JPH0590128A - Aligner - Google Patents
AlignerInfo
- Publication number
- JPH0590128A JPH0590128A JP3291465A JP29146591A JPH0590128A JP H0590128 A JPH0590128 A JP H0590128A JP 3291465 A JP3291465 A JP 3291465A JP 29146591 A JP29146591 A JP 29146591A JP H0590128 A JPH0590128 A JP H0590128A
- Authority
- JP
- Japan
- Prior art keywords
- light
- pattern
- optical system
- image
- projection optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70566—Polarisation control
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Projection-Type Copiers In General (AREA)
- Polarising Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体素子製造のリソ
グラフィ工程において、フォトマスクに形成された回路
パターンの像をウエハ面に転写するために用いられる露
光装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus used for transferring an image of a circuit pattern formed on a photomask onto a wafer surface in a lithography process for manufacturing a semiconductor device.
【0002】[0002]
【従来の技術】半導体素子製造のリソグラフィ工程にお
いて一般的に用いられている露光装置は、図3に示され
るような構成であった。図において、フォトマスク21
は、照明光学系24の光軸に対して直交するように水平に
保持されており、照明光学系24から射出された所定波長
の露光光によって透過照明される。従来から汎用されて
いるフォトマスク21は、透明基板上にクロム等の金属か
らなる遮光パターンが形成された構造をなしており、透
過照明されることによって、パターン形状に応じた回折
光が発生する。これらの回折光は、投影光学系22により
再度、像面23上に集められ、これにより結像面23に合致
するように保持されたウエハ面上にフォトマスク21のパ
ターン像が転写される。この際、従来の露光装置の投影
光学系には、偏光部材は含まれていないので、像面23に
集められる光は、偏光特性のない状態、つまり、TE偏
光(後述)とTM偏光(後述)の平均状態になってい
る。2. Description of the Related Art An exposure apparatus generally used in a lithography process for manufacturing a semiconductor device has a structure as shown in FIG. In the figure, a photomask 21
Are held horizontally so as to be orthogonal to the optical axis of the illumination optical system 24, and are transmitted and illuminated by exposure light having a predetermined wavelength emitted from the illumination optical system 24. The photomask 21, which has been widely used conventionally, has a structure in which a light-shielding pattern made of a metal such as chrome is formed on a transparent substrate, and when it is transmitted and illuminated, diffracted light corresponding to the pattern shape is generated. .. These diffracted lights are again collected on the image plane 23 by the projection optical system 22, whereby the pattern image of the photomask 21 is transferred onto the wafer surface held so as to match the image plane 23. At this time, since the projection optical system of the conventional exposure apparatus does not include a polarizing member, the light collected on the image plane 23 has no polarization characteristics, that is, TE polarized light (described later) and TM polarized light (described later). ) Is in the average state.
【0003】[0003]
【発明が解決しようとする課題】ところで、上記のよう
な従来の露光装置においては、半導体素子の高集積化に
伴なう回路パターンの微細化に対応できないという問題
点があり、微細パターンの高コントラストの像を形成で
きる技術の開発が求められている。こうした中で、パタ
ーン像のコントラストを高める方法として、近年、フォ
トマスクの光透過部の特定の箇所に透過光の位相を変化
させる位相シフト部を設けた位相シフトマスクを用いて
投影露光を行なう位相シフト法が種々提案されている。
例えば、特公昭62−50811 号公報には、空間周波数変調
型の位相シフトマスクに関する技術が開示されている。
位相シフト法は、光の振幅の情報に加えて光の位相の情
報を利用してパターン像を形成するものであり、光透過
部(基板裸面部)と遮光部だけからなるフォトマスクを
使用する方法に比べればある程度の結像性能の改善が実
現されている。By the way, the conventional exposure apparatus as described above has a problem that it cannot cope with the miniaturization of circuit patterns accompanying the high integration of semiconductor elements. Development of a technique capable of forming a contrast image is required. Under these circumstances, as a method of increasing the contrast of a pattern image, in recent years, projection exposure is performed by using a phase shift mask provided with a phase shift unit that changes the phase of transmitted light at a specific location of a light transmitting unit of a photomask. Various shift methods have been proposed.
For example, Japanese Patent Publication No. 62-50811 discloses a technique relating to a spatial frequency modulation type phase shift mask.
The phase shift method forms a pattern image by using information on the phase of light in addition to information on the amplitude of light, and uses a photomask consisting only of a light transmitting portion (bare surface portion of the substrate) and a light shielding portion. A certain degree of improvement in the imaging performance has been realized as compared with the method.
【0004】しかしながら、この位相シフト法にも自ら
限界があり、微細パターンについて満足すべき高コント
ラストの像は得られていない。この発明は、かかる点に
鑑みてなされたものであり、光の振幅と位相以外の第三
の情報を利用することにより、高解像性・高コントラス
トの結像性能を実現でき、光リソグラフィー技術の新た
な展開を図ることが可能な露光装置を提供することを目
的とするものである。However, this phase shift method also has its own limit, and satisfactory high-contrast images have not been obtained for fine patterns. The present invention has been made in view of the above point, and by utilizing the third information other than the amplitude and phase of light, it is possible to realize high-resolution and high-contrast imaging performance, and the optical lithography technique It is an object of the present invention to provide an exposure apparatus capable of developing new developments of.
【0005】[0005]
【課題を解決するための手段】本発明の露光装置は、フ
ォトマスク上のパターンを投影する投影光学系を備えて
おり、上記の課題を達成するために、前記投影光学系の
ほぼ瞳面に、前記パターンの辺と平行な方向に電気ベク
トルが振動している光を透過させる偏光部材が配置され
たものである。An exposure apparatus of the present invention comprises a projection optical system for projecting a pattern on a photomask, and in order to achieve the above-mentioned object, the projection optical system has a substantially pupil plane. A polarizing member that transmits light whose electric vector oscillates in a direction parallel to the side of the pattern is arranged.
【0006】本発明で好ましく用いられる偏光部材は、
具体的には、前記投影光学系の光軸を中心とする円の接
線方向に電気ベクトルが振動している光のみを透過させ
るものである。The polarizing member preferably used in the present invention is
Specifically, only the light whose electric vector oscillates in the tangential direction of the circle centered on the optical axis of the projection optical system is transmitted.
【0007】[0007]
【作用】図2を参照して本発明の作用を説明する。図2
は、図3で説明した露光装置の像面23付近の回折光の様
子を模式的に示したものである。まず、図2(a)は、
TE(transverse electric)偏光と呼ばれる状態であ
り、電気ベクトルの振動方向が入射面(紙面内面)に垂
直な光である。一方、図2(b)はTM(transverse m
agnetic)偏光と呼ばれる状態であり、磁気ベクトルの振
動方向が入射面に垂直、即ち、電気ベクトルの振動方向
が入射内面にある。投影光学系に偏光部材を含まない従
来の装置では、図2(a)のTE偏光と図2(b)のT
M偏光の平均状態の光で結像されることになるが、フォ
トレジスト等の感光材料の光化学反応は電磁波である光
の電場の作用によって進行するので、リソグラフィ工程
においては電気ベクトルの振動方向が問題となる。The operation of the present invention will be described with reference to FIG. Figure 2
3 schematically shows the state of diffracted light in the vicinity of the image plane 23 of the exposure apparatus described in FIG. First, as shown in FIG.
This is a state called TE (transverse electric) polarized light, in which the vibration direction of the electric vector is light perpendicular to the incident surface (inner surface of the paper). On the other hand, FIG. 2B shows TM (transverse m
This is a state called polarized light, and the vibration direction of the magnetic vector is perpendicular to the incident surface, that is, the vibration direction of the electric vector is on the incident inner surface. In the conventional device in which the projection optical system does not include a polarizing member, the TE polarized light shown in FIG. 2A and the T polarized light shown in FIG.
Although an image is formed by light in an average state of M-polarized light, a photochemical reaction of a photosensitive material such as a photoresist proceeds by the action of an electric field of light which is an electromagnetic wave. It becomes a problem.
【0008】図2(a)と図2(b)を比較すると解る
ように、TE偏光の場合は、0次、±1次・・・ の各回折
光の電気ベクトルの振動方向が全て紙面に垂直な方向に
そろっており、回折光同志の干渉効果が最大となって、
高コントラストの像となる。TM偏光の場合は、次数の
異なる回折光の電気ベクトルの振動方向は各回折光の進
行方向のなす角に応じた分だけずれることになり、回折
光同志の干渉効果が低減して、像のコントラストを落と
す方向に作用する。As can be seen by comparing FIGS. 2 (a) and 2 (b), in the case of TE polarization, the vibration directions of the electric vectors of the 0th order, ± 1st order ... They are aligned in the vertical direction, and the interference effect of diffracted light is maximized,
The image has high contrast. In the case of TM-polarized light, the vibration direction of the electric vector of diffracted light of different orders is shifted by an amount corresponding to the angle formed by the traveling directions of the diffracted lights, and the interference effect between the diffracted lights decreases, and It works to reduce the contrast.
【0009】本発明においては、投影光学系のほぼ瞳位
置に、フォトマスクに形成されたパターンの辺に平行な
方向に電気ベクトルが振動する光のみを透過させる偏光
部材が配置されているので、フォトマスクで発生した非
偏光状態の回折光は、回折角を形成する平面(入射面)
に直交する振動面を有するTE偏光に変換され、コント
ラストの高い像が得られる。In the present invention, since a polarizing member that transmits only the light whose electric vector oscillates in the direction parallel to the side of the pattern formed on the photomask is arranged at approximately the pupil position of the projection optical system, The non-polarized diffracted light generated by the photomask is a plane (incident surface) that forms the diffraction angle.
It is converted into TE polarized light having a vibrating plane orthogonal to, and an image with high contrast is obtained.
【0010】ここで、フォトマスクに形成される実際の
回路パターンの配列方向はさまざまであり、一定の周期
で繰り返されるラインアンドスペースパターンの他にホ
ールパターン等の孤立パターンも含まれるから、本発明
で用いる偏光部材としては、投影光学系の光軸を中心と
する円の接線方向に電気ベクトルが振動している光のみ
を透過させるものを用いることが好ましい。このような
偏光部材を用いれば、パターンがどのような方向に配列
されていても、常にパターンの辺と平行な方向に電気ベ
クトルが振動する光のみが偏光部材を透過することにな
る。The arrangement direction of the actual circuit pattern formed on the photomask is various, and an isolated pattern such as a hole pattern is also included in addition to the line-and-space pattern repeated at a constant cycle. As the polarizing member used in (3), it is preferable to use a polarizing member that transmits only the light whose electric vector oscillates in the tangential direction of the circle centered on the optical axis of the projection optical system. If such a polarizing member is used, only light whose electric vector oscillates in the direction parallel to the sides of the pattern will always pass through the polarizing member, regardless of the orientation of the pattern.
【0011】さて、次に、更に説明を解りやすくするた
めに、フォトマスク21に紙面垂直方向に伸長するライン
アンドスペースパターン(遮光部と光透過部が同じ幅で
交互に繰り返されるパターン)が設けられており、フォ
トマスク21からの回折光のうち0次回折光と±1次回折
光によりパターン像が形成される場合を考える。この場
合、0次回折光の振幅は1/2、±1次回折光の振幅は
1/πである。Next, in order to make the explanation easier to understand, the photomask 21 is provided with a line-and-space pattern (a pattern in which light-shielding portions and light-transmitting portions are alternately repeated with the same width) extending in the direction perpendicular to the paper surface. Consider that the pattern image is formed by the 0th-order diffracted light and the ± 1st-order diffracted lights of the diffracted light from the photomask 21. In this case, the amplitude of the 0th-order diffracted light is 1/2, and the amplitude of the ± 1st-order diffracted light is 1 / π.
【0012】図2に示してある様に、x(紙面左右方
向),y(紙面垂直方向),z(紙面上下方向)座標軸
を設定し、0次回折光の方向余弦を(0,0,1)、±
1次回折光の方向余弦を(±α,0,γ)として、0次
回折光、±1次回折光の波動(ベクトル量)をψ0 、ψ
±1 とすると、TE偏光の場合の各回折光の波動は式1
〜3で表わされる。式中kは定数(=2π/λ)であ
る。As shown in FIG. 2, x (horizontal direction of paper), y (vertical direction of paper), z (vertical direction of paper) coordinate axes are set, and the direction cosine of the 0th-order diffracted light is (0, 0, 1). ), ±
Letting the direction cosine of the first-order diffracted light be (± α, 0, γ), the wave motion (vector amount) of the 0th-order diffracted light and the ± first-order diffracted light is ψ 0 , ψ
Assuming ± 1 , the wave motion of each diffracted light in case of TE polarization is
It is represented by. In the formula, k is a constant (= 2π / λ).
【0013】[0013]
【数1】 [Equation 1]
【0014】0次回折光及び±1次回折光の波動ψ0 ,
ψ±1 を合成した波動場ΨTEは式4となり、強度分布I
TE(x,z)=|Ψ|2 は、式5となる。Waves ψ 0 of the 0th order diffracted light and ± 1st order diffracted light,
The wave field Ψ TE that combines ψ ± 1 is given by Equation 4, and the intensity distribution I
TE (x, z) = | Ψ | 2 is given by Equation 5.
【0015】[0015]
【数2】 [Equation 2]
【0016】一方、TM偏光の場合の各回折光の波動は
式6〜8で表わされる。On the other hand, the waves of each diffracted light in the case of TM polarized light are represented by equations 6-8.
【0017】[0017]
【数3】 [Equation 3]
【0018】0次回折光及び±1次回折光の波動ψ0 ,
ψ±1 を合成した波動場ΨTMは、式9となり、強度分布
ITM(x,z)=|Ψ|2 は、式10となる。Waves of the 0th order diffracted light and the ± 1st order diffracted light ψ 0 ,
The wave field Ψ TM obtained by combining ψ ± 1 is given by Equation 9, and the intensity distribution I TM (x, z) = | Ψ | 2 is given by Equation 10.
【0019】[0019]
【数4】 [Equation 4]
【0020】ここで、像の評価指標として、ログ・スロ
ープ(log slope)値を考える。このログ・スロープ値と
は、幾何光学的な明暗の境界における強度Iの対数をと
った時の微分値であり、即ち∂ logI/∂xの値であ
る。そして、この値が大きい方が、いわゆる高コントラ
ストの像であることを示している。式5と式10より、お
のおのTE偏光、TM偏光の時のログ・スロープ値を計
算できる。簡単のため、ベスト・フォーカス面にて考え
るものとして、Z=0として計算すると、TE偏光のと
きのログ・スロープ値LSTEは式11、TM偏光のときの
ログ・スロープ値LSTMは式12となる。また非偏光状態
のときのログ・スロープ値は、TE偏光とTM偏光の平
均状態である。Now, consider the log slope value as an image evaluation index. The log slope value is a differential value when the logarithm of the intensity I at the boundary of light and dark in geometrical optics is taken, that is, a value of ∂log I / ∂x. The larger this value is, the higher the contrast of the image. From equations 5 and 10, the log slope values for TE polarized light and TM polarized light can be calculated. Assuming that the best focus plane is considered for the sake of simplicity, if Z = 0 is calculated, the log slope value LS TE for TE polarized light is given by Equation 11, and the log slope value LS TM for TM polarized light is given by Equation 12 Becomes The log slope value in the non-polarized state is the average state of TE polarized light and TM polarized light.
【0021】[0021]
【数5】 [Equation 5]
【0022】式12のうち、4λ/αに掛かっている項を
考えると、分子は1より小さく、分母は1より大きいの
で、全体として式12の値は、式11の値より小さいことが
理解される。このことは、TE偏光での結像の方が、T
M偏光での結像よりも高いログ・スロープ値を有してい
ることを示している。また、αは回折角に対応するの
で、回折角の大きい微細パターン程、TE偏光の優位性
は大きくなる。Considering the term multiplied by 4λ / α in the equation 12, since the numerator is smaller than 1 and the denominator is larger than 1, it is understood that the value of the equation 12 is smaller than the value of the equation 11 as a whole. To be done. This means that imaging with TE polarized light is T
It shows that it has a higher log slope value than the image with M polarization. Further, since α corresponds to the diffraction angle, the superiority of the TE polarized light increases as the fine pattern has a larger diffraction angle.
【0023】更に、非偏光状態は、TE偏光とTM偏光
の平均状態であるから、TE偏光による結像は、当然、
非偏光による結像より、高いログ・スロープ値を有して
いて、いわゆる高コントラストな像を達成することにな
る。また、光の偏光と位相は独立した情報であるから、
本発明の露光装置に位相シフトマスクを用いることもで
き、光の振幅,位相,偏光の3つの情報を適宜組み合わ
せることにより結像性能の一層の向上を図ることが可能
である。Further, since the non-polarized state is the average state of TE polarized light and TM polarized light, the image formation by TE polarized light is naturally
It has a higher log slope value than an image formed by non-polarized light and achieves a so-called high-contrast image. Moreover, since the polarization and phase of light are independent information,
A phase shift mask can be used in the exposure apparatus of the present invention, and it is possible to further improve the imaging performance by appropriately combining the three pieces of information on the amplitude, phase and polarization of light.
【0024】[0024]
【実施例】図1は、本発明実施例による露光装置の構成
を模式的に示した構成図である。図において、照明光学
系4は、超高圧水銀ランプ,エキシマレーザ等を光源と
し、リソグラフィ行程で使用されるフォトレジストを感
光させ得る波長の露光光を射出する。1 is a schematic diagram showing the structure of an exposure apparatus according to an embodiment of the present invention. In the figure, an illumination optical system 4 uses an ultrahigh pressure mercury lamp, an excimer laser, or the like as a light source, and emits exposure light having a wavelength that can sensitize a photoresist used in a lithography process.
【0025】フォトマスク1は、照明光学系4の光軸と
直交するように、水平面内に保持されている。フォトマ
スク1に形成されるパターンの形状は特に限定されるも
のではないが、ここでは、説明を具体的にするために、
光透過部とクロム等の遮光部が交互に繰り返されるいわ
ゆるラインアンドスペースパターンが形成されており、
パターンは紙面と垂直な方向に伸長しているものとす
る。The photomask 1 is held in a horizontal plane so as to be orthogonal to the optical axis of the illumination optical system 4. The shape of the pattern formed on the photomask 1 is not particularly limited, but here, in order to make the description concrete,
A so-called line-and-space pattern in which light-transmitting portions and light-shielding portions such as chrome are alternately repeated is formed,
The pattern is assumed to extend in the direction perpendicular to the paper surface.
【0026】フォトマスク1の下方には、投影光学系2
が配置されており、投影光学系2の光源(照明光学系
4)側焦点とフォトマスク1のパターン形成面がほぼ一
致するように光軸方向の位置が調整されている。この投
影光学系2の瞳面(厳密に瞳位置である必要はない)に
は、図1(b)に示されているように、投影光学系2の
光軸(瞳中心)を中心とした同心円の接線方向に電気ベ
クトルが振動する光のみを透過させる偏光部材5が配置
されている。Below the photomask 1, a projection optical system 2 is provided.
Are arranged, and the position in the optical axis direction is adjusted so that the focus on the light source (illumination optical system 4) side of the projection optical system 2 and the pattern forming surface of the photomask 1 substantially coincide with each other. As shown in FIG. 1B, the pupil plane of the projection optical system 2 (not necessarily at the exact pupil position) is centered on the optical axis of the projection optical system 2 (center of the pupil). A polarizing member 5 is arranged in the tangential direction of the concentric circles to transmit only the light whose electric vector oscillates.
【0027】投影光学系2の下方には、ウエハ(図示せ
ず)を載置するウエハステージ(図示せず)が設けら
れ、投影光学系2の結像面3とウエハ表面とが合致する
ように、光軸上の位置が調整されている。また、ウエハ
ステージは、水平面内にも移動可能となっており、露光
に先立ち、不図示のアライメント手段を用いてウエハと
フォトマスク1の相対的位置の調整が行なわれる。A wafer stage (not shown) on which a wafer (not shown) is placed is provided below the projection optical system 2 so that the image plane 3 of the projection optical system 2 and the wafer surface coincide with each other. In addition, the position on the optical axis is adjusted. The wafer stage is also movable in a horizontal plane, and the relative position between the wafer and the photomask 1 is adjusted using an alignment means (not shown) before exposure.
【0028】上述した構成の露光装置において、照明光
学系4からの露光光によってフォトマスク1が透過照明
されると、図1(a)に示されるようにフォトマスク1
からは、紙面内左右方向(パターンの配列方向)に広が
る回折光が発生する。この段階で回折光は、TE偏光と
TM偏光の状態が平均された状態であり、振動方向の偏
りはない。In the exposure apparatus having the above-described structure, when the photomask 1 is transmitted and illuminated by the exposure light from the illumination optical system 4, as shown in FIG.
Then, diffracted light that spreads in the left-right direction (pattern arrangement direction) within the paper surface is generated. At this stage, the diffracted light is in a state in which the TE polarized light and the TM polarized light are averaged, and there is no bias in the vibration direction.
【0029】次いで、回折光は投影光学系2に入射し、
瞳面に配置された偏光部材5に至る。ここで、フォトマ
スク1からの回折光のうち0次回折光は、パターンの形
成位置によらず(パターンが照明領域の中央部になって
も端にあっても)、投影光学系2の瞳中心(偏光部材5
中心)に入射し、±1次,±2次,・・・ の各回折光は、
瞳中心から半径方向(パターン配列方向)に所定距離ず
つ離れた位置に入射する。本実施例のように、パターン
の配列方向が紙面左右方向である場合は、各次数の回折
光の偏光部材5への入射位置は、投影光学系2の光軸を
中心とした円(図1(b)参照)を紙面左右方向に横切
る直径上に所定の間隔で並ぶことになる。偏光部材5
は、上述したように、投影光学系2の光軸を中心とした
円の接線方向に電気ベクトルが振動する光のみを透過さ
せるものであるから、各次数の回折光はそれぞれ図1
(b)の上下方向に電気ベクトルが振動する成分のみが
偏光部材5を透過することになる。Next, the diffracted light enters the projection optical system 2,
It reaches the polarizing member 5 arranged on the pupil plane. Here, the 0th-order diffracted light of the diffracted light from the photomask 1 does not depend on the formation position of the pattern (whether the pattern is at the central portion or at the end of the illumination area), and is the center of the pupil of the projection optical system 2. (Polarizing member 5
Each of the ± 1st-order, ± 2nd-order, ...
The light beam is incident on a position distant by a predetermined distance in the radial direction (pattern arrangement direction) from the center of the pupil. When the arrangement direction of the pattern is the horizontal direction of the paper surface as in this embodiment, the incident position of the diffracted light of each order on the polarization member 5 is a circle centered on the optical axis of the projection optical system 2 (see FIG. 1). (See (b)) are arranged at a predetermined interval on the diameter across the right and left of the drawing. Polarizing member 5
As described above, since only the light whose electric vector oscillates in the tangential direction of the circle centered on the optical axis of the projection optical system 2 is transmitted, the diffracted light of each order is shown in FIG.
Only the component in which the electric vector oscillates in the vertical direction of (b) is transmitted through the polarizing member 5.
【0030】この際、図1(b)のような偏光部材5の
中心においては、透過する光の偏光状態が不安定になる
ため、0次回折光の入射位置を偏光部材5の中心から偏
位させることが望ましい。このことは、照明光学系4の
光源の中心部を遮蔽して輪帯照明とすることで容易に実
現される。即ち、輪帯照明とすることで、フォトマスク
1は、垂直方向(光軸方向)から僅かに傾いた方向から
照明されることになり、0次回折光は傾きに応じた分だ
け偏光部材5の中心から半径方向にずれた位置に入射す
ることになるので(このとき1次以上の回折光の位置も
順に半径方向外側にずれる)、振動方向の異なる光が偏
光部材5を透過することを防止できる。At this time, since the polarization state of the transmitted light becomes unstable at the center of the polarizing member 5 as shown in FIG. 1B, the incident position of the 0th order diffracted light is deviated from the center of the polarizing member 5. It is desirable to let This can be easily realized by shielding the central part of the light source of the illumination optical system 4 to provide annular illumination. That is, with the annular illumination, the photomask 1 is illuminated from a direction slightly tilted from the vertical direction (optical axis direction), and the 0th-order diffracted light of the polarization member 5 is proportional to the tilt. Since the light is incident at a position displaced from the center in the radial direction (at this time, the positions of the diffracted lights of the first and higher orders are also displaced outward in the radial direction in order), it is possible to prevent light having different vibration directions from passing through the polarizing member 5. it can.
【0031】図1(a)に戻って、投影光学系2の偏光
部材5を透過した露光光は、電気ベクトルの振動方向が
紙面垂直方向(パターンの辺と平行な方向)に揃ったT
E偏光となり、結像面3にフォトマスク1のラインアン
ドスペースパターンの像を結ぶ。これにより、結像面3
に保持されたウエハの所定の位置にパターン像の転写が
行なわれる。Returning to FIG. 1A, in the exposure light transmitted through the polarization member 5 of the projection optical system 2, the vibration direction of the electric vector is aligned with the direction perpendicular to the paper surface (direction parallel to the side of the pattern).
It becomes E-polarized light and forms an image of the line-and-space pattern of the photomask 1 on the image plane 3. Thereby, the image plane 3
The pattern image is transferred to a predetermined position of the wafer held by the.
【0032】本実施例では、上述のようにして、振動方
向の揃った光だけで像が形成されるので、回折光同志の
干渉効果が増し、コントラストの高い像がウエハ面に転
写される。また、パターンピッチが小さくなる程1次以
上の回折光の回折角が大きくなるため、従来のように、
非偏光状態(TE偏光+TM偏光)の光で結像される場
合は、TM偏光の振動方向のずれが大きくなる分だけ像
のコントラストが低下することになるが、本実施例のよ
うにTE偏光だけで結像される場合は、回折角が変わっ
ても電気ベクトルの振動方向は変わらないので、高いコ
ントラストが維持される。即ち、図1のような構造の露
光装置を用いることにより、パターンのピッチが非常に
小さくなっても高コントラストの像を得ることができ、
微細パターン程、従来の露光装置に対する優位性が明確
になる。In the present embodiment, as described above, an image is formed only by light whose vibration directions are uniform, so that the interference effect of diffracted light is increased and a high-contrast image is transferred onto the wafer surface. Further, as the pattern pitch becomes smaller, the diffraction angle of the diffracted light of the first order or more becomes larger.
When an image is formed with light in a non-polarized state (TE polarized light + TM polarized light), the contrast of the image decreases as the deviation of the TM polarized light in the vibration direction increases. When the image is formed only by itself, the vibration direction of the electric vector does not change even if the diffraction angle changes, so that high contrast is maintained. That is, by using the exposure apparatus having the structure as shown in FIG. 1, it is possible to obtain a high-contrast image even if the pattern pitch becomes very small.
The finer the pattern, the clearer the advantage over the conventional exposure apparatus.
【0033】なお、上記においては、説明のためにフォ
トマスク1のパターンは紙面左右方向に配列されている
としたが、配列方向が他の方向であっても同様にコント
ラストの高い像を得ることができることは言うまでもな
く、本実施例の露光装置はあらゆる形状のパターンに対
応できる。つまり、パターンの配列方向が変われば、そ
れに対応して回折光の広がる方向が変わり、投影光学系
2の瞳面における各次数の回折光の入射位置の整列方向
も変わるが(例えばパターンの配列方向が図1(b)の
紙面上下方向であれば、各次数の回折光の入射位置は図
1(b)の同心円を紙面上下方向に横切る直径上に整列
する)、本実施例における偏光部材5は、図1(b)の
同心円の接線方向に振動面を有する光のみを透過させる
ものであるから、パターンがどのうよな方向に配列され
ていても常にパターンの辺と平行な方向に電気ベクトル
が振動する光のみが偏光部材5を透過することになる。In the above description, for the sake of explanation, the pattern of the photomask 1 is arranged in the left-right direction on the paper surface. However, even if the arrangement direction is another direction, a high-contrast image can be similarly obtained. Needless to say, the exposure apparatus of this embodiment can handle patterns of any shape. That is, if the arrangement direction of the pattern changes, the direction in which the diffracted light spreads changes correspondingly, and the alignment direction of the incident position of the diffracted light of each order on the pupil plane of the projection optical system 2 also changes (for example, the arrangement direction of the pattern). Is in the vertical direction of the paper surface of FIG. 1B, the incident position of the diffracted light of each order is aligned on the diameter across the concentric circles of the FIG. 1B in the vertical direction of the paper surface). Is for transmitting only light having an oscillating surface in the tangential direction of the concentric circles in FIG. 1B, no matter which direction the pattern is arranged, the electric power is always parallel to the sides of the pattern. Only the light whose vector oscillates will pass through the polarizing member 5.
【0034】逆に、パターンの配列方向が一方向に限ら
れているような場合は、円周方向の位置によって透過す
る光の振動方向が変わるような偏光部材5(図1
(b))を用いなくとも、入射位置によらず同じ方向
(パターンの辺と平行な方向)に振動する光だけを透過
させる偏光部材を用いれば良い。次に、例として、露光
波長λ=365 nmとして、式11〜12から、各偏光状態(T
E偏光,TM偏光,TE偏光とTM偏光の平均)で得ら
れるベスト・フォーカスでのパターン像のログ・スロー
プ値を求めた結果を示す。この表1の結果からも、微細
パターン程、本発明の優位性が発揮されることが明らか
であり、例えば64M DRAM等の集積度の高い半導体素子
を製造するにあたって本発明の露光装置が非常に有効で
あることが理解される。On the contrary, when the arrangement direction of the pattern is limited to one direction, the polarizing member 5 (FIG. 1) in which the vibration direction of the transmitted light changes depending on the position in the circumferential direction.
Even if (b)) is not used, it suffices to use a polarizing member that transmits only light that oscillates in the same direction (direction parallel to the side of the pattern) regardless of the incident position. Next, as an example, with the exposure wavelength λ = 365 nm, from Equations 11 to 12, each polarization state (T
The result of obtaining the log slope value of the pattern image at the best focus obtained with E-polarized light, TM-polarized light, and the average of TE-polarized light and TM-polarized light is shown. From the results shown in Table 1, it is clear that the superiority of the present invention is exerted in the case of a fine pattern. For example, the exposure apparatus of the present invention is very useful for manufacturing a semiconductor element having a high degree of integration such as 64M DRAM. It is understood to be effective.
【0035】[0035]
【表1】 [Table 1]
【0036】さて、上記においては、説明を簡単にする
ために、遮光膜だけでパターン形成されているフォトマ
スクを用いた場合について説明したが、本発明の露光装
置は位相シフトマスクと組み合わせて使用することもで
きる。位相シフトマスクについては、遮光部を介して隣
合う光透過部の一方に位相シフト部材を付加する空間周
波数変調方式(例えば特公昭62−50811 号公報に記載の
方式)の他、厚さの異なる位相部材を設ける多段方式、
遮光パターンの周縁部に位相シフト部材からなる補助パ
ターンを設ける補助パターン方式、遮光部と光透過部の
境界に位相シフト部材を設けるエッジ強調方式、位相シ
フト部材だけでパターン形成するクロムレス方式等種々
の方式が提案されているが、本発明は何れの方式の位相
シフトマスクとも組み合わせることができる。In the above description, for the sake of simplicity, the case where a photomask pattern-formed only with a light-shielding film was used was explained, but the exposure apparatus of the present invention is used in combination with a phase shift mask. You can also do it. Regarding the phase shift mask, in addition to the spatial frequency modulation method in which a phase shift member is added to one of the adjacent light transmitting portions via the light shielding portion (for example, the method described in Japanese Patent Publication No. 62-50811), the thickness is different. Multi-stage method with phase member,
There are various types such as an auxiliary pattern method in which an auxiliary pattern made of a phase shift member is provided on the peripheral portion of the light shielding pattern, an edge enhancement method in which a phase shift member is provided at the boundary between the light shielding portion and the light transmitting portion, and a chromeless method in which a pattern is formed only by the phase shift member Although a method has been proposed, the present invention can be combined with any type of phase shift mask.
【0037】また、上記の説明においては、透過型のフ
ォトスマクを使用する場合について述べてきたが、本発
明は、透明基板上に反射部材(反射膜)を設けた反射型
のフォトマスクを使用する場合にも適用できるものであ
る。反射型マスクにおいては、フォトマスクを落射照明
して、反射膜からの反射光を結像光学系で集めることに
より像が形成され、光透過部が像の暗部、反射部が像の
明部に対応することになるが、結像光学系の瞳面にパタ
ーンの辺に平行な方向に電気ベクトルが振動する光を透
過させる偏光部材を設けることにより、透過型マスクを
用いる場合と同様に像のコントラストを高めることが可
能である。In the above description, the case where the transmission type photo smak is used has been described, but the present invention uses the reflection type photomask in which the reflection member (reflection film) is provided on the transparent substrate. It is also applicable in some cases. In a reflective mask, an image is formed by epi-illuminating a photomask and collecting the reflected light from the reflective film with an imaging optical system.The light transmitting part is the dark part of the image and the reflective part is the bright part of the image. As will be dealt with, by providing a polarizing member on the pupil plane of the imaging optical system that transmits light whose electric vector oscillates in a direction parallel to the sides of the pattern, the image of It is possible to increase the contrast.
【0038】[0038]
【発明の効果】以上の様に本発明の露光装置において
は、転写すべきパターンの辺と平行な方向に電気ベクト
ルが振動する光のみを透過させる偏光部材を投影光学系
の瞳面に設けているので、電気ベクトルの振動方向が同
一方向に揃った光で像が形成されることになり、回折光
同志の干渉が増し、コントラストの高い像を得ることが
できる。As described above, in the exposure apparatus of the present invention, a polarizing member that transmits only the light whose electric vector oscillates in the direction parallel to the side of the pattern to be transferred is provided on the pupil plane of the projection optical system. Therefore, an image is formed by light in which the vibration directions of the electric vectors are aligned in the same direction, the interference between the diffracted lights increases, and an image with high contrast can be obtained.
【0039】また、本発明によれば、回路パターンが微
細化してフォトマスクからの光の回折角が大きくなって
も、高いコントラスを維持できるので、微細パターン
程、従来の露光装置に対する優位性が発揮される。更
に、本発明の露光装置は、近年開発された位相シフトマ
スクとの組み合わせて光の振幅,位相,偏光の3つの情
報を利用して像を形成することができ、リソグラフィ技
術の新たな展開を図る上で非常に有用である。Further, according to the present invention, even if the circuit pattern is miniaturized and the diffraction angle of the light from the photomask is increased, a high contrast can be maintained. Therefore, the finer pattern is superior to the conventional exposure apparatus. To be demonstrated. Furthermore, the exposure apparatus of the present invention can form an image by utilizing the three pieces of information of the amplitude, phase and polarization of light in combination with a phase shift mask developed in recent years, which will lead to a new development of lithography technology. It is very useful for making efforts.
【図1】(a)は本発明実施例による露光装置の構造を
示す構成図、(b)は本発明実施例で使用した偏光部材
の模式的な平面図である。1A is a configuration diagram showing a structure of an exposure apparatus according to an embodiment of the present invention, and FIG. 1B is a schematic plan view of a polarizing member used in the embodiment of the present invention.
【図2】(a),(b)は、各々TE,TM偏光による結
像の様子を示す概念図である。FIGS. 2A and 2B are conceptual diagrams showing a state of image formation by TE and TM polarized light, respectively.
【図3】従来の露光装置の構成を示す構成図である。FIG. 3 is a configuration diagram showing a configuration of a conventional exposure apparatus.
1 フォトマスク 2 投影光学系 3 結像面 4 照明光学系 5 偏光部材 1 Photomask 2 Projection optical system 3 Image plane 4 Illumination optical system 5 Polarizing member
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年9月9日[Submission date] September 9, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0003[Name of item to be corrected] 0003
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0003】[0003]
【発明が解決しようとする課題】ところで、上記のよう
な従来の露光装置においては、半導体素子の高集積化に
伴なう回路パターンの微細化に対応できないという問題
点があり、微細パターンの高コントラストの像を形成で
きる技術の開発が求められている。こうした中で、パタ
ーン像のコントラストを高める方法として、例えば特公
昭62-50811号公報には、フォトマスクの光透過部の特定
の箇所に透過光の位相を変化させる位相シフト部を設け
た位相シフトマスクを用いて投影露光を行なう位相シフ
ト法が開示されている。このような位相シフト法は、光
の振幅の情報に加えて光の位相の情報を利用してパター
ン像を形成するものであり、例えば光透過部(基板裸面
部) と遮光部だけからなるフォトマスクを使用する方法
に比べればある程度の結像性能の改善が実現されてい
る。By the way, the conventional exposure apparatus as described above has a problem that it cannot cope with the miniaturization of circuit patterns accompanying the high integration of semiconductor elements. Development of a technique capable of forming a contrast image is required. Under such circumstances, as a method of increasing the contrast of the pattern image, for example,
Japanese Laid-Open Patent Publication No. 62-50811 specifies a light transmitting portion of a photomask.
The phase shift part that changes the phase of the transmitted light is provided at
Phase shift mask for projection exposure using a phase shift mask
G method is disclosed. Such a phase shift method forms a pattern image by using the information on the phase of light in addition to the information on the amplitude of light, and for example, a photo image is composed of a light transmitting part (bare surface part of the substrate) and a light shielding part. A certain degree of improvement in the imaging performance has been realized as compared with the method using a mask.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0033[Name of item to be corrected] 0033
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0033】なお、上記においては、説明のためにフォ
トマスク1のパターンは紙面左右方向に配列されている
としたが、配列方向が他の方向であっても同様にコント
ラストの高い像を得ることができることは言うまでもな
く、本実施例の露光装置はあらゆる形状のパターンに対
応できる。つまり、パターンの配列方向が変われば、そ
れに対応して回折光の広がる方向が変わり、投影光学系
2の瞳面における各次数の回折光の入射位置の整列方向
も変わる(例えばパターンの配列方向が図1(b)の紙
面上下方向であれば、各次数の回折光の入射位置は図1
(b)の同心円を紙面上下方向に横切る直径上に整列す
る)が、本実施例における偏光部材5は、図1(b)の
同心円の接線方向に振動面を有する光のみを透過させる
ものであるから、パターンがどのような方向に配列され
ていても常にパターンの辺と平行な方向に電気ベクトル
が振動する光のみが偏光部材5を透過することになる。In the above description, for the sake of explanation, the pattern of the photomask 1 is arranged in the left-right direction on the paper surface. However, even if the arrangement direction is another direction, a high-contrast image can be similarly obtained. Needless to say, the exposure apparatus of this embodiment can handle patterns of any shape. That is, if the arrangement direction of the pattern changes, the direction in which the diffracted light spreads changes correspondingly, and the alignment direction of the incident positions of the diffracted light of each order on the pupil plane of the projection optical system 2 also changes (for example, the arrangement direction of the pattern changes). In the vertical direction on the paper surface of FIG. 1B, the incident position of the diffracted light of each order is as shown in FIG.
(B) The concentric circles are aligned on the diameter across the vertical direction on the paper surface), but the polarizing member 5 in the present embodiment transmits only light having an oscillating surface in the tangential direction of the concentric circles of FIG. 1 (b). Therefore, no matter how the patterns are arranged, only the light whose electric vector oscillates in the direction parallel to the sides of the pattern is transmitted through the polarizing member 5.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0036[Correction target item name] 0036
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0036】さて、上記においては、説明を簡単にする
ために、遮光膜だけでパターン形成されているフォトマ
スクを用いた場合について説明したが、本発明の露光装
置は位相シフトマスクと組み合わせて使用することもで
きる。位相シフトマスクについては、遮光部を介して隣
合う光透過部の一方に位相シフト部材を付加する空間周
波数変調方式の他、厚さの異なる位相部材を設ける多段
方式、遮光パターンの周縁部に位相シフトマスク部材か
らなる補助パターンを設ける補助パターン方式、遮光部
と光透過部の境界に位相シフト部材を設けるエッジ強調
方式、位相シフト部材だけでパターン形成するクロムレ
ス方式等、種々の方式が提案されているが、本発明は何
れの方式の位相シフトマスクとも組み合わせることがで
きる。In the above description, for the sake of simplicity, the case where a photomask pattern-formed only with a light-shielding film was used was explained, but the exposure apparatus of the present invention is used in combination with a phase shift mask. You can also do it. Regarding the phase shift mask, the space around which the phase shift member is added to one of the light transmitting parts adjacent to each other through the light shielding part.
In addition to the wave number modulation method, a multi-step method in which phase members having different thicknesses are provided, an auxiliary pattern method in which an auxiliary pattern made of a phase shift mask member is provided at the peripheral portion of the light shielding pattern, and a phase shift member is provided at the boundary between the light shielding portion and the light transmitting portion. Various methods have been proposed, such as an edge enhancement method to be provided and a chromeless method in which a pattern is formed only with a phase shift member, but the present invention can be combined with any type of phase shift mask.
Claims (2)
影光学系を備えた露光装置において、前記投影光学系の
ほぼ瞳面に、前記パターンの辺と平行な方向に電気ベク
トルが振動している光を透過させる偏光部材が配置され
たことを特徴とする露光装置。1. An exposure apparatus having a projection optical system for projecting a pattern on a photomask, wherein light whose electric vector oscillates in a direction parallel to a side of the pattern on a substantially pupil plane of the projection optical system. An exposure apparatus, in which a polarizing member that transmits light is arranged.
を中心とする円の接線方向に電気ベクトルが振動してい
る光のみを透過させるものであることを特徴とする請求
項1記載の露光装置。2. The polarizing member transmits only light whose electric vector oscillates in a tangential direction of a circle centered on the optical axis of the projection optical system. Exposure equipment.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3291465A JPH0590128A (en) | 1991-06-13 | 1991-11-07 | Aligner |
US08/480,360 US5541026A (en) | 1991-06-13 | 1995-06-07 | Exposure apparatus and photo mask |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-167382 | 1991-06-13 | ||
JP16738291 | 1991-06-13 | ||
JP3291465A JPH0590128A (en) | 1991-06-13 | 1991-11-07 | Aligner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0590128A true JPH0590128A (en) | 1993-04-09 |
Family
ID=26491444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3291465A Pending JPH0590128A (en) | 1991-06-13 | 1991-11-07 | Aligner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0590128A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07183201A (en) * | 1993-12-21 | 1995-07-21 | Nec Corp | Exposure device and method therefor |
WO2005071718A1 (en) | 2004-01-27 | 2005-08-04 | Nikon Corporation | Optical system, exposure system, and exposure method |
WO2005124420A1 (en) * | 2004-06-16 | 2005-12-29 | Nikon Corporation | Optical system, exposing apparatus and exposing method |
US7009686B2 (en) | 2002-09-19 | 2006-03-07 | Canon Kabushiki Kaisha | Exposure method |
JP2006511967A (en) * | 2003-02-21 | 2006-04-06 | エーエスエムエル ホールディング ナームローゼ フェンノートシャップ | Lithographic printing with polarized light |
JP2009009143A (en) * | 2003-02-27 | 2009-01-15 | Asml Netherlands Bv | Stationary and dynamic radial transverse electric polarizer for high numerical aperture system |
JP2010093291A (en) * | 2010-01-12 | 2010-04-22 | Nikon Corp | Illuminating optical device, exposure system and exposure method |
JP2010123983A (en) * | 2010-01-12 | 2010-06-03 | Nikon Corp | Illumination optical device, exposure device, and exposure method |
US7736839B2 (en) | 2004-02-26 | 2010-06-15 | Renesas Technology Corp. | Process for fabricating semiconductor device and method for generating mask pattern data |
JP2011254086A (en) * | 2011-07-04 | 2011-12-15 | Nikon Corp | Illumination optical apparatus, exposure device, and exposure method |
JP2012156536A (en) * | 2012-03-28 | 2012-08-16 | Nikon Corp | Illumination optical device, exposure device and exposure method |
JP2012156537A (en) * | 2012-03-28 | 2012-08-16 | Nikon Corp | Illumination optical device, exposure device and exposure method |
JP5021645B2 (en) * | 2006-07-17 | 2012-09-12 | 株式会社フォトニックラティス | Polarizer and microscope using the polarizer |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
JP2014039044A (en) * | 2013-09-09 | 2014-02-27 | Nikon Corp | Illumination optical device |
JP2014116612A (en) * | 2013-12-27 | 2014-06-26 | Nikon Corp | Illumination optical device, exposure device and exposure method |
US8861084B2 (en) | 2004-01-16 | 2014-10-14 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
JP2015172749A (en) * | 2015-04-03 | 2015-10-01 | 株式会社ニコン | Illumination optical apparatus, exposure device and exposure method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
-
1991
- 1991-11-07 JP JP3291465A patent/JPH0590128A/en active Pending
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07183201A (en) * | 1993-12-21 | 1995-07-21 | Nec Corp | Exposure device and method therefor |
US7009686B2 (en) | 2002-09-19 | 2006-03-07 | Canon Kabushiki Kaisha | Exposure method |
JP2006511967A (en) * | 2003-02-21 | 2006-04-06 | エーエスエムエル ホールディング ナームローゼ フェンノートシャップ | Lithographic printing with polarized light |
KR100642169B1 (en) * | 2003-02-21 | 2006-11-03 | 에이에스엠엘 홀딩 엔.브이. | Lithographic printing with polarized light |
JP2008258637A (en) * | 2003-02-21 | 2008-10-23 | Asml Holding Nv | Lithographic printing with polarized light |
US7445883B2 (en) | 2003-02-21 | 2008-11-04 | Asml Holding N.V. | Lithographic printing with polarized light |
JP2009009143A (en) * | 2003-02-27 | 2009-01-15 | Asml Netherlands Bv | Stationary and dynamic radial transverse electric polarizer for high numerical aperture system |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9316772B2 (en) | 2004-01-16 | 2016-04-19 | Carl Zeiss Smt Gmbh | Producing polarization-modulating optical element for microlithography system |
US8861084B2 (en) | 2004-01-16 | 2014-10-14 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
WO2005071718A1 (en) | 2004-01-27 | 2005-08-04 | Nikon Corporation | Optical system, exposure system, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US7736839B2 (en) | 2004-02-26 | 2010-06-15 | Renesas Technology Corp. | Process for fabricating semiconductor device and method for generating mask pattern data |
WO2005124420A1 (en) * | 2004-06-16 | 2005-12-29 | Nikon Corporation | Optical system, exposing apparatus and exposing method |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
JP5021645B2 (en) * | 2006-07-17 | 2012-09-12 | 株式会社フォトニックラティス | Polarizer and microscope using the polarizer |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
JP2010093291A (en) * | 2010-01-12 | 2010-04-22 | Nikon Corp | Illuminating optical device, exposure system and exposure method |
JP2010123983A (en) * | 2010-01-12 | 2010-06-03 | Nikon Corp | Illumination optical device, exposure device, and exposure method |
JP2011254086A (en) * | 2011-07-04 | 2011-12-15 | Nikon Corp | Illumination optical apparatus, exposure device, and exposure method |
JP2012156537A (en) * | 2012-03-28 | 2012-08-16 | Nikon Corp | Illumination optical device, exposure device and exposure method |
JP2012156536A (en) * | 2012-03-28 | 2012-08-16 | Nikon Corp | Illumination optical device, exposure device and exposure method |
JP2014039044A (en) * | 2013-09-09 | 2014-02-27 | Nikon Corp | Illumination optical device |
JP2014116612A (en) * | 2013-12-27 | 2014-06-26 | Nikon Corp | Illumination optical device, exposure device and exposure method |
JP2015172749A (en) * | 2015-04-03 | 2015-10-01 | 株式会社ニコン | Illumination optical apparatus, exposure device and exposure method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0590128A (en) | Aligner | |
US5541026A (en) | Exposure apparatus and photo mask | |
US6094305A (en) | Exposure method and apparatus therefor | |
US5459000A (en) | Image projection method and device manufacturing method using the image projection method | |
US7629087B2 (en) | Photomask, method of making a photomask and photolithography method and system using the same | |
JP2895703B2 (en) | Exposure apparatus and exposure method using the exposure apparatus | |
JPH05241324A (en) | Photomask and exposing method | |
JPH07183201A (en) | Exposure device and method therefor | |
JPH05109601A (en) | Aligner and exposure method | |
JP2006179516A (en) | Exposure device, exposure method and method for manufacturing semiconductor device | |
JP4971932B2 (en) | Illumination optical system, exposure apparatus, device manufacturing method, and polarization control unit | |
JPH07142338A (en) | Image projection method and aligner using same | |
TW200921285A (en) | Adjustment method, exposure method, device manufacturing method, and exposure apparatus | |
JP3647272B2 (en) | Exposure method and exposure apparatus | |
JP2004014867A (en) | Interference aligner | |
JP3997199B2 (en) | Exposure method and apparatus | |
JP2009186863A (en) | Exposure mask and pattern forming method therefor | |
JP2008172102A (en) | Measuring method and exposure device | |
JP3084847B2 (en) | Photomask and pattern transfer method | |
JP3128396B2 (en) | Exposure method and exposure apparatus | |
JP3647270B2 (en) | Exposure method and exposure apparatus | |
JPH04180612A (en) | Projection aligner | |
JPH11191532A (en) | Projection aligner | |
JP2007103835A (en) | Aligner and exposure method | |
JP3087353B2 (en) | Photomask and exposure method using the same |