elliptical shape, but the shape of the four regions is not limited to the almost elliptical shape.
  • FIG. 12C shows the secondary light source 35 of a hexapole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a hexapole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5 , and where the polarization-modulating element 10 e is located in the illumination optical path. Beams passing through the secondary light source 35 of the hexapole shape are set in the azimuthal polarization state.
  • a diffractive optical element beam transforming element
  • the beams passing through the respective six regions 35 C, 35 F, 35 G constituting the secondary light source 35 of the hexapole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these six regions 35 C, 35 F, 35 G, i.e., with a tangential direction to the circle connecting these six regions 35 C, 35 F, 35 G.
  • FIG. 12C shows the example wherein the secondary light source 35 of the hexapole shape is composed of the four regions 35 C, 35 F, 35 G of an almost trapezoidal shape, but the shape of the six regions is not limited to the almost trapezoidal shape.
  • FIG. 13 is an illustration schematically showing a configuration of polarization-modulating element 10 f arranged rotatable around the optical axis AX.
  • the polarization-modulating element 10 f is composed of a combination of four elementary elements 10 A, 10 C.
  • the polarization-modulating element 10 f has the effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of four elementary elements 10 A, 10 C of a sector shape as equally divided in the circumferential direction around the optical axis AX.
  • these four elementary elements 10 A, 10 C a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic.
  • the four elementary elements 10 A, 10 C include two types of elementary elements 10 A, 10 C two each with mutually different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (the Y-direction).
  • the elementary elements 10 A are members having the same function as the first elementary elements 10 A shown in FIG. 7 , and the elementary elements 10 C members having the same function as the third elementary elements 10 C shown in FIG. 7 . Therefore, the description of the functions is omitted herein.
  • a depolarizing member 104 c may be provided in place of the central region 10 E.
  • This-polarization-modulating element 10 f is arranged to be rotatable around the optical axis AX and, for example, is rotatable by +450 or ⁇ 45° around the optical axis AX.
  • FIGS. 14A-14C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element 10 f .
  • the polarization-modulating element 10 f is also illustrated in a superimposed manner in order to facilitate understanding.
  • FIG. 14A shows the secondary light source 36 ( 36 A) of a dipole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a dipole shape in the far field (or Fraunhofer diffraction region) is set in the illumination optical path, instead of the diffractive optical element 5 , and where the polarization-modulating element 10 f is located in a state at the rotation angle of 0° (standard state) in the illumination optical path.
  • beams passing through the secondary light source 36 ( 36 A) of the dipole shape are set in a vertically polarized state.
  • FIG. 14B shows the secondary light source 37 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5 , and where the polarization-modulating element 10 f is located in the state at the rotation angle of 0° (standard state) in the illumination optical path.
  • beams passing through the secondary light source 37 of the quadrupole shape are set in the azimuthal polarization state.
  • the light intensity distribution of the quadrupole shape in FIG. 14B is localized in the vertical direction (Z-direction) and in the horizontal direction (X-direction) in the plane of the drawing.
  • FIG. 14B shows the example in which the secondary light source 37 of the quadrupole shape is composed of the four circular regions 37 A, 37 C, but the shape of the four regions is not limited to the circular shape.
  • FIG. 14C shows the secondary light source 38 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape localized in the direction of +45° ( ⁇ 135°) in the plane of the drawing and in the direction of ⁇ 45° (+135°) in the plane of the drawing in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element shown in FIG.
  • a diffractive optical element beam transforming element
  • the polarization-modulating element 10 f is set in a rotated state at the rotation angle of +45° (i.e., in a state in which it is rotated by 45° clockwise relative to the standard state) in the illumination optical path.
  • the half wave plate 4 b in the polarization state converter 4 is rotated around the optical axis, whereby the linearly polarized light having the polarization direction along the direction of +45° (the direction of ⁇ 135°) is made incident to the polarization-modulating element 10 f .
  • the elementary elements 10 A have the function of rotating the polarization direction of the incident, linearly polarized light by 180 ⁇ n ⁇ 180° (n is an integer)
  • the elementary elements 10 C have the function of rotating the polarization direction of the incident, linearly polarized light by 90° ⁇ n ⁇ 180° (n is an integer). Therefore, beams passing through the secondary light source 38 of the quadrupole shape are set in the azimuthal polarization state.
  • FIG. 14C shows the example in which the secondary light source 38 of the quadrupole shape is composed of the four circular regions 38 B, 38 D, but the shape of the four regions is not limited to the circular shape.
  • the azimuthal polarization state can be realized by the secondary light source of the quadrupole shape localized in the +45° ( ⁇ 135°) direction and in the ⁇ 45° (+135°) direction, by the secondary light source of the quadrupole shape localized in the 0° (+180°) direction and in the 90° (270°) direction or in the vertical and horizontal directions, or by the secondary light source of the dipole shape localized in the 0° (+180°) direction or in the 90° (270°) direction, i.e., in the vertical or horizontal direction.
  • the polarization-modulating element composed of the eight elementary elements of the sector shape as equally divided in the circumferential direction around the optical axis AX may be arranged rotatable around the optical axis AX. For example, when the polarization-modulating element composed of the eight divisional elementary elements (e.g., the polarization-modulating element 10 a ) is rotated by +45° around the optical axis AX, as shown in FIG.
  • the beams passing through the respective eight circular regions 39 A- 39 D constituting the secondary light source 39 of the octapole shape are in the linearly polarized state having the polarization direction resulting from ⁇ 45° rotation relative to the circumferential direction of the circle connecting these eight circular regions 39 A- 39 D (i.e., relative to the tangential direction to the circle connecting these eight circular regions 39 A- 39 D).
  • an approximately azimuthal polarization state can be achieved, as shown in FIG. 15C , by rotating the polarization-modulating element (e.g., polarization-modulating element 10 a ) by +45° around the optical axis AX as shown in FIG. 15A .
  • the polarization-modulating element e.g., polarization-modulating element 10 a
  • FIG. 16 shows an example in which the polarization-modulating element is located at a position immediately before the conical axicon system 8 (i.e., at a position near the entrance side), among locations near the pupil of the illumination optical apparatus.
  • the polarization-modulating element is located at a position immediately before the conical axicon system 8 (i.e., at a position near the entrance side), among locations near the pupil of the illumination optical apparatus.
  • the zoom action of the zoom lens system 9 results in changing the size of the image of the central region 10 E projected onto the entrance surface of micro fly's eye lens 11 and the size of the images of the respective elementary elements 10 A- 10 D projected onto the entrance surface of micro fly's eye lens 11
  • the operation of the conical axicon system 8 results in changing the width in the radial direction around the optical axis AX in the images of the respective elementary elements 10 A- 10 D projected onto the entrance surface of micro fly's eye lens 11 .
  • the size of the central region 10 E can be determined with consideration to the fact that the region occupied by the central region 10 E is changed with zooming of the zoom lens 9 .
  • the apparatus is preferably configured to satisfy at least one of Conditions (1) and (2) below, as shown in FIG. 17 .
  • ⁇ A increase of the inside radius of the beam having passed through the optical system with the action of changing the annular ratio.
  • Condition (1) the width of the region of the annular shape transformed into the azimuthal polarization state by the polarization-modulating element 10 will become too small to achieve the circumferentially polarized illumination based on the secondary light source of the annular shape or multipole shape at a small annular ratio; thus it is undesirable.
  • Condition (2) the diameter of the beam passing through the central region of the polarization-modulating element 10 will become too small to achieve small- ⁇ illumination without change in the polarization state, for example, unless the polarization-modulating element 10 is set off the illumination optical path; thus it is undesirable.
  • the polarization-modulating element may be located at a position nearer the mask than the micro fly's eye lens 11 , among locations near the pupil of the illumination optical apparatus; specifically, near the pupil position of the imaging optical system 15 for projecting the image of mask blind 14 onto the mask.
  • the plurality of polarization-modulating elements may also be arranged replaceable as in the embodiment in FIGS. 9 to 11 .
  • the polarization direction can vary by virtue of this-polarization aberration.
  • the direction of the plane of polarization rotated by the polarization-modulating element 10 can be set in consideration of the influence of the polarization aberration of these optical systems.
  • a reflecting member is located in the optical path on the wafer W side with respect to the polarization-modulating element 10 , a phase difference can occur between polarization directions of light reflected by this reflecting member.
  • the direction of the plane of polarization rotated by the polarization-modulating element 10 can be set in consideration of the phase difference of the beam caused by the polarization characteristic of the reflecting surface.
  • the polarization state of the beam arriving at the wafer W as a photosensitive substrate is detected using a wafer surface polarization monitor 90 which can be attached to a side of a wafer stage (substrate stage) holding the wafer W as a photosensitive substrate.
  • the wafer surface polarization monitor 90 may be provided in the wafer stage or in a measurement stage separate from the wafer stage.
  • FIG. 19 is an illustration showing a schematic configuration of the wafer surface polarization monitor 90 for detecting the polarization state and optical intensity of the light illuminating the wafer W.
  • the wafer surface polarization monitor 90 is provided with a pinhole member 91 which can be positioned at or near the position of the wafer W.
  • Light passing through a pinhole 91 a in the pinhole member 91 travels through a collimating lens 92 located so that its front focal position is at or near the position of the image plane of the projection optical system PL, to become a nearly parallel beam, and the beam is reflected by a reflector 93 to enter a relay lens system 94 .
  • the nearly parallel beam passing through the relay lens system 94 travels through a quarter wave plate 95 as a phase shifter and through a polarization beam splitter 96 as a polarizer, and then reaches a detection surface 97 a of two-dimensional CCD 97 .
  • the detection surface 97 a of two-dimensional CCD 97 is approximately optically conjugate with the exit pupil of the projection optical system PL and is thus approximately optically conjugate with the illumination pupil plane of the illumination optical apparatus.
  • the quarter wave plate 95 is arranged rotatable around the optical axis and a setting member 98 for setting the angle of rotation around the optical axis is connected to this quarter wave plate 95 .
  • the wafer surface polarization monitor 90 is able to detect the change in the light intensity distribution on the detection surface 97 a with rotation of the quarter wave plate 95 around the optical axis by means of the setting member 98 and thereby to measure the polarization state of the illumination light from the detection result by the rotating compensator method.
  • the rotating compensator method is detailed, for example, in Tsuruta, “Pencil of Light-Applied Optics for optical engineers,” K.K. Shingijutsu Communications.
  • the polarization state of the illumination light is measured at a plurality of positions on the wafer surface while the pinhole member 90 (therefore, pinhole 90 a ) is two-dimensionally moved along the wafer surface.
  • the wafer surface polarization monitor 90 detects a change of the light intensity distribution on the two-dimensional detection surface 97 a , whereby it can measure a distribution of polarization states of the illumination light in the pupil on the basis of the detected distribution information.
  • the wafer surface polarization monitor 90 can also be configured using a half wave plate instead of the quarter wave plate 95 as a phase shifter.
  • a half wave plate instead of the quarter wave plate 95 as a phase shifter.
  • phase shifter in order to measure the polarization state, i.e., the four Stokes parameters, it is necessary to detect the change of the light intensity distribution on the detection surface 97 a in at least four different states, by changing the relative angle around the optical axis between the phase shifter and the polarizer (polarization beam splitter 96 ) or by moving the phase shifter or the polarizer away from the optical path.
  • the present embodiment is configured to rotate the quarter wave plate 95 as a phase shifter around the optical axis, but the polarization beam splitter 96 as a polarizer may be rotated around the optical axis, or both of the phase shifter and the polarizer may be rotated around the optical axis. Instead of this operation, or in addition to this operation, one or both of the quarter wave plate 95 as a phase shifter and the polarization beam splitter 96 as a polarizer may be moved into and away from the optical path.
  • the polarization state of light can vary depending upon the polarization characteristic of the reflector 93 .
  • the polarization characteristic of the reflector 93 is preliminarily known, the polarization state of the illumination light can be accurately measured by compensating the measurement result of the wafer surface polarization monitor 90 on the basis of the influence of the polarization characteristic of reflector 93 on the polarization state by some calculation.
  • the polarization state of the illumination light can also be accurately measured by compensating the measurement result in the same manner.
  • a degree of specific polarization DSP is first calculated for each of rays passing a point (or a microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane.
  • the XYZ coordinate system used in FIGS. 1, 16, and 18 will be used in the description hereinafter.
  • the above-described point (microscopic area) on the pupil corresponds to a pixel in the two-dimensional CCD 97 , and the point (microscopic area) on the image plane to XY coordinates of the pinhole 90 a.
  • Ix is the intensity of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in a specific ray passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane
  • Iy the intensity of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the specific ray.
  • This degree of specific polarization DSP is synonymous with horizontal linear polarization intensity minus vertical linear polarization intensity S 1 over total intensity S 0 , (S 1 /S 0 ).
  • a right polarization rate RSP h for horizontal polarization (polarization to become S-polarization for diffracted light by a mask pattern horizontally extending in the pattern surface), and a right polarization rate RSP v for vertical polarization (polarization to become S-polarization for diffracted light by a mask pattern vertically extending in the pattern surface) according to Eqs (4) and (5) below from the intensity Ix of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in the specific ray passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane and the intensity Iy of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the specific ray.
  • RSP h and RSP v both are 50% in ideal unpolarized illumination, RSP h is 100% in ideal horizontal polarization, and RSP v is 100% in ideal vertical polarization.
  • an average polarization degree V(Ave) can be defined as Eq (10) below for a bundle of rays passing a predetermined effective light source region and arriving at a point (microscopic area) on the image plane.
  • S 1 ′ S 1 / S 0 ( 7 )
  • S 2 ′ S 2 / S 0 ( 8 )
  • S 3 ′ S 3 / S 0 ( 9 )
  • S 0 represents the total intensity
  • S 1 horizontal linear polarization intensity minus vertical linear polarization intensity S 2 45° linear polarization intensity minus 135° linear polarization intensity
  • S 3 right-handed circular polarization intensity minus left-handed circular polarization intensity S 1 horizontal linear polarization intensity minus vertical linear polarization intensity.
  • V (Ave) ⁇ [ S 0 ( x i ,y i ) ⁇ V ( x i ,y i )]/ ⁇ S 0 ( x i ,y i ) (10)
  • S 0 (x i ,y i ) represents the total intensity S 0 for rays passing a point (or microscopic area) on a predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane
  • V(x i ,y i ) the polarization degree of a ray passing a point (or microscopic area) on the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane.
  • Ix(Ave) represents an average intensity of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in a bundle of rays passing the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane
  • Iy(Ave) an average intensity of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the bundle of rays passing the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane
  • RSP h (x i ,y i ) a right polarization rate for horizontal polarization of a ray passing a point (or microscopic area) on the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane
  • RSP h (x i ,y i ) and RSP v (x i ,y i ) both are 50% in ideal unpolarized illumination
  • RSP h (x i ,y i ) is 100% in ideal horizontal polarization
  • RSP v (x i ,y i ) is 100% in ideal vertical polarization.
  • an average specific polarization degree DSP(AVE) as Eq (13) below, for a bundle of rays passing the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane.
  • (Ix ⁇ Iy)Ave represents an average of differences between intensities of the X-directional polarization component in a bundle of rays passing the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane and intensities of the Y-directional polarization component in the bundle of rays passing the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane, Ix(x i ,y i ) the intensity of the X-directional polarization component in a ray passing a point (or microscopic area) on the predetermined effective light source region (x i ,y i ) and arriving at a point (microscopic area) on the image plane, Iy(x i ,y i ) the intensity of the Y-directional polarization component in a ray passing a point (or microscopic area) on the predetermined effective light source region (x
  • DSP(Ave) becomes 0 in ideal unpolarized illumination
  • DSP(Ave) becomes 1 in ideal horizontal polarization
  • DSP(Ave) becomes ⁇ 1 in ideal vertical polarization.
  • the interior of the predetermined effective light source region is linear polarized light if the average specific polarization rates RSP h (Ave), RSP v (Ave) in the predetermined effective light source region satisfy the following relations:
  • the desired linear polarization state with the plane of polarization in the predetermined direction is not realized in the circumferentially polarized annular illumination, the circumferentially polarized quadrupole illumination, the circumferentially polarized dipole illumination, and so on, and it is thus infeasible to achieve an improvement in the imaging performance for a pattern with a thin line width having a specific pitch direction.
  • the secondary light source 31 of the annular shape is divided into four segments, as shown in FIG. 20 , and the average specific polarization rates RSP h (Ave), RSP v (Ave) are evaluated for each of the segmental regions 31 A 1 , 31 A 2 , 31 C 1 , 31 C 2 .
  • the exposure apparatus is able to produce microdevices (semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.) by illuminating a mask (reticle) by the illumination optical apparatus (illumination step) and projecting a pattern for transcription formed on the mask, onto a photosensitive substrate by use of the projection optical system (exposure step).
  • microdevices semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.
  • the first step 301 in FIG. 9 is to deposit a metal film on each of wafers in one lot.
  • the next step 302 is to apply a photoresist onto the metal film on each wafer in the lot.
  • step 303 is to sequentially transcribe an image of a pattern on a mask into each shot area on each wafer in the lot, through the projection optical system by use of the exposure apparatus of the foregoing embodiment.
  • step 304 is to perform development of the photoresist on each wafer in the lot, and step 305 thereafter is to perform etching with the resist pattern as a mask on each wafer in the lot, thereby forming a circuit pattern corresponding to the pattern on the mask, in each shot area on each wafer.
  • devices such as semiconductor elements are produced through execution of formation of circuit patterns in upper layers and others.
  • the semiconductor device production method as described above permits us to produce the semiconductor devices with extremely fine circuit patterns at high throughput.
  • pattern forming step 401 is to execute a so-called photolithography step of transcribing a pattern on a mask onto a photosensitive substrate (a glass substrate coated with a resist or the like) by use of the exposure apparatus of the foregoing embodiment.
  • the predetermined patterns including a number of electrodes and others are formed on the photosensitive substrate.
  • the exposed substrate is subjected to steps such as a development step, an etching step, a resist removing step, etc., to form the predetermined patterns on the substrate, followed by next color filter forming step 402 .
  • the next color filter forming step 402 is to form a color filter in which a number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or in which a plurality of sets of filters of three stripes of R, G, and B are arrayed in the direction of horizontal scan lines.
  • cell assembly step 403 is carried out.
  • the cell assembly step 403 is to assemble a liquid crystal panel (liquid crystal cell), using the substrate with the predetermined patterns obtained in the pattern forming step 401 , the color filter obtained in the color filter forming step 402 , and so on.
  • a liquid crystal is poured into the space between the substrate with the predetermined patterns obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402 to produce the liquid crystal panel (liquid crystal cell).
  • module assembly step 404 is carried out to attach such components as an electric circuit, a backlight, and so on for implementing the display operation of the assembled liquid crystal panel (liquid crystal cell), to complete the liquid crystal display element.
  • the production method of the liquid crystal display element described above permits us to produce the liquid crystal display elements with extremely fine circuit patterns at high throughput.
  • the foregoing embodiment is arranged to use the KrF excimer laser light (wavelength: 248 nm) or the ArF excimer laser light (wavelength: 193 nm) as the exposure light, but, without having to be limited to this, the present invention can also be applied to other appropriate laser light sources, e.g., an F 2 laser light source for supplying laser light of the wavelength of 157 nm.
  • the foregoing embodiment described the present invention, using the exposure apparatus with the illumination optical apparatus as an example, but it is apparent that the present invention can be applied to ordinary illumination optical apparatus for illuminating the surface to be illuminated, except for the mask and wafer.
  • the technique of filling the liquid in the optical path between the projection optical system and the photosensitive substrate can be selected from the technique of locally filling the liquid as disclosed in PCT International Publication No. WO99/49504, the technique of moving a stage holding a substrate as an exposure target in a liquid bath as disclosed in Japanese Patent Application Laid-Open No. 6-124873, the technique of forming a liquid bath in a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-Open No. 10-303114, and so on.
  • the liquid is preferably one that is transparent to the exposure light, that has the refractive index as high as possible, and that is stable against the projection optical system and the photoresist applied to the surface of the substrate; for example, where the exposure light is the KrF excimer laser light or the ArF excimer laser light, pure water or deionized water can be used as the liquid.
  • the liquid can be a fluorinated liquid capable of transmitting the F 2 laser light, e.g., fluorinated oil or perfluoropolyether (PFPE).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Polarising Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)
  • Liquid Crystal (AREA)

Abstract

A polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state, the polarization-modulating element being made of an optical material with optical activity and having a circumferentially varying thickness profile.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a Continuation of application Ser. No. 13/912,832 filed Jun. 7, 2013, which in turn is a Continuation of application Ser. No. 13/067,958 filed Jul. 11, 2011 (now U.S. Pat. No. 9,140,990), which is a Continuation of application Ser. No. 12/461,801 filed Aug. 25, 2009 (abandoned), which is Continuation of application Ser. No. 11/347,421 filed Feb. 6, 2006 (abandoned), which is a Continuation-In-Part of Application No. PCT/JP2005/000407 filed on Jan. 14, 2005, which claims priority to Japanese Application Nos. 2004-030555 filed Feb. 6, 2004 and 2004-358218 filed Dec. 10, 2004. The disclosures of the prior applications are hereby incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • Field of the Invention
  • The present invention relates to a polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method and, more particularly, to an exposure apparatus for production of microdevices such as semiconductor elements, image pickup elements, liquid crystal display elements, and thin-film magnetic heads by lithography.
  • Related Background Art
  • In the typical exposure apparatus of this type, a beam emitted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source as a substantial surface illuminant consisting of a number of light sources. Beams from the secondary light source (generally, an illumination pupil distribution formed on or near an illumination pupil of the illumination optical apparatus) are limited through an aperture stop disposed near the rear focal plane of the fly's eye lens and then enter a condenser lens.
  • The beams condensed by the condenser lens superposedly illuminate a mask on which a predetermined pattern is formed. The light passing through the pattern of the mask is focused on a wafer through a projection optical system. In this manner, the mask pattern is projected for exposure (or transcribed) onto the wafer. The pattern formed on the mask is a highly integrated pattern, and, in order to accurately transcribe this fine pattern onto the wafer, it is indispensable to obtain a uniform illuminance distribution on the wafer.
  • For example, Japanese Patent No. 3246615 owned by the same Applicant of the present application discloses the following technology for realizing the illumination condition suitable for faithful transcription of the fine pattern in arbitrary directions: the secondary light source is formed in an annular shape on the rear focal plane of the fly's eye lens and the beams passing the secondary light source of the annular shape are set to be in a linearly polarized state with a direction of polarization along the circumferential direction thereof (hereinafter referred to as a “azimuthal polarization state”).
  • SUMMARY OF THE INVENTION
  • An object of the embodiment is to transform incident light in a linearly polarized state having a direction of polarization virtually along a single direction, into light in a azimuthal polarization state having a direction of polarization virtually along a circumferential direction, while suppressing the loss of light quantity.
  • Another object of the embodiment is to form an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity, using a polarization-modulating element capable of transforming incident light in a linearly polarized state having a direction of polarization virtually along a single direction, into light in a azimuthal polarization state having a direction of polarization virtually along a circumferential direction.
  • Another object of the embodiment is to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput, using an illumination optical apparatus capable of forming an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.
  • In order to achieve the above objects, a first aspect of the embodiment is to provide a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state,
  • the polarization-modulating element being made of an optical material with optical activity and having a circumferentially varying thickness profile.
  • A second aspect of the embodiment is to provide an illumination optical apparatus comprising a light source for supplying illumination light, and the polarization-modulating element of the first aspect disposed in an optical path between the light source and a surface to be illuminated.
  • A third aspect of the embodiment is to provide an illumination optical apparatus for illuminating a surface to be illuminated, based on illumination light supplied from a light source,
  • the illumination optical apparatus satisfying the following relations:

  • RSPh(Ave)>70%, and RSPv(Ave)>70%,
  • where RSPh(Ave) is an average specific polarization rate about polarization in a first direction in a predetermined effective light source region in a light intensity distribution formed in an illumination pupil plane of the illumination optical apparatus or in a plane conjugate with the illumination pupil plane, and RSPv(Ave) is an average specific polarization rate about polarization in a second direction in the predetermined effective light source region.
  • The average specific polarization rates above are defined as follows:

  • RSPh(Ave)=Ix(Ave)/(Ix+Iy)Ave

  • RSPv(Ave)=Iy(Ave)/(Ix+Iy)Ave.
  • In the above equations, Ix(Ave) represents an average intensity of a polarization component in the first direction in a bundle of rays passing through the predetermined effective light source region and arriving at a point on an image plane, Iy(Ave) an average intensity of a polarization component in the second direction in a bundle of rays passing through the predetermined effective light source region and arriving at a point on the image plane, and (Ix+Iy)Ave an average intensity of an entire beam passing through the predetermined effective light source region. The illumination pupil plane of the illumination optical apparatus can be defined as a plane in the optical relation of Fourier transform with the surface to be illuminated and, where the illumination optical apparatus is combined with a projection optical system, it can be defined as a plane in the illumination optical apparatus optically conjugate with an aperture stop of the projection optical system. The plane conjugate with the illumination pupil plane of the illumination optical apparatus is not limited to a plane in the illumination optical apparatus, but, for example, in a case where the illumination optical apparatus is combined with a projection optical system, it may be a plane in the projection optical system, or may be a plane in a polarization measuring device for measuring a polarization state in the illumination optical apparatus (or in the projection exposure apparatus).
  • A fourth aspect of the embodiment is to provide an exposure apparatus comprising the illumination optical apparatus of the second aspect or the third aspect, the exposure apparatus projecting a pattern onto a photosensitive substrate through the illumination optical apparatus.
  • A fifth aspect of the embodiment is to provide an exposure method of projecting a pattern onto a photosensitive substrate, using the illumination optical apparatus of the second aspect or the third aspect.
  • A sixth aspect of the embodiment is to provide a production method of a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state, comprising:
  • a step of preparing an optical material with optical activity; and
  • a step of providing the optical material with a circumferentially varying thickness profile.
  • The polarization-modulating element of the embodiment is made of the optical material with optical activity, for example, like crystalline quartz, and has the circumferentially varying thickness profile. The thickness profile herein is set, for example, so that light in a linearly polarized state having a direction of polarization virtually along a single direction is transformed into light in a azimuthal polarization state having a direction of polarization virtually along the circumferential direction. In consequence, the embodiment realizes the polarization-modulating element capable of transforming the incident light in the linearly polarized state having the direction of polarization virtually along a single direction, into light in the azimuthal polarization state having the direction of polarization virtually along the circumferential direction, while suppressing the loss of light quantity. Particularly, since the polarization-modulating element is made of the optical material with optical activity, the invention has the advantage that the polarization-modulating element is extremely easy to produce, for example, as compared with wave plates.
  • Therefore, since the illumination optical apparatus of the embodiment uses the polarization-modulating element capable of transforming the incident light in the linearly polarized state having the direction of polarization virtually along a single direction, into the light in the azimuthal polarization state having the direction of polarization virtually along the circumferential direction, it is able to form an illumination pupil distribution of an annular shape in the azimuthal polarization state while well suppressing the loss of light quantity. Since the exposure apparatus and exposure method of the embodiment use the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, they are able to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput and, eventually, to produce good devices with high throughput.
  • The embodiment will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the embodiment.
  • Further scope of applicability of the embodiment will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is an illustration to illustrate the action of a conical axicon system on a secondary light source of an annular shape.
  • FIG. 3 is an illustration to illustrate the action of a zoom lens on a secondary light source of an annular shape.
  • FIG. 4 is a perspective view schematically showing an internal configuration of a polarization monitor in FIG. 1.
  • FIG. 5 is an illustration schematically showing a configuration of a polarization-modulating element in FIG. 1.
  • FIG. 6 is an illustration to illustrate the optical activity of crystalline quartz.
  • FIG. 7 is an illustration schematically showing a secondary light source of an annular shape set in a azimuthal polarization state by the action of the polarization-modulating element.
  • FIG. 8 is an illustration schematically showing a secondary light source of an annular shape set in a radially polarized state by the action of the polarization-modulating element.
  • FIG. 9 is an illustration showing a modification example in which a plurality of polarization-modulating elements are arranged in a replaceable state.
  • FIG. 10 is an illustration showing plural types of polarization-modulating elements 10 a-10 c mounted on a turret 10T as a replacing mechanism in FIG. 9.
  • FIGS. 11A, 11B, 11C, 11D and 11E are illustrations showing respective configurations of plural types of polarization-modulating elements 10 a-10 e, respectively.
  • FIGS. 12A, 12B and 12C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element, respectively.
  • FIG. 13 is an illustration schematically showing a configuration of polarization-modulating element 10 f arranged rotatable around the optical axis AX.
  • FIGS. 14A, 14B and 14C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of polarization-modulating element 10 f, respectively.
  • FIGS. 15A, 15B and 15C are illustrations schematically showing examples of the secondary light source obtained when the polarization-modulating element composed of elementary elements of a sector shape is arranged rotatable around the optical axis AX, respectively.
  • FIG. 16 is an illustration showing an example in which the polarization-modulating element is located at a position immediately before conical axicon system 8 (or at a position near the entrance side), among locations near the pupil of the illumination optical apparatus.
  • FIG. 17 is an illustration for explaining Conditions (1) and (2) to be satisfied in the modification example shown in FIG. 16.
  • FIG. 18 is an illustration showing an example in which the polarization-modulating element is located near the pupil position of imaging optical system 15, among locations near the pupil of the illumination optical apparatus.
  • FIG. 19 is an illustration showing a schematic configuration of wafer surface polarization monitor 90 for detecting a polarization state and light intensity of light illuminating a wafer W.
  • FIG. 20 is an illustration showing a secondary light source 31 of an annular shape obtained when a quartered polarization-modulating element 10 f is used to implement quartered, circumferentially polarized annular illumination.
  • FIG. 21 is a flowchart of a procedure of producing semiconductor devices as microdevices.
  • FIG. 22 is a flowchart of a procedure of producing a liquid crystal display element as a microdevice.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Embodiments of the present invention will be described based on the accompanying drawings.
  • FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention. In FIG. 1, the Z-axis is defined along a direction of a normal to a wafer W being a photosensitive substrate, the Y-axis along a direction parallel to the plane of FIG. 1 in the plane of the wafer W, and the X-axis along a direction of a normal to the plane of FIG. 1 in the plane of wafer W. With reference to FIG. 1, the exposure apparatus of the present embodiment is provided with a light source 1 for supplying exposure radiation (light) [(illumination light)].
  • The light source 1 can be, for example, a KrF excimer laser light source for supplying light with the wavelength of 248 nm, an ArF excimer laser light source for supplying light with the wavelength of 193 nm, or the like. A nearly parallel beam emitted along the Z-direction from the light source 1 has a cross section of a rectangular shape elongated along the X-direction, and is incident to a beam expander 2 consisting of a pair of lenses 2 a and 2 b. The lenses 2 a and 2 b have a negative refracting power and a positive refracting power, respectively, in the plane of FIG. 1 (or in the YZ plane). Therefore, the beam incident to the beam expander 2 is enlarged in the plane of FIG. 1 and shaped into a beam having a cross section of a predetermined rectangular shape.
  • The nearly parallel beam passing through the beam expander 2 as a beam shaping optical system is deflected into the Y-direction by a bending mirror 3, and then travels through a quarter wave plate 4 a, a half wave plate 4 b, a depolarizer (depolarizing element) 4 c, and a diffractive optical element 5 for annular illumination to enter an afocal lens 6. Here the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c constitute a polarization state converter 4, as described later. The afocal lens 6 is an afocal system (afocal optic) set so that the front focal position thereof approximately coincides with the position of the diffractive optical element 5 and so that the rear focal position thereof approximately coincides with the position of a predetermined plane 7 indicated by a dashed line in the drawing.
  • In general, a diffractive optical element is constructed by forming level differences with the pitch of approximately the wavelength of exposure light (illumination light) in a substrate and has the action of diffracting an incident beam at desired angles. Specifically, the diffractive optical element 5 for annular illumination has the following function: when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of an annular shape in its far field (or Fraunhofer diffraction region).
  • Therefore, the nearly parallel beam incident to the diffractive optical element 5 as a beam transforming element forms a light intensity distribution of an annular shape on the pupil plane of the afocal lens 6 and then emerges as a nearly parallel beam from the afocal lens 6. In an optical path between front lens unit 6 a and rear lens unit 6 b of the afocal lens 6 there is a conical axicon system 8 arranged on or near the pupil plane thereof, and the detailed configuration and action thereof will be described later. For easier description, the fundamental configuration and action will be described below, in disregard of the action of the conical axicon system 8.
  • The beam through the afocal lens 6 travels through a zoom lens 9 for variation of σ-value and a polarization-modulating element 10 and then enters a micro fly's eye lens (or fly's eye lens) 11 as an optical integrator. The configuration and action of the polarization-modulating element 10 will be described later. The micro fly's eye lens 11 is an optical element consisting of a number of micro lenses with a positive refracting power arranged lengthwise and breadthwise and densely. In general, a micro fly's eye lens is constructed, for example, by forming a micro lens group by etching of a plane-parallel plate.
  • Here each micro lens forming the micro fly's eye lens is much smaller than each lens element forming a fly's eye lens. The micro fly's eye lens is different from the fly's eye lens consisting of lens elements spaced from each other, in that a number of micro lenses (micro refracting surfaces) are integrally formed without being separated from each other. In the sense that lens elements with a positive refracting power are arranged lengthwise and breadthwise, however, the micro fly's eye lens is a wavefront splitting optical integrator of the same type as the fly's eye lens. Detailed explanation concerning the micro fly's eye lens capable of being used in the present invention is disclosed, for example, in U.S. Pat. No. 6,913,373(B2) which is incorporated herein by reference in its entirety.
  • The position of the predetermined plane 7 is arranged near the front focal position of the zoom lens 9, and the entrance surface of the micro fly's eye lens 11 is arranged near the rear focal position of the zoom lens 9. In other words, the zoom lens 9 arranges the predetermined plane 7 and the entrance surface of the micro fly's eye lens 11 substantially in the relation of Fourier transform and eventually arranges the pupil plane of the afocal lens 6 and the entrance surface of the micro fly's eye lens 11 approximately optically conjugate with each other.
  • Accordingly, for example, an illumination field of an annular shape centered around the optical axis AX is formed on the entrance surface of the micro fly's eye lens 11, as on the pupil plane of the afocal lens 6. The entire shape of this annular illumination field similarly varies depending upon the focal length of the zoom lens 9. Each micro lens forming the micro fly's eye lens 11 has a rectangular cross section similar to a shape of an illumination field to be formed on a mask M (eventually, a shape of an exposure region to be formed on a wafer W).
  • The beam incident to the micro fly's eye lens 11 is two-dimensionally split by a number of micro lenses to form on or near the rear focal plane (eventually on the illumination pupil) a secondary light source having much the same light intensity distribution as the illumination field formed by the incident beam, i.e., a secondary light source consisting of a substantial surface illuminant of an annular shape centered around the optical axis AX. Beams from the secondary light source formed on or near the rear focal plane of the micro fly's eye lens 11 travel through beam splitter 12 a and condenser optical system 13 to superposedly illuminate a mask blind 14.
  • In this manner, an illumination field of a rectangular shape according to the shape and focal length of each micro lens forming the micro fly's eye lens 11 is formed on the mask blind 14 as an illumination field stop. The internal configuration and action of polarization monitor 12 incorporating a beam splitter 12 a will be described later. Beams through a rectangular aperture (light transmitting portion) of the mask blind 14 are subject to light condensing action of imaging optical system 15 and thereafter superposedly illuminate the mask M on which a predetermined pattern is formed.
  • Namely, the imaging optical system 15 forms an image of the rectangular aperture of the mask blind 14 on the mask M. A beam passing through the pattern of mask M travels through a projection optical system PL to form an image of the mask pattern on the wafer W being a photosensitive substrate. In this manner, the pattern of the mask M is sequentially printed in each exposure area on the wafer W through full-wafer exposure or scan exposure with two-dimensional drive control of the wafer W in the plane (XY plane) perpendicular to the optical axis AX of the projection optical system PL.
  • In the polarization state converter 4, the quarter wave plate 4 a is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it transforms incident light of elliptical polarization into light of linear polarization. The half wave plate 4 b is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it changes the plane of polarization of linearly polarized light incident thereto. The depolarizer 4 c is composed of a wedge-shaped crystalline quartz prism and a wedge-shaped fused silica prism having complementary shapes. The crystalline quartz prism and the fused silica prism are constructed as an integral prism assembly so as to be set into and away from the illumination optical path.
  • Where the light source 1 is the KrF excimer laser light source or the ArF excimer laser light source, light emitted from these light sources typically has the degree of polarization of 95% or more and light of almost linear polarization is incident to the quarter wave plate 4 a. However, if a right-angle prism as a back-surface reflector is interposed in the optical path between the light source 1 and the polarization state converter 4, the linearly polarized light will be changed into elliptically polarized light by virtue of total reflection in the right-angle prism unless the plane of polarization of the incident, linearly polarized light agrees with the P-polarization plane or S-polarization plane.
  • In the case of the polarization state converter 4, for example, even if light of elliptical polarization is incident thereto because of the total reflection in the right-angle prism, light of linear polarization transformed by the action of the quarter wave plate 4 a will be incident to the half wave plate 4 b. Where the crystallographic axis of the half wave plate 4 b is set at an angle of 0° or 90° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will pass as it is, without change in the plane of polarization.
  • Where the crystallographic axis of the half wave plate 4 b is set at an angle of 45° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will be transformed into light of linear polarization with change of polarization plane of 90°. Furthermore, where the crystallographic axis of the crystalline quartz prism in the depolarizer 4 c is set at an angle of 45° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will be transformed (or depolarized) into light in an unpolarized state.
  • The polarization state converter 4 is arranged as follows: when the depolarizer 4 c is positioned in the illumination optical path, the crystallographic axis of the crystalline quartz prism makes the angle of 45° relative to the polarization plane of the incident, linearly polarized light. Incidentally, where the crystallographic axis of the crystalline quartz prism is set at the angle of 0° or 90° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will pass as it is, without change of the polarization plane. Where the crystallographic axis of the half wave plate 4 b is set at an angle of 22.5° relative to the polarization plane of incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will be transformed into light in an unpolarized state including a linear polarization component directly passing without change of the polarization plane and a linear polarization component with the polarization plane rotated by 90°.
  • The polarization state converter 4 is arranged so that light of linear polarization is incident to the half wave plate 4 b, as described above, and, for easier description hereinafter, it is assumed that light of linear polarization having the direction of polarization (direction of the electric field) along the Z-axis in FIG. 1 (hereinafter referred to as “Z-directionally polarized light”) is incident to the half wave plate 4 b. When the depolarizer 4 c is positioned in the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane (direction of polarization) of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b passes as kept as Z-directionally polarized light without change of the polarization plane and enters the crystalline quartz prism in the depolarizer 4 c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the crystalline quartz prism is transformed into light in an unpolarized state.
  • The light depolarized through the crystalline quartz prism travels through the quartz prism as a compensator for compensating the traveling direction of the light and is incident into the diffractive optical element 5 while being in the depolarized state. On the other hand, if the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will be rotated in the polarization plane by 90° and transformed into light of linear polarization having the polarization direction (direction of the electric field) along the X-direction in FIG. 1 (hereinafter referred to as “X-directionally polarized light”) and the X-directionally polarized light will be incident to the crystalline quartz prism in the depolarizer 4 c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the incident, X-directionally polarized light as well, the light of X-directional polarization incident to the crystalline quartz prism is transformed into light in the depolarized state, and the light travels through the quartz prism to be incident in the depolarized state into the diffractive optical element 5.
  • In contrast, when the depolarizer 4 c is set away from the illumination optical path, if the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will pass as kept as Z-directionally polarized light without change of the polarization plane, and will be incident in the Z-directionally polarized state into the diffractive optical element 5. If the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto on the other hand, the light of Z-directional polarization incident to the half wave plate 4 b will be transformed into light of X-directional polarization with the polarization plane rotated by 90°, and will be incident in the X-directionally polarized state into the diffractive optical element 5.
  • In the polarization state converter 4, as described above, the light in the depolarized state can be made incident to the diffractive optical element 5 when the depolarizer 4 c is set and positioned in the illumination optical path. When the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the Z-directionally polarized state can be made incident to the diffractive optical element 5. Furthermore, when the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the X-directionally polarized state can be made incident to the diffractive optical element 5.
  • In other words, the polarization state converter 4 is able to switch the polarization state of the incident light into the diffractive optical element 5 (therefore, the polarization state of light to illuminate the mask M and wafer W) between the linearly polarized state and the unpolarized state through the action of the polarization state converter consisting of the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c, and, in the case of the linearly polarized state, it is able to switch between mutually orthogonal polarization states (between the Z-directional polarization and the X-directional polarization).
  • Furthermore, when the polarization state converter 4 is so set that the half wave plate 4 b and depolarizer 4 c both are set away from the illumination optical path and that the crystallographic axis of the quarter wave plate 4 a makes a predetermined angle relative to the incident, elliptically polarized light, light in a circularly polarized state can be made incident to the diffractive optical element 5. In general, the polarization state of incident light to the diffractive optical element 5 can also be set in a linearly polarized state having a direction of polarization along an arbitrary direction by the action of the half wave plate 4 b.
  • Next, the conical axicon system 8 is composed of a first prism member 8 a whose plane is kept toward the light source and whose refracting surface of a concave conical shape is kept toward the mask, and a second prism member 8 b whose plane is kept toward the mask and whose refracting surface of a convex conical shape is kept toward the light source, in order from the light source side. The refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are formed in a complementary manner so as to be able to be brought into contact with each other. At least one of the first prism member 8 a and the second prism member 8 b is arranged movable along the optical axis AX, so that the spacing can be varied between the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b.
  • In a state in which the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are in contact with each other, the conical axicon system 8 functions as a plane-parallel plate and has no effect on the secondary light source of the annular shape formed. However, when the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are spaced from each other, the conical axicon system 8 functions a so-called beam expander. Therefore, the angle of the incident beam to the predetermined plane 7 varies according to change in the spacing of the conical axicon system 8.
  • FIG. 2 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape. With reference to FIG. 2, the secondary light source 30 a of the minimum annular shape formed in a state where the spacing of the conical axicon system 8 is zero and where the focal length of the zoom lens 9 is set at the minimum (this state will be referred to hereinafter as a “standard state”) is changed into secondary light source 30 b of an annular shape with the outside diameter and inside diameter both enlarged and without change in the width (half of the difference between the inside diameter and the outside diameter: indicated by arrows in the drawing) when the spacing of the conical axicon system 8 is increased from zero to a predetermined value. In other words, an annular ratio (inside diameter/outside diameter) and size (outside diameter) both vary through the action of the conical axicon system 8, without change in the width of the secondary light source of the annular shape.
  • FIG. 3 is an illustration to illustrate the action of the zoom lens on the secondary light source of the annular shape. With reference to FIG. 3, the secondary light source 30 a of the annular shape formed in the standard state is changed into secondary light source 30 c of an annular shape whose entire shape is similarly enlarged by increasing the focal length of the zoom lens 9 from the minimum to a predetermined value. In other words, the width and size (outside diameter) both vary through the action of zoom lens 9, without change in the annular ratio of the secondary light source of the annular shape.
  • FIG. 4 is a perspective view schematically showing the internal configuration of the polarization monitor shown in FIG. 1. With reference to FIG. 4, the polarization monitor 12 is provided with a first beam splitter 12 a disposed in the optical path between the micro fly's eye lens 11 and the condenser optical system 13. The first beam splitter 12 a has, for example, the form of a non-coated plane-parallel plate made of quartz glass (i.e., raw glass), and has a function of taking reflected light in a polarization state different from a polarization state of incident light, out of the optical path.
  • The light taken out of the optical path by the first beam splitter 12 a is incident to a second beam splitter 12 b. The second beam splitter 12 b has, for example, the form of a non-coated plane-parallel plate made of quartz glass as the first beam splitter 12 a does, and has a function of generating reflected light in a polarization state different from the polarization state of incident light. The polarization monitor is so set that the P-polarized light for the first beam splitter 12 a becomes the S-polarized light for the second beam splitter 12 b and that the S-polarized light for the first beam splitter 12 a becomes the P-polarized light for the second beam splitter 12 b.
  • Light transmitted by the second beam splitter 12 b is detected by first light intensity detector 12 c, while light reflected by the second beam splitter 12 b is detected by second light intensity detector 12 d. Outputs from the first light intensity detector 12 c and from the second light intensity detector 12 d are supplied each to a controller (not shown). The controller drives the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c constituting the polarization state converter 4, according to need.
  • As described above, the reflectance for the P-polarized light and the reflectance for the S-polarized light are substantially different in the first beam splitter 12 a and in the second beam splitter 12 b. In the polarization monitor 12, therefore, the reflected light from the first beam splitter 12 a includes the S-polarization component (i.e., the S-polarization component for the first beam splitter 12 a and P-polarization component for the second beam splitter 12 b), for example, which is approximately 10% of the incident light to the first beam splitter 12 a, and the P-polarization component (i.e., the P-polarization component for the first beam splitter 12 a and S-polarization component for the second beam splitter 12 b), for example, which is approximately 1% of the incident light to the first beam splitter 12 a.
  • The reflected light from the second beam splitter 12 b includes the P-polarization component (i.e., the P-polarization component for the first beam splitter 12 a and S-polarization component for the second beam splitter 12 b), for example, which is approximately 10%×1%=0.1% of the incident light to the first beam splitter 12 a, and the S-polarization component (i.e., the S-polarization component for the first beam splitter 12 a and P-polarization component for the second beam splitter 12 b), for example, which is approximately 1% 10%=0.1% of the incident light to the first beam splitter 12 a.
  • In the polarization monitor 12, as described above, the first beam splitter 12 a has the function of extracting the reflected light in the polarization state different from the polarization state of the incident light out of the optical path in accordance with its reflection characteristic. As a result, though there is slight influence of variation of polarization due to the polarization characteristic of the second beam splitter 12 b, it is feasible to detect the polarization state (degree of polarization) of the incident light to the first beam splitter 12 a and, therefore, the polarization state of the illumination light to the mask M, based on the output from the first light intensity detector 12 c (information about the intensity of transmitted light from the second beam splitter 12 b, i.e., information about the intensity of light virtually in the same polarization state as that of the reflected light from the first beam splitter 12 a).
  • The polarization monitor 12 is so set that the P-polarized light for the first beam splitter 12 a becomes the S-polarized light for the second beam splitter 12 b and that the S-polarized light for the first beam splitter 12 a becomes the P-polarized light for the second beam splitter 12 b. As a result, it is feasible to detect the light quantity (intensity) of the incident light to the first beam splitter 12 a and, therefore, the light quantity of the illumination light to the mask M, with no substantial effect of the change in the polarization state of the incident light to the first beam splitter 12 a, based on the output from the second light intensity detector 12 d (information about the intensity of light successively reflected by the first beam splitter 12 a and the second beam splitter 12 b).
  • In this manner, it is feasible to detect the polarization state of the incident light to the first beam splitter 12 a and, therefore, to determine whether the illumination light to the mask M is in the desired unpolarized state, linearly polarized state, or circularly polarized state, using the polarization monitor 12. When the controller determines that the illumination light to the mask M (eventually, to the wafer W) is not in the desired unpolarized state, linearly polarized state, or circularly polarized state, based on the detection result of the polarization monitor 12, it drives and adjusts the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c constituting the polarization state converter 4 so that the state of the illumination light to the mask M can be adjusted into the desired unpolarized state, linearly polarized state, or circularly polarized state.
  • Quadrupole illumination can be implemented by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for quadrupole illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a quadrupole shape in the far field thereof. Therefore, the beam passing through the diffractive optical element for quadrupole illumination forms an illumination field of a quadrupole shape consisting of four circular illumination fields centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 11. As a result, the secondary light source of the same quadrupole shape as the illumination field formed on the entrance surface is also formed on or near the rear focal plane of the micro fly's eye lens 11.
  • In addition, ordinary circular illumination can be implemented by setting a diffractive optical element for circular illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for circular illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a circular shape in the far field. Therefore, a beam passing through the diffractive optical element for circular illumination forms a circular illumination field centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 11. As a result, the secondary light source of the same circular shape as the illumination field formed on the entrance surface is also formed on or near the rear focal plane of the micro fly's eye lens 11.
  • Furthermore, a variety of multipole illuminations (dipole illumination, octapole illumination, etc.) can be implemented by setting other diffractive optical elements for multipole illuminations (not shown), instead of the diffractive optical element 5 for annular illumination. Likewise, modified illuminations in various forms can be implemented by setting diffractive optical elements with appropriate characteristics (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
  • FIG. 5 is an illustration schematically showing the configuration of the polarization-modulating element shown in FIG. 1. FIG. 6 is an illustration to illustrate the optical activity of crystalline quartz. FIG. 7 is an illustration schematically showing the secondary light source of the annular shape set in the azimuthal polarization state by the action of the polarization-modulating element. The polarization-modulating element 10 according to the present embodiment is located immediately before the micro fly's eye lens 11, i.e., on or near the pupil of the illumination optical apparatus (1 to PL). Therefore, in the case of the annular illumination, the beam having an approximately annular cross section centered around the optical axis AX is incident to the polarization-modulating element 10.
  • With reference to FIG. 5, the polarization-modulating element 10 has an effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of eight elementary elements of a sector shape as circumferentially equally divided around the optical axis AX. Among these eight elementary elements, a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic. Namely, the eight elementary elements include four types of elementary elements 10A-10D two each with different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (Y-direction).
  • Specifically, the thickness of the first elementary elements 10A is the largest, the thickness of the fourth elementary elements 101D is the smallest, and the thickness of the second elementary elements 10B is set larger than the thickness of the third elementary elements 10C. As a result, one surface (e.g., the entrance surface) of the polarization-modulating element 10 is planar, while the other surface (e.g., the exit surface) is uneven because of the differences among the thicknesses of the elementary elements 10A-10D. It is also possible to form the both surfaces (the entrance surface and exit surface) of the polarization-modulating element 10 in an uneven shape.
  • In the present embodiment, each elementary element 10A-10D is made of crystalline quartz as a crystalline material being an optical material with optical activity, and the crystallographic axis of each elementary element 10A-10D is set to be approximately coincident with the optical axis AX, i.e., with the traveling direction of incident light. The optical activity of crystalline quartz will be briefly described below with reference to FIG. 6. With reference to FIG. 6, an optical member 100 of a plane-parallel plate shape made of crystalline quartz and in a thickness d is arranged so that its crystallographic axis coincides with the optical axis AX. In this case, by virtue of the optical activity of the optical member 100, linearly polarized light incident thereto emerges in a state in which its-polarization direction is rotated by θ around the optical axis AX.
  • At this time, the rotation angle (angle of optical rotation) θ of the polarization direction due to the optical activity of the optical member 100 is represented by Eq (a) below, using the thickness d of the optical member 100 and the rotatory power ρ of crystalline quartz.

  • θ=d·ρ  (a)
  • In general, the rotatory power ρ of crystalline quartz has wavelength dependence (a property that the value of the optical rotatory power differs depending upon the wavelength of light used: optical rotatory dispersion) and, specifically, it tends to increase with decrease in the wavelength of light used. According to the description on page 167 in “Applied Optics II,” the rotatory power ρ of crystalline quartz for light having the wavelength of 250.3 nm is 153.9°/mm.
  • In the present embodiment, the first elementary elements 10A are designed in such a thickness dA that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +180° rotation of the Z-direction around the Y-axis, i.e., along the Z-direction. In this case, therefore, the polarization direction of beams passing through a pair of arc (bow shape) regions 31A formed by beams subject to the optical rotating action of a pair of first elementary elements 10A, in the secondary light source 31 of the annular shape shown in FIG. 7, is the Z-direction.
  • The second elementary elements 10B are designed in such a thickness dB that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +135° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from −45° rotation of the Z-direction around the Y-axis. In this case, therefore, the polarization direction of beams passing through a pair of arc (bow shape) regions 31B formed by beams subject to the optical rotating action of a pair of second elementary elements 10B, in the secondary light source 31 of the annular shape shown in FIG. 7, is a direction obtained by rotating the Z-direction by −45° around the Y-axis.
  • The third elementary elements 10C are designed in such a thickness dC that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +90° rotation of the Z-direction around the Y-axis, i.e., along the X-direction. In this case, therefore, the polarization direction of beams passing through a pair of arc (bow shape) regions 31C formed by beams subject to the optical rotating action of a pair of third elementary elements 10C, in the secondary light source 31 of the annular shape shown in FIG. 7, is the X-direction.
  • The fourth elementary elements 10D are designed in such a thickness dD that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +45° rotation of the Z-direction around the Y-axis. In this case, therefore, the polarization direction of beams passing through a pair of are (bow shape) regions 31D formed by beams subject to the optical rotating action of a pair of fourth elementary elements 10D, in the secondary light source 31 of the annular shape shown in FIG. 7, is a direction obtained by rotating the Z-direction by +45° around the Y-axis.
  • The polarization-modulating element 10 can be constructed by combining the eight elementary elements prepared separately, or the polarization-modulating element 10 can also be constructed by forming the required uneven shape (level differences) in a crystalline quartz substrate of a plane-parallel plate shape. For allowing the ordinary circular illumination with the polarization-modulating element 10 being kept in the optical path, the polarization-modulating element 10 is provided with a central region 10E of a circular shape in the size not less than 3/10, preferably, not less than ⅓ of the radial size of the effective region of the polarization-modulating element 10 and without optical activity. The central region 10E may be made of an optical material without optical activity, for example, like quartz, or may be simply a circular aperture. It is, however, noted that the central region 10E is not an essential element for the polarization-modulating element 10. The size of the central region 10E determines the boundary between the region in the azimuthal polarization state and the other region.
  • In the present embodiment, on the occasion of the circumferentially polarized annular illumination (modified illumination in which beams passing through the secondary light source of the annular shape are set in the azimuthal polarization state), the linearly polarized light having the polarization direction along the Z-direction is made incident to the polarization-modulating element 10. As a result, as shown in FIG. 7, the secondary light source of the annular shape (illumination pupil distribution of annular shape) 31 is formed on or near the rear focal plane of the micro fly's eye lens 11, and beams passing through this secondary light source 31 of the annular shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective arc (bow shape) regions 31A-31D constituting the secondary light source 31 of the annular shape turn into a linearly polarized state having the polarization direction approximately coincident with a tangential direction to a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 31A-31D.
  • In this manner, the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the optical rotating action of the polarization-modulating element 10. In other words, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity. Furthermore, since the present embodiment uses the polarizing action of the optical elements, it has the excellent effect that the polarization-modulating element itself is extremely easy to produce and, typically, the thickness tolerance of each elementary element can be set to be extremely loose.
  • In the circumferentially polarized annular illumination based on the illumination pupil distribution of the annular shape in the azimuthal polarization state, the light illuminating the wafer W as a last surface to be illuminated is in a polarized state in which the principal component is S-polarized light. Here the S-polarized light is linearly polarized light having the polarization direction along a direction normal to the plane of incidence (i.e., polarized light with the electric vector oscillating in the direction normal to the plane of incidence). The plane of incidence is defined as follows: when light arrives at a boundary surface of a medium (surface to be illuminated: surface of wafer W), the plane of incidence is a plane including a normal to the boundary surface at that point and the direction of incidence of light.
  • Consequently, the circumferentially polarized annular illumination realizes an improvement in the optical performance (depth of focus and the like) of the projection optical system and enables formation of a mask pattern image with high contrast on the wafer (photosensitive substrate). Namely, since the exposure apparatus of the present embodiment uses the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, it is able to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput.
  • Incidentally, the present embodiment enables radially polarized annular illumination (modified illumination in which beams passing through the secondary light source of the annular shape are set in a radially polarized state) by injecting linearly polarized light having the polarization direction along the X-direction into the polarization-modulating element 10 and thereby setting the beams passing through the secondary light source 32 of the annular shape in the radially polarized state as shown in FIG. 8. In the radially polarized state, beams passing through the respective arc (bow shape) regions 32A-32D constituting the secondary light source 32 of the annular shape are in the linearly polarized state having the polarization direction approximately coincident with a radial direction of a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 32A-32D.
  • In the radially polarized annular illumination based on the illumination pupil distribution of the annular shape in the radially polarized state, the light illuminating the wafer W as a last surface to be illuminated is in a polarized state in which the principal component is P-polarized light. The P-polarized light herein is linearly polarized light having the polarization direction along a direction parallel to the plane of incidence defined as described above (i.e., polarized light with the electric vector oscillating in the direction parallel to the plane of incidence). In consequence, the radially polarized annular illumination enables formation of a good mask pattern image on the wafer (photosensitive substrate) while keeping the reflectance of light low on the resist applied onto the wafer W.
  • The above-described embodiment realizes the circumferentially polarized annular illumination and the radially polarized annular illumination by switching the beam incident to the polarization-modulating element 10 between the linearly polarized state having the polarization direction along the Z-direction and the linearly polarized state having the polarization direction along the X-direction. However, without having to be limited to this, it is also possible to realize the circumferentially polarized annular illumination and the radially polarized annular illumination, for example, by switching the polarization-modulating element 10 between a first state shown in FIG. 5 and a second state resulting from 90° rotation around the optical axis AX, for the incident beam in the linearly polarized state having the polarization direction along the Z-direction or along the X-direction.
  • In the foregoing embodiment the polarization-modulating element 10 is located immediately before the micro fly's eye lens 11. However, without having to be limited to this, the polarization-modulating element 10 can also be located generally on or near the pupil of the illumination optical apparatus (1 to PL), e.g., on or near the pupil of the projection optical system PL, on or near the pupil of the imaging optical system 15, or immediately before the conical axicon system 8 (on or near the pupil of afocal lens 6).
  • However, where the polarization-modulating element 10 is located in the projection optical system PL or in the imaging optical system 15, the required effective diameter (clear aperture diameter) of the polarization-modulating element 10 is prone to become large, and it is rather undesirable in view of the current circumstances in which it is difficult to obtain a large crystalline quartz substrate with high quality. When the polarization-modulating element 10 is located immediately before the conical axicon system 8, the required effective diameter (clear aperture diameter) of the polarization-modulating element 10 can be kept small. However, the distance is long to the wafer W being the last surface to be illuminated, and an element to change the polarization state like an antireflection coat on a lens or a reflecting film on a mirror is likely to be interposed in the optical path to the wafer. Therefore, this arrangement is not so preferable. In passing, the antireflection coat on the lens or the reflecting film on the mirror is likely to cause the difference of reflectance depending upon the polarization states (P-polarization and S-polarization) and angles of incidence and, in turn, to change the polarization state of light.
  • In the foregoing embodiment, at least one surface of the polarization-modulating element 10 (e.g., the exit surface) is formed in the uneven shape and, therefore, the polarization-modulating element 10 has a thickness profile discretely (discontinuously) varying in the circumferential direction. However, without having to be limited to this, at least one surface of the polarization-modulating element 10 (e.g., the exit surface) can also be formed in such a curved shape that the polarization-modulating element 10 has a thickness profile virtually discontinuously varying in the circumferential direction.
  • In the foregoing embodiment the polarization-modulating element 10 is composed of the eight elementary elements of the sector shape corresponding to the division of the effective region of the annular shape into eight segments. However, without having to be limited to this, the polarization-modulating element 10 can also be composed, for example, of eight elementary elements of a sector shape corresponding to division of the effective region of a circular shape into eight segments, or of four elementary elements of a sector shape corresponding to division of the effective region of a circular shape or annular shape into four segments, or of sixteen elementary elements of a sector shape corresponding to division of the effective region of a circular shape or annular shape into sixteen segments. Namely, a variety of modification examples can be contemplated as to the shape of the effective region of the polarization-modulating element 10, the number of segments in the division of the effective region (the number of elementary elements), and so on.
  • In the foregoing embodiment each elementary element 10A-10D (therefore, the polarization-modulating element 10) is made of crystalline quartz. However, without having to be limited to this, each elementary element can also be made of another appropriate optical material with optical activity. In this case, it is preferable to use an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Namely, use of an optical material with a small optical rotatory power is undesirable because the thickness necessary for obtaining the required rotation angle of the polarization direction becomes too large, so as to cause a loss of light quantity.
  • In the foregoing embodiment the polarization-modulating element 10 is fixedly provided in the illumination optical path, but the polarization-modulating element 10 may be arranged to be set into and away from the illumination optical path. The above embodiment showed the example as a combination of the annular illumination with the S-polarized light for the wafer W, but it is also possible to combine the S-polarized light for the wafer W with multipole illumination, such as dipole or quadrupole illumination, and with circular illumination. In the foregoing embodiment the illumination conditions for the mask M and the imaging conditions (numerical aperture, aberrations, etc.) for the wafer W can be automatically set, for example, according to the type of the pattern on the mask M or the like.
  • FIG. 9 shows a modification example in which a plurality of polarization-modulating elements are arranged in a replaceable state. The modification example of FIG. 9 has a configuration similar to the embodiment shown in FIG. 1, but it is different in that it has a turret 10T enabling replacement of the plurality of polarization-modulating elements.
  • FIG. 10 is an illustration showing plural types of polarization-modulating elements 10 a-10 e mounted on the turret 10T as a replacing mechanism in FIG. 9. In this modification example, as shown in FIGS. 9 and 10, the plural types of polarization-modulating elements 10 a-10 e are provided on the turret 10T rotatable around an axis along a direction parallel to the optical axis AX, and these plural types of polarization-modulating elements 10 a-10 e are arranged replaceable by rotation operation of the turret 10T. FIG. 9 depicts only the polarization-modulating elements 10 a, 10 b out of the plural types of polarization-modulating elements 10 a-10 e. The replacing mechanism for the polarization-modulating elements is not limited to the turret 10T, but may be, for example, a slider.
  • FIGS. 11A-11E are illustrations showing respective configurations of the plural types of polarization-modulating elements 10 a-10 e. In FIG. 11A, the first polarization-modulating element 10 a has the same configuration as the polarization-modulating element 10 of the embodiment shown in FIG. 5. In FIG. 11B, the second polarization-modulating element 10 b has a configuration similar to the polarization-modulating element 10 a shown in FIG. 11A, but is different in that it is provided with a depolarizing member 104 c in central region 10E. This depolarizing member 104 c has a configuration similar to the depolarizer 4 c shown in FIG. 1, and has a function of transforming incident light of linear polarization into light in a depolarized state.
  • In FIG. 11C, the third polarization-modulating element 10 c has a configuration similar to the polarization-modulating element 10 a shown in FIG. 11A, but is different in that the size of the central region 10E is larger (i.e., in that the width of the first to fourth elementary elements 10A-10D is smaller). In FIG. 11D, the fourth polarization-modulating element 10 d has a configuration similar to the polarization-modulating element 10 c shown in FIG. 11C, but is different in that a depolarizing member 104 c is provided in the central region 10E.
  • In FIG. 11E, the fifth polarization-modulating element 10 e is constructed by combining six elementary elements 10C, 10F, 10G, different from the eight elementary elements. The fifth polarization-modulating element 10 e has the effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of six elementary elements 10C, 10F, 10G of a sector shape as equally divided in the circumferential direction around the optical axis AX. Among these six elementary elements 10C, 10F, 10G, a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic. Namely, the six elementary elements 10C, 10F, 10G include three types of elementary elements 10C, 10F, 10G with mutually different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (the Y-direction) two each.
  • The elementary elements 10C are members having the same function as the third elementary elements 10C shown in FIG. 7, and thus the description of the function thereof is omitted herein. The elementary elements 10F are designed in such a thickness dF that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +1500 rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from −30° rotation of the Z-direction around the Y-axis. The elementary elements 10G are designed in such a thickness dG that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +30° rotation of the Z-direction around the Y-axis. A depolarizing member 104 c may be provided in place of the central region 10E.
  • Referring again to FIG. 10, the turret 10T is provided with an opening 40 without any polarization-modulating element, and this opening 40 is located in the illumination optical path in a case where another polarized illumination is implemented different from the circumferentially polarized illumination, or in a case where unpolarized illumination is implemented under a large σ-value (σ value=numerical aperture on the mask side of the illumination optical apparatus/numerical aperture on the mask side of the projection optical system).
  • The above described only the examples wherein the central region 10E made of the circular opening or the material without optical activity, or the depolarizing member 104 c was provided in the central region of the polarization-modulating elements 10 a-10 e mounted on the turret 10T, but it is also possible to mount polarization-modulating elements without central region 10E nor depolarizing member 104 c (i.e., polarization-modulating elements consisting of elementary elements of a sector shape).
  • FIGS. 12A-12C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element. In FIGS. 12A-12C, the polarization-modulating element is also illustrated in a superimposed manner in order to facilitate understanding.
  • FIG. 12A shows the secondary light source 33 of an octapole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of an octapole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10 a or 10 b is located in the illumination optical path. Beams passing through the secondary light source 33 of the octapole shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective eight circular regions 33A-33D constituting the secondary light source 33 of the octapole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these eight circular regions 33A-33D, i.e., with a tangential direction to the circle connecting these eight circular regions 33A-33D. FIG. 12A shows the example wherein the secondary light source 33 of the octapole shape is composed of the eight circular regions 33A-33D, but the shape of the eight regions is not limited to the circular shape.
  • FIG. 12B shows the secondary light source 34 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10 c or 10 d is located in the illumination optical path. Beams passing through the secondary light source 34 of the quadrupole shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective four regions 34A, 34C constituting the secondary light source 34 of the quadrupole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these four regions 34A, 34C, i.e., with a tangential direction to the circle connecting these four regions 34A, 34C. FIG. 12B shows the example wherein the secondary light source 34 of the quadrupole shape is composed of four regions 34A, 34C of an almost elliptical shape, but the shape of the four regions is not limited to the almost elliptical shape.
  • FIG. 12C shows the secondary light source 35 of a hexapole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a hexapole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10 e is located in the illumination optical path. Beams passing through the secondary light source 35 of the hexapole shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective six regions 35C, 35F, 35G constituting the secondary light source 35 of the hexapole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these six regions 35C, 35F, 35G, i.e., with a tangential direction to the circle connecting these six regions 35C, 35F, 35G. FIG. 12C shows the example wherein the secondary light source 35 of the hexapole shape is composed of the four regions 35C, 35F, 35G of an almost trapezoidal shape, but the shape of the six regions is not limited to the almost trapezoidal shape.
  • The foregoing embodiment and modification example showed the polarization-modulating elements fixed around the optical axis thereof, but the polarization-modulating element may be arranged rotatable around the optical axis. FIG. 13 is an illustration schematically showing a configuration of polarization-modulating element 10 f arranged rotatable around the optical axis AX.
  • In FIG. 13, the polarization-modulating element 10 f is composed of a combination of four elementary elements 10A, 10C. The polarization-modulating element 10 f has the effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of four elementary elements 10A, 10C of a sector shape as equally divided in the circumferential direction around the optical axis AX. Among these four elementary elements 10A, 10C, a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic. Namely, the four elementary elements 10A, 10C include two types of elementary elements 10A, 10C two each with mutually different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (the Y-direction).
  • The elementary elements 10A are members having the same function as the first elementary elements 10A shown in FIG. 7, and the elementary elements 10C members having the same function as the third elementary elements 10C shown in FIG. 7. Therefore, the description of the functions is omitted herein. A depolarizing member 104 c may be provided in place of the central region 10E.
  • This-polarization-modulating element 10 f is arranged to be rotatable around the optical axis AX and, for example, is rotatable by +450 or −45° around the optical axis AX. FIGS. 14A-14C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element 10 f. In FIGS. 14A-14C, the polarization-modulating element 10 f is also illustrated in a superimposed manner in order to facilitate understanding.
  • FIG. 14A shows the secondary light source 36 (36A) of a dipole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a dipole shape in the far field (or Fraunhofer diffraction region) is set in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10 f is located in a state at the rotation angle of 0° (standard state) in the illumination optical path. In this case, beams passing through the secondary light source 36 (36A) of the dipole shape are set in a vertically polarized state.
  • FIG. 14B shows the secondary light source 37 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10 f is located in the state at the rotation angle of 0° (standard state) in the illumination optical path. In this case, beams passing through the secondary light source 37 of the quadrupole shape are set in the azimuthal polarization state. The light intensity distribution of the quadrupole shape in FIG. 14B is localized in the vertical direction (Z-direction) and in the horizontal direction (X-direction) in the plane of the drawing.
  • In the azimuthal polarization state, beams passing through the respective four circular regions 37A, 37C constituting the secondary light source 37 of the quadrupole shape are in the linearly polarized state having the polarization direction along a circumferential direction of a circle connecting these four circular regions 37A, 37C, i.e., with a tangential direction to the circle connecting these four circular regions 37A, 37C. FIG. 14B shows the example in which the secondary light source 37 of the quadrupole shape is composed of the four circular regions 37A, 37C, but the shape of the four regions is not limited to the circular shape.
  • FIG. 14C shows the secondary light source 38 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape localized in the direction of +45° (−135°) in the plane of the drawing and in the direction of −45° (+135°) in the plane of the drawing in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element shown in FIG. 14B, and where the polarization-modulating element 10 f is set in a rotated state at the rotation angle of +45° (i.e., in a state in which it is rotated by 45° clockwise relative to the standard state) in the illumination optical path.
  • In FIG. 14C, the half wave plate 4 b in the polarization state converter 4 is rotated around the optical axis, whereby the linearly polarized light having the polarization direction along the direction of +45° (the direction of −135°) is made incident to the polarization-modulating element 10 f. The elementary elements 10A have the function of rotating the polarization direction of the incident, linearly polarized light by 180±n×180° (n is an integer), and the elementary elements 10C have the function of rotating the polarization direction of the incident, linearly polarized light by 90°±n×180° (n is an integer). Therefore, beams passing through the secondary light source 38 of the quadrupole shape are set in the azimuthal polarization state.
  • In the azimuthal polarization state shown in FIG. 14C, beams passing through the respective four circular regions 38B, 38D constituting the secondary light source 38 of the quadrupole shape are in the linearly polarized state having the polarization direction along a circumferential direction of a circle connecting these four circular regions 38B, 38D, i.e., with a tangential direction to the circle connecting these four circular regions 38B, 38D. FIG. 14C shows the example in which the secondary light source 38 of the quadrupole shape is composed of the four circular regions 38B, 38D, but the shape of the four regions is not limited to the circular shape.
  • Through the changing operation of the polarization direction by the polarization state converter 4 and the rotation operation of the polarization-modulating element 10 f, as described above, the azimuthal polarization state can be realized by the secondary light source of the quadrupole shape localized in the +45° (−135°) direction and in the −45° (+135°) direction, by the secondary light source of the quadrupole shape localized in the 0° (+180°) direction and in the 90° (270°) direction or in the vertical and horizontal directions, or by the secondary light source of the dipole shape localized in the 0° (+180°) direction or in the 90° (270°) direction, i.e., in the vertical or horizontal direction.
  • The polarization-modulating element composed of the eight elementary elements of the sector shape as equally divided in the circumferential direction around the optical axis AX may be arranged rotatable around the optical axis AX. For example, when the polarization-modulating element composed of the eight divisional elementary elements (e.g., the polarization-modulating element 10 a) is rotated by +45° around the optical axis AX, as shown in FIG. 15A, the beams passing through the respective eight circular regions 39A-39D constituting the secondary light source 39 of the octapole shape are in the linearly polarized state having the polarization direction resulting from −45° rotation relative to the circumferential direction of the circle connecting these eight circular regions 39A-39D (i.e., relative to the tangential direction to the circle connecting these eight circular regions 39A-39D).
  • In a case, as shown in FIG. 15B, where the beams passing through the respective eight circular regions constituting the secondary light source of the octapole shape are elliptically polarized light having the major axis along a direction resulting from +45° rotation relative to the circumferential direction of the circle connecting these eight circular regions (i.e., relative to the tangential direction to the circle connecting these eight circular regions), an approximately azimuthal polarization state can be achieved, as shown in FIG. 15C, by rotating the polarization-modulating element (e.g., polarization-modulating element 10 a) by +45° around the optical axis AX as shown in FIG. 15A.
  • FIG. 16 shows an example in which the polarization-modulating element is located at a position immediately before the conical axicon system 8 (i.e., at a position near the entrance side), among locations near the pupil of the illumination optical apparatus. In this example of FIG. 16, the zoom action of the zoom lens system 9 results in changing the size of the image of the central region 10E projected onto the entrance surface of micro fly's eye lens 11 and the size of the images of the respective elementary elements 10A-10D projected onto the entrance surface of micro fly's eye lens 11, and the operation of the conical axicon system 8 results in changing the width in the radial direction around the optical axis AX in the images of the respective elementary elements 10A-10D projected onto the entrance surface of micro fly's eye lens 11.
  • Therefore, in a case where the polarization-modulating element having the central region 10E (or depolarizing member 104 c) is located nearer the light source than the optical system with the zoom action (zoom lens 9) as in the modification example shown in FIG. 16, the size of the central region 10E can be determined with consideration to the fact that the region occupied by the central region 10E is changed with zooming of the zoom lens 9.
  • In a case where the polarization-modulating element having the central region 10E (or depolarizing member 104 c) is located nearer the light source than the optical system with the action of changing the annular ratio (the conical axicon system 8) as in the modification example shown in FIG. 16, the apparatus is preferably configured to satisfy at least one of Conditions (1) and (2) below, as shown in FIG. 17.

  • (10in+ΔA)/10out<0.75  (1)

  • 0.4<(10in+ΔA)/10out  (2)
  • The above conditions follow the following notation:
  • 10in: effective radius of central region 10E of polarization-modulating element 10,
  • 10out: outside effective radius of polarization-modulating element 10, and
  • ΔA: increase of the inside radius of the beam having passed through the optical system with the action of changing the annular ratio.
  • If Condition (1) is not met, the width of the region of the annular shape transformed into the azimuthal polarization state by the polarization-modulating element 10 will become too small to achieve the circumferentially polarized illumination based on the secondary light source of the annular shape or multipole shape at a small annular ratio; thus it is undesirable. If Condition (2) is not met, the diameter of the beam passing through the central region of the polarization-modulating element 10 will become too small to achieve small-σ illumination without change in the polarization state, for example, unless the polarization-modulating element 10 is set off the illumination optical path; thus it is undesirable.
  • As shown in FIG. 18, the polarization-modulating element may be located at a position nearer the mask than the micro fly's eye lens 11, among locations near the pupil of the illumination optical apparatus; specifically, near the pupil position of the imaging optical system 15 for projecting the image of mask blind 14 onto the mask. In the embodiments shown in FIG. 16 and in FIG. 18, the plurality of polarization-modulating elements may also be arranged replaceable as in the embodiment in FIGS. 9 to 11.
  • In the above-described embodiments, if an optical system (the illumination optical system or the projection optical system) nearer the wafer W than the polarization-modulating element 10 has-polarization aberration (retardation), the polarization direction can vary by virtue of this-polarization aberration. In this case, the direction of the plane of polarization rotated by the polarization-modulating element 10 can be set in consideration of the influence of the polarization aberration of these optical systems. In a case where a reflecting member is located in the optical path on the wafer W side with respect to the polarization-modulating element 10, a phase difference can occur between polarization directions of light reflected by this reflecting member. In this case, the direction of the plane of polarization rotated by the polarization-modulating element 10 can be set in consideration of the phase difference of the beam caused by the polarization characteristic of the reflecting surface.
  • An embodiment of a technique of evaluating the polarization state will be described below. In the present embodiment, the polarization state of the beam arriving at the wafer W as a photosensitive substrate is detected using a wafer surface polarization monitor 90 which can be attached to a side of a wafer stage (substrate stage) holding the wafer W as a photosensitive substrate. The wafer surface polarization monitor 90 may be provided in the wafer stage or in a measurement stage separate from the wafer stage.
  • FIG. 19 is an illustration showing a schematic configuration of the wafer surface polarization monitor 90 for detecting the polarization state and optical intensity of the light illuminating the wafer W. As shown in FIG. 19, the wafer surface polarization monitor 90 is provided with a pinhole member 91 which can be positioned at or near the position of the wafer W. Light passing through a pinhole 91 a in the pinhole member 91 travels through a collimating lens 92 located so that its front focal position is at or near the position of the image plane of the projection optical system PL, to become a nearly parallel beam, and the beam is reflected by a reflector 93 to enter a relay lens system 94. The nearly parallel beam passing through the relay lens system 94 travels through a quarter wave plate 95 as a phase shifter and through a polarization beam splitter 96 as a polarizer, and then reaches a detection surface 97 a of two-dimensional CCD 97. The detection surface 97 a of two-dimensional CCD 97 is approximately optically conjugate with the exit pupil of the projection optical system PL and is thus approximately optically conjugate with the illumination pupil plane of the illumination optical apparatus.
  • The quarter wave plate 95 is arranged rotatable around the optical axis and a setting member 98 for setting the angle of rotation around the optical axis is connected to this quarter wave plate 95. In this configuration, when the degree of polarization of the illumination light on the wafer W is not 0, the light intensity distribution on the detection surface 97 a of two-dimensional CCD 97 varies with rotation of the quarter wave plate 95 around the optical axis through the setting member 98. Therefore, the wafer surface polarization monitor 90 is able to detect the change in the light intensity distribution on the detection surface 97 a with rotation of the quarter wave plate 95 around the optical axis by means of the setting member 98 and thereby to measure the polarization state of the illumination light from the detection result by the rotating compensator method.
  • The rotating compensator method is detailed, for example, in Tsuruta, “Pencil of Light-Applied Optics for optical engineers,” K.K. Shingijutsu Communications. In practice, the polarization state of the illumination light is measured at a plurality of positions on the wafer surface while the pinhole member 90 (therefore, pinhole 90 a) is two-dimensionally moved along the wafer surface. At this time, the wafer surface polarization monitor 90 detects a change of the light intensity distribution on the two-dimensional detection surface 97 a, whereby it can measure a distribution of polarization states of the illumination light in the pupil on the basis of the detected distribution information.
  • The wafer surface polarization monitor 90 can also be configured using a half wave plate instead of the quarter wave plate 95 as a phase shifter. With use of any kind of phase shifter, in order to measure the polarization state, i.e., the four Stokes parameters, it is necessary to detect the change of the light intensity distribution on the detection surface 97 a in at least four different states, by changing the relative angle around the optical axis between the phase shifter and the polarizer (polarization beam splitter 96) or by moving the phase shifter or the polarizer away from the optical path. The present embodiment is configured to rotate the quarter wave plate 95 as a phase shifter around the optical axis, but the polarization beam splitter 96 as a polarizer may be rotated around the optical axis, or both of the phase shifter and the polarizer may be rotated around the optical axis. Instead of this operation, or in addition to this operation, one or both of the quarter wave plate 95 as a phase shifter and the polarization beam splitter 96 as a polarizer may be moved into and away from the optical path.
  • In the wafer surface polarization monitor 90, the polarization state of light can vary depending upon the polarization characteristic of the reflector 93. In this case, since the polarization characteristic of the reflector 93 is preliminarily known, the polarization state of the illumination light can be accurately measured by compensating the measurement result of the wafer surface polarization monitor 90 on the basis of the influence of the polarization characteristic of reflector 93 on the polarization state by some calculation. In other cases where the polarization state varies due to another optical component such as a lens, as well as the reflector, the polarization state of the illumination light can also be accurately measured by compensating the measurement result in the same manner.
  • The evaluation for the distribution of polarization states of illumination light in the pupil will be specifically described below. A degree of specific polarization DSP is first calculated for each of rays passing a point (or a microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane. The XYZ coordinate system used in FIGS. 1, 16, and 18 will be used in the description hereinafter. The above-described point (microscopic area) on the pupil corresponds to a pixel in the two-dimensional CCD 97, and the point (microscopic area) on the image plane to XY coordinates of the pinhole 90 a.
  • This degree of specific polarization DSP is represented by the following equation: (3) DSP=(Ix−Iy)/(Ix+Iy),
  • where Ix is the intensity of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in a specific ray passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane, and Iy the intensity of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the specific ray. This degree of specific polarization DSP is synonymous with horizontal linear polarization intensity minus vertical linear polarization intensity S1 over total intensity S0, (S1/S0).
  • We can also define a right polarization rate RSPh for horizontal polarization (polarization to become S-polarization for diffracted light by a mask pattern horizontally extending in the pattern surface), and a right polarization rate RSPv for vertical polarization (polarization to become S-polarization for diffracted light by a mask pattern vertically extending in the pattern surface) according to Eqs (4) and (5) below from the intensity Ix of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in the specific ray passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane and the intensity Iy of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the specific ray.

  • RSPh =Ix/(Ix+Iy)  (4)

  • RSPv =Iy/(Ix+Iy)  (5)
  • RSPh and RSPv both are 50% in ideal unpolarized illumination, RSPh is 100% in ideal horizontal polarization, and RSPv is 100% in ideal vertical polarization.
  • When a polarization degree V is defined by Eqs (6)-(9) below for each of rays passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane, an average polarization degree V(Ave) can be defined as Eq (10) below for a bundle of rays passing a predetermined effective light source region and arriving at a point (microscopic area) on the image plane.
  • V = ( S 1 2 + S 2 2 + S 3 2 ) 1 / 2 / S 0 = ( S 1 ′2 + S 2 ′2 + S 3 ′2 ) 1 / 2 ( 6 ) S 1 = S 1 / S 0 ( 7 ) S 2 = S 2 / S 0 ( 8 ) S 3 = S 3 / S 0 ( 9 )
  • In the above equations, S0 represents the total intensity, S1 horizontal linear polarization intensity minus vertical linear polarization intensity, S2 45° linear polarization intensity minus 135° linear polarization intensity, and S3 right-handed circular polarization intensity minus left-handed circular polarization intensity.

  • V(Ave)=Σ[S 0(x i ,y iV(x i ,y i)]/ΣS 0(x i ,y i)  (10)
  • In Eq (10), S0(xi,yi) represents the total intensity S0 for rays passing a point (or microscopic area) on a predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, and V(xi,yi) the polarization degree of a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane.
  • In addition, we can define an average specific polarization rate RSPh(Ave) about horizontal polarization by Eq (11) below and an average specific polarization rate RSPv(Ave) about vertical polarization by Eq (12), for a bundle of rays passing the predetermined effective light source region and arriving at a point (microscopic area) on the image plane.
  • RSP h ( Ave ) = Ix ( Ave ) / ( Ix + Iy ) Ave = [ S 0 ( x i , y i ) · RSP h ( x i , y i ) ] / S 0 ( x i , y i ) ( 11 ) RSP v ( Ave ) = Iy ( Ave ) / ( Ix + Iy ) Ave = [ S 0 ( x i , y i ) · RSP v ( x i , y i ) ] / S 0 ( x i , y i ) ( 12 )
  • Ix(Ave) represents an average intensity of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in a bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, Iy(Ave) an average intensity of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, RSPh(xi,yi) a right polarization rate for horizontal polarization of a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, and RSPv(xi,yi) a right polarization rate for vertical polarization of a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane. In addition, (Ix+Iy)Ave is an average intensity of an entire beam passing the predetermined effective light source region.
  • Here, RSPh(xi,yi) and RSPv(xi,yi) both are 50% in ideal unpolarized illumination, RSPh(xi,yi) is 100% in ideal horizontal polarization, and RSPv(xi,yi) is 100% in ideal vertical polarization.
  • Then we can define an average specific polarization degree DSP(AVE) as Eq (13) below, for a bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane.
  • DSP ( Ave ) = ( Ix - Iy ) Ave / ( Ix + Iy ) Ave = { [ Ix ( x i , y i ) - Iy ( x i , y i ) ] / [ Ix ( x i , y i ) + Iy ( x i , y i ) ] } = S 1 ( Ave ) = { S 1 / S 0 } ( 13 )
  • Here, (Ix−Iy)Ave represents an average of differences between intensities of the X-directional polarization component in a bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane and intensities of the Y-directional polarization component in the bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, Ix(xi,yi) the intensity of the X-directional polarization component in a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, Iy(xi,yi) the intensity of the Y-directional polarization component in a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, and S1′(Ave) an average of the S1′ component in the predetermined effective light source region (xi,yi).
  • In Eq (13), DSP(Ave) becomes 0 in ideal unpolarized illumination, DSP(Ave) becomes 1 in ideal horizontal polarization, and DSP(Ave) becomes −1 in ideal vertical polarization.
  • In the illumination optical apparatus of the present embodiment and, therefore, in the exposure apparatus, it can be assumed that the interior of the predetermined effective light source region is linear polarized light if the average specific polarization rates RSPh(Ave), RSPv(Ave) in the predetermined effective light source region satisfy the following relations:

  • RSPh(Ave)>70%, and RSPv(Ave)>70%.
  • Where the average specific polarization rates RSPh(Ave), RSPv(Ave) fail to satisfy the above conditions, the desired linear polarization state with the plane of polarization in the predetermined direction is not realized in the circumferentially polarized annular illumination, the circumferentially polarized quadrupole illumination, the circumferentially polarized dipole illumination, and so on, and it is thus infeasible to achieve an improvement in the imaging performance for a pattern with a thin line width having a specific pitch direction.
  • For example, in a case where the quartered, circumferentially polarized annular illumination is implemented by use of the quartered polarization-modulating element 10 f shown in FIG. 13, the secondary light source 31 of the annular shape is divided into four segments, as shown in FIG. 20, and the average specific polarization rates RSPh(Ave), RSPv(Ave) are evaluated for each of the segmental regions 31A1, 31A2, 31C1, 31C2.
  • The exposure apparatus according to the foregoing embodiment is able to produce microdevices (semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.) by illuminating a mask (reticle) by the illumination optical apparatus (illumination step) and projecting a pattern for transcription formed on the mask, onto a photosensitive substrate by use of the projection optical system (exposure step). The following will describe an example of a procedure of producing semiconductor devices as microdevices by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate by means of the exposure apparatus of the foregoing embodiment, with reference to the flowchart of FIG. 9.
  • The first step 301 in FIG. 9 is to deposit a metal film on each of wafers in one lot. The next step 302 is to apply a photoresist onto the metal film on each wafer in the lot. Thereafter, step 303 is to sequentially transcribe an image of a pattern on a mask into each shot area on each wafer in the lot, through the projection optical system by use of the exposure apparatus of the foregoing embodiment. Subsequently, step 304 is to perform development of the photoresist on each wafer in the lot, and step 305 thereafter is to perform etching with the resist pattern as a mask on each wafer in the lot, thereby forming a circuit pattern corresponding to the pattern on the mask, in each shot area on each wafer. Thereafter, devices such as semiconductor elements are produced through execution of formation of circuit patterns in upper layers and others. The semiconductor device production method as described above permits us to produce the semiconductor devices with extremely fine circuit patterns at high throughput.
  • The exposure apparatus of the foregoing embodiment can also be applied to production of a liquid crystal display element as a microdevice in such a manner that predetermined patterns (a circuit pattern, an electrode pattern, etc.) are formed on a plate (glass substrate). An example of a procedure of this production will be described below with reference to the flowchart of FIG. 10. In FIG. 10, pattern forming step 401 is to execute a so-called photolithography step of transcribing a pattern on a mask onto a photosensitive substrate (a glass substrate coated with a resist or the like) by use of the exposure apparatus of the foregoing embodiment. In this photolithography step, the predetermined patterns including a number of electrodes and others are formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to steps such as a development step, an etching step, a resist removing step, etc., to form the predetermined patterns on the substrate, followed by next color filter forming step 402.
  • The next color filter forming step 402 is to form a color filter in which a number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or in which a plurality of sets of filters of three stripes of R, G, and B are arrayed in the direction of horizontal scan lines. After the color filter forming step 402, cell assembly step 403 is carried out. The cell assembly step 403 is to assemble a liquid crystal panel (liquid crystal cell), using the substrate with the predetermined patterns obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and so on.
  • In the cell assembly step 403, for example, a liquid crystal is poured into the space between the substrate with the predetermined patterns obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402 to produce the liquid crystal panel (liquid crystal cell). Thereafter, module assembly step 404 is carried out to attach such components as an electric circuit, a backlight, and so on for implementing the display operation of the assembled liquid crystal panel (liquid crystal cell), to complete the liquid crystal display element. The production method of the liquid crystal display element described above permits us to produce the liquid crystal display elements with extremely fine circuit patterns at high throughput.
  • The foregoing embodiment is arranged to use the KrF excimer laser light (wavelength: 248 nm) or the ArF excimer laser light (wavelength: 193 nm) as the exposure light, but, without having to be limited to this, the present invention can also be applied to other appropriate laser light sources, e.g., an F2 laser light source for supplying laser light of the wavelength of 157 nm. Furthermore, the foregoing embodiment described the present invention, using the exposure apparatus with the illumination optical apparatus as an example, but it is apparent that the present invention can be applied to ordinary illumination optical apparatus for illuminating the surface to be illuminated, except for the mask and wafer.
  • In the foregoing embodiment, it is also possible to apply the so-called liquid immersion method, which is a technique of filling a medium (typically, a liquid) with a refractive index larger than 1.1 in the optical path between the projection optical system and the photosensitive substrate. In this case, the technique of filling the liquid in the optical path between the projection optical system and the photosensitive substrate can be selected from the technique of locally filling the liquid as disclosed in PCT International Publication No. WO99/49504, the technique of moving a stage holding a substrate as an exposure target in a liquid bath as disclosed in Japanese Patent Application Laid-Open No. 6-124873, the technique of forming a liquid bath in a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-Open No. 10-303114, and so on.
  • The liquid is preferably one that is transparent to the exposure light, that has the refractive index as high as possible, and that is stable against the projection optical system and the photoresist applied to the surface of the substrate; for example, where the exposure light is the KrF excimer laser light or the ArF excimer laser light, pure water or deionized water can be used as the liquid. Where the F2 laser light is used as the exposure light, the liquid can be a fluorinated liquid capable of transmitting the F2 laser light, e.g., fluorinated oil or perfluoropolyether (PFPE).
  • From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.

Claims (11)

What is claimed is:
1. An illumination optical apparatus for illuminating a surface to be illuminated, based on illumination radiation supplied from a radiation source, the illumination optical apparatus comprising:
a polarization modulating element, which is arranged in an optical path of the illumination radiation, which is made of an optical material with optical activity, and which has a circumferentially varying thickness; and
a movable optical element arranged in an optical path between the polarization modulating element and the surface to be illuminated.
2. A device manufacturing method comprising the steps of:
projecting a predetermined pattern onto a photosensitive substrate, using the illumination optical apparatus according to claim 1; and
developing the photosensitive substrate.
3. An illumination optical apparatus for illuminating a surface to be illuminated, based on illumination radiation supplied from a radiation source, the illumination optical apparatus comprising:
a polarization modulating element, which is arranged in an optical path of the illumination radiation, which is made of an optical material with optical activity, and which has a circumferentially varying thickness; and
an optical integrator arranged in an optical path between the polarization modulating element and the surface to be illuminated,
wherein the polarization modulating element has a plurality of circumferentially separated regions, wherein thicknesses of two arbitrary regions adjacent to each other among the plurality of regions are different from each other.
4. An exposure apparatus comprising the illumination optical apparatus according to claim 3,
wherein a predetermined pattern is projected onto a photosensitive substrate through the illumination optical apparatus.
5. A device manufacturing method comprising the steps of:
projecting a predetermined pattern onto a photosensitive substrate, using the illumination optical apparatus according to claim 3; and
developing the photosensitive substrate.
6. An illumination optical apparatus for illuminating a surface to be illuminated, based on illumination radiation supplied from a radiation source, the illumination optical apparatus comprising:
a polarization modulating element, which is arranged in an optical path of the illumination radiation, which is made of an optical material with optical activity, and which has a circumferentially varying thickness; and
a polarization monitor arranged in a downstream optical path of the polarization modulating element, which detects the illumination radiation.
7. A device manufacturing method comprising the steps of:
projecting a predetermined pattern onto a photosensitive substrate, using the illumination optical apparatus according to claim 6; and
developing the photosensitive substrate.
8. A polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state, the polarization-modulating element comprising:
a circumferentially varying thickness profile, and a central region with no substantial optical activity,
wherein the polarization-modulating element is made of an optical material with optical activity, and
wherein a radial size of the central region is not less than 3/10 of a radial size of an effective region of the polarization-modulating element.
9. An illumination optical apparatus for illuminating a surface to be illuminated, based on illumination radiation supplied from a radiation source, the illumination optical apparatus comprising:
the polarization-modulating element according to claim 8 arranged in an optical path of the illumination radiation
10. An exposure apparatus comprising the illumination optical apparatus according to claim 9,
wherein a predetermined pattern is projected onto a photosensitive substrate through the illumination optical apparatus.
11. A device manufacturing method comprising the steps of:
projecting a predetermined pattern onto a photosensitive substrate, using the illumination optical apparatus according to claim 9; and
developing the photosensitive substrate.
US15/497,883 2004-02-06 2017-04-26 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method Abandoned US20170227854A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/497,883 US20170227854A1 (en) 2004-02-06 2017-04-26 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US16/055,452 US20180341185A1 (en) 2004-02-06 2018-08-06 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-030555 2004-02-06
JP2004030555 2004-02-06
JP2004-358218 2004-12-10
JP2004358218 2004-12-10
PCT/JP2005/000407 WO2005076045A1 (en) 2004-02-06 2005-01-14 Polarization conversion element, lighting optical device, exposure system, and exposure method
US11/347,421 US20060170901A1 (en) 2004-02-06 2006-02-06 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US12/461,801 US20090316132A1 (en) 2004-02-06 2009-08-25 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/067,958 US9140990B2 (en) 2004-02-06 2011-07-11 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/912,832 US10234770B2 (en) 2004-02-06 2013-06-07 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US15/497,883 US20170227854A1 (en) 2004-02-06 2017-04-26 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/912,832 Continuation US10234770B2 (en) 2004-02-06 2013-06-07 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/055,452 Division US20180341185A1 (en) 2004-02-06 2018-08-06 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Publications (1)

Publication Number Publication Date
US20170227854A1 true US20170227854A1 (en) 2017-08-10

Family

ID=34840152

Family Applications (10)

Application Number Title Priority Date Filing Date
US11/347,421 Abandoned US20060170901A1 (en) 2004-02-06 2006-02-06 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US12/289,518 Expired - Fee Related US9429848B2 (en) 2004-02-06 2008-10-29 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US12/289,515 Active US10007194B2 (en) 2004-02-06 2008-10-29 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US12/461,801 Abandoned US20090316132A1 (en) 2004-02-06 2009-08-25 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/067,958 Expired - Fee Related US9140990B2 (en) 2004-02-06 2011-07-11 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/889,860 Active US10241417B2 (en) 2004-02-06 2013-05-08 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/912,832 Expired - Fee Related US10234770B2 (en) 2004-02-06 2013-06-07 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US14/048,563 Active US9423694B2 (en) 2004-02-06 2013-10-08 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US15/497,883 Abandoned US20170227854A1 (en) 2004-02-06 2017-04-26 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US16/055,452 Abandoned US20180341185A1 (en) 2004-02-06 2018-08-06 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US11/347,421 Abandoned US20060170901A1 (en) 2004-02-06 2006-02-06 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US12/289,518 Expired - Fee Related US9429848B2 (en) 2004-02-06 2008-10-29 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US12/289,515 Active US10007194B2 (en) 2004-02-06 2008-10-29 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US12/461,801 Abandoned US20090316132A1 (en) 2004-02-06 2009-08-25 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/067,958 Expired - Fee Related US9140990B2 (en) 2004-02-06 2011-07-11 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/889,860 Active US10241417B2 (en) 2004-02-06 2013-05-08 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US13/912,832 Expired - Fee Related US10234770B2 (en) 2004-02-06 2013-06-07 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US14/048,563 Active US9423694B2 (en) 2004-02-06 2013-10-08 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/055,452 Abandoned US20180341185A1 (en) 2004-02-06 2018-08-06 Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Country Status (7)

Country Link
US (10) US20060170901A1 (en)
EP (5) EP2618188B1 (en)
JP (8) JP4747844B2 (en)
KR (10) KR101429864B1 (en)
HK (9) HK1098198A1 (en)
TW (12) TWI511182B (en)
WO (1) WO2005076045A1 (en)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735258B2 (en) 2003-04-09 2011-07-27 株式会社ニコン Exposure method and apparatus, and device manufacturing method
TWI474132B (en) 2003-10-28 2015-02-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
TWI512335B (en) 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
US20070019179A1 (en) * 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
ATE539383T1 (en) 2004-01-16 2012-01-15 Zeiss Carl Smt Gmbh PROJECTION SYSTEM WITH A POLARIZATION MODULATING OPTICAL ELEMENT OF VARIABLE THICKNESS
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
TWI395068B (en) 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure
TWI511182B (en) * 2004-02-06 2015-12-01 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US7324280B2 (en) 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
JPWO2006016469A1 (en) * 2004-08-10 2008-05-01 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
TW200923418A (en) * 2005-01-21 2009-06-01 Nikon Corp Exposure device, exposure method, fabricating method of device, exposure system, information collecting device, and measuring device
US7375799B2 (en) * 2005-02-25 2008-05-20 Asml Netherlands B.V. Lithographic apparatus
JP4612849B2 (en) * 2005-03-01 2011-01-12 キヤノン株式会社 Exposure method, exposure apparatus, and device manufacturing method
JP2006269853A (en) * 2005-03-25 2006-10-05 Sony Corp Exposure apparatus and method of exposure
JP4739411B2 (en) * 2005-06-13 2011-08-03 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic projection system and projection lens polarization sensor
JP4976670B2 (en) * 2005-08-24 2012-07-18 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2007103835A (en) * 2005-10-07 2007-04-19 Toshiba Corp Aligner and exposure method
JP2007123333A (en) * 2005-10-25 2007-05-17 Canon Inc Exposure method
WO2007055120A1 (en) * 2005-11-10 2007-05-18 Nikon Corporation Lighting optical system, exposure system, and exposure method
KR20080088579A (en) 2005-12-28 2008-10-02 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device production method
JP4798489B2 (en) * 2006-01-23 2011-10-19 株式会社ニコン Optical characteristic measuring method and apparatus, and exposure apparatus
EP1986222A4 (en) 2006-02-16 2010-09-01 Nikon Corp Exposure apparatus, exposing method, and device manufacturing method
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
KR20080108226A (en) 2006-03-03 2008-12-12 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
US20070242254A1 (en) 2006-03-17 2007-10-18 Nikon Corporation Exposure apparatus and device manufacturing method
US7884921B2 (en) * 2006-04-12 2011-02-08 Nikon Corporation Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method
WO2007119466A1 (en) * 2006-04-14 2007-10-25 Nikon Corporation Exposure device, device-manufacturing method, and exposing method
EP2009678A4 (en) * 2006-04-17 2011-04-06 Nikon Corp Illuminating optical apparatus, exposure apparatus and device manufacturing method
EP1857879A1 (en) * 2006-05-15 2007-11-21 Advanced Mask Technology Center GmbH & Co. KG An illumination system and a photolithography apparatus
EP2031640A4 (en) 2006-06-16 2009-06-10 Nikon Corp Variable slit device, illuminating device, exposure device, exposure method, and method of manufacturing device
JP5023589B2 (en) * 2006-07-21 2012-09-12 大日本印刷株式会社 Photomask and method for designing the photomask
DE102007027985A1 (en) * 2006-12-21 2008-06-26 Carl Zeiss Smt Ag Optical system, in particular illumination device or projection objective of a microlithographic projection exposure apparatus
US7952685B2 (en) * 2007-03-15 2011-05-31 Carl Zeiss Smt Ag Illuminator for a lithographic apparatus and method
WO2008119794A1 (en) * 2007-04-03 2008-10-09 Carl Zeiss Smt Ag Optical system, in particular illumination device or projection objective of a microlithographic projection exposure apparatus
US7872731B2 (en) * 2007-04-20 2011-01-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20080285000A1 (en) * 2007-05-17 2008-11-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR100916623B1 (en) * 2007-06-12 2009-09-09 한국과학기술원 Three-fold polarization modulator for modulating input light of a high numerical aperture lens
DE102007043958B4 (en) * 2007-09-14 2011-08-25 Carl Zeiss SMT GmbH, 73447 Illumination device of a microlithographic projection exposure apparatus
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP4971932B2 (en) * 2007-10-01 2012-07-11 キヤノン株式会社 Illumination optical system, exposure apparatus, device manufacturing method, and polarization control unit
US20090091730A1 (en) * 2007-10-03 2009-04-09 Nikon Corporation Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
NL1036026A1 (en) * 2007-10-10 2009-04-15 Asml Netherlands Bv Apparatus and method for obtaining information indicative of the uniformity of a projection system or a lithographic apparatus.
JPWO2009048051A1 (en) 2007-10-12 2011-02-17 株式会社ニコン Illumination optical apparatus, and exposure method and apparatus
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
CN101681125B (en) * 2007-10-16 2013-08-21 株式会社尼康 Illumination optical system, exposure apparatus, and device manufacturing method
JP2010004008A (en) * 2007-10-31 2010-01-07 Nikon Corp Optical unit, illumination optical device, exposure apparatus, exposure method and production process of device
JP5326259B2 (en) 2007-11-08 2013-10-30 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
DE102007055062A1 (en) * 2007-11-16 2009-05-28 Carl Zeiss Smt Ag Optical system, and method for characterizing an optical system
EP2233960A4 (en) * 2007-12-17 2012-01-25 Nikon Corp Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
TW200929333A (en) * 2007-12-17 2009-07-01 Nikon Corp Illumination optical system, exposure apparatus, and device manufacturing method
US8908151B2 (en) 2008-02-14 2014-12-09 Nikon Corporation Illumination optical system, exposure apparatus, device manufacturing method, compensation filter, and exposure optical system
TW200938957A (en) * 2008-03-05 2009-09-16 Nanya Technology Corp Feedback system and feedback method for controlling power ratio of light source
KR20110000619A (en) 2008-04-11 2011-01-04 가부시키가이샤 니콘 Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
US20090257043A1 (en) * 2008-04-14 2009-10-15 Nikon Corporation Illumination optical system, exposure apparatus, device manufacturing method, and exposure optical system
US20090265148A1 (en) * 2008-04-16 2009-10-22 Synopsys, Inc. Modeling a sector-polarized-illumination source in an optical lithography system
US9116302B2 (en) 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
DE102008041179B4 (en) * 2008-08-12 2010-11-04 Carl Zeiss Smt Ag Illumination optics for a microlithography projection exposure apparatus
CA2737041C (en) 2008-08-20 2013-10-15 Ravenbrick, Llc Methods for fabricating thermochromic filters
WO2010024106A1 (en) * 2008-08-28 2010-03-04 株式会社ニコン Illumination optical system, aligner, and process for fabricating device
JP5051475B2 (en) * 2008-10-27 2012-10-17 セイコーエプソン株式会社 1/4 wavelength plate, optical pickup device and reflection type liquid crystal display device
US20100123883A1 (en) * 2008-11-17 2010-05-20 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
JP5365641B2 (en) 2008-12-24 2013-12-11 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
KR101960153B1 (en) 2008-12-24 2019-03-19 가부시키가이샤 니콘 Illumination optical system, exposure apparatus, and device manufacturing method
KR101262519B1 (en) * 2009-01-21 2013-05-08 라벤브릭 엘엘씨 Optical metapolarizer device
JP2010197352A (en) * 2009-02-27 2010-09-09 Hitachi High-Technologies Corp Defect inspection method and defect inspecting apparatus
JP2011014707A (en) * 2009-07-01 2011-01-20 Canon Inc Exposure apparatus, and device manufacturing method
TW201102765A (en) 2009-07-01 2011-01-16 Nikon Corp Grinding device, grinding method, exposure device and production method of a device
US20110037962A1 (en) * 2009-08-17 2011-02-17 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5842808B2 (en) 2010-02-20 2016-01-13 株式会社ニコン How to adjust pupil intensity distribution
US9389519B2 (en) 2010-02-25 2016-07-12 Nikon Corporation Measuring method and measuring apparatus of pupil transmittance distribution, exposure method and exposure apparatus, and device manufacturing method
US20110205519A1 (en) * 2010-02-25 2011-08-25 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2012004465A (en) 2010-06-19 2012-01-05 Nikon Corp Illumination optical system, exposure equipment, and device manufacturing method
JP5366019B2 (en) 2010-08-02 2013-12-11 株式会社ニコン Transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
US20120212722A1 (en) 2011-02-21 2012-08-23 Nikon Corporation Fast Illumination Simulator Based on a Calibrated Flexible Point Spread Function
JP5807761B2 (en) 2011-06-06 2015-11-10 株式会社ニコン Illumination method, illumination optical apparatus, and exposure apparatus
FR2978255B1 (en) * 2011-07-22 2014-02-21 Horiba Jobin Yvon Sas OPTICAL CONCOTICAL LIGHTING DEVICE WITH HOLLOW CONE FOR OPTICAL MICROSCOPE AND OPTICAL MICROSCOPY METHOD IN CONSCOPY
JPWO2013018799A1 (en) 2011-08-04 2015-03-05 株式会社ニコン Lighting device
US9213227B2 (en) * 2011-08-18 2015-12-15 Nikon Corporation Custom color or polarization sensitive CCD for separating multiple signals in autofocus projection system
GB2508972B (en) * 2011-09-29 2015-09-02 Gen Electric Aperture stop assembly and aperture element for an optical imaging system
CN103033942B (en) 2011-09-29 2015-07-15 通用电气公司 Optical imaging system and method and aperture diaphragm assembly and aperture element
US10670199B2 (en) * 2011-10-18 2020-06-02 Signify Holding B.V. Split beam luminaire and lighting system
CN104025257B (en) 2011-10-24 2017-09-19 株式会社尼康 Lamp optical system, exposure device and assembly manufacture method
JP6001874B2 (en) 2012-02-17 2016-10-05 日東電工株式会社 OPTICAL LAMINATE AND METHOD FOR PRODUCING OPTICAL LAMINATE
DE102012206150B9 (en) * 2012-04-16 2014-06-12 Carl Zeiss Smt Gmbh Optical system, in particular a microlithographic projection exposure apparatus
KR102170864B1 (en) 2012-05-02 2020-10-28 가부시키가이샤 니콘 Method for evaluating and improving pupil luminance distribution, illumination optical system and adjustment method thereof, exposure device, exposure method, and device manufacturing method
US20140240705A1 (en) * 2013-02-27 2014-08-28 Kabushiki Kaisha Toshiba Semiconductor device, reticle method for checking position misalignment and method for manufacturing position misalignment checking mark
JP6234105B2 (en) * 2013-08-05 2017-11-22 オリンパス株式会社 Super-resolution microscope
JP5534276B2 (en) * 2013-08-23 2014-06-25 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
EP3076160A1 (en) * 2015-03-31 2016-10-05 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Spatially resolved aerosol detection
US9709897B2 (en) 2015-10-28 2017-07-18 Cymer, Llc Polarization control of pulsed light beam
DE102016214695B3 (en) * 2016-08-08 2017-10-19 Carl Zeiss Smt Gmbh Optical system and method for correcting mask errors with this system
KR102676879B1 (en) 2017-02-08 2024-06-19 삼성전자주식회사 Semiconductor device and method for fabricating the same
EP3598236A4 (en) 2017-03-16 2021-01-20 Nikon Corporation Control device and control method, exposure device and exposure method, device manufacturing method, data generation method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020008527A1 (en) * 1998-09-15 2002-01-24 Bernard Broillet Measuring circuit
US20070008111A1 (en) * 2005-06-13 2007-01-11 Tice Lee D System for monitoring activities and location

Family Cites Families (1014)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE206607C (en)
JP3293882B2 (en) 1992-03-27 2002-06-17 株式会社東芝 Projection exposure equipment
GB856621A (en) * 1956-07-20 1960-12-21 Nat Res Dev Improvements in or relating to polarising microscopes
US3146294A (en) 1959-02-13 1964-08-25 American Optical Corp Interference microscope optical systems
US3180216A (en) * 1962-08-13 1965-04-27 American Optical Corp System and apparatus for variable phase microscopy
JPS444993Y1 (en) 1964-05-28 1969-02-24
GB1192417A (en) * 1967-04-10 1970-05-20 Safege Transp Improvements in or relating to Overhead Railways
US3758201A (en) 1971-07-15 1973-09-11 American Optical Corp Optical system for improved eye refraction
US3892470A (en) * 1974-02-01 1975-07-01 Hughes Aircraft Co Optical device for transforming monochromatic linearly polarized light to ring polarized light
US3892469A (en) * 1974-02-01 1975-07-01 Hughes Aircraft Co Electro-optical variable focal length lens using optical ring polarizer
FR2385241A1 (en) 1976-12-23 1978-10-20 Marie G R P POLARIZATION MODE CONVERTERS FOR LASER BEAMS AND PLASMA GENERATORS USING THEM
US4103260A (en) * 1977-01-03 1978-07-25 Hughes Aircraft Company Spatial polarization coding electro-optical transmitter
US4198123A (en) * 1977-03-23 1980-04-15 Baxter Travenol Laboratories, Inc. Optical scrambler for depolarizing light
FR2413678A1 (en) * 1977-12-28 1979-07-27 Marie G R P MODE CONVERTERS FROM A NON-CONFINANT WAVE TO A CONFINANT WAVE IN THE FAR INFRARED
US4286843A (en) * 1979-05-14 1981-09-01 Reytblatt Zinovy V Polariscope and filter therefor
JPS5857066B2 (en) 1979-06-29 1983-12-17 古河電気工業株式会社 linear motor
EP0023231B1 (en) 1979-07-27 1982-08-11 Tabarelli, Werner, Dr. Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
FR2465241A1 (en) 1979-09-10 1981-03-20 Thomson Csf ILLUMINATOR DEVICE FOR PROVIDING AN ADJUSTABLE INTENSITY DISTRIBUTION ILLUMINATION BEAM AND PATTERN TRANSFER SYSTEM COMPRISING SUCH A DEVICE
FR2474708B1 (en) 1980-01-24 1987-02-20 Dme HIGH-RESOLUTION MICROPHOTOLITHOGRAPHY PROCESS
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57152129A (en) 1981-03-13 1982-09-20 Sanyo Electric Co Ltd Developing method of resist
JPS57153433A (en) 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS5849932A (en) 1981-09-21 1983-03-24 Ushio Inc Adjuster for illuminance distribution pattern
JPS5845502U (en) 1981-09-21 1983-03-26 株式会社津山金属製作所 wide angle reflector
JPS58115945A (en) 1981-12-29 1983-07-09 Toyoda Gosei Co Ltd Power transmission and signal transmission and reception method to steering section
JPS58202448A (en) 1982-05-21 1983-11-25 Hitachi Ltd Exposing device
DD206607A1 (en) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech METHOD AND DEVICE FOR ELIMINATING INTERFERENCE EFFECTS
JPS5919912A (en) 1982-07-26 1984-02-01 Hitachi Ltd Immersion distance holding device
DD242880A1 (en) 1983-01-31 1987-02-11 Kuch Karl Heinz DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION
JPS59226317A (en) 1983-06-06 1984-12-19 Nippon Kogaku Kk <Nikon> Illuminating device
DD221563A1 (en) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech IMMERSIONS OBJECTIVE FOR THE STEP-BY-STEP PROJECTION IMAGING OF A MASK STRUCTURE
JPS59155843A (en) 1984-01-27 1984-09-05 Hitachi Ltd Exposing device
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION
JPS6144429A (en) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> Alignment method
JPS6145923A (en) 1984-08-10 1986-03-06 Aronshiya:Kk Manufacture of rotary disk for reflection type rotary encoder
JPH0682598B2 (en) 1984-10-11 1994-10-19 日本電信電話株式会社 Projection exposure device
JPS61217434A (en) 1985-03-20 1986-09-27 Mitsubishi Chem Ind Ltd Conveying device
JPS6194342U (en) 1984-11-27 1986-06-18
JPS61156736A (en) 1984-12-27 1986-07-16 Canon Inc Exposing device
JPS61196532A (en) 1985-02-26 1986-08-30 Canon Inc Exposure device
JPS61251025A (en) 1985-04-30 1986-11-08 Canon Inc Projection exposing apparatus
JPS61270049A (en) 1985-05-24 1986-11-29 Toshiba Corp Table device
JPS622539A (en) 1985-06-28 1987-01-08 Canon Inc Illumination optical system
JPS622540A (en) 1985-06-28 1987-01-08 Canon Inc Light integrator and koehler illumination system including integrator thereof
DE3523641C1 (en) * 1985-07-02 1986-12-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Device for selecting rotationally symmetrical polarization components of a light bundle and use of such a device
US4683420A (en) 1985-07-10 1987-07-28 Westinghouse Electric Corp. Acousto-optic system for testing high speed circuits
JPS6217705A (en) 1985-07-16 1987-01-26 Nippon Kogaku Kk <Nikon> Telecentric optical system lighting device
JPS6265326A (en) 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPS62100161A (en) 1985-10-23 1987-05-09 Shin Etsu Chem Co Ltd Flat motor
JPS62120026A (en) 1985-11-20 1987-06-01 Fujitsu Ltd X-ray exposing apparatus
JPH07105323B2 (en) 1985-11-22 1995-11-13 株式会社日立製作所 Exposure method
JPS62121417A (en) 1985-11-22 1987-06-02 Hitachi Ltd Liquid-immersion objective lens device
JPS62153710A (en) 1985-12-27 1987-07-08 Furukawa Alum Co Ltd Preparation of reflective substrate for rotary encoder
US4744615A (en) * 1986-01-29 1988-05-17 International Business Machines Corporation Laser beam homogenizer
JPH0782981B2 (en) 1986-02-07 1995-09-06 株式会社ニコン Projection exposure method and apparatus
JPS62188316A (en) 1986-02-14 1987-08-17 Canon Inc Projection exposure device
JPS62203526A (en) 1986-02-28 1987-09-08 トヨタ自動車株式会社 Radio power transmitter
JPH0666246B2 (en) 1986-05-14 1994-08-24 キヤノン株式会社 Illumination optics
JP2506616B2 (en) 1986-07-02 1996-06-12 キヤノン株式会社 Exposure apparatus and circuit manufacturing method using the same
JPS6336526A (en) 1986-07-30 1988-02-17 Oki Electric Ind Co Ltd Wafer exposure equipment
JPH0695511B2 (en) 1986-09-17 1994-11-24 大日本スクリ−ン製造株式会社 Washing and drying treatment method
JPS63128713A (en) 1986-11-19 1988-06-01 Matsushita Electric Ind Co Ltd Correction of distortion in scanning aligner
JPS63131008A (en) 1986-11-20 1988-06-03 Fujitsu Ltd Optical alignment method
JPS63141313A (en) 1986-12-03 1988-06-13 Hitachi Ltd Thin plate deforming device
JPS63157419A (en) 1986-12-22 1988-06-30 Toshiba Corp Fine pattern transfer apparatus
JPS63160192A (en) 1986-12-23 1988-07-02 株式会社明電舎 Connecting conductor of radio frequency heater
JPS63231217A (en) 1987-03-19 1988-09-27 Omron Tateisi Electronics Co Measuring instrument for movement quantity
JPH0718699B2 (en) 1987-05-08 1995-03-06 株式会社ニコン Surface displacement detector
JPS6426704A (en) 1987-05-11 1989-01-30 Jiei Shirinian Jiyon Pocket structure of garment
JPS63292005A (en) 1987-05-25 1988-11-29 Nikon Corp Detecting apparatus of amount of movement corrected from running error
JPH07117371B2 (en) 1987-07-14 1995-12-18 株式会社ニコン measuring device
JPS6468926A (en) 1987-09-09 1989-03-15 Nikon Corp Measurement of image distortion in projection optical system
US4981342A (en) * 1987-09-24 1991-01-01 Allergan Inc. Multifocal birefringent lens system
JPH0191419A (en) 1987-10-01 1989-04-11 Canon Inc Aligner
JPH01115033A (en) 1987-10-28 1989-05-08 Hitachi Ltd Gas discharge display device
JPH01147516A (en) 1987-12-04 1989-06-09 Canon Inc Beam position controller
JP2728133B2 (en) 1987-12-09 1998-03-18 株式会社リコー Digital image forming equipment
JPH01202833A (en) 1988-02-09 1989-08-15 Toshiba Corp Accurate xy stage device
JPH0831513B2 (en) 1988-02-22 1996-03-27 株式会社ニコン Substrate suction device
JPH0545102Y2 (en) 1988-02-24 1993-11-17
JPH01255404A (en) 1988-04-05 1989-10-12 Toshiba Corp Electromagnet device for levitation
US4952815A (en) 1988-04-14 1990-08-28 Nikon Corporation Focusing device for projection exposure apparatus
JPH01278240A (en) 1988-04-28 1989-11-08 Tokyo Electron Ltd Uninterruptible power source for apparatus for manufacture of semiconductor
JPH01276043A (en) 1988-04-28 1989-11-06 Mitsubishi Cable Ind Ltd Waveguide type liquid detector
JPH01286478A (en) 1988-05-13 1989-11-17 Hitachi Ltd Beam uniformizing optical system and manufacture thereof
JPH01292343A (en) 1988-05-19 1989-11-24 Fujitsu Ltd Pellicle
JPH01314247A (en) 1988-06-13 1989-12-19 Fuji Plant Kogyo Kk Automatic exposing device for printed circuit board
JPH0831514B2 (en) 1988-06-21 1996-03-27 株式会社ニコン Substrate suction device
JPH0242382A (en) 1988-08-02 1990-02-13 Canon Inc Moving stage structure
WO1990002125A1 (en) 1988-08-22 1990-03-08 Idemitsu Kosan Co. Ltd. Oxirane derivatives and herbicides containing same as active ingredients
JPH0265149A (en) 1988-08-30 1990-03-05 Mitsubishi Electric Corp Semiconductor device
JP2729058B2 (en) 1988-08-31 1998-03-18 山形日本電気株式会社 Exposure equipment for semiconductor devices
JPH0297239A (en) 1988-09-30 1990-04-09 Canon Inc Power source equipment for aligner
JP2682067B2 (en) 1988-10-17 1997-11-26 株式会社ニコン Exposure apparatus and exposure method
JP2697014B2 (en) 1988-10-26 1998-01-14 株式会社ニコン Exposure apparatus and exposure method
JPH02139146A (en) 1988-11-15 1990-05-29 Matsushita Electric Ind Co Ltd Positioning table of one step six degrees of freedom
JP2940553B2 (en) 1988-12-21 1999-08-25 株式会社ニコン Exposure method
US5253110A (en) 1988-12-22 1993-10-12 Nikon Corporation Illumination optical arrangement
JPH07104442B2 (en) 1989-04-06 1995-11-13 旭硝子株式会社 Method for producing magnesium fluoride film and low reflection film
DE3907136A1 (en) 1989-03-06 1990-09-13 Jagenberg Ag DEVICE FOR JOINING MATERIAL RAILS
JPH02261073A (en) 1989-03-29 1990-10-23 Sony Corp Ultrasonic motor
JPH02287308A (en) 1989-04-03 1990-11-27 Mikhailovich Khodosovich Vladimir Method for centering lenses in optical unit mount
JPH02285320A (en) 1989-04-27 1990-11-22 Olympus Optical Co Ltd Stop device for endoscope
JP2527807B2 (en) * 1989-05-09 1996-08-28 住友大阪セメント株式会社 Optical associative identification device
JPH02298431A (en) 1989-05-12 1990-12-10 Mitsubishi Electric Corp Electric discharge machining device
JPH02311237A (en) 1989-05-25 1990-12-26 Fuji Electric Co Ltd Carrying device
JPH0335201A (en) * 1989-06-30 1991-02-15 Nitto Denko Corp Phase difference plate and production thereof
JPH0341399A (en) 1989-07-10 1991-02-21 Nikon Corp Manufacture of multilayered film reflecting mirror
JPH0364811A (en) 1989-07-31 1991-03-20 Okazaki Seisakusho:Kk Hollow core wire mi cable and manufacture thereof
JPH0372298A (en) 1989-08-14 1991-03-27 Nikon Corp Manufacture of multilayer film reflecting mirror
JPH0394445A (en) 1989-09-06 1991-04-19 Mitsubishi Electric Corp Semiconductor wafer transfer system
JPH03132663A (en) 1989-10-18 1991-06-06 Fujitsu Ltd Pellicle
JPH03134341A (en) 1989-10-20 1991-06-07 Fuji Photo Film Co Ltd Damper mechanism, vibrationproof mechanism and optical beam scanning device into which this damper mechanism, etc. are incorporated
JP3067142B2 (en) 1989-11-28 2000-07-17 富士通株式会社 Photomask inspection apparatus and photomask inspection method
JP2784225B2 (en) 1989-11-28 1998-08-06 双葉電子工業株式会社 Relative displacement measurement device
JPH03211812A (en) 1990-01-17 1991-09-17 Canon Inc Exposure aligner
JPH03246615A (en) 1990-02-23 1991-11-05 Nec Corp Mouse input device
JPH03263810A (en) 1990-03-14 1991-11-25 Sumitomo Heavy Ind Ltd Vibration control method of semiconductor aligner
JPH0710897B2 (en) 1990-04-27 1995-02-08 日本油脂株式会社 Plastic lens
JPH0432154A (en) 1990-05-25 1992-02-04 Iwasaki Electric Co Ltd Metal halide lamp device
JP2897355B2 (en) 1990-07-05 1999-05-31 株式会社ニコン Alignment method, exposure apparatus, and position detection method and apparatus
JP3077176B2 (en) 1990-08-13 2000-08-14 株式会社ニコン Exposure method, apparatus, and element manufacturing method
US7656504B1 (en) 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
JP3049774B2 (en) 1990-12-27 2000-06-05 株式会社ニコン Projection exposure apparatus and method, and element manufacturing method
JP2995820B2 (en) 1990-08-21 1999-12-27 株式会社ニコン Exposure method and method, and device manufacturing method
JPH04130710A (en) 1990-09-21 1992-05-01 Hitachi Ltd Apparatus for exposure of light
JP2548834B2 (en) 1990-09-25 1996-10-30 三菱電機株式会社 Electron beam dimension measuring device
JPH04133414A (en) 1990-09-26 1992-05-07 Nec Yamaguchi Ltd Reduced projection and aligner
JPH04152512A (en) 1990-10-16 1992-05-26 Fujitsu Ltd Wafer chuck
DE4033556A1 (en) 1990-10-22 1992-04-23 Suess Kg Karl MEASURING ARRANGEMENT FOR X, Y, (PHI) COORDINATE TABLES
US5072126A (en) 1990-10-31 1991-12-10 International Business Machines Corporation Promixity alignment using polarized illumination and double conjugate projection lens
JPH04179115A (en) 1990-11-08 1992-06-25 Nec Kyushu Ltd Contracted projection aligner
US6252647B1 (en) 1990-11-15 2001-06-26 Nikon Corporation Projection exposure apparatus
US6710855B2 (en) * 1990-11-15 2004-03-23 Nikon Corporation Projection exposure apparatus and method
JP3094439B2 (en) 1990-11-21 2000-10-03 株式会社ニコン Exposure method
JPH0480052U (en) 1990-11-27 1992-07-13
JPH04235558A (en) 1991-01-11 1992-08-24 Toshiba Corp Exposure device
JP3255168B2 (en) 1991-02-28 2002-02-12 株式会社ニコン Exposure method, device manufacturing method using the exposure method, and exposure apparatus
JP3084760B2 (en) 1991-02-28 2000-09-04 株式会社ニコン Exposure method and exposure apparatus
JP3084761B2 (en) 1991-02-28 2000-09-04 株式会社ニコン Exposure method and mask
JP3200894B2 (en) 1991-03-05 2001-08-20 株式会社日立製作所 Exposure method and apparatus
JP2860174B2 (en) 1991-03-05 1999-02-24 三菱電機株式会社 Chemical vapor deposition equipment
JPH04280619A (en) 1991-03-08 1992-10-06 Canon Inc Wafer retaining method and retaining device
JPH04282539A (en) 1991-03-11 1992-10-07 Hitachi Ltd Method for forming reflection-charge preventing film
JPH05259069A (en) 1991-03-13 1993-10-08 Tokyo Electron Ltd Method of exposing periphery of wafer
JPH04211110A (en) 1991-03-20 1992-08-03 Hitachi Ltd Projection aligner and aligning method
JPH04296092A (en) 1991-03-26 1992-10-20 Matsushita Electric Ind Co Ltd Reflow device
JP2602345Y2 (en) 1991-03-29 2000-01-11 京セラ株式会社 Hydrostatic bearing device
US5251222A (en) 1991-04-01 1993-10-05 Teledyne Industries, Inc. Active multi-stage cavity sensor
JPH04305917A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH04305915A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JP3200874B2 (en) 1991-07-10 2001-08-20 株式会社ニコン Projection exposure equipment
JPH04330961A (en) 1991-05-01 1992-11-18 Matsushita Electron Corp Development processing equipment
FR2676288B1 (en) 1991-05-07 1994-06-17 Thomson Csf LIGHT COLLECTOR FOR PROJECTOR.
JPH04343307A (en) 1991-05-20 1992-11-30 Ricoh Co Ltd Laser adjusting device
JP2884830B2 (en) 1991-05-28 1999-04-19 キヤノン株式会社 Automatic focusing device
JPH0590128A (en) 1991-06-13 1993-04-09 Nikon Corp Aligner
US5541026A (en) 1991-06-13 1996-07-30 Nikon Corporation Exposure apparatus and photo mask
JPH0545886A (en) 1991-08-12 1993-02-26 Nikon Corp Exposure device for square substrate
US5272501A (en) 1991-08-28 1993-12-21 Nikon Corporation Projection exposure apparatus
JPH0562877A (en) 1991-09-02 1993-03-12 Yasuko Shinohara Optical system for lsi manufacturing contraction projection aligner by light
US5348837A (en) 1991-09-24 1994-09-20 Hitachi, Ltd. Projection exposure apparatus and pattern forming method for use therewith
KR950004968B1 (en) 1991-10-15 1995-05-16 가부시키가이샤 도시바 Projection exposure apparatus
JPH05109601A (en) 1991-10-15 1993-04-30 Nikon Corp Aligner and exposure method
JPH05129184A (en) 1991-10-30 1993-05-25 Canon Inc Projection aligner
JPH05127086A (en) 1991-11-01 1993-05-25 Matsushita Electric Ind Co Ltd Method for uniformizing light intensity and exposure device using the same
JPH05134115A (en) * 1991-11-11 1993-05-28 Ricoh Opt Ind Co Ltd Double refraction member
JP3203719B2 (en) 1991-12-26 2001-08-27 株式会社ニコン Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method
JPH05199680A (en) 1992-01-17 1993-08-06 Honda Motor Co Ltd Power supply
JPH0794969B2 (en) 1992-01-29 1995-10-11 株式会社ソルテック Positioning method and device thereof
JP3194155B2 (en) 1992-01-31 2001-07-30 キヤノン株式会社 Semiconductor device manufacturing method and projection exposure apparatus using the same
JPH05217837A (en) 1992-02-04 1993-08-27 Toshiba Corp X-y movable table
JP2866243B2 (en) * 1992-02-10 1999-03-08 三菱電機株式会社 Projection exposure apparatus and method of manufacturing semiconductor device
JP2796005B2 (en) 1992-02-10 1998-09-10 三菱電機株式会社 Projection exposure apparatus and polarizer
JPH05241324A (en) 1992-02-26 1993-09-21 Nikon Corp Photomask and exposing method
JP3153372B2 (en) 1992-02-26 2001-04-09 東京エレクトロン株式会社 Substrate processing equipment
JPH05243364A (en) 1992-03-02 1993-09-21 Hitachi Ltd Eliminating method for charge from semiconductor wafer and semiconductor integrated circuit manufacturing apparatus using same
JP3278896B2 (en) 1992-03-31 2002-04-30 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
US5312513A (en) 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
JPH05304072A (en) 1992-04-08 1993-11-16 Nec Corp Manufacture of semiconductor device
JP3242693B2 (en) 1992-05-15 2001-12-25 富士通株式会社 Pellicle sticking device
JP2673130B2 (en) 1992-05-20 1997-11-05 株式会社キトー Suspension support device for traveling rail
JP2946950B2 (en) 1992-06-25 1999-09-13 キヤノン株式会社 Illumination apparatus and exposure apparatus using the same
JPH0629204A (en) 1992-07-08 1994-02-04 Fujitsu Ltd Method and apparatus for development of resist
JPH0629102A (en) 1992-07-10 1994-02-04 Alps Electric Co Ltd Chip resistor and its manufacturing method
JPH0636054A (en) 1992-07-20 1994-02-10 Mitsubishi Electric Corp One-chip microcomputer
JP3246615B2 (en) * 1992-07-27 2002-01-15 株式会社ニコン Illumination optical device, exposure apparatus, and exposure method
JPH06188169A (en) 1992-08-24 1994-07-08 Canon Inc Method of image formation, exposure system, and manufacture of device
JPH07318847A (en) 1994-05-26 1995-12-08 Nikon Corp Illumination optical device
JPH06104167A (en) 1992-09-18 1994-04-15 Hitachi Ltd Manufacture of aligner and semiconductor device
JP2884947B2 (en) 1992-10-01 1999-04-19 株式会社ニコン Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
US6404482B1 (en) 1992-10-01 2002-06-11 Nikon Corporation Projection exposure method and apparatus
JPH06118623A (en) 1992-10-07 1994-04-28 Fujitsu Ltd Reticle and semiconductor aligner using the same
JP2724787B2 (en) 1992-10-09 1998-03-09 キヤノン株式会社 Positioning device
JPH06124873A (en) 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JPH06124872A (en) 1992-10-14 1994-05-06 Canon Inc Image forming method and manufacture of semiconductor device using the method
US5459000A (en) 1992-10-14 1995-10-17 Canon Kabushiki Kaisha Image projection method and device manufacturing method using the image projection method
JP3322274B2 (en) 1992-10-29 2002-09-09 株式会社ニコン Projection exposure method and projection exposure apparatus
JPH06148399A (en) 1992-11-05 1994-05-27 Nikon Corp Multilayer film mirror for x rays and x-ray microscope
JPH06163350A (en) 1992-11-19 1994-06-10 Matsushita Electron Corp Projection exposure method and device thereof
JP2753930B2 (en) 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment
JP3180133B2 (en) 1992-12-01 2001-06-25 日本電信電話株式会社 Projection exposure equipment
JPH06177007A (en) 1992-12-01 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Projection aligner
JP2866267B2 (en) 1992-12-11 1999-03-08 三菱電機株式会社 Optical drawing apparatus and optical drawing method for wafer substrate
JP2698521B2 (en) 1992-12-14 1998-01-19 キヤノン株式会社 Catadioptric optical system and projection exposure apparatus having the optical system
JPH06181157A (en) 1992-12-15 1994-06-28 Nikon Corp Apparatus with low dust-generating property
JPH06186025A (en) 1992-12-16 1994-07-08 Yunisun:Kk Three dimensional measuring device
JP2520833B2 (en) 1992-12-21 1996-07-31 東京エレクトロン株式会社 Immersion type liquid treatment device
JP3201027B2 (en) 1992-12-22 2001-08-20 株式会社ニコン Projection exposure apparatus and method
JP3316833B2 (en) 1993-03-26 2002-08-19 株式会社ニコン Scanning exposure method, surface position setting device, scanning type exposure device, and device manufacturing method using the method
JPH06204121A (en) 1992-12-28 1994-07-22 Canon Inc Illuminator and projection aligner using the same
JP2765422B2 (en) 1992-12-28 1998-06-18 キヤノン株式会社 Exposure apparatus and method for manufacturing semiconductor device using the same
JP2786070B2 (en) 1993-01-29 1998-08-13 セントラル硝子株式会社 Inspection method and apparatus for transparent plate
US5739898A (en) * 1993-02-03 1998-04-14 Nikon Corporation Exposure method and apparatus
JPH07245258A (en) 1994-03-08 1995-09-19 Nikon Corp Exposure and exposure device
JPH06241720A (en) 1993-02-18 1994-09-02 Sony Corp Measuring method for displacement quantity and displacement meter
JPH06244082A (en) 1993-02-19 1994-09-02 Nikon Corp Projection exposure device
JP3412704B2 (en) 1993-02-26 2003-06-03 株式会社ニコン Projection exposure method and apparatus, and exposure apparatus
JP3747958B2 (en) 1995-04-07 2006-02-22 株式会社ニコン Catadioptric optics
JP3291818B2 (en) 1993-03-16 2002-06-17 株式会社ニコン Projection exposure apparatus and semiconductor integrated circuit manufacturing method using the apparatus
JP3537843B2 (en) 1993-03-19 2004-06-14 株式会社テクノ菱和 Clean room ionizer
JPH0777191B2 (en) 1993-04-06 1995-08-16 日本電気株式会社 Exposure light projection device
JP3309871B2 (en) 1993-04-27 2002-07-29 株式会社ニコン Projection exposure method and apparatus, and element manufacturing method
JPH06326174A (en) 1993-05-12 1994-11-25 Hitachi Ltd Vacuum suction device for wafer
JP3265503B2 (en) 1993-06-11 2002-03-11 株式会社ニコン Exposure method and apparatus
JPH07142338A (en) * 1993-06-14 1995-06-02 Canon Inc Image projection method and aligner using same
US5677757A (en) 1994-03-29 1997-10-14 Nikon Corporation Projection exposure apparatus
JP3291849B2 (en) 1993-07-15 2002-06-17 株式会社ニコン Exposure method, device formation method, and exposure apparatus
US6304317B1 (en) * 1993-07-15 2001-10-16 Nikon Corporation Projection apparatus and method
JP3463335B2 (en) 1994-02-17 2003-11-05 株式会社ニコン Projection exposure equipment
JPH0757993A (en) 1993-08-13 1995-03-03 Nikon Corp Projection aligner
JPH0757992A (en) 1993-08-13 1995-03-03 Nikon Corp Projection aligner
JP3844787B2 (en) 1993-09-02 2006-11-15 日産化学工業株式会社 Magnesium fluoride hydrate sol and its production method
JP3359123B2 (en) 1993-09-20 2002-12-24 キヤノン株式会社 Aberration correction optical system
KR0153796B1 (en) 1993-09-24 1998-11-16 사토 후미오 Exposure apparatus and method
JP3099933B2 (en) 1993-12-28 2000-10-16 株式会社東芝 Exposure method and exposure apparatus
JPH07122469A (en) 1993-10-20 1995-05-12 Nikon Corp Projection aligner
KR0166612B1 (en) 1993-10-29 1999-02-01 가나이 쓰토무 Method and apparatus for exposing pattern, mask used therefor and semiconductor integrated circuit formed by using the same
JP3505810B2 (en) 1993-10-29 2004-03-15 株式会社日立製作所 Pattern exposure method and apparatus
JP3376045B2 (en) 1993-11-09 2003-02-10 キヤノン株式会社 Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JPH07134955A (en) 1993-11-11 1995-05-23 Hitachi Ltd Display apparatus and reflectance controlling method of apparatus thereof
JP3339144B2 (en) 1993-11-11 2002-10-28 株式会社ニコン Scanning exposure apparatus and exposure method
JP3278303B2 (en) 1993-11-12 2002-04-30 キヤノン株式会社 Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JPH07147223A (en) 1993-11-26 1995-06-06 Hitachi Ltd Pattern forming method
DE69432283T2 (en) 1993-12-01 2004-01-22 Sharp K.K. Display for three-dimensional images
JPH07161622A (en) 1993-12-10 1995-06-23 Nikon Corp Projection aligner
JPH07167998A (en) 1993-12-15 1995-07-04 Nikon Corp Target for laser plasma x-ray source
JP3487517B2 (en) 1993-12-16 2004-01-19 株式会社リコー Reciprocating device
JPH07183201A (en) 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
JP3508190B2 (en) 1993-12-21 2004-03-22 セイコーエプソン株式会社 Lighting device and projection display device
JPH07190741A (en) 1993-12-27 1995-07-28 Nippon Telegr & Teleph Corp <Ntt> Measuring error correction method
JPH07220989A (en) 1994-01-27 1995-08-18 Canon Inc Exposure apparatus and manufacture of device using the same
JPH07220990A (en) 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
JP2715895B2 (en) 1994-01-31 1998-02-18 日本電気株式会社 Light intensity distribution simulation method
JP3372633B2 (en) 1994-02-04 2003-02-04 キヤノン株式会社 Positioning method and positioning apparatus using the same
US5559583A (en) 1994-02-24 1996-09-24 Nec Corporation Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer
JP2836483B2 (en) 1994-05-13 1998-12-14 日本電気株式会社 Illumination optics
JPH07234382A (en) * 1994-02-24 1995-09-05 Matsushita Electric Ind Co Ltd Super resolution scanning optical device
JPH07239212A (en) 1994-02-28 1995-09-12 Nikon Corp Position detector
JPH07243814A (en) 1994-03-03 1995-09-19 Fujitsu Ltd Measuring method of line width
JPH07263315A (en) 1994-03-25 1995-10-13 Toshiba Corp Projection aligner
US6333776B1 (en) 1994-03-29 2001-12-25 Nikon Corporation Projection exposure apparatus
US20020080338A1 (en) * 1994-03-29 2002-06-27 Nikon Corporation Projection exposure apparatus
US5528118A (en) 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5874820A (en) 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
JPH07283119A (en) 1994-04-14 1995-10-27 Hitachi Ltd Aligner and exposure method
FR2719124B1 (en) 1994-04-21 1996-06-07 Merlin Gerin Method and device for correcting a current signal.
JPH088177A (en) 1994-04-22 1996-01-12 Canon Inc Projection aligner and manufacture of device
JP3193567B2 (en) 1994-04-27 2001-07-30 キヤノン株式会社 Substrate storage container
JP3555230B2 (en) 1994-05-18 2004-08-18 株式会社ニコン Projection exposure equipment
JPH07335748A (en) 1994-06-07 1995-12-22 Miyazaki Oki Electric Co Ltd Manufacture of semiconductor element
EP0687956B2 (en) 1994-06-17 2005-11-23 Carl Zeiss SMT AG Illumination device
US5473465A (en) 1994-06-24 1995-12-05 Ye; Chun Optical rotator and rotation-angle-variable half-waveplate rotator
JP3800616B2 (en) 1994-06-27 2006-07-26 株式会社ニコン Target moving device, positioning device, and movable stage device
JP3205663B2 (en) 1994-06-29 2001-09-04 日本電子株式会社 Charged particle beam equipment
JP3090577B2 (en) 1994-06-29 2000-09-25 浜松ホトニクス株式会社 Conductor layer removal method and system
JPH0822948A (en) 1994-07-08 1996-01-23 Nikon Corp Scanning aligner
JP3205468B2 (en) 1994-07-25 2001-09-04 株式会社日立製作所 Processing apparatus and exposure apparatus having wafer chuck
JPH0846751A (en) 1994-07-29 1996-02-16 Sanyo Electric Co Ltd Illumination optical system
JP3613288B2 (en) 1994-10-18 2005-01-26 株式会社ニコン Cleaning device for exposure apparatus
CN1128381C (en) 1994-10-26 2003-11-19 精工爱普生株式会社 Liquid crystal device and electronic appliance by using same
JPH08136475A (en) 1994-11-14 1996-05-31 Kawasaki Steel Corp Surface observing apparatus for plate-like material
JPH08151220A (en) 1994-11-28 1996-06-11 Nippon Sekiei Glass Kk Method for molding quartz glass
JPH08162397A (en) 1994-11-30 1996-06-21 Canon Inc Projection light exposure device and manufacture of semiconductor device by use thereof
JPH08171054A (en) 1994-12-16 1996-07-02 Nikon Corp Reflection refraction optical system
JPH08195375A (en) 1995-01-17 1996-07-30 Sony Corp Spin-drying method and spin-dryer
JPH08203803A (en) 1995-01-24 1996-08-09 Nikon Corp Exposure apparatus
JP3521544B2 (en) 1995-05-24 2004-04-19 株式会社ニコン Exposure equipment
JP3312164B2 (en) 1995-04-07 2002-08-05 日本電信電話株式会社 Vacuum suction device
JPH08297699A (en) 1995-04-26 1996-11-12 Hitachi Ltd System and method for supporting production failure analysis and production system
JPH08316125A (en) 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
US5663785A (en) 1995-05-24 1997-09-02 International Business Machines Corporation Diffraction pupil filler modified illuminator for annular pupil fills
US5631721A (en) 1995-05-24 1997-05-20 Svg Lithography Systems, Inc. Hybrid illumination system for use in photolithography
US5680588A (en) 1995-06-06 1997-10-21 International Business Machines Corporation Method and system for optimizing illumination in an optical photolithography projection imaging system
JP3531297B2 (en) 1995-06-19 2004-05-24 株式会社ニコン Projection exposure apparatus and projection exposure method
KR0155830B1 (en) 1995-06-19 1998-11-16 김광호 Advanced exposure apparatus and exposure method using the same
KR100474578B1 (en) 1995-06-23 2005-06-21 가부시키가이샤 니콘 Exp0sure apparatus
JP3561556B2 (en) 1995-06-29 2004-09-02 株式会社ルネサステクノロジ Manufacturing method of mask
JP3637639B2 (en) 1995-07-10 2005-04-13 株式会社ニコン Exposure equipment
JPH09108551A (en) 1995-08-11 1997-04-28 Mitsubishi Rayon Co Ltd Water purifier
JPH0961686A (en) 1995-08-23 1997-03-07 Nikon Corp Plastic lens
JPH0982626A (en) 1995-09-12 1997-03-28 Nikon Corp Projection exposure device
JP3487527B2 (en) 1995-09-14 2004-01-19 株式会社東芝 Light refraction device
US5815247A (en) 1995-09-21 1998-09-29 Siemens Aktiengesellschaft Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures
JPH0992593A (en) 1995-09-21 1997-04-04 Nikon Corp Projection exposure system
DE19535392A1 (en) * 1995-09-23 1997-03-27 Zeiss Carl Fa Radial polarization-rotating optical arrangement and microlithography projection exposure system with it
JP3433403B2 (en) 1995-10-16 2003-08-04 三星電子株式会社 Stepper interface device
JPH09134870A (en) 1995-11-10 1997-05-20 Hitachi Ltd Method and device for forming pattern
JPH09148406A (en) 1995-11-24 1997-06-06 Dainippon Screen Mfg Co Ltd Substrate carrying apparatus
JPH09151658A (en) 1995-11-30 1997-06-10 Nichibei Co Ltd Runner connection device for mobile partition wall
JPH09160004A (en) 1995-12-01 1997-06-20 Denso Corp Liquid crystal cell and its empty cell
JP3406957B2 (en) 1995-12-06 2003-05-19 キヤノン株式会社 Optical element and exposure apparatus using the same
JPH09162106A (en) 1995-12-11 1997-06-20 Nikon Corp Scanning aligner
JPH09178415A (en) 1995-12-25 1997-07-11 Nikon Corp Light wave interference measuring device
JPH09184787A (en) 1995-12-28 1997-07-15 Olympus Optical Co Ltd Analysis/evaluation device for optical lens
JP3232473B2 (en) 1996-01-10 2001-11-26 キヤノン株式会社 Projection exposure apparatus and device manufacturing method using the same
JP3189661B2 (en) 1996-02-05 2001-07-16 ウシオ電機株式会社 Light source device
JP3576685B2 (en) 1996-02-07 2004-10-13 キヤノン株式会社 Exposure apparatus and device manufacturing method using the same
JPH09227294A (en) 1996-02-26 1997-09-02 Toyo Commun Equip Co Ltd Production of artificial quartz crystal
JPH09232213A (en) 1996-02-26 1997-09-05 Nikon Corp Projection aligner
WO1997034171A2 (en) * 1996-02-28 1997-09-18 Johnson Kenneth C Microlens scanner for microlithography and wide-field confocal microscopy
JPH09243892A (en) 1996-03-06 1997-09-19 Matsushita Electric Ind Co Ltd Optical element
JP3782151B2 (en) 1996-03-06 2006-06-07 キヤノン株式会社 Gas supply device for excimer laser oscillator
JP3601174B2 (en) 1996-03-14 2004-12-15 株式会社ニコン Exposure apparatus and exposure method
JPH09281077A (en) 1996-04-16 1997-10-31 Hitachi Ltd Capillary electrophoretic apparatus
RU2084941C1 (en) 1996-05-06 1997-07-20 Йелстаун Корпорейшн Н.В. Adaptive optical module
JP2691341B2 (en) 1996-05-27 1997-12-17 株式会社ニコン Projection exposure equipment
JPH09326338A (en) 1996-06-04 1997-12-16 Nikon Corp Production management system
JPH09325255A (en) 1996-06-06 1997-12-16 Olympus Optical Co Ltd Electronic camera
JPH103039A (en) 1996-06-14 1998-01-06 Nikon Corp Reflective/refractive optical system
JPH102865A (en) 1996-06-18 1998-01-06 Nikon Corp Inspecting device of reticle and inspecting method therefor
JPH1020195A (en) 1996-06-28 1998-01-23 Nikon Corp Cata-dioptric system
JPH1032160A (en) 1996-07-17 1998-02-03 Toshiba Corp Pattern exposure method and device
JP3646415B2 (en) 1996-07-18 2005-05-11 ソニー株式会社 Mask defect detection method
JPH1038517A (en) 1996-07-23 1998-02-13 Canon Inc Optical displacement measuring instrument
JP3646757B2 (en) 1996-08-22 2005-05-11 株式会社ニコン Projection exposure method and apparatus
JPH1079337A (en) 1996-09-04 1998-03-24 Nikon Corp Projection aligner
JPH1055713A (en) 1996-08-08 1998-02-24 Ushio Inc Ultraviolet irradiation device
JPH1062305A (en) 1996-08-19 1998-03-06 Advantest Corp Sensitivity correcting method of ccd camera, and lcd panel display test system with ccd camera sensitivity correcting function
JPH1082611A (en) 1996-09-10 1998-03-31 Nikon Corp Apparatus for detecting position of face
JPH1092735A (en) 1996-09-13 1998-04-10 Nikon Corp Aligner
JP2914315B2 (en) 1996-09-20 1999-06-28 日本電気株式会社 Scanning reduction projection exposure apparatus and distortion measuring method
JPH10104427A (en) * 1996-10-03 1998-04-24 Sankyo Seiki Mfg Co Ltd Wavelength plate, and optical pickup unit equipped with the same
JPH10116760A (en) 1996-10-08 1998-05-06 Nikon Corp Aligner and substrate holding device
JP3572083B2 (en) 1996-10-08 2004-09-29 シチズン時計株式会社 Optical disk drive
JPH10116778A (en) 1996-10-09 1998-05-06 Canon Inc Scanning aligner
JPH10116779A (en) 1996-10-11 1998-05-06 Nikon Corp Stage device
JP3955985B2 (en) 1996-10-16 2007-08-08 株式会社ニコン Mark position detection apparatus and method
KR100191329B1 (en) 1996-10-23 1999-06-15 윤종용 Internet education method and device
JP3991166B2 (en) 1996-10-25 2007-10-17 株式会社ニコン Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
JPH10135099A (en) 1996-10-25 1998-05-22 Sony Corp Exposure device and exposure method
JP4029183B2 (en) 1996-11-28 2008-01-09 株式会社ニコン Projection exposure apparatus and projection exposure method
KR20030096435A (en) 1996-11-28 2003-12-31 가부시키가이샤 니콘 Aligner and method for exposure
JP4029182B2 (en) 1996-11-28 2008-01-09 株式会社ニコン Exposure method
JP3624065B2 (en) 1996-11-29 2005-02-23 キヤノン株式会社 Substrate transport apparatus, semiconductor manufacturing apparatus, and exposure apparatus
JPH10169249A (en) 1996-12-12 1998-06-23 Ohbayashi Corp Base isolating structure
JPH10189700A (en) 1996-12-20 1998-07-21 Sony Corp Wafer holding mechanism
KR100512450B1 (en) 1996-12-24 2006-01-27 에이에스엠엘 네델란즈 비.브이. Two-dimensionally stabilized positioning device with two object holders and lithographic device with such positioning device
US5841500A (en) * 1997-01-09 1998-11-24 Tellium, Inc. Wedge-shaped liquid crystal cell
JP2910716B2 (en) 1997-01-16 1999-06-23 日本電気株式会社 Parametric analysis method of light intensity calculation
JPH10206714A (en) 1997-01-20 1998-08-07 Canon Inc Lens moving device
JP2926325B2 (en) 1997-01-23 1999-07-28 株式会社ニコン Scanning exposure method
JPH10209018A (en) 1997-01-24 1998-08-07 Nippon Telegr & Teleph Corp <Ntt> X-ray mask frame and maintenance of x-ray mask
KR970016641U (en) 1997-02-06 1997-05-23 이석우 Tire snow chain
JP3612920B2 (en) 1997-02-14 2005-01-26 ソニー株式会社 Exposure apparatus for producing an optical recording medium master
JPH10255319A (en) 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
JPH10294268A (en) 1997-04-16 1998-11-04 Nikon Corp Projection aligner and positioning method
JP3747566B2 (en) 1997-04-23 2006-02-22 株式会社ニコン Immersion exposure equipment
JPH118194A (en) 1997-04-25 1999-01-12 Nikon Corp Exposure condition measuring method, and evaluation method and lithography system for projection optical system
KR100261888B1 (en) 1997-04-30 2000-07-15 전주범 Method for processing the user information of a digital video disc recorder
JP3817836B2 (en) 1997-06-10 2006-09-06 株式会社ニコン EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
JPH113856A (en) 1997-06-11 1999-01-06 Canon Inc Method and device for projection exposure
JP3233341B2 (en) 1997-06-12 2001-11-26 船井電機株式会社 Bread maker and recording medium used therein
JPH113849A (en) 1997-06-12 1999-01-06 Sony Corp Deformable illumination filter and semiconductor aligner
JPH1114876A (en) 1997-06-19 1999-01-22 Nikon Corp Optical structural body, projection exposing optical system incorporating the same and projection aligner
JPH1116816A (en) 1997-06-25 1999-01-22 Nikon Corp Projection aligner, method for exposure with the device, and method for manufacturing circuit device using the device
JPH1140657A (en) 1997-07-23 1999-02-12 Nikon Corp Sample holding device and scanning-type aligner
US6829041B2 (en) * 1997-07-29 2004-12-07 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus having the same
JP3264224B2 (en) 1997-08-04 2002-03-11 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
JP3413074B2 (en) 1997-08-29 2003-06-03 キヤノン株式会社 Exposure apparatus and device manufacturing method
JPH1187237A (en) 1997-09-10 1999-03-30 Nikon Corp Alignment device
JP4164905B2 (en) 1997-09-25 2008-10-15 株式会社ニコン Electromagnetic force motor, stage apparatus and exposure apparatus
JP2000106340A (en) 1997-09-26 2000-04-11 Nikon Corp Aligner, scanning exposure method, and stage device
JPH11111819A (en) 1997-09-30 1999-04-23 Asahi Kasei Micro Syst Co Ltd Wafer fixing method and light exposing device
JPH11111818A (en) 1997-10-03 1999-04-23 Oki Electric Ind Co Ltd Holding device and holder for wafer
JPH11111601A (en) 1997-10-06 1999-04-23 Nikon Corp Method and device for exposure
JPH11195602A (en) 1997-10-07 1999-07-21 Nikon Corp Projection exposing method and device
JP3097620B2 (en) 1997-10-09 2000-10-10 日本電気株式会社 Scanning reduction projection exposure equipment
JP4210871B2 (en) 1997-10-31 2009-01-21 株式会社ニコン Exposure equipment
JPH11142556A (en) 1997-11-13 1999-05-28 Nikon Corp Controlling method for stage, stage device and exposing device thereof
JPH11150062A (en) 1997-11-14 1999-06-02 Nikon Corp Vibration isolator, aligner, and method for canceling vibration of vibration canceling base
WO1999027568A1 (en) 1997-11-21 1999-06-03 Nikon Corporation Projection aligner and projection exposure method
JPH11283903A (en) 1998-03-30 1999-10-15 Nikon Corp Projection optical system inspection device and projection aligner provided with the device
JPH11162831A (en) 1997-11-21 1999-06-18 Nikon Corp Projection aligner and projection aligning method
JPH11163103A (en) 1997-11-25 1999-06-18 Hitachi Ltd Method and device for manufacturing semiconductor device
JPH11159571A (en) 1997-11-28 1999-06-15 Nikon Corp Machine device, exposure device and its operating method
JPH11166990A (en) 1997-12-04 1999-06-22 Nikon Corp Stage device, exposure device and scanning exposure device
JPH11176727A (en) 1997-12-11 1999-07-02 Nikon Corp Projection aligner
AU1504799A (en) 1997-12-16 1999-07-05 Nikon Corporation Aligner, exposure method and method of manufacturing device
JP3673633B2 (en) 1997-12-16 2005-07-20 キヤノン株式会社 Assembling and adjusting method of projection optical system
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
TW449672B (en) 1997-12-25 2001-08-11 Nippon Kogaku Kk Process and apparatus for manufacturing photomask and method of manufacturing the same
AU1689899A (en) * 1997-12-26 1999-07-19 Nikon Corporation Exposure method and exposure apparatus
JPH11204390A (en) 1998-01-14 1999-07-30 Canon Inc Semiconductor manufacturing equipment and device manufacture
JPH11219882A (en) 1998-02-02 1999-08-10 Nikon Corp Stage and aligner
JPH11288879A (en) 1998-02-04 1999-10-19 Hitachi Ltd Exposure conditions detecting method and device thereof, and manufacture of semiconductor device
JP3820728B2 (en) 1998-02-04 2006-09-13 東レ株式会社 Substrate measuring device
JPH11233434A (en) 1998-02-17 1999-08-27 Nikon Corp Exposure condition determining method, exposure method, aligner, and manufacture of device
JP4207240B2 (en) 1998-02-20 2009-01-14 株式会社ニコン Illuminometer for exposure apparatus, lithography system, illuminometer calibration method, and microdevice manufacturing method
DE19807120A1 (en) * 1998-02-20 1999-08-26 Zeiss Carl Fa Optical system with polarization compensator
JPH11239758A (en) 1998-02-26 1999-09-07 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
SE9800665D0 (en) * 1998-03-02 1998-03-02 Micronic Laser Systems Ab Improved method for projection printing using a micromirror SLM
JPH11260791A (en) 1998-03-10 1999-09-24 Toshiba Mach Co Ltd Drying method of semiconductor wafer and drying equipment
JPH11260686A (en) 1998-03-11 1999-09-24 Toshiba Corp Exposure method
JPH11264756A (en) 1998-03-18 1999-09-28 Tokyo Electron Ltd Level detector and level detecting method, and substrate processing device
AU2747899A (en) 1998-03-20 1999-10-18 Nikon Corporation Photomask and projection exposure system
WO1999049505A1 (en) 1998-03-24 1999-09-30 Nikon Corporation Illuminator, exposing method and apparatus, and device manufacturing method
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
EP1083462A4 (en) 1998-03-26 2003-12-03 Nikon Corp Exposure method and system, photomask, method of manufacturing photomask, micro-device and method of manufacturing micro-device
DE69931690T2 (en) 1998-04-08 2007-06-14 Asml Netherlands B.V. Lithographic apparatus
JPH11307610A (en) 1998-04-22 1999-11-05 Nikon Corp Substrate transfer equipment and aligner
US6238063B1 (en) 1998-04-27 2001-05-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JPH11312631A (en) 1998-04-27 1999-11-09 Nikon Corp Illuminating optical device and aligner
WO2000070660A1 (en) 1999-05-18 2000-11-23 Nikon Corporation Exposure method, illuminating device, and exposure system
JP4090115B2 (en) 1998-06-09 2008-05-28 信越ポリマー株式会社 Substrate storage container
JP3985346B2 (en) 1998-06-12 2007-10-03 株式会社ニコン Projection exposure apparatus, projection exposure apparatus adjustment method, and projection exposure method
AU4167199A (en) 1998-06-17 2000-01-05 Nikon Corporation Method for producing mask
JP2000012453A (en) 1998-06-18 2000-01-14 Nikon Corp Aligner and its using method, exposure method, and manufacturing method of mask
JP2000021748A (en) 1998-06-30 2000-01-21 Canon Inc Method of exposure and exposure equipment
JP2000021742A (en) 1998-06-30 2000-01-21 Canon Inc Method of exposure and exposure equipment
DE19829612A1 (en) * 1998-07-02 2000-01-05 Zeiss Carl Fa Microlithography lighting system with depolarizer
JP2000032403A (en) 1998-07-14 2000-01-28 Sony Corp Data transmission method, data transmitter and receiver thereof
JP2000029202A (en) 1998-07-15 2000-01-28 Nikon Corp Production of mask
JP2000036449A (en) 1998-07-17 2000-02-02 Nikon Corp Aligner
JP2000058436A (en) 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
AU4930099A (en) 1998-08-18 2000-03-14 Nikon Corporation Illuminator and projection exposure apparatus
JP2000081320A (en) 1998-09-03 2000-03-21 Canon Inc Face position detector and fabrication of device employing it
JP2000092815A (en) 1998-09-10 2000-03-31 Canon Inc Stage device and aligner using the same
JP4132397B2 (en) 1998-09-16 2008-08-13 積水化学工業株式会社 Photocurable resin composition, liquid crystal inlet sealing agent and liquid crystal display cell
JP2000097616A (en) 1998-09-22 2000-04-07 Nikon Corp Interferometer
US6031658A (en) 1998-09-25 2000-02-29 University Of Central Florida Digital control polarization based optical scanner
JP4065923B2 (en) 1998-09-29 2008-03-26 株式会社ニコン Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus
JP2000121491A (en) 1998-10-20 2000-04-28 Nikon Corp Evaluation method for optical system
JP2001176766A (en) 1998-10-29 2001-06-29 Nikon Corp Illuminator and projection aligner
JP2000147346A (en) 1998-11-09 2000-05-26 Toshiba Corp Fitting mechanism for mold lens
JP2000180371A (en) 1998-12-11 2000-06-30 Sharp Corp Foreign matter inspecting apparatus and semiconductor process apparatus
EP1014196A3 (en) 1998-12-17 2002-05-29 Nikon Corporation Method and system of illumination for a projection optical apparatus
US6563567B1 (en) 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
US6406148B1 (en) * 1998-12-31 2002-06-18 Texas Instruments Incorporated Electronic color switching in field sequential video displays
CN1293822A (en) 1999-01-06 2001-05-02 株式会社尼康 Projection optical system, method for producing the same, and projection exposure apparatus using the same
JP4146952B2 (en) 1999-01-11 2008-09-10 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2000208407A (en) 1999-01-19 2000-07-28 Nikon Corp Aligner
JP2000243684A (en) 1999-02-18 2000-09-08 Canon Inc Aligner and device manufacture
JP2000240717A (en) 1999-02-19 2000-09-05 Canon Inc Active vibration resistant device
JP2000252201A (en) 1999-03-02 2000-09-14 Nikon Corp Method and device for detecting surface position, method and device for projection exposure using, and manufacture of semiconductor device
JP2000283889A (en) 1999-03-31 2000-10-13 Nikon Corp Inspection device and method of projection optical system, aligner, and manufacture of micro device
JP2000286176A (en) 1999-03-31 2000-10-13 Hitachi Ltd Semiconductor substrate processing unit and display method of its processing status
JP2001174615A (en) 1999-04-15 2001-06-29 Nikon Corp Diffraction optical element, method of producing the element, illumination device equipped with the element, projection exposure device, exposure method, light homogenizer, and method of producing the light homogenizer
WO2000067303A1 (en) 1999-04-28 2000-11-09 Nikon Corporation Exposure method and apparatus
DE19921795A1 (en) 1999-05-11 2000-11-23 Zeiss Carl Fa Projection exposure system and exposure method of microlithography
US6498869B1 (en) 1999-06-14 2002-12-24 Xiaotian Steve Yao Devices for depolarizing polarized light
JP2000003874A (en) 1999-06-15 2000-01-07 Nikon Corp Exposure method and aligner
JP2001007015A (en) 1999-06-25 2001-01-12 Canon Inc Stage device
AU4395099A (en) 1999-06-30 2001-01-22 Nikon Corporation Exposure method and device
US6769273B1 (en) 1999-07-05 2004-08-03 Nikon Corporation Method of manufacturing silica glass member and silica glass member obtained by the method
JP2001020951A (en) 1999-07-07 2001-01-23 Toto Ltd Static pressure gas bearing
JP2001023996A (en) 1999-07-08 2001-01-26 Sony Corp Manufacturing method of semiconductor
DE10029938A1 (en) 1999-07-09 2001-07-05 Zeiss Carl Optical system for projection exposure device, includes optical element which consists of magnesium fluoride, as main constituent
JP2001037201A (en) 1999-07-21 2001-02-09 Nikon Corp Motor device, stage equipment and exposure device
JP2001100311A (en) 1999-07-23 2001-04-13 Seiko Epson Corp Projector
JP2001044097A (en) 1999-07-26 2001-02-16 Matsushita Electric Ind Co Ltd Aligner
US6280034B1 (en) 1999-07-30 2001-08-28 Philips Electronics North America Corporation Efficient two-panel projection system employing complementary illumination
JP3110023B1 (en) 1999-09-02 2000-11-20 岩堀 雅行 Fuel release device
JP2001083472A (en) 1999-09-10 2001-03-30 Nikon Corp Optical modulating device, light source device and exposure source
JP4362857B2 (en) 1999-09-10 2009-11-11 株式会社ニコン Light source apparatus and exposure apparatus
EP1139521A4 (en) 1999-09-10 2006-03-22 Nikon Corp Light source and wavelength stabilization control method, exposure apparatus and exposure method, method for producing exposure apparatus, and device manufacturing method and device
WO2001022480A1 (en) 1999-09-20 2001-03-29 Nikon Corporation Parallel link mechanism, exposure system and method of manufacturing the same, and method of manufacturing devices
WO2001023933A1 (en) 1999-09-29 2001-04-05 Nikon Corporation Projection optical system
WO2001023935A1 (en) 1999-09-29 2001-04-05 Nikon Corporation Projection exposure method and apparatus and projection optical system
JP2001097734A (en) 1999-09-30 2001-04-10 Toshiba Ceramics Co Ltd Quartz glass container and method for producing the same
WO2001027978A1 (en) 1999-10-07 2001-04-19 Nikon Corporation Substrate, stage device, method of driving stage, exposure system and exposure method
JP2001110707A (en) 1999-10-08 2001-04-20 Orc Mfg Co Ltd Optical system of peripheral aligner
JP2001118773A (en) 1999-10-18 2001-04-27 Nikon Corp Stage device and exposure system
JP2001135560A (en) 1999-11-04 2001-05-18 Nikon Corp Illuminating optical device, exposure, and method of manufacturing micro-device
WO2001035451A1 (en) 1999-11-09 2001-05-17 Nikon Corporation Illuminator, aligner, and method for fabricating device
JP2001144004A (en) 1999-11-16 2001-05-25 Nikon Corp Exposing method, aligner and method of manufacturing device
US6361909B1 (en) * 1999-12-06 2002-03-26 Industrial Technology Research Institute Illumination aperture filter design using superposition
JP2001167996A (en) 1999-12-10 2001-06-22 Tokyo Electron Ltd Substrate treatment apparatus
TW546550B (en) 1999-12-13 2003-08-11 Asml Netherlands Bv An illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus
EP1109067B1 (en) 1999-12-13 2006-05-24 ASML Netherlands B.V. Illuminator
JP2002118058A (en) 2000-01-13 2002-04-19 Nikon Corp Projection aligner and projection exposure method
JP2001203140A (en) 2000-01-20 2001-07-27 Nikon Corp Stage device, aligner and device manufacturing method
JP3413485B2 (en) 2000-01-31 2003-06-03 住友重機械工業株式会社 Thrust ripple measurement method for linear motor
JP2005233979A (en) 2000-02-09 2005-09-02 Nikon Corp Catadioptric system
JP2001228404A (en) 2000-02-14 2001-08-24 Nikon Engineering Co Ltd Vertical illumination type microscope, inspection apparatus for probe card and method for manufacturing probe card
JP4018309B2 (en) 2000-02-14 2007-12-05 松下電器産業株式会社 Circuit parameter extraction method, semiconductor integrated circuit design method and apparatus
JP3302965B2 (en) 2000-02-15 2002-07-15 株式会社東芝 Inspection method for exposure equipment
JP2001228401A (en) 2000-02-16 2001-08-24 Canon Inc Projection optical system, projection aligner by this projection optical system and method for manufacturing device
JP2002100561A (en) 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
JP2001313250A (en) 2000-02-25 2001-11-09 Nikon Corp Aligner, its adjusting method, and method for fabricating device using aligner
TW546699B (en) * 2000-02-25 2003-08-11 Nikon Corp Exposure apparatus and exposure method capable of controlling illumination distribution
JP2001242269A (en) 2000-03-01 2001-09-07 Nikon Corp Stage device, stage driving method, exposure device and exposure method
DE10010131A1 (en) 2000-03-03 2001-09-06 Zeiss Carl Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence
US7301605B2 (en) 2000-03-03 2007-11-27 Nikon Corporation Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices
DE10012017A1 (en) * 2000-03-11 2001-09-13 Basysprint Gmbh Sys Druckind Printing plate exposure device, has optical error and/or tolerance compensation device incorporated in electronic image processing device controlling light modulator
JP2001264696A (en) 2000-03-16 2001-09-26 Canon Inc Illumination optical system and exposure device provided with the same
JP2001267227A (en) 2000-03-21 2001-09-28 Canon Inc Vibration isolating system, exposure system, and device manufacturing method
JP2001265581A (en) 2000-03-21 2001-09-28 Canon Inc System and method for preventing illegal use of software
JP2001272764A (en) 2000-03-24 2001-10-05 Canon Inc Photomask for projection exposure and for projection exposure method using the photomask
JP2001338868A (en) 2000-03-24 2001-12-07 Nikon Corp Illuminance-measuring device and aligner
JP4689064B2 (en) 2000-03-30 2011-05-25 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2001282526A (en) 2000-03-31 2001-10-12 Canon Inc Software management device, its method and computer readable storage medium
JP3927753B2 (en) * 2000-03-31 2007-06-13 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2001296105A (en) 2000-04-12 2001-10-26 Nikon Corp Surface-position detecting apparatus, and aligner and aligning method using the detecting apparatus
JP2001297976A (en) 2000-04-17 2001-10-26 Canon Inc Method of exposure and aligner
JP2001307983A (en) 2000-04-20 2001-11-02 Nikon Corp Stage device and aligner
JP3514439B2 (en) 2000-04-20 2004-03-31 キヤノン株式会社 Support structure for optical element, exposure apparatus configured using the support structure, and method for manufacturing devices and the like using the apparatus
JP2001304332A (en) 2000-04-24 2001-10-31 Canon Inc Active vibration damping device
JP2003532282A (en) 2000-04-25 2003-10-28 エーエスエムエル ユーエス,インコーポレイテッド Optical reduction system without reticle diffraction induced bias
JP2002014005A (en) 2000-04-25 2002-01-18 Nikon Corp Measuring method of spatial image, measuring method of imaging characteristic, measuring device for spatial image, and exposuring device
JP2003532281A (en) 2000-04-25 2003-10-28 エーエスエムエル ユーエス,インコーポレイテッド Optical reduction system with illumination polarization control
JP2002057097A (en) 2000-05-31 2002-02-22 Nikon Corp Aligner, and microdevice and its manufacturing method
JP2002016124A (en) 2000-06-28 2002-01-18 Sony Corp Wafer transporting arm mechanism
JP2002015978A (en) 2000-06-29 2002-01-18 Canon Inc Exposure system
JP2002043213A (en) 2000-07-25 2002-02-08 Nikon Corp Stage device and exposure system
JP2002035980A (en) * 2000-07-26 2002-02-05 Matsushita Electric Ind Co Ltd Device and method for laser beam processing, and laser beam oscillator
ATE352052T1 (en) 2000-08-18 2007-02-15 Nikon Corp HOLDING DEVICE FOR OPTICAL ELEMENT
JP3645801B2 (en) * 2000-08-24 2005-05-11 ペンタックス株式会社 Beam train detection method and phase filter for detection
JP2002071513A (en) 2000-08-28 2002-03-08 Nikon Corp Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JP4504537B2 (en) 2000-08-29 2010-07-14 芝浦メカトロニクス株式会社 Spin processing equipment
JP2002075835A (en) 2000-08-30 2002-03-15 Nikon Corp Illumination optical device and exposure system with the same
US6373614B1 (en) 2000-08-31 2002-04-16 Cambridge Research Instrumentation Inc. High performance polarization controller and polarization sensor
JP2002093690A (en) 2000-09-19 2002-03-29 Hitachi Ltd Method for manufacturing semiconductor device
JP2002093686A (en) 2000-09-19 2002-03-29 Nikon Corp Stage device and aligner
JP2002091922A (en) 2000-09-20 2002-03-29 Fujitsu General Ltd Method and system for distributing and managing application software and contents
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
JP4245286B2 (en) 2000-10-23 2009-03-25 株式会社ニコン Catadioptric optical system and exposure apparatus provided with the optical system
JP2002141270A (en) 2000-11-01 2002-05-17 Nikon Corp Exposing system
US20020075467A1 (en) 2000-12-20 2002-06-20 Nikon Corporation Exposure apparatus and method
JP2002158157A (en) 2000-11-17 2002-05-31 Nikon Corp Illumination optical device and aligner and method for fabricating microdevice
JP2002162655A (en) 2000-11-27 2002-06-07 Sony Corp Optical apparatus
JP2002170495A (en) 2000-11-28 2002-06-14 Akira Sekino Integrate barrier rib synthetic resin rear substrate
JP2002231619A (en) 2000-11-29 2002-08-16 Nikon Corp Optical illumination equipment and aligner equipped with the same
JP2002190438A (en) 2000-12-21 2002-07-05 Nikon Corp Projection aligner
JP2002198284A (en) 2000-12-25 2002-07-12 Nikon Corp Stage device and projection aligner
JP2002195912A (en) 2000-12-27 2002-07-10 Nikon Corp Method and apparatus for measuring optical property, exposure apparatus and method for producing device
JP2002203763A (en) 2000-12-27 2002-07-19 Nikon Corp Optical characteristic measuring method and device, signal sensitivity setting method, exposure unit and device manufacturing method
JP2002202221A (en) 2000-12-28 2002-07-19 Nikon Corp Position detection method, position detector, optical characteristic measuring method, optical characteristic measuring device, exposure device, and device manufacturing method
JP3495992B2 (en) 2001-01-26 2004-02-09 キヤノン株式会社 Correction apparatus, exposure apparatus, device manufacturing method and device
US6563566B2 (en) 2001-01-29 2003-05-13 International Business Machines Corporation System and method for printing semiconductor patterns using an optimized illumination and reticle
JP2002229215A (en) 2001-01-30 2002-08-14 Nikon Corp Exposure method and exposure device
JP2002227924A (en) 2001-01-31 2002-08-14 Canon Inc Vibration control damper and exposure apparatus with vibration control damper
SE0100336L (en) 2001-02-05 2002-08-06 Micronic Laser Systems Ab Addressing method and apparatus using the same technical area
CN1491427A (en) 2001-02-06 2004-04-21 ������������ʽ���� Exposure system, and exposure method, and device production method
DE10113612A1 (en) 2001-02-23 2002-09-05 Zeiss Carl Sub-objective for illumination system has two lens groups, second lens group with at least first lens with negative refractive index and at least second lens with positive refractive index
TWI285295B (en) 2001-02-23 2007-08-11 Asml Netherlands Bv Illumination optimization in lithography
JP4714403B2 (en) 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド Method and apparatus for exposing a dual reticle image
JP2002258487A (en) 2001-02-28 2002-09-11 Nikon Corp Method and device for aligner
JP4501292B2 (en) 2001-03-05 2010-07-14 コニカミノルタホールディングス株式会社 Coating substrate, coating material coating method, and element manufacturing method
JP2002289505A (en) 2001-03-28 2002-10-04 Nikon Corp Aligner, method for adjusting the aligner and method for manufacturing micro-device
JPWO2002080185A1 (en) 2001-03-28 2004-07-22 株式会社ニコン Stage apparatus, exposure apparatus, and device manufacturing method
JP2002365783A (en) 2001-04-05 2002-12-18 Sony Corp Apparatus of forming mask pattern, apparatus and method of manufacturing high-resolution mask as well as method of forming resist pattern
JP2002305140A (en) 2001-04-06 2002-10-18 Nikon Corp Aligner and substrate processing system
WO2002084850A1 (en) 2001-04-09 2002-10-24 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
JP2002324743A (en) * 2001-04-24 2002-11-08 Canon Inc Exposing method and equipment thereof
JP3937903B2 (en) 2001-04-24 2007-06-27 キヤノン株式会社 Exposure method and apparatus
WO2002088843A2 (en) * 2001-04-24 2002-11-07 Canon Kabushiki Kaisha Exposure method and apparatus
JP2002329651A (en) 2001-04-27 2002-11-15 Nikon Corp Aligner, method of manufacturing aligner and method of manufacturing micro-device
DE10124566A1 (en) * 2001-05-15 2002-11-21 Zeiss Carl Optical imaging system with polarizing agents and quartz crystal plate therefor
DE10123725A1 (en) 2001-05-15 2002-11-21 Zeiss Carl Objective for microlithographic projection, includes lens element with axis perpendicular to specified fluoride crystal plane
WO2002093209A2 (en) 2001-05-15 2002-11-21 Carl Zeiss Lens system consisting of fluoride crystal lenses
DE10124474A1 (en) 2001-05-19 2002-11-21 Zeiss Carl Microlithographic exposure involves compensating path difference by controlled variation of first and/or second optical paths; image plane difference is essentially independent of incident angle
US7053988B2 (en) * 2001-05-22 2006-05-30 Carl Zeiss Smt Ag. Optically polarizing retardation arrangement, and microlithography projection exposure machine
DE10124803A1 (en) * 2001-05-22 2002-11-28 Zeiss Carl Polarizer and microlithography projection system with polarizer
JP2002353105A (en) 2001-05-24 2002-12-06 Nikon Corp Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice
JP4622160B2 (en) 2001-05-31 2011-02-02 旭硝子株式会社 Diffraction grating integrated optical rotator and optical head device
JP2002359174A (en) 2001-05-31 2002-12-13 Mitsubishi Electric Corp Exposure process managing system, method therefor and program for managing exposure process
JP2002359176A (en) 2001-05-31 2002-12-13 Canon Inc Luminaire, illumination control method, aligner, device and manufacturing method thereof
EP1262836B1 (en) * 2001-06-01 2018-09-12 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4689081B2 (en) 2001-06-06 2011-05-25 キヤノン株式会社 Exposure apparatus, adjustment method, and device manufacturing method
JP3734432B2 (en) 2001-06-07 2006-01-11 三星電子株式会社 Mask transfer device, mask transfer system, and mask transfer method
WO2002101804A1 (en) 2001-06-11 2002-12-19 Nikon Corporation Exposure device, device manufacturing method, and temperature stabilization flow passage device
JP2002367523A (en) 2001-06-12 2002-12-20 Matsushita Electric Ind Co Ltd Plasma display panel and method of manufacturing the same
KR20030036254A (en) 2001-06-13 2003-05-09 가부시키가이샤 니콘 Scanning exposure method and scanning exposure system, and device production method
JP2002373849A (en) 2001-06-15 2002-12-26 Canon Inc Aligner
US6788385B2 (en) 2001-06-21 2004-09-07 Nikon Corporation Stage device, exposure apparatus and method
WO2003003429A1 (en) 2001-06-28 2003-01-09 Nikon Corporation Projection optical system, exposure system and method
US6831731B2 (en) * 2001-06-28 2004-12-14 Nikon Corporation Projection optical system and an exposure apparatus with the projection optical system
JP2003015314A (en) 2001-07-02 2003-01-17 Nikon Corp Illumination optical device and exposure device provided with the same
JP2003017003A (en) 2001-07-04 2003-01-17 Canon Inc Lamp and light source device
JP2003015040A (en) 2001-07-04 2003-01-15 Nikon Corp Projection optical system and exposure device equipped therewith
US6727992B2 (en) * 2001-07-06 2004-04-27 Zygo Corporation Method and apparatus to reduce effects of sheared wavefronts on interferometric phase measurements
JP3507459B2 (en) 2001-07-09 2004-03-15 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
JP2003028673A (en) 2001-07-10 2003-01-29 Canon Inc Optical encoder, semiconductor manufacturing apparatus, device manufacturing method, semiconductor manufacturing plant and maintaining method for semiconductor manufacturing apparatus
US6788389B2 (en) * 2001-07-10 2004-09-07 Nikon Corporation Production method of projection optical system
EP1280007B1 (en) 2001-07-24 2008-06-18 ASML Netherlands B.V. Imaging apparatus
JP2003045712A (en) 2001-07-26 2003-02-14 Japan Aviation Electronics Industry Ltd Waterproof coil and manufacturing method therefor
JP4522024B2 (en) 2001-07-27 2010-08-11 キヤノン株式会社 Mercury lamp, illumination device and exposure device
JP2003043223A (en) 2001-07-30 2003-02-13 Nikon Corp Beam splitter and wave plate made of crystal material, and optical device, exposure device and inspection device equipped with the crystal optical parts
JP2003059799A (en) 2001-08-10 2003-02-28 Nikon Corp Illumination optical system, exposure system, and method of manufacturing microdevice
JP2003059803A (en) 2001-08-14 2003-02-28 Canon Inc Aligner
JP2003068600A (en) 2001-08-22 2003-03-07 Canon Inc Aligner and cooling method of substrate chuck
JP2003068607A (en) 2001-08-23 2003-03-07 Nikon Corp Aligner and exposure method
JP2003068604A (en) 2001-08-23 2003-03-07 Nikon Corp Illumination optical equipment and aligner using the illumination optical equipment
TW554411B (en) 2001-08-23 2003-09-21 Nikon Corp Exposure apparatus
KR100452928B1 (en) 2001-08-31 2004-10-14 안희석 Noodle of Potato and Method for manufacturing there of
KR20060098404A (en) 2001-08-31 2006-09-18 캐논 가부시끼가이샤 Reticle
JP2003075703A (en) 2001-08-31 2003-03-12 Konica Corp Optical unit and optical device
JP4183166B2 (en) 2001-08-31 2008-11-19 京セラ株式会社 Positioning device components
JP2003081654A (en) 2001-09-06 2003-03-19 Toshiba Ceramics Co Ltd Synthetic quartz glass, and production method therefor
JPWO2003023832A1 (en) 2001-09-07 2004-12-24 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP2003084445A (en) 2001-09-13 2003-03-19 Canon Inc Scanning type exposure device and exposure method
JP2003090978A (en) 2001-09-17 2003-03-28 Canon Inc Illumination device, exposure device and method for manufacturing device
JP4160286B2 (en) 2001-09-21 2008-10-01 東芝マイクロエレクトロニクス株式会社 LSI pattern dimension measurement location selection method
JP3910032B2 (en) 2001-09-25 2007-04-25 大日本スクリーン製造株式会社 Substrate developing device
JP2003114387A (en) 2001-10-04 2003-04-18 Nikon Corp Cata-dioptic system and projection exposure device equipped with the same system
JP4412450B2 (en) 2001-10-05 2010-02-10 信越化学工業株式会社 Anti-reflective filter
JP2003124095A (en) 2001-10-11 2003-04-25 Nikon Corp Projection exposure method, projection aligner, and device manufacturing method
JP2003130132A (en) 2001-10-22 2003-05-08 Nec Ameniplantex Ltd Vibration isolation mechanism
US6970232B2 (en) * 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
JP2003202523A (en) * 2001-11-02 2003-07-18 Nec Viewtechnology Ltd Polarization unit, polarization illumination device and projection type display device using the illumination device
US6577379B1 (en) * 2001-11-05 2003-06-10 Micron Technology, Inc. Method and apparatus for shaping and/or orienting radiation irradiating a microlithographic substrate
JP4362999B2 (en) 2001-11-12 2009-11-11 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US6900915B2 (en) 2001-11-14 2005-05-31 Ricoh Company, Ltd. Light deflecting method and apparatus efficiently using a floating mirror
JP4307813B2 (en) 2001-11-14 2009-08-05 株式会社リコー Optical deflection method, optical deflection apparatus, method of manufacturing the optical deflection apparatus, optical information processing apparatus, image forming apparatus, image projection display apparatus, and optical transmission apparatus including the optical deflection apparatus
JP2003166856A (en) 2001-11-29 2003-06-13 Fuji Electric Co Ltd Optical encoder
JP3809095B2 (en) 2001-11-29 2006-08-16 ペンタックス株式会社 Light source system for exposure apparatus and exposure apparatus
JP2003161882A (en) 2001-11-29 2003-06-06 Nikon Corp Projection optical system, exposure apparatus and exposing method
JP3945569B2 (en) 2001-12-06 2007-07-18 東京応化工業株式会社 Development device
JP2003249443A (en) 2001-12-21 2003-09-05 Nikon Corp Stage apparatus, stage position-controlling method, exposure method and projection aligner, and device- manufacturing method
JP2003188087A (en) 2001-12-21 2003-07-04 Sony Corp Aligning method and aligner and method for manufacturing semiconductor device
TW200301848A (en) 2002-01-09 2003-07-16 Nikon Corp Exposure apparatus and exposure method
TW200302507A (en) 2002-01-21 2003-08-01 Nikon Corp Stage device and exposure device
JP3809381B2 (en) 2002-01-28 2006-08-16 キヤノン株式会社 Linear motor, stage apparatus, exposure apparatus, and device manufacturing method
JP2003229347A (en) 2002-01-31 2003-08-15 Canon Inc Semiconductor manufacturing device
JP2003233001A (en) 2002-02-07 2003-08-22 Canon Inc Reflection type projection optical system, exposure device, and method for manufacturing device
DE10206061A1 (en) 2002-02-08 2003-09-04 Carl Zeiss Semiconductor Mfg S Polarization-optimized lighting system
US20050134825A1 (en) 2002-02-08 2005-06-23 Carl Zeiss Smt Ag Polarization-optimized illumination system
JP2003240906A (en) 2002-02-20 2003-08-27 Dainippon Printing Co Ltd Antireflection body and method for manufacturing the same
JP2003257812A (en) 2002-02-27 2003-09-12 Nikon Corp Evaluating method for imaging optical system, adjusting method for the same, aligner, and alignment method
JP2003258071A (en) 2002-02-28 2003-09-12 Nikon Corp Substrate holding apparatus and aligner
WO2003075328A1 (en) * 2002-03-01 2003-09-12 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method, exposure device, program, and device manufacturing method
JP3984841B2 (en) 2002-03-07 2007-10-03 キヤノン株式会社 Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method
JP2003263119A (en) 2002-03-07 2003-09-19 Fuji Xerox Co Ltd Rib-attached electrode and its manufacturing method
DE10210899A1 (en) 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection lens for immersion lithography
JP3975787B2 (en) 2002-03-12 2007-09-12 ソニー株式会社 Solid-state image sensor
JP4100011B2 (en) 2002-03-13 2008-06-11 セイコーエプソン株式会社 Surface treatment apparatus, organic EL device manufacturing apparatus, and manufacturing method
US7085052B2 (en) 2002-03-14 2006-08-01 Optellios, Inc. Over-parameterized polarization controller
US20050094268A1 (en) * 2002-03-14 2005-05-05 Carl Zeiss Smt Ag Optical system with birefringent optical elements
JP4335495B2 (en) 2002-03-27 2009-09-30 株式会社日立ハイテクノロジーズ Constant pressure chamber, irradiation apparatus using the same, and circuit pattern inspection apparatus
JP2003297727A (en) * 2002-04-03 2003-10-17 Nikon Corp Illumination optical device, exposure apparatus, and method of exposure
TWI278721B (en) 2002-04-09 2007-04-11 Nikon Corp Exposure method, exposure apparatus, and manufacturing method of device
KR20050003356A (en) 2002-04-10 2005-01-10 후지 샤신 필름 가부시기가이샤 Exposure head, exposure apparatus, and its application
DE10310690A1 (en) 2002-04-12 2003-10-30 Heidelberger Druckmasch Ag Sheet guide in sheet-processing machine especially rotary printer has pick-up pieces, free air jet nozzles and air cushion
JP3950732B2 (en) 2002-04-23 2007-08-01 キヤノン株式会社 Illumination optical system, illumination method and exposure apparatus
JP4333078B2 (en) 2002-04-26 2009-09-16 株式会社ニコン Projection optical system, exposure apparatus including the projection optical system, exposure method using the projection optical system, and device manufacturing method
US20050095749A1 (en) 2002-04-29 2005-05-05 Mathias Krellmann Device for protecting a chip and method for operating a chip
WO2003093167A1 (en) 2002-04-29 2003-11-13 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Device for protecting a chip and method for operating a chip
US6707534B2 (en) * 2002-05-10 2004-03-16 Anvik Corporation Maskless conformable lithography
JP4324957B2 (en) 2002-05-27 2009-09-02 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
CN1461974A (en) 2002-05-31 2003-12-17 Asml荷兰有限公司 Assembling optical element external member and method, optical element, offset press, device manufacturing method
JP4037179B2 (en) 2002-06-04 2008-01-23 東京エレクトロン株式会社 Cleaning method, cleaning device
JP2004015187A (en) 2002-06-04 2004-01-15 Fuji Photo Film Co Ltd Photographing auxiliary system, digital camera, and server
JP2004014876A (en) 2002-06-07 2004-01-15 Nikon Corp Adjustment method, method for measuring spatial image, method for measuring image surface, and exposure device
JP2004022708A (en) 2002-06-14 2004-01-22 Nikon Corp Imaging optical system, illumination optical system, aligner and method for exposure
JP3448812B2 (en) 2002-06-14 2003-09-22 株式会社ニコン Mark detection apparatus, exposure apparatus having the same, and method of manufacturing semiconductor element or liquid crystal display element using the exposure apparatus
JP2004179172A (en) 2002-06-26 2004-06-24 Nikon Corp Aligner, exposure method, and method of manufacturing device
JP4012771B2 (en) 2002-06-28 2007-11-21 富士通エフ・アイ・ピー株式会社 License management method, license management system, license management program
JP2004039952A (en) 2002-07-05 2004-02-05 Tokyo Electron Ltd Plasma treatment apparatus and monitoring method thereof
JP2004040039A (en) 2002-07-08 2004-02-05 Sony Corp Selecting method of exposing method
JP2004045063A (en) 2002-07-09 2004-02-12 Topcon Corp Method of manufacturing optical rotary encoder plate and optical rotary encoder plate
JP2004051717A (en) 2002-07-17 2004-02-19 Mitsubishi Heavy Ind Ltd Biomass gasifier
AU2003252135A1 (en) 2002-07-26 2004-02-16 Massachusetts Institute Of Technology Optical imaging using a pupil filter and coordinated illumination polarisation
JP2004063847A (en) 2002-07-30 2004-02-26 Nikon Corp Aligner, exposure method, and stage device
JP2004063988A (en) 2002-07-31 2004-02-26 Canon Inc Illumination optical system, aligner having the system, and method of manufacturing device
JP2004071851A (en) 2002-08-07 2004-03-04 Canon Inc Semiconductor exposure method and aligner
JP2004085612A (en) 2002-08-22 2004-03-18 Matsushita Electric Ind Co Ltd Halftone phase shift mask, its manufacturing method and method for forming pattern using same
JP4095376B2 (en) 2002-08-28 2008-06-04 キヤノン株式会社 Exposure apparatus and method, and device manufacturing method
JP2004095653A (en) 2002-08-29 2004-03-25 Nikon Corp Aligner
JP2004145269A (en) 2002-08-30 2004-05-20 Nikon Corp Projection optical system, reflective and refractive projection optical system, scanning exposure apparatus and exposure method
EP1394488B1 (en) 2002-08-31 2008-09-17 Samsung Electronics Co., Ltd. Cabinet for recessed refrigerators and method for its assembly
JP2004103674A (en) 2002-09-06 2004-04-02 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2004101362A (en) 2002-09-10 2004-04-02 Canon Inc Stage position measurement and positioning device
JP2004098012A (en) 2002-09-12 2004-04-02 Seiko Epson Corp Thin film formation method, thin film formation device, optical device, organic electroluminescent device, semiconductor device, and electronic apparatus
JP2004104654A (en) 2002-09-12 2004-04-02 Ricoh Co Ltd Image reading apparatus
JP2004111579A (en) * 2002-09-17 2004-04-08 Canon Inc Exposure method and system
JP4269610B2 (en) 2002-09-17 2009-05-27 株式会社ニコン Exposure apparatus and method of manufacturing exposure apparatus
KR100480620B1 (en) 2002-09-19 2005-03-31 삼성전자주식회사 Exposing equipment including a Micro Mirror Array and exposing method using the exposing equipment
JP3958163B2 (en) * 2002-09-19 2007-08-15 キヤノン株式会社 Exposure method
JP2004119497A (en) 2002-09-24 2004-04-15 Huabang Electronic Co Ltd Semiconductor manufacturing equipment and method therefor
JP4333866B2 (en) 2002-09-26 2009-09-16 大日本スクリーン製造株式会社 Substrate processing method and substrate processing apparatus
JP2004128307A (en) 2002-10-04 2004-04-22 Nikon Corp Aligner and its adjustment method
JP2004134682A (en) 2002-10-15 2004-04-30 Nikon Corp Gas cylinder, stage apparatus, and aligner
US6665119B1 (en) 2002-10-15 2003-12-16 Eastman Kodak Company Wire grid polarizer
JP2004140145A (en) 2002-10-17 2004-05-13 Nikon Corp Aligner
JP2004146702A (en) 2002-10-25 2004-05-20 Nikon Corp Method for measuring optical characteristic, exposure method and method for manufacturing device
JP2004153096A (en) 2002-10-31 2004-05-27 Nikon Corp Aligner
JP2004153064A (en) 2002-10-31 2004-05-27 Nikon Corp Aligner
JP2004152705A (en) 2002-11-01 2004-05-27 Matsushita Electric Ind Co Ltd Manufacturing method of organic electroluminescent element
JP2004165249A (en) 2002-11-11 2004-06-10 Sony Corp Aligner and method of exposure
JP2004163555A (en) 2002-11-12 2004-06-10 Olympus Corp Vertical illumination microscope and objective for vertical illumination microscope
CN101713932B (en) 2002-11-12 2012-09-26 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
JP2004165416A (en) 2002-11-13 2004-06-10 Nikon Corp Aligner and building
JP2004172471A (en) 2002-11-21 2004-06-17 Nikon Corp Exposure method and apparatus
JP4378938B2 (en) 2002-11-25 2009-12-09 株式会社ニコン Exposure apparatus and device manufacturing method
US6844927B2 (en) * 2002-11-27 2005-01-18 Kla-Tencor Technologies Corporation Apparatus and methods for removing optical abberations during an optical inspection
US6958806B2 (en) 2002-12-02 2005-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200412617A (en) * 2002-12-03 2004-07-16 Nikon Corp Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method
JP4314555B2 (en) 2002-12-03 2009-08-19 株式会社ニコン Linear motor device, stage device, and exposure device
US20040108973A1 (en) 2002-12-10 2004-06-10 Kiser David K. Apparatus for generating a number of color light components
DE10257766A1 (en) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Method for setting a desired optical property of a projection lens and microlithographic projection exposure system
AU2003289272A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Surface position detection apparatus, exposure method, and device porducing method
SG158745A1 (en) 2002-12-10 2010-02-26 Nikon Corp Exposure apparatus and method for producing device
EP1429190B1 (en) 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
SG165169A1 (en) 2002-12-10 2010-10-28 Nikon Corp Liquid immersion exposure apparatus
JP4232449B2 (en) 2002-12-10 2009-03-04 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
WO2004053951A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
JP2004301825A (en) 2002-12-10 2004-10-28 Nikon Corp Surface position detection device, exposure method and method for manufacturing device
KR20050085235A (en) 2002-12-10 2005-08-29 가부시키가이샤 니콘 Exposure system and device producing method
EP1571700A4 (en) 2002-12-10 2007-09-12 Nikon Corp Optical device and projection exposure apparatus using such optical device
WO2004053952A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053956A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
JP4352874B2 (en) 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
JP4595320B2 (en) 2002-12-10 2010-12-08 株式会社ニコン Exposure apparatus and device manufacturing method
EP1571701A4 (en) 2002-12-10 2008-04-09 Nikon Corp Exposure apparatus and method for manufacturing device
JP2004193425A (en) 2002-12-12 2004-07-08 Nikon Corp Movement control method, movement controller, aligner and device manufacturing method
JP2004198748A (en) 2002-12-19 2004-07-15 Nikon Corp Optical integrator, illumination optical system, exposure device, and exposure method
JP2004205698A (en) 2002-12-24 2004-07-22 Nikon Corp Projection optical system, exposure device and exposing method
US6891655B2 (en) 2003-01-02 2005-05-10 Micronic Laser Systems Ab High energy, low energy density, radiation-resistant optics used with micro-electromechanical devices
JP2004221253A (en) 2003-01-14 2004-08-05 Nikon Corp Aligner
CN1723384A (en) 2003-01-15 2006-01-18 麦克罗尼克激光系统公司 Method to detect a defective element
JP2004228497A (en) 2003-01-27 2004-08-12 Nikon Corp Exposure device and manufacturing method of electronic device
JP2004224421A (en) 2003-01-27 2004-08-12 Tokyo Autom Mach Works Ltd Product feeding apparatus
JP2004241666A (en) 2003-02-07 2004-08-26 Nikon Corp Measuring method and exposure method
JP2004007417A (en) 2003-02-10 2004-01-08 Fujitsu Ltd Information providing system
JP4366948B2 (en) 2003-02-14 2009-11-18 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
JP2004259828A (en) 2003-02-25 2004-09-16 Nikon Corp Semiconductor exposure system
WO2004086468A1 (en) 2003-02-26 2004-10-07 Nikon Corporation Exposure apparatus and method, and method of producing apparatus
JP2004259985A (en) 2003-02-26 2004-09-16 Sony Corp Resist pattern forming device, method for forming resist pattern and method for manufacturing semiconductor device using the forming method
JP4604452B2 (en) 2003-02-26 2011-01-05 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP2004260081A (en) 2003-02-27 2004-09-16 Nikon Corp Reflector for ultraviolet region and projection aligner employing it
JP4305003B2 (en) 2003-02-27 2009-07-29 株式会社ニコン EUV optical system and EUV exposure apparatus
JP2004260115A (en) 2003-02-27 2004-09-16 Nikon Corp Stage unit, exposure system, and method for manufacturing device
US7206059B2 (en) 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
KR20050110033A (en) 2003-03-25 2005-11-22 가부시키가이샤 니콘 Exposure system and device production method
JP2004294202A (en) 2003-03-26 2004-10-21 Seiko Epson Corp Defect detection method and device of screen
JP4265257B2 (en) 2003-03-28 2009-05-20 株式会社ニコン Exposure apparatus, exposure method, and film structure
JP4496711B2 (en) 2003-03-31 2010-07-07 株式会社ニコン Exposure apparatus and exposure method
JP2004304135A (en) 2003-04-01 2004-10-28 Nikon Corp Exposure device, exposing method and manufacturing method of micro-device
JP4902201B2 (en) 2003-04-07 2012-03-21 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP4281397B2 (en) 2003-04-07 2009-06-17 株式会社ニコン Quartz glass molding equipment
JP4288413B2 (en) 2003-04-07 2009-07-01 株式会社ニコン Quartz glass molding method and molding apparatus
JP4341277B2 (en) 2003-04-07 2009-10-07 株式会社ニコン Method of forming quartz glass
WO2004091079A1 (en) 2003-04-07 2004-10-21 Kabushiki Kaisha Yaskawa Denki Canned linear motor armature and canned linear motor
JP4374964B2 (en) 2003-09-26 2009-12-02 株式会社ニコン Quartz glass molding method and molding apparatus
JP4465974B2 (en) 2003-04-07 2010-05-26 株式会社ニコン Quartz glass molding equipment
JP4735258B2 (en) 2003-04-09 2011-07-27 株式会社ニコン Exposure method and apparatus, and device manufacturing method
US6842223B2 (en) 2003-04-11 2005-01-11 Nikon Precision Inc. Enhanced illuminator for use in photolithographic systems
JP4428115B2 (en) 2003-04-11 2010-03-10 株式会社ニコン Immersion lithography system
JP2004319724A (en) 2003-04-16 2004-11-11 Ses Co Ltd Structure of washing tub in semiconductor washing apparatus
JPWO2004094940A1 (en) 2003-04-23 2006-07-13 株式会社ニコン Interferometer system, signal processing method in interferometer system, and stage using the signal processing method
EP1620350A1 (en) 2003-04-24 2006-02-01 Metconnex Canada Inc. A micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays
JP2004327660A (en) 2003-04-24 2004-11-18 Nikon Corp Scanning projection aligner, exposure method, and device manufacturing method
US7095546B2 (en) 2003-04-24 2006-08-22 Metconnex Canada Inc. Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays
JP2004335808A (en) 2003-05-08 2004-11-25 Sony Corp Pattern transfer device, pattern transfer method and program
JP4487168B2 (en) 2003-05-09 2010-06-23 株式会社ニコン Stage apparatus, driving method thereof, and exposure apparatus
JP2004335864A (en) 2003-05-09 2004-11-25 Nikon Corp Aligner and exposure method
US7511886B2 (en) * 2003-05-13 2009-03-31 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
JP2004342987A (en) 2003-05-19 2004-12-02 Canon Inc Stage apparatus
TW200507055A (en) 2003-05-21 2005-02-16 Nikon Corp Polarized cancellation element, illumination device, exposure device, and exposure method
TW201806001A (en) 2003-05-23 2018-02-16 尼康股份有限公司 Exposure device and device manufacturing method
JP2005012190A (en) 2003-05-23 2005-01-13 Nikon Corp Estimation method and adjusting method of imaging optical system, exposure apparatus and method
TWI421911B (en) 2003-05-23 2014-01-01 尼康股份有限公司 An exposure method, an exposure apparatus, and an element manufacturing method
JP2004349645A (en) 2003-05-26 2004-12-09 Sony Corp Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage
KR101915914B1 (en) 2003-05-28 2018-11-06 가부시키가이샤 니콘 Exposure method, exposure device, and device manufacturing method
JP2004356410A (en) 2003-05-29 2004-12-16 Nikon Corp Aligner and method for exposure
DE10324477A1 (en) 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Microlithographic projection exposure system
JPWO2004109780A1 (en) 2003-06-04 2006-07-20 株式会社ニコン STAGE APPARATUS, FIXING METHOD, EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
JP2005005295A (en) 2003-06-09 2005-01-06 Nikon Corp Stage apparatus and exposure device
JP2005005395A (en) 2003-06-10 2005-01-06 Nikon Corp Gas feeding evacuation method and apparatus, mirror cylinder, exposure device, and method
JP2005005521A (en) 2003-06-12 2005-01-06 Nikon Corp Device and method for exposing, and polarization state measurement device
KR101148811B1 (en) 2003-06-19 2012-05-24 가부시키가이샤 니콘 Exposure device and device producing method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP2005011990A (en) 2003-06-19 2005-01-13 Nikon Corp Scanning projection aligner, and illuminance calibrating method and aligning method thereof
JP2005019628A (en) 2003-06-25 2005-01-20 Nikon Corp Optical apparatus, aligner, manufacturing method of device
DE10328938A1 (en) 2003-06-27 2005-01-20 Carl Zeiss Smt Ag Correction device for compensation of disturbances of the polarization distribution and projection objective for microlithography
JP3862678B2 (en) 2003-06-27 2006-12-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2005024890A (en) * 2003-07-02 2005-01-27 Renesas Technology Corp Polarizer, projection lens system, aligner, and exposure method
JP2005026634A (en) 2003-07-04 2005-01-27 Sony Corp Aligner and manufacturing method of semiconductor device
JP4515385B2 (en) 2003-07-09 2010-07-28 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
WO2005006418A1 (en) 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2005008754A1 (en) 2003-07-18 2005-01-27 Nikon Corporation Flare measurement method, exposure method, and flare measurement mask
JPWO2005010963A1 (en) 2003-07-24 2007-09-27 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
JP4492239B2 (en) 2003-07-28 2010-06-30 株式会社ニコン Exposure apparatus, device manufacturing method, and exposure apparatus control method
JP4492600B2 (en) 2003-07-28 2010-06-30 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP2005051147A (en) 2003-07-31 2005-02-24 Nikon Corp Exposure method and exposure device
JP2005055811A (en) 2003-08-07 2005-03-03 Olympus Corp Optical member, optical apparatus having the optical member incorporated therein, and method of assembling the optical apparatus
JP2005064210A (en) 2003-08-12 2005-03-10 Nikon Corp Method for exposure, and method of manufacturing electronic device and exposure device utilizing the method
JP4262031B2 (en) 2003-08-19 2009-05-13 キヤノン株式会社 Exposure apparatus and device manufacturing method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG140604A1 (en) 2003-08-29 2008-03-28 Nikon Corp Liquid recovery apparatus, exposure apparatus, exposure method, and device manufacturing method
JP4305095B2 (en) 2003-08-29 2009-07-29 株式会社ニコン Immersion projection exposure apparatus equipped with an optical component cleaning mechanism and immersion optical component cleaning method
JP4218475B2 (en) 2003-09-11 2009-02-04 株式会社ニコン Extreme ultraviolet optical system and exposure apparatus
DE10343333A1 (en) 2003-09-12 2005-04-14 Carl Zeiss Smt Ag Illumination system for microlithography projection exposure system, has mirror arrangement with array of individual mirrors that is controlled individually by changing angular distribution of light incident on mirror arrangement
JP4323903B2 (en) 2003-09-12 2009-09-02 キヤノン株式会社 Illumination optical system and exposure apparatus using the same
JP4717813B2 (en) 2003-09-12 2011-07-06 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system for microlithographic projection exposure equipment
JP2005091023A (en) 2003-09-12 2005-04-07 Minolta Co Ltd Optical encoder and imaging device equipped therewith
JP2005093324A (en) 2003-09-19 2005-04-07 Toshiba Corp Glass substrate used for image display device, manufacturing method and apparatus therefor
WO2005029559A1 (en) 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
JP2005093948A (en) 2003-09-19 2005-04-07 Nikon Corp Aligner and its adjustment method, exposure method, and device manufacturing method
JP2005123586A (en) 2003-09-25 2005-05-12 Matsushita Electric Ind Co Ltd Apparatus and method for projection
US7408616B2 (en) 2003-09-26 2008-08-05 Carl Zeiss Smt Ag Microlithographic exposure method as well as a projection exposure system for carrying out the method
KR101119723B1 (en) 2003-09-26 2012-03-23 칼 짜이스 에스엠티 게엠베하 Microlithographic projection exposure
JP2005108925A (en) 2003-09-29 2005-04-21 Nikon Corp Lighting optical device, exposure apparatus and exposure method
JP4385702B2 (en) 2003-09-29 2009-12-16 株式会社ニコン Exposure apparatus and exposure method
JP4470433B2 (en) 2003-10-02 2010-06-02 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP4513299B2 (en) 2003-10-02 2010-07-28 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP2005114882A (en) 2003-10-06 2005-04-28 Hitachi High-Tech Electronics Engineering Co Ltd Method for placing substrate on process stage, substrate exposure stage, and substrate exposure apparatus
JP2005136364A (en) 2003-10-08 2005-05-26 Zao Nikon Co Ltd Substrate carrying device, exposure device and device manufacturing method
WO2005036623A1 (en) 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. Substrate transporting apparatus and method, exposure apparatus and method, and device producing method
JP2005116831A (en) 2003-10-08 2005-04-28 Nikon Corp Projection aligner, exposure method, and device manufacturing method
JPWO2005036619A1 (en) 2003-10-09 2007-11-22 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
JPWO2005036620A1 (en) 2003-10-10 2006-12-28 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005127460A (en) 2003-10-27 2005-05-19 Mitsubishi Heavy Ind Ltd Base isolation and quake removing floor system
TWI474132B (en) 2003-10-28 2015-02-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
JP4605014B2 (en) 2003-10-28 2011-01-05 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP2005140999A (en) 2003-11-06 2005-06-02 Nikon Corp Optical system, adjustment method of optical system, exposure device and exposure method
WO2005048326A1 (en) 2003-11-13 2005-05-26 Nikon Corporation Variable slit apparatus, illumination apparatus, exposure apparatus, exposure method, and device producing method
KR20060109430A (en) 2003-11-17 2006-10-20 가부시키가이샤 니콘 Stage drive method, stage apparatus, and exposure apparatus
JP4976094B2 (en) 2003-11-20 2012-07-18 株式会社ニコン Illumination optical apparatus, exposure apparatus, exposure method, and microdevice manufacturing method
JP4470095B2 (en) 2003-11-20 2010-06-02 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
TWI512335B (en) 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
JP4552428B2 (en) 2003-12-02 2010-09-29 株式会社ニコン Illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method
US6970233B2 (en) * 2003-12-03 2005-11-29 Texas Instruments Incorporated System and method for custom-polarized photolithography illumination
JP2005175176A (en) 2003-12-11 2005-06-30 Nikon Corp Exposure method and method for manufacturing device
JP2005175177A (en) 2003-12-11 2005-06-30 Nikon Corp Optical apparatus and aligner
ATE491221T1 (en) 2003-12-15 2010-12-15 Nikon Corp STAGE SYSTEM, EXPOSURE DEVICE AND EXPOSURE METHOD
JP3102327U (en) 2003-12-17 2004-07-02 国統国際股▲ふん▼有限公司 Flexible tube leakage prevention mechanism
JP4954444B2 (en) 2003-12-26 2012-06-13 株式会社ニコン Channel forming member, exposure apparatus, and device manufacturing method
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP4586367B2 (en) 2004-01-14 2010-11-24 株式会社ニコン Stage apparatus and exposure apparatus
ATE539383T1 (en) 2004-01-16 2012-01-15 Zeiss Carl Smt Gmbh PROJECTION SYSTEM WITH A POLARIZATION MODULATING OPTICAL ELEMENT OF VARIABLE THICKNESS
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
CN1910672A (en) 2004-01-16 2007-02-07 皇家飞利浦电子股份有限公司 Optical system
JP4474927B2 (en) 2004-01-20 2010-06-09 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP2005209705A (en) 2004-01-20 2005-08-04 Nikon Corp Exposure device and manufacturing method for device
WO2005071717A1 (en) 2004-01-26 2005-08-04 Nikon Corporation Exposure apparatus and device producing method
TWI395068B (en) 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure
US7580559B2 (en) 2004-01-29 2009-08-25 Asml Holding N.V. System and method for calibrating a spatial light modulator
JP4506674B2 (en) 2004-02-03 2010-07-21 株式会社ニコン Exposure apparatus and device manufacturing method
TWI511182B (en) 2004-02-06 2015-12-01 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
EP1724815B1 (en) 2004-02-10 2012-06-13 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
JP4370992B2 (en) 2004-02-18 2009-11-25 株式会社ニコン Optical element and exposure apparatus
JP4572896B2 (en) 2004-02-19 2010-11-04 株式会社ニコン Exposure apparatus and device manufacturing method
JP2005234359A (en) 2004-02-20 2005-09-02 Ricoh Co Ltd Optical characteristic measuring apparatus of scanning optical system, method of calibrating optical characteristic measuring apparatus of scanning optical system, scanning optical system and image forming apparatus
JP5076497B2 (en) 2004-02-20 2012-11-21 株式会社ニコン Exposure apparatus, liquid supply method and recovery method, exposure method, and device manufacturing method
JP4693088B2 (en) 2004-02-20 2011-06-01 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
JP4333404B2 (en) 2004-02-25 2009-09-16 株式会社ニコン Conveying apparatus, conveying method, exposure apparatus, exposure method, and device manufacturing method
DE102004010569A1 (en) 2004-02-26 2005-09-15 Carl Zeiss Smt Ag Illumination system for a microlithography projection exposure apparatus
JP2005243904A (en) 2004-02-26 2005-09-08 Nikon Corp Illumination optical apparatus, aligner, and exposure method
US6977718B1 (en) 2004-03-02 2005-12-20 Advanced Micro Devices, Inc. Lithography method and system with adjustable reflector
JP2005251549A (en) 2004-03-04 2005-09-15 Nikon Corp Microswitch and driving method for microswitch
JP2005257740A (en) 2004-03-09 2005-09-22 Nikon Corp Projection optical system, exposing device, and exposure method
JP2005259789A (en) 2004-03-09 2005-09-22 Nikon Corp Detection system, aligner and manufacturing method of device
JP4778685B2 (en) 2004-03-10 2011-09-21 株式会社日立ハイテクノロジーズ Pattern shape evaluation method and apparatus for semiconductor device
JP4497968B2 (en) * 2004-03-18 2010-07-07 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
JP2005268700A (en) 2004-03-22 2005-09-29 Nikon Corp Staging device and aligner
JP2005276932A (en) 2004-03-23 2005-10-06 Nikon Corp Aligner and device-manufacturing method
JP2005302826A (en) 2004-04-07 2005-10-27 Nikon Corp Lighting optical device, exposure system and method
JP4474979B2 (en) 2004-04-15 2010-06-09 株式会社ニコン Stage apparatus and exposure apparatus
KR101162938B1 (en) 2004-04-19 2012-07-05 가부시키가이샤 니콘 Exposure apparatus and device producing method
JP2005311020A (en) 2004-04-21 2005-11-04 Nikon Corp Exposure method and method of manufacturing device
JP4776891B2 (en) 2004-04-23 2011-09-21 キヤノン株式会社 Illumination optical system, exposure apparatus, and device manufacturing method
JP4569157B2 (en) 2004-04-27 2010-10-27 株式会社ニコン Reflective projection optical system and exposure apparatus provided with the reflective projection optical system
US7324280B2 (en) 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
JP2005340605A (en) 2004-05-28 2005-12-08 Nikon Corp Aligner and its adjusting method
JP5159027B2 (en) 2004-06-04 2013-03-06 キヤノン株式会社 Illumination optical system and exposure apparatus
JP2006005197A (en) 2004-06-18 2006-01-05 Canon Inc Aligner
JP4419701B2 (en) 2004-06-21 2010-02-24 株式会社ニコン Quartz glass molding equipment
JP2006017895A (en) 2004-06-30 2006-01-19 Integrated Solutions:Kk Aligner
JP4444743B2 (en) 2004-07-07 2010-03-31 キヤノン株式会社 Exposure apparatus and device manufacturing method
US7283209B2 (en) 2004-07-09 2007-10-16 Carl Zeiss Smt Ag Illumination system for microlithography
JP2006024819A (en) 2004-07-09 2006-01-26 Renesas Technology Corp Immersion exposure apparatus and manufacturing method for electronic device
JPWO2006006730A1 (en) 2004-07-15 2008-05-01 株式会社ニコン Planar motor apparatus, stage apparatus, exposure apparatus, and device manufacturing method
JP2006032750A (en) 2004-07-20 2006-02-02 Canon Inc Immersed projection aligner and device manufacturing method
EP1621930A3 (en) * 2004-07-29 2011-07-06 Carl Zeiss SMT GmbH Illumination system for a microlithographic projection exposure apparatus
JP4411158B2 (en) 2004-07-29 2010-02-10 キヤノン株式会社 Exposure equipment
JP2006049758A (en) 2004-08-09 2006-02-16 Nikon Corp Control method of exposure device, and method and device for exposure using the same
JP2006054364A (en) 2004-08-13 2006-02-23 Nikon Corp Substrate-chucking device and exposure device
JP4599936B2 (en) 2004-08-17 2010-12-15 株式会社ニコン Illumination optical apparatus, adjustment method of illumination optical apparatus, exposure apparatus, and exposure method
JP4983257B2 (en) 2004-08-18 2012-07-25 株式会社ニコン Exposure apparatus, device manufacturing method, measuring member, and measuring method
JP2006073584A (en) 2004-08-31 2006-03-16 Nikon Corp Exposure apparatus and exposure method, and device manufacturing method
WO2006025341A1 (en) 2004-09-01 2006-03-09 Nikon Corporation Substrate holder, stage apparatus, and exposure apparatus
US7433046B2 (en) 2004-09-03 2008-10-07 Carl Ziess Meditec, Inc. Patterned spinning disk based optical phase shifter for spectral domain optical coherence tomography
JP4772306B2 (en) 2004-09-06 2011-09-14 株式会社東芝 Immersion optical device and cleaning method
JP2006080281A (en) 2004-09-09 2006-03-23 Nikon Corp Stage device, gas bearing device, exposure device, and device manufacturing method
JPWO2006028188A1 (en) 2004-09-10 2008-05-08 株式会社ニコン Stage apparatus and exposure apparatus
JP2006086141A (en) 2004-09-14 2006-03-30 Nikon Corp Projection optical system, aligner, and method of exposure
EP1804278A4 (en) 2004-09-14 2011-03-02 Nikon Corp Correction method and exposure device
JPWO2006030910A1 (en) 2004-09-17 2008-05-15 株式会社ニコン Exposure substrate, exposure method and device manufacturing method
JP2006086442A (en) 2004-09-17 2006-03-30 Nikon Corp Stage device and exposure device
WO2006035775A1 (en) 2004-09-27 2006-04-06 Hamamatsu Photonics K.K. Spatial light modulator, optical processor, coupling prism and method for using coupling prism
JP2006100363A (en) 2004-09-28 2006-04-13 Canon Inc Aligner, exposure method, and device manufacturing method
JP4747545B2 (en) 2004-09-30 2011-08-17 株式会社ニコン Stage apparatus, exposure apparatus, and device manufacturing method
US7245353B2 (en) 2004-10-12 2007-07-17 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method
JP4335114B2 (en) 2004-10-18 2009-09-30 日本碍子株式会社 Micromirror device
GB2419208A (en) * 2004-10-18 2006-04-19 Qinetiq Ltd Optical correlation employing an optical bit delay
JP2006120985A (en) 2004-10-25 2006-05-11 Nikon Corp Illumination optical device, and exposure apparatus and method
JP2006128192A (en) 2004-10-26 2006-05-18 Nikon Corp Holding apparatus, barrel, exposure apparatus, and device manufacturing method
SG157357A1 (en) 2004-11-01 2009-12-29 Nikon Corp Exposure apparatus and device fabricating method
US7271874B2 (en) 2004-11-02 2007-09-18 Asml Holding N.V. Method and apparatus for variable polarization control in a lithography system
JP4517354B2 (en) 2004-11-08 2010-08-04 株式会社ニコン Exposure apparatus and device manufacturing method
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
JP2006140366A (en) 2004-11-15 2006-06-01 Nikon Corp Projection optical system and exposure device
WO2006064851A1 (en) 2004-12-15 2006-06-22 Nikon Corporation Substrate holding apparatus, exposure apparatus and device manufacturing method
JP2005150759A (en) 2004-12-15 2005-06-09 Nikon Corp Scanning exposure device
JP2006170811A (en) 2004-12-16 2006-06-29 Nikon Corp Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus
JP2006170899A (en) 2004-12-17 2006-06-29 Sendai Nikon:Kk Photoelectric encoder
JP2006179516A (en) 2004-12-20 2006-07-06 Toshiba Corp Exposure device, exposure method and method for manufacturing semiconductor device
US20080073982A1 (en) 2004-12-24 2008-03-27 Nikon Corporation Magnetic Guide Apparatus, Stage Apparatus, Exposure Apparatus, and Device Manufacturing Method
JP2006177865A (en) 2004-12-24 2006-07-06 Ntn Corp Magnetic encoder and bearing for wheel equipped with it
US20060138349A1 (en) 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4402582B2 (en) 2004-12-27 2010-01-20 大日本印刷株式会社 Case for large photomask and case changer
US7345740B2 (en) 2004-12-28 2008-03-18 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
US7312852B2 (en) * 2004-12-28 2007-12-25 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
JP4632793B2 (en) 2005-01-12 2011-02-16 京セラ株式会社 Portable terminal with navigation function
JP4984893B2 (en) 2005-01-21 2012-07-25 株式会社ニコン Linear motor, stage apparatus, and exposure apparatus
TW200923418A (en) 2005-01-21 2009-06-01 Nikon Corp Exposure device, exposure method, fabricating method of device, exposure system, information collecting device, and measuring device
US20060164711A1 (en) 2005-01-24 2006-07-27 Asml Holding N.V. System and method utilizing an electrooptic modulator
KR101240130B1 (en) 2005-01-25 2013-03-07 가부시키가이샤 니콘 Exposure device, exposure method, and micro device manufacturing method
WO2006085524A1 (en) 2005-02-14 2006-08-17 Nikon Corporation Exposure equipment
JP4650619B2 (en) 2005-03-09 2011-03-16 株式会社ニコン Drive unit, optical unit, optical apparatus, and exposure apparatus
JP2006253572A (en) 2005-03-14 2006-09-21 Nikon Corp Stage apparatus, exposure apparatus, and device manufacturing method
JP5125503B2 (en) 2005-03-23 2013-01-23 コニカミノルタホールディングス株式会社 Manufacturing method of organic EL element
JP4561425B2 (en) 2005-03-24 2010-10-13 ソニー株式会社 Hologram recording / reproducing apparatus and hologram recording / reproducing method
JP4858744B2 (en) 2005-03-24 2012-01-18 株式会社ニコン Exposure equipment
JP2006278820A (en) 2005-03-30 2006-10-12 Nikon Corp Exposure method and exposure device
JP4546315B2 (en) 2005-04-07 2010-09-15 株式会社神戸製鋼所 Manufacturing method of mold for microfabrication
US20080246937A1 (en) 2005-04-27 2008-10-09 Nikon Corporation Exposing Method, Exposure Apparatus, Device Fabricating Method, and Film Evaluating Method
JP4676815B2 (en) 2005-05-26 2011-04-27 ルネサスエレクトロニクス株式会社 Exposure apparatus and exposure method
JP2006351586A (en) 2005-06-13 2006-12-28 Nikon Corp Lighting device, projection aligner, and method of manufacturing microdevice
JP4710427B2 (en) 2005-06-15 2011-06-29 株式会社ニコン Optical element holding apparatus, lens barrel, exposure apparatus, and device manufacturing method
DE102005030839A1 (en) 2005-07-01 2007-01-11 Carl Zeiss Smt Ag Projection exposure system with a plurality of projection lenses
US7317512B2 (en) * 2005-07-11 2008-01-08 Asml Netherlands B.V. Different polarization in cross-section of a radiation beam in a lithographic apparatus and device manufacturing method
KR20080028839A (en) 2005-08-05 2008-04-01 가부시키가이샤 니콘 Stage apparatus and exposure apparatus
JP2007048819A (en) 2005-08-08 2007-02-22 Nikon Corp Surface position detector, aligner and process for fabricating microdevice
JP2007043980A (en) 2005-08-11 2007-02-22 Sanei Gen Ffi Inc Quality improver for japanese/western baked confectionery
US20070058151A1 (en) * 2005-09-13 2007-03-15 Asml Netherlands B.V. Optical element for use in lithography apparatus and method of conditioning radiation beam
JP2007087306A (en) 2005-09-26 2007-04-05 Yokohama National Univ Target image designating and generating system
JP2007093546A (en) 2005-09-30 2007-04-12 Nikon Corp Encoder system, stage device, and exposure apparatus
JP4640090B2 (en) 2005-10-04 2011-03-02 ウシオ電機株式会社 Discharge lamp holder and discharge lamp holding mechanism
JP2007113939A (en) 2005-10-18 2007-05-10 Nikon Corp Measuring device and method therefor, stage device, and exposure device and method therefor
JP2007120333A (en) 2005-10-25 2007-05-17 Mitsubishi Heavy Ind Ltd Injection pipe of combustor for rocket and combustor for rocket
JP2007120334A (en) 2005-10-25 2007-05-17 Denso Corp Abnormality diagnostic device of vehicle driving system
JP4809037B2 (en) 2005-10-27 2011-11-02 日本カニゼン株式会社 Black plating film, method for forming the same, and article having plating film
EP1947683A4 (en) 2005-11-09 2010-08-25 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
WO2007055120A1 (en) 2005-11-10 2007-05-18 Nikon Corporation Lighting optical system, exposure system, and exposure method
WO2007055373A1 (en) 2005-11-14 2007-05-18 Nikon Corporation Liquid recovery member, exposure apparatus, exposure method, and device production method
JP2007142313A (en) 2005-11-22 2007-06-07 Nikon Corp Measuring instrument and adjusting method
JP2007144864A (en) 2005-11-29 2007-06-14 Sanyo Electric Co Ltd Laminated structure and refrigeration unit using the same
KR20080071552A (en) 2005-12-06 2008-08-04 가부시키가이샤 니콘 Exposure method, exposure apparatus, and method for manufacturing device
KR101340138B1 (en) 2005-12-08 2013-12-10 가부시키가이샤 니콘 Substrate holding device, exposure device, exposure method, and device fabrication method
JP4800901B2 (en) 2005-12-12 2011-10-26 矢崎総業株式会社 Voltage detection device and insulation interface
US20070166134A1 (en) 2005-12-20 2007-07-19 Motoko Suzuki Substrate transfer method, substrate transfer apparatus and exposure apparatus
JP2007170938A (en) 2005-12-21 2007-07-05 Sendai Nikon:Kk Encoder
JP2007207821A (en) 2006-01-31 2007-08-16 Nikon Corp Variable slit device, lighting device, aligner, exposure method, and method of manufacturing device
JP2007220767A (en) 2006-02-15 2007-08-30 Canon Inc Exposure apparatus and method of manufacturing device
JP2007227637A (en) 2006-02-23 2007-09-06 Canon Inc Immersion aligner
CN101389982A (en) 2006-02-27 2009-03-18 株式会社尼康 Dichroic filter
JP2007234110A (en) 2006-02-28 2007-09-13 Toshiba Corp Optical information recording apparatus and control method of optical information recording apparatus
JP4929762B2 (en) 2006-03-03 2012-05-09 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
DE102006015213A1 (en) 2006-03-30 2007-10-11 Carl Zeiss Smt Ag Polarization influencing optical arrangement for e.g. projection lens system, has optical unit changing distribution in central area of beam cross section, where beam has approximate tangential polarization distribution in central area
JP2007280623A (en) 2006-04-03 2007-10-25 Seiko Epson Corp Heat treatment device, thin-film forming device, and heat treatment method
JP2007295702A (en) 2006-04-24 2007-11-08 Toshiba Mach Co Ltd Linear motor, and stage drive device
JPWO2007132862A1 (en) 2006-05-16 2009-09-24 株式会社ニコン Projection optical system, exposure method, exposure apparatus, and device manufacturing method
JP4893112B2 (en) 2006-06-03 2012-03-07 株式会社ニコン High frequency circuit components
JP4873138B2 (en) 2006-06-21 2012-02-08 富士ゼロックス株式会社 Information processing apparatus and program
JP2008041710A (en) * 2006-08-01 2008-02-21 Fujitsu Ltd Lighting optical device, exposure method, and design method
DE102006037776B3 (en) * 2006-08-11 2008-02-21 Siemens Ag Device for calibrating a magnetic resonance system with PET function
JP2008058580A (en) 2006-08-31 2008-03-13 Canon Inc Image forming apparatus, monitoring device, control method and program
JP2008064924A (en) 2006-09-06 2008-03-21 Seiko Epson Corp Fixing device and image forming apparatus
EP2068349A4 (en) 2006-09-29 2011-03-30 Nikon Corp Stage device and exposure device
JP2007051300A (en) 2006-10-10 2007-03-01 Teijin Chem Ltd Flame-retardant resin composition
JP4924879B2 (en) 2006-11-14 2012-04-25 株式会社ニコン Encoder
WO2008061681A2 (en) 2006-11-21 2008-05-29 Carl Zeiss Smt Ag Illumination lens system for projection microlithography, and measuring and monitoring method for such an illumination lens system
TWI452437B (en) 2006-11-27 2014-09-11 尼康股份有限公司 An exposure method, a pattern forming method, and an exposure apparatus, and an element manufacturing method
JP2007274881A (en) 2006-12-01 2007-10-18 Nikon Corp Moving object apparatus, fine-motion object, and exposure apparatus
DE102007027985A1 (en) 2006-12-21 2008-06-26 Carl Zeiss Smt Ag Optical system, in particular illumination device or projection objective of a microlithographic projection exposure apparatus
JP4910679B2 (en) 2006-12-21 2012-04-04 株式会社ニコン Variable capacitor, variable capacitor device, high frequency circuit filter and high frequency circuit
WO2008078668A1 (en) 2006-12-26 2008-07-03 Miura Co., Ltd. Method of feeding makeup water for boiler water supply
KR101474228B1 (en) 2006-12-27 2014-12-18 사노피 Cycloalkylamine substituted isoquinolone derivatives
KR20150036734A (en) 2006-12-27 2015-04-07 가부시키가이샤 니콘 Stage apparatus, exposure apparatus and device manufacturing method
WO2008090975A1 (en) 2007-01-26 2008-07-31 Nikon Corporation Support structure and exposure apparatus
JP5304644B2 (en) 2007-05-09 2013-10-02 株式会社ニコン PHOTOMASK SUBSTRATE, PHOTOMASK SUBSTRATE MOLDING MEMBER, PHOTOMASK SUBSTRATE MANUFACTURING METHOD, PHOTOMASK, AND EXPOSURE METHOD USING PHOTOMASK
WO2008149537A1 (en) 2007-05-31 2008-12-11 Panasonic Corporation Image capturing device, additional information providing server, and additional information filtering system
JP5194650B2 (en) 2007-08-31 2013-05-08 株式会社ニコン Electronic camera
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US20090091730A1 (en) 2007-10-03 2009-04-09 Nikon Corporation Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP4499774B2 (en) 2007-10-24 2010-07-07 株式会社半導体エネルギー研究所 Insulated gate type semiconductor device
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2010004008A (en) 2007-10-31 2010-01-07 Nikon Corp Optical unit, illumination optical device, exposure apparatus, exposure method and production process of device
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009153925A1 (en) 2008-06-17 2009-12-23 株式会社ニコン Nano-imprint method and apparatus
KR101504388B1 (en) 2008-06-26 2015-03-19 가부시키가이샤 니콘 Method and apparatus for manufacturing display element
KR20110028473A (en) 2008-06-30 2011-03-18 가부시키가이샤 니콘 Method and apparatus for manufacturing display element, method and apparatus for manufacturing thin film transistor, and circuit forming apparatus
US20110037962A1 (en) * 2009-08-17 2011-02-17 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
US20110205519A1 (en) 2010-02-25 2011-08-25 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020008527A1 (en) * 1998-09-15 2002-01-24 Bernard Broillet Measuring circuit
US20070008111A1 (en) * 2005-06-13 2007-01-11 Tice Lee D System for monitoring activities and location

Also Published As

Publication number Publication date
EP2615479B1 (en) 2015-09-02
JP6020617B2 (en) 2016-11-02
EP1720047A4 (en) 2010-11-03
JPWO2005076045A1 (en) 2008-04-24
US9429848B2 (en) 2016-08-30
KR20140056387A (en) 2014-05-09
HK1111470A1 (en) 2008-08-08
TWI511182B (en) 2015-12-01
KR101626226B1 (en) 2016-05-31
HK1098198A1 (en) 2007-07-13
EP2615480A1 (en) 2013-07-17
TW200841384A (en) 2008-10-16
TW201604936A (en) 2016-02-01
TWI437618B (en) 2014-05-11
JP2012168546A (en) 2012-09-06
KR101323492B1 (en) 2013-10-31
US20140028990A1 (en) 2014-01-30
KR101195687B1 (en) 2012-10-30
TWI379344B (en) 2012-12-11
TW200527504A (en) 2005-08-16
US10234770B2 (en) 2019-03-19
JP5696473B2 (en) 2015-04-08
EP2615479A1 (en) 2013-07-17
TW200845132A (en) 2008-11-16
KR20130133055A (en) 2013-12-05
US20110273697A1 (en) 2011-11-10
EP2615480B1 (en) 2017-05-03
TW201230146A (en) 2012-07-16
US9423694B2 (en) 2016-08-23
HK1111471A1 (en) 2008-08-08
KR101429864B1 (en) 2014-08-12
KR20100024489A (en) 2010-03-05
TW201407663A (en) 2014-02-16
JP2014098917A (en) 2014-05-29
US20130271945A1 (en) 2013-10-17
US20130242527A1 (en) 2013-09-19
KR20070029668A (en) 2007-03-14
KR101429868B1 (en) 2014-08-12
JP5821942B2 (en) 2015-11-24
KR20120031240A (en) 2012-03-30
HK1097603A1 (en) 2007-06-29
JP2016136274A (en) 2016-07-28
US20090073441A1 (en) 2009-03-19
KR20160063423A (en) 2016-06-03
KR101578312B1 (en) 2015-12-16
US20090316132A1 (en) 2009-12-24
US20060170901A1 (en) 2006-08-03
TWI412067B (en) 2013-10-11
KR101244282B1 (en) 2013-03-18
JP6399133B2 (en) 2018-10-03
JP6319346B2 (en) 2018-05-09
TWI494972B (en) 2015-08-01
JP5594311B2 (en) 2014-09-24
TWI609410B (en) 2017-12-21
TW201407664A (en) 2014-02-16
TW200845131A (en) 2008-11-16
TWI389174B (en) 2013-03-11
US20180341185A1 (en) 2018-11-29
KR20180069120A (en) 2018-06-22
JP2018189978A (en) 2018-11-29
EP2618188B1 (en) 2015-10-07
KR101293399B1 (en) 2013-08-05
HK1186251A1 (en) 2014-03-07
JP2011100150A (en) 2011-05-19
TW200845134A (en) 2008-11-16
TWI614795B (en) 2018-02-11
JP4747844B2 (en) 2011-08-17
JP2017142517A (en) 2017-08-17
EP3173866A1 (en) 2017-05-31
TW200845133A (en) 2008-11-16
TW201729252A (en) 2017-08-16
US20090073414A1 (en) 2009-03-19
EP2618188A1 (en) 2013-07-24
EP1720047B1 (en) 2016-09-07
US10007194B2 (en) 2018-06-26
HK1111472A1 (en) 2008-08-08
HK1111479A1 (en) 2008-08-08
HK1186250A1 (en) 2014-03-07
US9140990B2 (en) 2015-09-22
KR20100024490A (en) 2010-03-05
TWI505329B (en) 2015-10-21
TWI366219B (en) 2012-06-11
KR20130028974A (en) 2013-03-20
WO2005076045A1 (en) 2005-08-18
KR20140056388A (en) 2014-05-09
TW201809727A (en) 2018-03-16
US10241417B2 (en) 2019-03-26
JP2015121803A (en) 2015-07-02
TWI360837B (en) 2012-03-21
HK1111473A1 (en) 2008-08-08
EP1720047A1 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US20180341185A1 (en) Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9164209B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION