Nothing Special   »   [go: up one dir, main page]

KR102392937B1 - 양극 활물질 입자 및 양극 활물질 입자의 제작 방법 - Google Patents

양극 활물질 입자 및 양극 활물질 입자의 제작 방법 Download PDF

Info

Publication number
KR102392937B1
KR102392937B1 KR1020197038230A KR20197038230A KR102392937B1 KR 102392937 B1 KR102392937 B1 KR 102392937B1 KR 1020197038230 A KR1020197038230 A KR 1020197038230A KR 20197038230 A KR20197038230 A KR 20197038230A KR 102392937 B1 KR102392937 B1 KR 102392937B1
Authority
KR
South Korea
Prior art keywords
region
active material
secondary battery
positive electrode
magnesium
Prior art date
Application number
KR1020197038230A
Other languages
English (en)
Other versions
KR20200000488A (ko
Inventor
다카히로 가와카미
데루아키 오치아이
요헤이 몸마
아야에 츠루타
마사히로 다카하시
마유미 미카미
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61830113&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR102392937(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20200000488A publication Critical patent/KR20200000488A/ko
Application granted granted Critical
Publication of KR102392937B1 publication Critical patent/KR102392937B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

리튬 이온 이차 전지에 사용한 경우, 충방전 사이클로 인한 용량의 감소를 억제하는 양극 활물질을 제공한다. 양극 활물질의 표층부에 편석에 의하여 피복층을 형성한다. 양극 활물질은 제 1 영역 및 제 2 영역을 포함한다. 제 1 영역은 양극 활물질의 내부에 존재한다. 제 2 영역은 양극 활물질의 표층부 및 그 내부의 일부에 존재한다. 제 1 영역은 리튬, 전이 금속, 및 산소를 포함한다. 제 2 영역은 마그네슘, 플루오린, 및 산소를 포함한다.

Description

양극 활물질 입자 및 양극 활물질 입자의 제작 방법 {POSITIVE ELECTRODE ACTIVE MATERIAL PARTICLE AND MANUFACTURING METHOD OF POSITIVE ELECTRODE ACTIVE MATERIAL PARTICLE}
본 발명의 일 형태는 물건, 방법, 또는 제작 방법에 관한 것이다. 본 발명은 공정(process), 기계(machine), 제품(manufacture), 또는 조성물(composition of matter)에 관한 것이다. 본 발명의 일 형태는 반도체 장치, 표시 장치, 발광 장치, 축전 장치, 조명 장치, 전자 기기, 또는 그 제작 방법에 관한 것이다. 특히, 본 발명의 일 형태는 이차 전지에 사용할 수 있는 양극 활물질, 이차 전지, 및 이차 전지를 포함하는 전자 기기에 관한 것이다.
본 명세서에서, 축전 장치는 축전 기능을 갖는 유닛 및 장치를 나타내는 총칭이다. 예를 들어, 축전 장치의 범주에는 리튬 이온 이차 전지 등의 축전지(이차 전지라고도 함), 리튬 이온 커패시터, 및 전기 이중층 커패시터가 포함된다.
또한, 본 명세서에서 전자 기기란, 축전 장치를 포함하는 모든 장치를 의미하고, 축전 장치를 포함하는 전기 광학 장치 및 축전 장치를 포함하는 정보 단말 장치 등은 모두 전자 기기이다.
근년, 리튬 이온 이차 전지, 리튬 이온 커패시터, 및 공기 전지 등의 다양한 축전 장치가 활발히 개발되고 있다. 특히, 휴대 전화, 스마트폰, 및 노트북 컴퓨터 등의 휴대 정보 단말기, 휴대 음악 플레이어, 및 디지털 카메라; 의료 기기; 및 하이브리드 전기 자동차(HEV), 전기 자동차(EV), 및 플러그인 하이브리드 전기 자동차(PHEV) 등의 차세대 클린 에너지 자동차 등을 위한, 고출력 및 고용량의 리튬 이온 이차 전지에 대한 수요가 반도체 산업의 발전과 아울러 급격히 확대되고 있다. 리튬 이온 이차 전지는 현대의 정보화 사회에 있어 재충전 가능한 에너지 공급원으로서 필수적이다.
현재, 리튬 이온 이차 전지에 요구되는 성능에는, 높아진 용량, 향상된 사이클 특성, 다양한 환경하에서의 안전한 동작, 및 더 장기적인 신뢰성이 포함된다.
충전 전압을 높임으로써 리튬 이온 이차 전지의 용량이 증가되는 것이 알려져 있다. 예를 들어, 리튬 이온 이차 전지의 양극 활물질로서 자주 사용되는 코발트산 리튬의 용량은, 충전 전압이 4.3V인 경우에는 155mAh/g이고, 충전 전압을 4.6V까지 높이는 경우에는 220mAh/g이다(도 21의 (A) 참조).
그러나, 높아진 충전 전압으로 인하여 사이클 특성이 악화되는 것이 알려져 있다. 예를 들어 일반적으로, 코발트산 리튬의 용량 유지율(維持率)은, 충전 전압이 4.4V인 경우의 30사이클 후에는 95% 이상이지만, 충전 전압을 4.6V까지 높이는 경우의 30사이클 후에는 50% 이하까지 저하된다(도 21의 (B) 참조).
따라서, 리튬 이온 이차 전지의 사이클 특성을 높이며 용량을 증가시키기 위하여 양극 활물질의 개량이 검토되고 있다(특허문헌 1 및 특허문헌 2).
일본 공개특허공보 특개2012-018914호 일본 공개특허공보 특개2016-076454호
즉, 리튬 이온 이차 전지 및 이에 사용되는 양극 활물질의 개발은, 용량, 사이클 특성, 충방전 특성, 신뢰성, 안전성, 및 비용 등의 관점에서 개량의 여지가 있다.
본 발명의 일 형태의 과제는 리튬 이온 이차 전지에 사용한 경우에 충방전 사이클로 인하여 용량이 감소되는 것을 억제하는 양극 활물질을 제공하는 것이다. 본 발명의 일 형태의 다른 과제는 고용량의 이차 전지를 제공하는 것이다. 본 발명의 일 형태의 다른 과제는 충방전 특성이 우수한 이차 전지를 제공하는 것이다. 본 발명의 일 형태의 다른 과제는 안전성이 높고 신뢰성이 높은 이차 전지를 제공하는 것이다.
본 발명의 일 형태의 다른 과제는 신규 물질, 활물질, 축전 장치, 또는 그 제작 방법을 제공하는 것이다.
또한, 이들 과제의 기재는 다른 과제의 존재를 방해하지 않는다. 본 발명의 일 형태에서는, 과제 모두를 달성할 필요는 없다. 다른 과제는 명세서, 도면, 및 청구항의 기재로부터 추출될 수 있다.
상기 과제를 달성하기 위하여, 본 발명의 일 형태는 편석에 의하여 양극 활물질의 표층부에 피복층을 형성하는 것을 특징으로 한다.
본 발명의 일 형태는 양극 활물질이다. 양극 활물질은 제 1 영역 및 제 2 영역을 포함한다. 제 1 영역은 양극 활물질의 내부에 존재한다. 제 2 영역은 양극 활물질의 표층부 및 양극 활물질의 내부의 일부에 존재한다. 제 1 영역은 리튬, 전이 금속, 및 산소를 포함한다. 제 2 영역은 마그네슘, 플루오린, 및 산소를 포함한다.
본 발명의 일 형태는 양극 활물질이다. 양극 활물질은 리튬, 전이 금속, 산소, 마그네슘, 및 플루오린을 포함한다. X선 광전자 분광법에 의하여 측정되는, 양극 활물질의 표면에서의 리튬, 전이 금속, 산소, 마그네슘, 및 플루오린의 원자의 총량을 100atomic%로 간주한다. X선 광전자 분광법에 의하여 측정되는, 양극 활물질의 표면에서의 마그네슘의 농도는 1atomic% 이상 16atomic% 이하이다. X선 광전자 분광법에 의하여 측정되는, 양극 활물질의 표면에서의 플루오린의 농도는 0.2atomic% 이상 4atomic% 이하이다.
본 발명의 일 형태는 양극 활물질이다. 양극 활물질은 리튬, 전이 금속, 산소, 마그네슘, 및 플루오린을 포함한다. X선 광전자 분광법에 의하여 측정되는, 양극 활물질의 표면에서의 마그네슘과 플루오린의 농도의 비율은 Mg:F=y:1(3≤y≤5)이다.
본 발명의 일 형태는 양극 활물질이다. 양극 활물질은 리튬, 전이 금속, 산소, 마그네슘, 및 플루오린을 포함한다. X선 광전자 분광법에 의하여 측정되는, 양극 활물질의 표면에서의 플루오린의 결합 에너지의 피크 위치는 682eV 이상 685eV 미만이다.
상기에서, 전이 금속은 코발트를 포함하는 것이 바람직하다. 또는, 전이 금속은 망가니즈, 코발트, 및 니켈을 포함하는 것이 바람직하다.
본 발명의 일 형태는 제 1 영역 및 제 2 영역을 포함하는 양극 활물질이다. 제 1 영역은 양극 활물질의 내부에 존재한다. 제 1 영역은 리튬, 전이 금속, 및 산소를 포함한다. 제 1 영역은 층상 암염 결정 구조를 갖는다. 제 2 영역은 양극 활물질의 표층부 및 양극 활물질의 내부의 일부에 존재한다. 제 2 영역은 마그네슘, 플루오린, 및 산소를 포함한다. 제 2 영역은 암염 결정 구조를 갖는다. 제 1 영역의 결정 및 제 2 영역의 결정의 배향은 서로 일치한다. X선 광전자 분광법에 의하여 측정되는, 양극 활물질의 표면에서의 마그네슘과 플루오린의 농도의 비율은 Mg:F=y:1(3≤y≤5)이다.
상기에서, X선 광전자 분광법에 의하여 측정되는, 양극 활물질의 표면에서의 플루오린의 결합 에너지의 피크 위치는 682eV 이상 685eV 미만인 것이 바람직하다.
본 발명의 일 형태는 리튬원, 전이 금속원, 마그네슘원, 및 플루오린원을 혼합하는 단계, 800℃ 이상 1100℃ 이하에서 2시간 이상 20시간 이하로 가열하는 단계, 및 산소 함유 분위기에서 500℃ 이상 1200℃ 이하에서 유지 시간 50시간 이하로 가열하는 단계를 포함하는 양극 활물질의 제작 방법이다. 플루오린원에 포함되는 플루오린과 마그네슘원에 포함되는 마그네슘의 원자수비는 Mg:F=1:x(1.5≤x≤4)이다.
본 발명의 일 형태는 제 1 영역 및 제 2 영역을 포함하는 양극 활물질이다. 제 1 영역은 양극 활물질의 내부에 존재한다. 제 1 영역은 리튬, 코발트, 및 산소를 포함한다. 제 2 영역은 코발트, 마그네슘, 플루오린, 및 산소를 포함한다. 양극 활물질을 전자 에너지 손실 분광법에 의하여 측정하는 경우, 제 1 영역에 포함되는 코발트의 L3/L2는 3.8 미만이고, 제 2 영역에 포함되는 코발트의 L3/L2는 3.8 이상이다.
본 발명의 일 형태에 따르면, 리튬 이온 이차 전지에 사용한 경우에, 충방전 사이클로 인하여 용량이 감소되는 것을 억제하는 양극 활물질이 제공된다. 고용량의 리튬 이차 전지를 제공할 수 있다. 충방전 특성이 우수한 이차 전지를 제공할 수 있다. 안전성이 높고 신뢰성이 높은 이차 전지를 제공할 수 있다. 신규 물질, 활물질, 축전 장치, 또는 이들의 형성 방법을 제공할 수 있다.
도 1의 (A) 내지 (C)는 양극 활물질의 예를 나타낸 것이다.
도 2는 양극 활물질의 제작 방법의 예를 나타낸 것이다.
도 3의 (A) 및 (B)는 도전조제로서 그래핀 화합물을 포함하는 활물질층의 단면도이다.
도 4의 (A) 및 (B)는 코인형 이차 전지를 나타낸 것이다.
도 5의 (A) 내지 (D)는 원통형 이차 전지를 나타낸 것이다.
도 6의 (A) 및 (B)는 이차 전지의 예를 도시한 것이다.
도 7의 (A1) 내지 (B2)는 이차 전지의 예를 도시한 것이다.
도 8의 (A) 및 (B)는 이차 전지의 예를 도시한 것이다.
도 9는 이차 전지의 예를 도시한 것이다.
도 10의 (A) 내지 (C)는 래미네이트 이차 전지를 도시한 것이다.
도 11의 (A) 및 (B)는 래미네이트 이차 전지를 도시한 것이다.
도 12는 이차 전지의 외관도이다.
도 13은 이차 전지의 외관도이다.
도 14의 (A) 내지 (C)는 이차 전지의 제작 방법을 도시한 것이다.
도 15의 (A) 및 (D)는 구부릴 수 있는 이차 전지를 도시한 것이다.
도 16의 (A) 및 (B)는 구부릴 수 있는 이차 전지를 도시한 것이다.
도 17의 (A) 내지 (G)는 전자 기기의 예를 도시한 것이다.
도 18의 (A) 내지 (C)는 전자 기기의 예를 도시한 것이다.
도 19는 전자 기기의 예를 도시한 것이다.
도 20의 (A) 내지 (C)는 전자 기기의 예를 도시한 것이다.
도 21의 (A) 및 (B)는 종래의 이차 전지의 특성을 나타낸 것이다.
도 22의 (A) 내지 (C)는 실시예 1의 양극 활물질의 STEM 이미지 및 EDX 매핑이다.
도 23의 (A) 내지 (C)는 실시예 1의 양극 활물질의 STEM 이미지 및 EDX 매핑이다.
도 24는 실시예 1의 양극 활물질의 표면 근방의 마그네슘 함유량을 나타낸 그래프이다.
도 25의 (A) 및 (B)는 실시예 1의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 26은 실시예 1의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 27은 실시예 1의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 28의 (A) 및 (B)는 실시예 1의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 29의 (A) 및 (B)는 실시예 2의 양극 활물질의 STEM 이미지이다.
도 30의 (A) 및 (B)는 실시예 2의 양극 활물질의 STEM 이미지이다.
도 31의 (A) 내지 (C)는 실시예 2의 이차 전지의 충방전 특성을 나타낸 그래프이다.
도 32의 (A) 및 (B)는 실시예 2의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 33의 (A) 내지 (C)는 실시예 3의 양극 활물질의 STEM 이미지 및 FFT 이미지이다.
도 34의 (A) 내지 (C)는 실시예 3의 양극 활물질의 STEM 이미지 및 FFT 이미지이다.
도 35의 (A) 내지 (C)는 실시예 3의 양극 활물질의 STEM 이미지 및 EDX 매핑이다.
도 36은 실시예 3의 양극 활물질의 TEM 이미지이다.
도 37의 (A1) 내지 (B2)는 실시예 3의 양극 활물질의 STEM 이미지 및 EDX 매핑이다.
도 38은 실시예 3의 양극 활물질의 ToF-SIMS 깊이 분석을 나타낸 것이다.
도 39는 실시예 3의 양극 활물질의 XPS 스펙트럼을 나타낸 것이다.
도 40의 (A) 및 (B)는 실시예 4의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 41의 (A) 내지 (C)는 실시예 4의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 42의 (A) 내지 (C)는 실시예 4의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 43의 (A) 및 (B)는 실시예 6의 이차 전지의 사이클 특성을 나타낸 그래프이다.
도 44의 (A) 및 (B)는 실시예 6의 양극 활물질의 STEM 이미지이다.
도 45의 (A) 및 (B)는 실시예 6의 양극 활물질의 STEM 이미지이다.
도 46의 (A) 내지 (D)는 실시예 6의 양극 활물질의 STEM 이미지 및 FFT 이미지이다.
도 47은 실시예 6의 양극 활물질의 STEM 이미지 및 결정 구조의 추정 모델이다.
도 48의 (A1) 내지 (B2)는 실시예 6의 양극 활물질의 STEM 이미지 및 EDX 매핑이다.
도 49의 (A1) 내지 (B2)는 실시예 6의 양극 활물질의 STEM 이미지 및 EDX 매핑이다.
도 50은 실시예 7의 양극 활물질의 EELS 분석 결과를 나타낸 그래프이다.
도 51은 실시예 7의 양극 활물질의 EELS 분석 결과를 나타낸 그래프이다.
이하에서 본 발명의 실시형태에 대하여 첨부 도면을 참조하여 자세히 설명한다. 또한, 본 발명의 일 형태는 이하의 설명에 한정되지 않고, 본 발명의 형태 및 자세한 사항을 다양하게 변경할 수 있다는 것은 통상의 기술자에 의하여 쉽게 이해된다. 또한, 본 발명은 이하에 제시하는 실시형태의 설명에 한정하여 해석되지 말아야 한다.
또한, 본 명세서에서 사용되는 도면에서, 양극, 음극, 활물질층, 세퍼레이터, 외장체 등의 구성 요소의 크기 및 두께 등은, 명료화를 위하여 과장되어 있는 경우가 있다. 따라서, 구성 요소의 크기는 도면에서의 크기 및 구성 요소들 간의 상대적인 크기에 한정되지 않는다.
또한, 본 명세서 등에서 설명하는 본 발명의 구조에서는, 같은 부분 또는 비슷한 기능을 갖는 부분을 다른 도면에서 공통적인 부호로 나타내고, 그 설명은 반복하지 않는다. 또한, 비슷한 기능을 갖는 부분에 같은 해칭 패턴을 적용하고, 그 부분을 특별히 부호로 나타내지 않는 경우가 있다.
본 명세서 등에서는, 결정면 및 배향의 표기에 밀러 지수(Miller index)를 사용한다. 결정학에서는, 밀러 지수를 사용한 표기에서 어깨 글자의 바를 숫자 위에 배치하지만, 본 명세서 등에서는 표기의 제한 때문에 숫자 앞에 마이너스 기호(-)를 배치함으로써 결정면 및 배향을 나타낸다. 또한, 결정 내의 배향을 나타내는 각 방향은 "[]"로 나타내고, 모든 등가 배향을 나타내는 집합 방향은 "<>"로 나타내고, 결정면을 나타내는 각 방향은 "()"로 나타내고, 등가 대칭성을 갖는 집합면은 "{}"로 나타낸다.
본 명세서 등에서, 편석이란 복수의 원소(예를 들어, A, B, 및 C)로 이루어지는 고체에서 어떤 원소(예를 들어, B)가 불균일하게 분포되는 현상을 말한다.
본 명세서 등에서, 리튬 및 전이 금속을 포함하는 복합 산화물에 포함되는 층상 암염 결정 구조란, 양이온과 음이온이 번갈아 배열되는 암염 이온 배열을 포함하고, 리튬과 전이 금속이 규칙적으로 배열되어 2차원 평면을 형성하기 때문에, 리튬이 2차원적으로 확산될 수 있는 결정 구조를 말한다. 또한, 양이온 또는 음이온의 결손 등의 결함이 존재할 수 있다. 층상 암염 결정 구조에서는, 엄밀하게 말하자면 암염 결정의 격자가 변형되어 있는 경우가 있다.
암염 결정 구조란, 양이온과 음이온이 번갈아 배열되는 구조를 말한다. 또한, 양이온 또는 음이온의 결손이 존재하여도 좋다.
층상 암염 결정의 음이온 및 암염 결정의 음이온은, 각각 입방 최조밀 쌓임 구조(cubic closest packed structure)(면심 입방 격자 구조)를 형성한다. 층상 암염 결정과 암염 결정이 서로 접촉할 때, 음이온으로 형성되는 입방 최조밀 쌓임 구조의 방향이 서로 일치하는 결정면이 있다. 또한, 층상 암염 결정의 공간군은 R-3m이고, 이는 암염 결정의 공간군 Fm-3m과 상이하기 때문에, 층상 암염 결정에서 상술한 조건을 만족시키는 결정면의 지수는 암염 결정과는 상이하다. 본 명세서에서는, 층상 암염 결정 및 암염 결정에서, 음이온으로 형성되는 입방 최조밀 쌓임 구조의 배향이 서로 일치하는 상태란, 결정 배향이 실질적으로 서로 일치하는 상태를 말할 수 있다.
예를 들어, 층상 암염 결정 구조를 갖는 코발트산 리튬과 암염 결정 구조를 갖는 산화 마그네슘이 서로 접촉할 때, 결정의 배향은, 코발트산 리튬의 (1-1-4)면이 산화 마그네슘의 {001}면과 접촉하는 경우, 코발트산 리튬의 (104)면이 산화 마그네슘의 {001}면과 접촉하는 경우, 코발트산 리튬의 (0-14)면이 산화 마그네슘의 {001}면과 접촉하는 경우, 코발트산 리튬의 (001)면이 산화 마그네슘의 {111}면과 접촉하는 경우, 및 코발트산 리튬의 (012)면이 산화 마그네슘의 {111}면과 접촉하는 경우 등에서 실질적으로 일치한다.
2개의 영역의 결정 배향이 실질적으로 서로 일치할지 여부는, TEM(transmission electron microscope) 이미지, STEM(scanning transmission electron microscope) 이미지, HAADF-STEM(high-angle annular dark field scanning transmission electron microscopy) 이미지, 및 ABF-STEM(annular bright-field scan transmission electron microscopy) 이미지 등에 의하여 판단할 수 있다. X선 회절, 전자 회절, 및 중성자 회절 등을 판단에 사용할 수 있다. TEM 이미지 등에서는, 양이온과 음이온의 배열이 밝은 선과 어두운 선의 반복으로서 관찰될 수 있다. 층상 암염 결정과 암염 결정의 입방 최조밀 쌓임 구조의 배향이 서로 일치하면, 층상 암염 결정의 밝은 선과 어두운 선의 반복과, 암염 결정의 밝은 선과 어두운 선의 반복 사이의 각도가 5° 이하, 바람직하게는 2.5° 이하인 상태가 관찰된다. 또한, TEM 이미지 등에서는 산소 또는 플루오린 등의 가벼운 원소가 명확하게 관찰되지 않는 경우가 있지만, 이러한 경우에는 금속 원소의 배열에 의하여 배향의 일치를 판단할 수 있다.
또한, 본 명세서 등에서 2차원 계면의 구조가 유사성을 갖는 상태를 "에피택시(epitaxy)"라고 한다. 2차원 계면의 구조가 유사성을 갖는 결정 성장을 "에피택셜 성장(epitaxial growth)"이라고 한다. 또한, 3차원 구조가 유사성을 갖거나 결정학상 배향이 같은 상태를 "토포택시(topotaxy)"라고 한다. 그러므로, 토포택시의 경우, 단면의 일부를 관찰하면, 2개의 영역(예를 들어, 하지로서 기능하는 영역 및 성장하여 형성된 영역)의 결정 배향이 실질적으로 서로 일치한다.
(실시형태 1)
[양극 활물질의 구조]
우선, 본 발명의 일 형태인 양극 활물질(100)에 대하여 도 1의 (A) 내지 (C)를 참조하여 설명한다. 도 1의 (A)에 나타낸 바와 같이, 양극 활물질(100)은 제 1 영역(101) 및 제 2 영역(102)을 포함한다. 제 2 영역(102)은, 제 1 영역(101) 위에 위치할 수 있고, 또는 제 1 영역(101)의 적어도 일부를 피복할 수 있다.
제 1 영역(101)은 제 2 영역(102)과 상이한 조성을 갖는다. 제 2 영역(102)은, 특정한 원소의 편석이 관찰되는 영역인 것이 바람직하다. 따라서, 2개의 영역 간의 경계는 명확하지 않는 경우가 있다. 도 1의 (A)에서, 제 1 영역(101)과 제 2 영역(102) 사이의 경계는 점선으로 나타내어지고, 점선에 걸친 명암은 농도 기울기를 의미한다. 도 1의 (B) 이후의 도면에서는, 제 1 영역(101)과 제 2 영역(102) 사이의 경계를 편의상 점선만으로 나타낸다. 제 1 영역(101) 및 제 2 영역(102)의 자세한 사항에 대해서는 나중에 설명한다.
도 1의 (B)에 도시된 바와 같이, 제 2 영역(102)은 양극 활물질의 내부에 존재하여도 좋다. 예를 들어, 제 1 영역(101)이 다결정인 경우, 특정한 원소의 편석이 결정립계 또는 그 근방에서 제 2 영역(102)을 형성하도록 관찰되어도 좋다. 또한, 특정한 원소의 편석이 양극 활물질의 결정 결함을 포함하는 부분 또는 그 근방에서 제 2 영역(102)을 형성하도록 관찰되어도 좋다. 또한, 본 명세서 등에서, 결정 결함이란, TEM 이미지 등으로부터 관찰할 수 있는 결함, 즉 다른 원소가 결정에 들어가는 구조를 말한다.
도 1의 (B)에 도시된 바와 같이, 제 2 영역(102)은 제 1 영역(101) 전체를 반드시 피복할 필요는 없다.
바꿔 말하면, 제 1 영역(101)은 양극 활물질(100)의 내부에 존재하고, 제 2 영역(102)은 양극 활물질(100)의 표층부에 존재한다. 또한, 제 2 영역(102)은 양극 활물질(100)의 내부에 존재하여도 좋다.
예를 들어, 제 1 영역(101) 및 제 2 영역(102)은 각각, 고체상 A 및 고체상 B라고 할 수 있다.
양극 활물질(100)의 입자 크기가 지나치게 크면, 리튬의 확산이 어려워지는 것, 및 집전체에 도포하는 경우의 활물질층의 표면의 거칠기 등, 문제가 일어난다. 반면, 입자 크기가 지나치게 작으면, 집전체에 도포하는 경우에 활물질층을 지지하는 것이 어려워지는 것, 및 전해액과의 과잉 반응 등, 문제가 일어난다. 이러한 이유로, D50(중앙 직경(median diameter)이라고도 함)이 0.1μm 이상 100μm 이하인 것이 바람직하고, 1μm 이상 40μm 이하인 것이 더 바람직하다.
<제 1 영역(101)>
제 1 영역(101)은 리튬, 전이 금속, 및 산소를 포함한다. 바꿔 말하면, 제 1 영역(101)은 리튬 및 전이 금속을 포함하는 복합 산화물을 포함한다.
제 1 영역(101)에 포함되는 전이 금속으로서, 리튬 및 층상 암염 복합 산화물을 형성할 수 있는 금속을 사용하는 것이 바람직하다. 예를 들어, 망가니즈, 코발트, 및 니켈 중 하나 또는 복수를 사용할 수 있다. 즉, 제 1 영역(101)에 포함되는 전이 금속으로서는, 코발트만을 사용하여도 좋고, 코발트 및 망가니즈를 사용하여도 좋고, 또는 코발트, 망가니즈, 및 니켈을 사용하여도 좋다. 전이 금속에 더하여, 제 1 영역(101)은 알루미늄 등, 전이 금속 외의 금속을 포함하여도 좋다.
바꿔 말하면, 제 1 영역(101)은, 코발트산 리튬, 니켈산 리튬, 코발트의 일부를 망가니즈로 치환한 코발트산 리튬, 및 니켈-망가니즈-코발트산 리튬 등, 그리고 니켈-코발트-알루미늄산 등과 같은, 리튬과 전이 금속의 복합 산화물을 포함할 수 있다.
제 1 영역(101)은 양극 활물질(100)에서 충방전 반응에 특히 기여하는 영역으로서 기능한다. 양극 활물질(100)을 포함하는 이차 전지의 용량을 증가시키기 위해서는, 제 1 영역(101)의 체적이 제 2 영역(102)의 체적보다 큰 것이 바람직하다.
층상 암염 결정 구조는 리튬이 2차원적으로 확산되기 쉽기 때문에 제 1 영역(101)에 바람직하다. 또한, 제 1 영역(101)이 층상 암염 결정 구조를 갖는 경우, 뜻밖에, 나중에 설명하는 마그네슘 등의 주족 원소의 편석이 일어나기 쉽다. 또한, 제 1 영역(101) 전체가 층상 암염 결정 구조를 반드시 가질 필요는 없다. 예를 들어, 제 1 영역(101)의 일부는 결정 결함을 가져도 좋고, 비정질이어도 좋고, 다른 결정 구조를 가져도 좋다.
<제 2 영역(102)>
제 2 영역(102)은 마그네슘, 플루오린, 및 산소를 포함한다. 예를 들어, 제 2 영역(102)은 산화 마그네슘을 포함하여도 좋고, 산소의 일부가 플루오린으로 치환되어도 좋다.
제 2 영역(102)은 제 1 영역(101)의 적어도 일부를 피복한다. 제 2 영역(102)에 포함되는 산화 마그네슘은, 충방전이 반복되어도 열화되기 어려운 전기 화학적으로 안정적인 재료이기 때문에, 제 2 영역(102)은 피복층에 적합하다.
제 2 영역(102)의 두께가 지나치게 얇으면, 피복층으로서의 기능이 저하되지만, 제 2 영역(102)의 두께가 지나치게 두꺼우면, 용량이 감소된다. 따라서, 제 2 영역의 두께는 0.5nm 이상 50nm 이하가 바람직하고, 0.5nm 이상 3nm 이하가 더 바람직하다.
제 2 영역(102)이 암염 결정 구조를 가지면, 결정의 배향이 제 1 영역(101)의 결정의 배향과 일치되기 쉽고, 제 2 영역(102)은 안정적인 피복층으로서 기능하기 쉽기 때문에 바람직하다. 또한, 제 2 영역(102) 전체가 암염 결정 구조를 반드시 가질 필요는 없다. 예를 들어, 제 2 영역(102)의 일부는 비정질이어도 좋고, 다른 결정 구조를 가져도 좋다.
일반적으로, 충방전이 반복되면, 양극 활물질에서 부반응이 일어나므로, 예를 들어 망가니즈 또는 코발트 등의 전이 금속이 전해액에 용출되고, 산소가 방출되고, 결정 구조가 불안정해지므로, 양극 활물질이 열화된다. 그러나, 본 발명의 일 형태의 양극 활물질(100)은 표층부에 제 2 영역(102)을 포함하기 때문에, 제 1 영역(101)에 포함되는 리튬과 전이 금속의 복합 산화물의 결정 구조를 더 안정적으로 할 수 있다.
제 2 영역(102)은 마그네슘, 플루오린, 및 산소를 포함하고, 제 1 영역(101)에 포함되는 전이 금속과 같은 것이 바람직하다. 제 1 영역(101) 및 제 2 영역(102)이 같은 전이 금속을 포함하는 경우, 이들 2개의 영역 간에서 전이 금속의 원자가가 상이한 것이 바람직하다. 구체적으로, 제 1 영역(101)에 포함되는 전이 금속에서는, 3가의 원자의 수가 다른 원자가를 나타내는 원자의 수보다 많은 것이 바람직하고, 제 2 영역(102)에 포함되는 전이 금속에서는, 2가의 원자의 수가 다른 원자가를 나타내는 원자의 수보다 많은 것이 바람직하다.
제 2 영역(102)이 2가의 전이 금속을 많이 포함하는 경우, 이는 CoO(II), MnO(II), 및 Ni(II) 등, 원자수비가 전이 금속:산소=1:1의 금속 산화물을 많이 포함한다. 금속 산화물은, 마찬가지로 2가의 금속 산화물인, 산화 마그네슘과 안정적인 고용체를 형성할 수 있다. 따라서, 제 2 영역(102)을 더 안정적이고 양호한 피복층으로 할 수 있다.
전이 금속의 원자가는 EELS(energy loss spectroscopy), XAFS(X-ray absorption fine structure), XPS(X-ray photoelectron spectroscopy measurement), ESR(electron spin resonance), 또는 뫼스바우어 분광법 등에 의하여 분석할 수 있다. 이들 중에서, EELS는 공간 분해능이 높기 때문에 바람직하다. 제 2 영역(102)이 약 수nm의 두께의 얇은 층이더라도, 분석을 수행할 수 있다.
전이 금속의 원자가를 EELS에 의하여 분석하는 경우, 원자가는 L3과 L2의 비율(L3/L2)로부터 판정할 수 있다. L3/L2가 클수록, 2가의 전이 금속의 비율이 높아진다. 예를 들어, 제 1 영역(101) 및 제 2 영역(102)에 포함되는 전이 금속이 EELS에 의하여 분석되는 경우, 제 1 영역(101) 및 제 2 영역(102)에 포함되는 전이 금속의 L3/L2는 각각 3.8 미만 및 3.8 이상인 것이 바람직하다.
제 2 영역(102)은 상술한 원소에 더하여 리튬을 더 포함하여도 좋다.
도 1의 (B)에 나타낸 바와 같이, 제 2 영역(102)이 제 1 영역(101)에도 존재하면, 제 1 영역(101)에 포함되는 리튬 및 전이 금속을 포함하는 복합 산화물의 결정 구조를 더 안정적으로 할 수 있기 때문에 바람직하다.
또한, 제 2 영역(102)에 포함되는 플루오린은 MgF2 및 LiF 외의 결합 상태에서 존재하는 것이 바람직하다. 구체적으로는, 양극 활물질(100)의 표면에 XPS 분석을 수행하는 경우, 플루오린과 다른 원소의 결합 에너지의 피크 위치는 682eV 이상 685eV 미만인 것이 바람직하고, 약 684.3eV인 것이 더 바람직하다. 이 결합 에너지는 MgF2 및 LiF와 일치하지 않는다.
본 명세서 등에서, XPS 분석에서의 어떤 원소와의 결합 에너지의 피크 위치란, 그 원소의 결합 에너지에 상당하는 범위에서, 에너지 스펙트럼의 최대 강도가 얻어지는 결합 에너지의 값을 말한다.
<제 1 영역(101)과 제 2 영역(102)의 경계>
제 1 영역(101)과 제 2 영역(102)의 조성의 차이는 TEM 이미지, STEM 이미지, FFT(fast Fourier transform) 분석, EDX(energy dispersive X-ray spectrometry), ToF-SIMS(time-of-flight secondary ion mass spectrometry)에 의한 깊이 방향에서의 분석, XPS(X선 광전자 분광법), 오제 전자 분광법, 또는 TDS(thermal desorption spectroscopy) 등을 사용하여 관찰할 수 있다. 예를 들어, 양극 활물질(100)의 단면 TEM 이미지 및 STEM 이미지에서는, 구성 원소의 차이가 밝기의 차이로서 관찰되기 때문에, 제 1 영역(101) 및 제 2 영역(102)의 구성 원소의 차이를 관찰할 수 있다. 또한, 제 1 영역(101) 및 제 2 영역(102)이 상이한 원소를 포함하는 것을 EDX 원소 분포 이미지로부터도 관찰할 수 있다. 그러나, 상기 분석에 의하여 제 1 영역(101)과 제 2 영역(102)의 명확한 경계가 반드시 관찰될 필요는 없다.
본 명세서 등에서, 양극 활물질(100)의 표층부에 존재하는 제 2 영역(102)의 범위란, 양극 활물질(100)의 가장 바깥쪽의 표면으로부터, 깊이 방향에서의 분석에 의하여 검출되는 마그네슘 등의 주족 원소의 농도가 피크의 1/5인 영역까지의 영역을 말한다. 깊이 방향에서의 분석으로서는, 상술한 EDX의 선분석 또는 ToF-SIMS를 사용한 깊이 방향에서의 분석 등을 사용할 수 있다. 또한, 마그네슘의 농도의 피크는, 양극 활물질(100)의 표면으로부터 중심을 향한 깊이 2nm까지의 영역에 존재하는 것이 바람직하고, 깊이 1nm까지가 더 바람직하고, 깊이 0.5nm까지가 더욱 바람직하다. 마그네슘의 농도가 피크의 1/5이 되는 깊이, 즉 제 2 영역(102)의 범위는 제작 방법에 따라 상이하다. 그러나, 나중에 설명하는 제작 방법의 경우, 깊이는 양극 활물질의 표면으로부터 약 2nm 내지 5nm이다.
제 1 영역(101)에 존재하는 제 2 영역(102)에서도, 제 2 영역(102)의 범위란, 깊이 방향에서의 분석에 의하여 검출되는 마그네슘의 농도가 피크의 1/5 이상인 범위를 말한다.
양극 활물질(100)의 플루오린의 분포는 마그네슘의 분포와 중첩되는 것이 바람직하다. 따라서, 플루오린의 농도의 피크는 양극 활물질(100)의 표면으로부터 중심을 향한 깊이 2nm까지의 영역에 존재하는 것이 바람직하고, 깊이 1nm까지가 더 바람직하고, 깊이 0.5nm까지가 더욱 바람직하다.
이러한 이유로, 제 2 영역(102)은, 양극 활물질(100)의 표면으로부터 내부를 향하여 마그네슘 및 플루오린의 농도가 감소되는 농도 경사 영역이라고 할 수 있다.
마그네슘 및 플루오린의 농도를 ToF-SIMS, XPS, 오제 전자 분광법, 또는 TDS 등에 의하여 분석할 수 있다.
또한, XPS의 측정 범위는, 양극 활물질(100)의 표면으로부터 깊이 약 5nm의 영역까지이다. 따라서, 표면으로부터 깊이 약 5nm에서의 원소의 농도를 정량적으로 분석할 수 있다. 이러한 이유로, 제 2 영역(102)의 두께가 5nm 미만인 경우, 제 2 영역(102)과, 제 1 영역(101)의 일부의 원소 농도의 합계를 정량적으로 분석할 수 있다. 제 2 영역(102)의 두께가 표면으로부터 5nm 이상인 경우, 제 2 영역(102)의 원소 농도를 정량적으로 분석할 수 있다. 양극 활물질(100)의 표면에 XPS 분석을 수행하고, 리튬, 제 1 영역(101)에 포함되는 전이 금속, 산소, 플루오린, 및 마그네슘을 포함하는 원자의 총량이 100atomic%인 경우, 마그네슘 농도는 1atomic% 이상 16atomic% 이하이고, 플루오린 농도는 0.2atomic% 이상 4atomic% 이하인 것이 바람직하다. 또한, 마그네슘 대 플루오린의 농도의 비율은 Mg:F=y:1(3≤y≤5)(원자수비)인 것이 바람직하고, Mg:F=4:1 정도인 것이 더 바람직하다. 마그네슘 농도와 플루오린 농도가 이들 범위 내에 있는 경우, 이차 전지에 사용하는 경우에 매우 양호한 사이클 특성을 나타내는 양극 활물질(100)을 얻을 수 있다.
상술한 바와 같이, 마그네슘 및 플루오린의 농도는 표면으로부터 내부를 향하여 서서히 감소되므로, 제 1 영역(101)은 마그네슘 등, 제 2 영역(102)에 포함되는 원소를 포함하여도 좋다. 마찬가지로, 제 2 영역(102)은 제 1 영역(101)에 포함되는 원소를 포함하여도 좋다. 또한, 제 1 영역(101)은 탄소, 황, 실리콘, 소듐, 칼슘, 염소, 또는 지르코늄 등의 다른 원소를 포함하여도 좋다. 제 2 영역(102)은 탄소, 황, 실리콘, 소듐, 칼슘, 염소, 또는 지르코늄 등의 다른 원소를 포함하여도 좋다.
[편석]
제 2 영역(102)은 스퍼터링법, 고상법, 또는 졸겔법 등의 액상법 등에 의하여 형성할 수 있다. 그러나 본 발명자들은, 마그네슘원과 플루오린원을 출발 물질과 혼합하고 나서 혼합물을 가열하면, 마그네슘이 편석되어 제 2 영역(102)이 형성된다는 것을 발견하였다. 또한 그들은, 이러한 식으로 형성된 제 2 영역(102)을 포함하는 양극 활물질이 더 양호한 특성을 갖는 것을 발견하였다.
예를 들어, 특허문헌 2(특개2016-076454호)의 실시예 4에서는, 마그네슘을 포함하는 복합 산화물을 합성하고 나서, 상기 복합 산화물의 분말과 플루오린화 리튬을 혼합 및 가열함으로써, 플루오린화되며 리튬화된 표면 산화물을 복합 산화물의 표면에 형성한다. 실시예 4에 따르면, 마그네슘은 이 방법으로 형성된 표면 산화물로부터 검출되지 않는다.
그러나, 본 발명자들은, 마그네슘원 및 플루오린원을 출발 물질과 혼합시킴으로써 양극 활물질(100)의 표층부에 산화 마그네슘을 편석시키는 데 성공하였다. 본 발명자들은, 출발 물질에 첨가된 플루오린이 마그네슘을 편석시키는 뜻밖의 효과를 나타낸다는 것을 발견하였다.
제 2 영역(102)을 마그네슘의 편석에 의하여 형성하기 때문에, 마그네슘의 편석은 양극 활물질(100)의 표층부뿐만 아니라, 결정립계 및 그 근방, 그리고 결정 결함 및 그 근방에서도 일어날 수 있다. 결정립계 및 그 근방, 그리고 결정 결함 및 그 근방에 형성된 제 2 영역(102)은 제 1 영역(101)에 포함되는 리튬과 전이 금속을 포함하는 복합 산화물의 결정 구조의 안정성을 더 향상시키는 데 기여할 수 있다.
출발 물질에서의 마그네슘과 플루오린의 농도의 비율이 Mg:F=1:x(1.5≤x≤4)(원자수비)의 범위 내에 있으면 제 2 영역(102)에서의 편석이 효과적으로 일어나기 때문에 바람직하고, Mg:F=1:2(원자수비)인 것이 더 바람직하다.
편석에 의하여 형성된 제 2 영역(102)에 포함되는 마그네슘과 플루오린의 농도의 비율은, 예를 들어 Mg:F=y:1(3≤y≤5)(원자수비)의 범위 내에 있는 것이 바람직하고, Mg:F=4:1(원자수비) 정도인 것이 더 바람직하다.
편석에 의하여 형성된 제 2 영역(102)은 에피택셜 성장에 의하여 형성되기 때문에, 제 1 영역(101) 및 제 2 영역(102)의 결정 배향은 부분적으로, 그리고 실질적으로 서로 일치하는 경우가 있다. 즉, 제 1 영역(101) 및 제 2 영역(102)이 토포택시가 되는 경우가 있다. 제 1 영역(101) 및 제 2 영역(102)의 결정 배향이 실질적으로 서로 일치하는 경우, 제 2 영역(102)은 더 양호한 피복층으로서 기능할 수 있다.
<제 3 영역(103)>
양극 활물질(100)이 제 1 영역(101) 및 제 2 영역(102)을 포함하는 예에 대하여 지금까지 설명하였지만, 본 발명의 일 형태가 이에 한정되지 않는다는 것을 유의하여야 한다. 예를 들어, 도 1의 (C)에 도시된 바와 같이, 양극 활물질(100)은 제 3 영역(103)을 포함하여도 좋다. 제 3 영역(103)은, 예를 들어 제 2 영역(102)의 적어도 일부와 접촉하도록 제공할 수 있다. 제 3 영역(103)이 그래핀 화합물 등의 탄소를 포함하는 피막이어도 좋고, 리튬 또는 전해액의 분해 생성물을 포함하는 피막이어도 좋다. 제 3 영역(103)이 탄소를 포함하는 피막인 경우, 양극 활물질(100) 간 및 양극 활물질(100)과 집전체 사이에서의 도전성을 높일 수 있다. 제 3 영역(103)이 리튬 또는 전해액의 분해 생성물을 갖는 피막인 경우, 전해액과의 과잉 반응을 억제할 수 있고, 이차 전지에 사용하는 경우에 사이클 특성을 향상시킬 수 있다.
또한, 제 1 영역(101)과 제 2 영역(102) 사이에 버퍼 영역을 제공하여도 좋다. 버퍼 영역은 예를 들어 리튬, 전이 금속, 및 산소에 더하여, 타이타늄, 알루미늄, 지르코늄, 및 바나듐 등의 금속을 포함하는 것이 바람직하다. 버퍼 영역은 제 1 영역(101) 및 제 2 영역(102)과 중첩되어도 좋다. 버퍼 영역을 갖는 양극 활물질(100)을 사용하면, 제 1 영역(101) 및 제 2 영역(102)의 결정 구조를 더 안정화시킬 수 있고, 사이클 특성이 우수한 양극 활물질을 얻을 수 있어 바람직하다.
[제작 방법]
제 1 영역(101) 및 제 2 영역(102)을 포함하는 양극 활물질(100)의 제작 방법에 대하여 도 2를 참조하여 설명한다. 이 방법에서는, 제 2 영역(102)을 편석에 의하여 형성한다. 본 실시형태의 설명에서, 제 1 영역(101)에 포함되는 전이 금속은 코발트이고, 즉 제 1 영역(101)은 코발트산 리튬을 포함한다. 또한, 산화 마그네슘 및 플루오린을 포함하는 제 2 영역(102)은 편석에 의하여 형성된다.
우선, 출발 물질을 준비한다(S11). 구체적으로는, 리튬원, 코발트원, 마그네슘원, 및 플루오린원을 각각 칭량하였다. 리튬원으로서는, 예를 들어 탄산 리튬, 플루오린화 리튬, 또는 수산화 리튬을 사용할 수 있다. 코발트원으로서는, 예를 들어 산화 코발트, 수산화 코발트, 옥시수산화 코발트, 탄산 코발트, 옥살산 코발트, 또는 황산 코발트 등을 사용할 수 있다. 마그네슘원으로서는, 예를 들어 산화 마그네슘 또는 플루오린화 마그네슘 등을 사용할 수 있다. 플루오린원으로서는, 예를 들어 플루오린화 리튬 또는 플루오린화 마그네슘 등을 사용할 수 있다. 즉, 플루오린화 리튬은 리튬원 및 플루오린원의 양쪽 모두로서 사용할 수 있다. 플루오린화 마그네슘은 마그네슘원 또는 플루오린원으로서 사용할 수 있다.
본 실시형태에서, 리튬원으로서 탄산 리튬(Li2CO3)을 사용하고, 코발트원으로서 산화 코발트(Co3O4)를 사용하고, 마그네슘원으로서 산화 마그네슘(MgO)을 사용하고, 리튬원 및 플루오린원으로서 플루오린화 리튬(LiF)을 사용한다.
원료로서의 마그네슘과 플루오린의 원자수비는 Mg:F=1:x(1.5≤x≤4)(원자수비)인 것이 바람직하고, Mg:F=1:2(원자수비) 정도인 것이 더 바람직하다. 따라서, 산화 마그네슘 대 플루오린화 리튬의 비율은 MgO:LiF=1:x(1.5≤x≤4)(몰비)인 것이 바람직하고, MgO:LiF=1:2(원자수비) 정도인 것이 더 바람직하다.
예를 들어, 재료 간의 몰비를 이하와 같이 나타낼 수 있다:
1/2·Li2CO3+((1-z)/3)·Co3O4+z·MgO+2z·LiF
(z=0.01)
다음으로, 칭량한 출발 물질을 혼합한다(S12). 예를 들어, 혼합에는 볼밀 또는 비드 밀(bead mill) 등을 사용할 수 있다.
다음으로, S12에서 혼합한 재료를 가열한다(S13). 나중에 수행되는 가열 단계와 이 단계를 구별하기 위하여, 이 단계를 제 1 가열 또는 소성이라고 할 수 있다. 제 1 가열은 800℃ 이상 1050℃ 이하에서 수행되는 것이 바람직하고, 900℃ 이상 1000℃ 이하에서 수행되는 것이 더 바람직하다. 가열 시간은 2시간 이상 20시간 이하로 하는 것이 바람직하다. 제 1 가열은 건조 공기 등의 건조한 분위기에서 수행되는 것이 바람직하다. 건조한 분위기에서는, 예를 들어 이슬점이 -50℃ 이하가 바람직하고, -100℃ 이하가 더 바람직하다. 본 실시형태에서는, 가열을 1000℃에서 10시간 동안 수행하고, 승온 속도를 200℃/h로 하고, 이슬점이 -109℃인 건조 공기를 10L/min으로 흘린다.
S13에서의 제 1 가열에 의하여, 제 1 영역(101)에 포함되는, 리튬 및 전이 금속을 포함하는 복합 산화물을 합성할 수 있다. 또한, 제 1 가열에 의하여, 출발 물질에 포함되는 마그네슘 및 플루오린의 일부가 리튬 및 전이 금속을 포함하는 복합 산화물의 표층부에 편석된다. 또한, 이 단계에서의 마그네슘 및 플루오린의 대부분은 리튬 및 전이 금속을 포함하는 복합 산화물에 고용체를 형성한다.
다음으로, S13에서 가열된 재료를 실온까지 냉각시킨다(S14). 냉각 시간은 승온 시간 이상, 예를 들어 10시간 이상 15시간 이하인 것이 바람직하다. 냉각 후, 합성된 재료를 체로 치는 것이 바람직하다. 본 실시형태에서는, 53μm의 메시의 체를 사용한다.
또한, 출발 물질로서, 미리 합성된 리튬, 코발트, 플루오린, 및 마그네슘을 포함하는 복합 산화물의 입자를 사용하여도 좋다. 이 경우, 단계 12 내지 단계 14를 생략할 수 있다.
다음으로, S14에서 냉각시킨 재료에 제 2 가열을 수행한다(S15). 먼저 수행되는 가열 단계와 이 단계를 구별하기 위하여, 이 단계를 제 2 가열 또는 어닐링이라고 할 수 있다. 제 2 가열을 위한 최적의 조건은 리튬, 코발트, 플루오린, 및 마그네슘을 포함하는 복합 산화물의 입자 크기 및 조성 등에 따라 변화한다. 그러나, 제 2 가열은 규정된 온도에서의 유지 시간 50시간 이하로 수행되는 것이 바람직하고, 2시간 이상 10시간 이하가 더 바람직하다. 규정된 온도는 500℃ 이상 1200℃ 이하가 바람직하고, 700℃ 이상 1000℃ 이하가 더 바람직하고, 약 800℃가 더욱 바람직하다. 가열은 산소 함유 분위기에서 수행되는 것이 바람직하다. 본 실시형태에서는, 가열을 800℃에서 2시간 동안 수행하고, 승온 속도를 200℃/h로 하고, 이슬점이 -109℃인 건조 공기를 10L/min으로 흘린다.
S15에서의 제 2 가열은, 리튬 및 전이 금속을 포함하는 복합 산화물의 표층부에서의, 출발 물질에 포함되는 마그네슘 및 플루오린의 편석을 촉진한다.
마지막으로, S15에서 가열된 재료를 실온까지 냉각시킨다. 냉각 시간은 승온 시간 이상인 것이 바람직하다. 그리고, 냉각된 재료를 회수하여(S16), 제 1 영역(101) 및 제 2 영역(102)을 포함하는 양극 활물질(100)을 얻을 수 있다.
본 실시형태에서 설명한 양극 활물질을 사용함으로써, 고용량이며 사이클 특성이 우수한 이차 전지를 제공할 수 있다. 본 실시형태는 다른 실시형태 중 임의의 것과 적절히 조합하여 실시할 수 있다.
(실시형태 2)
본 실시형태에서는, 상술한 실시형태에서 설명한 양극 활물질(100)을 포함하는 이차 전지에 사용될 수 있는 재료의 예에 대하여 설명한다. 본 실시형태에서는, 양극, 음극, 및 전해액이 외장체로 감싸여 있는 이차 전지를 예로서 설명한다.
[양극]
양극은 양극 활물질층 및 양극 집전체를 포함한다.
<양극 활물질층>
양극 활물질층은 양극 활물질을 포함한다. 양극 활물질층은 도전조제 및 바인더를 포함하여도 좋다.
양극 활물질로서는, 상술한 실시형태에서 설명한 양극 활물질(100)을 사용할 수 있다. 상술한 양극 활물질(100)을 사용하면, 고용량이며 사이클 특성이 우수한 이차 전지를 얻을 수 있다.
도전조제의 예에는, 탄소 재료, 금속 재료, 및 도전성 세라믹 재료가 포함된다. 또는, 도전조제로서 섬유 재료를 사용하여도 좋다. 활물질층의 총량에 대한 도전조제의 함유량은 1wt% 이상 10wt% 이하가 바람직하고, 1wt% 이상 5wt% 이하가 더 바람직하다.
도전조제에 의하여, 전극에 전기 전도의 네트워크를 형성할 수 있다. 도전조제에 의하여, 양극 활물질 입자 간의 전기 전도의 경로를 유지할 수도 있다. 활물질층에 도전조제를 첨가하면, 활물질층의 전기 전도성이 높아진다.
도전조제의 예에는, 천연 흑연, 메소카본 마이크로비즈 등의 인조 흑연, 및 탄소 섬유가 포함된다. 탄소 섬유의 예에는, 메소페이스 피치계 탄소 섬유, 등방성 피치계 탄소 섬유, 카본 나노섬유, 및 카본 나노튜브가 포함된다. 카본 나노튜브는, 예를 들어 기상 증착법(vapor deposition method)에 의하여 형성할 수 있다. 도전조제의 다른 예에는 카본 블랙(예를 들어, 아세틸렌 블랙(AB)), 그래파이트(흑연) 입자, 그래핀, 및 풀러렌 등의 탄소 재료가 포함된다. 또는, 구리, 니켈, 알루미늄, 은, 또는 금 등의 금속 분말 또는 금속 섬유, 또는 도전성 세라믹 재료 등을 사용할 수 있다.
또는, 도전조제로서 그래핀 화합물을 사용하여도 좋다.
그래핀 화합물은 도전성이 높은 우수한 전기 특성과, 유연성이 높고 기계적 강도가 높은 우수한 물리 특성을 갖는다. 또한, 그래핀 화합물은 평면 형상을 갖는다. 그래핀 화합물은 저항이 낮은 면접촉을 가능하게 한다. 또한, 그래핀 화합물은 두께가 얇아도 도전성이 매우 높은 경우가 있기 때문에, 소량이어도 활물질층 내에서 도전 경로를 효율적으로 형성할 수 있다. 이러한 이유로, 도전조제로서 그래핀 화합물을 사용하면, 활물질과 도전조제가 서로 접촉하는 면적을 크게 할 수 있기 때문에 바람직하다. 여기서, 예를 들어 그래핀, 다층 그래핀, 또는 환원된 산화 그래핀(reduced graphene oxide)(이하, RGO)을 그래핀 화합물로서 사용하는 것이 특히 바람직하다. 또한, RGO란, 예를 들어 산화 그래핀(graphene oxide)(GO)을 환원함으로써 얻어지는 화합물을 말한다.
입경이 작은 활물질(예를 들어, 1μm 이하)을 사용하는 경우에는, 활물질의 비표면적이 크기 때문에 활물질 입자들을 위한 더 많은 도전 경로가 필요하다. 그러므로, 도전조제의 양이 많아지는 경향이 있고, 활물질의 담지량이 상대적으로 감소되는 경향이 있다. 활물질의 담지량이 감소되면, 이차 전지의 용량도 감소된다. 이러한 경우, 소량이어도 도전 경로를 효율적으로 형성할 수 있는 그래핀 화합물을 도전조제로서 사용하면, 활물질의 담지량이 감소되지 않으므로 특히 바람직하다.
이하에서는, 도전조제로서 그래핀 화합물을 포함하는 활물질층(200)의 단면 구조예에 대하여 설명한다.
도 3의 (A)는 활물질층(200)의 종단면도를 나타낸 것이다. 활물질층(200)은 양극 활물질 입자(100), 도전조제로서 기능하는 그래핀 화합물(201), 및 바인더(미도시)를 포함한다. 여기서는, 그래핀 화합물(201)로서 예를 들어, 그래핀 또는 다층 그래핀을 사용하여도 좋다. 그래핀 화합물(201)은 시트 형상을 갖는 것이 바람직하다. 그래핀 화합물(201)은, 부분적으로 서로 중첩된 다층 그래핀의 복수의 시트 및/또는 그래핀의 복수의 시트로 형성된 시트 형상을 가져도 좋다.
도 3의 (A)의 활물질층(200)의 종단면도는, 시트 형상의 그래핀 화합물(201)이 활물질층(200)에 실질적으로 균일하게 분산되어 있음을 나타낸 것이다. 도 3의 (A)에서는 그래핀 화합물(201)을 굵은 선으로 모식적으로 나타내었지만, 실제로는 탄소 분자의 단층 또는 다층의 두께에 상당하는 두께를 각각 갖는 박막이다. 복수의 그래핀 화합물(201)은, 복수의 양극 활물질 입자(100)를 부분적으로 피복하도록 또는 그의 표면에 접착되도록 형성되기 때문에, 그래핀 화합물(201)은 양극 활물질 입자(100)와 면접촉한다.
여기서, 복수의 그래핀 화합물이 서로 결합되어 그물 형상의 그래핀 화합물 시트(이하, 그래핀 화합물 네트 또는 그래핀 네트라고 함)가 형성된다. 활물질을 피복하는 그래핀 네트는 활물질을 결합하는 바인더로서 기능할 수 있다. 따라서, 바인더의 양을 줄일 수 있거나, 바인더를 사용하지 않아도 된다. 이에 의하여, 전극의 체적 또는 중량에서의 활물질의 비율을 높일 수 있다. 즉, 축전 장치의 용량을 증가시킬 수 있다.
여기서, 산화 그래핀을 그래핀 화합물(201)로서 사용하고 활물질과 혼합하는 식으로 활물질층(200)이 되는 층을 형성한 후, 환원하는 것이 바람직하다. 극성 용매에서의 분산성이 매우 높은 산화 그래핀을 그래핀 화합물(201)의 형성에 사용하는 경우, 그래핀 화합물(201)을 활물질층(200)에 실질적으로 균일하게 분산할 수 있다. 산화 그래핀이 균일하게 분산된 분산매로부터 휘발에 의하여 용매를 제거하여 산화 그래핀을 환원하기 때문에, 활물질층(200)에 남는 그래핀 화합물(201)이 서로 부분적으로 중첩되고 면접촉하도록 분산됨으로써, 3차원적인 도전 경로가 형성된다. 또한, 산화 그래핀은 예를 들어, 가열 처리에 의해서도, 환원제의 사용에 의해서도 환원될 수 있다.
활물질과 점접촉하는 아세틸렌 블랙 등의 입자 형상의 도전조제와 달리, 그래핀 화합물(201)은 저항이 낮은 면접촉을 가능하게 하기 때문에, 일반적인 도전조제보다 소량의 그래핀 화합물(201)에 의하여, 양극 활물질 입자(100)와 그래핀 화합물(201) 사이의 전기 전도성을 향상시킬 수 있다. 이에 의하여, 활물질층(200)에서의 양극 활물질(100)의 비율이 증가되어, 축전 장치의 방전 용량이 증가된다.
바인더로서는, 예를 들어 스타이렌 뷰타다이엔 고무(SBR), 스타이렌 아이소프렌 스타이렌 고무, 아크릴로나이트릴 뷰타다이엔 고무, 뷰타다이엔 고무, 또는 에틸렌 프로필렌 다이엔 공중합체 등의 고무 재료를 사용할 수 있다. 또는, 바인더로서 플루오린 고무를 사용할 수 있다.
바인더에는, 예를 들어 수용성 폴리머를 사용하는 것이 바람직하다. 수용성 폴리머로서는 다당류 등을 사용할 수 있다. 다당류로서는 카복시메틸 셀룰로스(CMC), 메틸 셀룰로스, 에틸 셀룰로스, 하이드록시프로필 셀룰로스, 다이아세틸 셀룰로스, 또는 재생 셀룰로스 등의 셀룰로스 유도체, 또는 전분(starch) 등을 사용할 수 있다. 이러한 수용성 폴리머를 상기 고무 재료 중 임의의 것과 조합하여 사용하는 것이 더 바람직하다.
또는, 바인더로서는 폴리스타이렌, 폴리(아크릴산 메틸), 폴리(메타크릴산 메틸)(PMMA), 폴리아크릴산 소듐, 폴리바이닐 알코올(PVA), 폴리에틸렌 옥사이드(PEO), 폴리프로필렌 옥사이드, 폴리이미드, 폴리 염화 바이닐, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아이소뷰틸렌, 폴리에틸렌테레프탈레이트, 나일론, 폴리플루오린화바이닐리덴(PVdF), 폴리아크릴로나이트릴(PAN), 에틸렌-프로필렌-다이엔 폴리머, 폴리아세트산바이닐, 또는 나이트로셀룰로스 등의 재료를 사용하는 것이 바람직하다.
복수의 상술한 재료를 조합하여 바인더에 사용하여도 좋다.
예를 들어, 점도 조정 효과가 아주 큰 재료와 다른 재료를 조합하여 사용하여도 좋다. 예를 들어, 고무 재료 등은 접착력 또는 탄력성이 높지만, 용매에 혼합시킨 경우에 점도 조정이 어려울 수 있다. 이러한 경우에는, 예를 들어 고무 재료 등을 점도 조정 효과가 아주 큰 재료와 혼합시키는 것이 바람직하다. 점도 조정 효과가 아주 큰 재료로서는, 예를 들어 수용성 폴리머를 사용하는 것이 바람직하다. 점도 조정 효과가 특히 아주 큰 수용성 폴리머의 예로서는 상술한 다당류가 있으며, 예를 들어 카복시메틸 셀룰로스(CMC), 메틸 셀룰로스, 에틸 셀룰로스, 하이드록시프로필 셀룰로스, 다이아세틸 셀룰로스, 또는 재생 셀룰로스 등의 셀룰로스 유도체, 또는 전분을 사용할 수 있다.
또한, 카복시메틸 셀룰로스 등의 셀룰로스 유도체는 카복시메틸 셀룰로스의 소듐염 또는 암모늄염 등의 염으로 바뀌면 용해도가 높아져, 점도 조정제로서의 효과를 발휘하기 쉬워진다. 용해도가 높아지면, 전극의 슬러리를 형성할 때 활물질 및 다른 구성 요소의 분산성을 높일 수도 있다. 본 명세서에서, 전극의 바인더로서 사용되는 셀룰로스 및 셀룰로스 유도체는 그 염을 포함한다.
수용성 폴리머는 물에 용해됨으로써 점도를 안정화시키고, 활물질, 및 스타이렌 뷰타다이엔 고무 등 바인더로서 조합되는 다른 재료를 수용액에 안정적으로 분산시킬 수 있다. 또한, 수용성 폴리머는 관능기를 갖기 때문에 활물질 표면에 쉽게, 그리고 안정적으로 흡착될 것으로 기대된다. 카복시메틸 셀룰로스 등의 많은 셀룰로스 유도체는 수산기 및 카복실기 등의 관능기를 갖는다. 관능기 때문에, 폴리머들이 상호 작용하여 활물질 표면을 크게 덮을 것으로 기대된다.
활물질 표면을 덮거나 그와 접촉하는 바인더가 막을 형성하는 경우, 이 막은 패시베이션막으로서 기능하여 전해액의 분해를 억제할 것으로 기대된다. 여기서, 패시베이션막이란, 전기 전도성이 없는 막 또는 전기 전도성이 매우 낮은 막을 말하고, 예를 들어 활물질 표면에 패시베이션막이 형성된 경우에는 전지 반응이 일어나는 전위에서 전해액의 분해를 억제할 수 있다. 패시베이션막은 전기 전도성을 억제하면서 리튬 이온을 전도할 수 있는 것이 바람직하다.
<양극 집전체>
양극 집전체는, 스테인리스강, 금, 백금, 알루미늄, 또는 타이타늄과 같은 금속, 또는 그 합금 등, 도전성이 높은 재료를 사용하여 형성될 수 있다. 양극 집전체에 사용하는 재료는 양극의 전위에서 용출되지 않는 것이 바람직하다. 또는, 양극 집전체는 실리콘, 타이타늄, 네오디뮴, 스칸듐, 또는 몰리브데넘 등 내열성을 향상시키는 원소가 첨가된 알루미늄 합금을 사용하여 형성될 수 있다. 또는, 실리콘과 반응하여 실리사이드를 형성하는 금속 원소를 사용할 수 있다. 실리콘과 반응하여 실리사이드를 형성하는 금속 원소의 예에는, 지르코늄, 타이타늄, 하프늄, 바나듐, 나이오븀, 탄탈럼, 크로뮴, 몰리브데넘, 텅스텐, 코발트, 및 니켈이 포함된다. 집전체는 박(foil) 형상, 판 형상(시트 형상), 그물 형상, 펀칭 메탈 형상, 및 강망(expanded-metal) 형상을 포함한 다양한 형상 중 임의의 것을 가질 수 있다. 집전체는 두께가 5μm 내지 30μm인 것이 바람직하다.
[음극]
음극은 음극 활물질층 및 음극 집전체를 포함한다. 음극 활물질층은 도전조제 및 바인더를 포함하여도 좋다.
<음극 활물질>
음극 활물질로서는, 예를 들어 합금계 재료 또는 탄소계 재료를 사용할 수 있다.
음극 활물질에는, 리튬과의 합금 반응 및 탈합금 반응에 의하여 충방전 반응이 가능한 원소를 사용할 수 있다. 예를 들어, 실리콘, 주석, 갈륨, 알루미늄, 저마늄, 납, 안티모니, 비스무트, 은, 아연, 카드뮴, 및 인듐 등 중 적어도 하나를 포함하는 재료를 사용할 수 있다. 이러한 원소는 탄소보다 용량이 크다. 특히, 실리콘은 이론 용량이 4200mAh/g로 매우 크다. 이러한 이유로, 실리콘을 음극 활물질로서 사용하는 것이 바람직하다. 또는, 상술한 원소 중 임의의 것을 포함하는 화합물을 사용하여도 좋다. 상기 화합물의 예에는 SiO, Mg2Si, Mg2Ge, SnO, SnO2, Mg2Sn, SnS2, V2Sn3, FeSn2, CoSn2, Ni3Sn2, Cu6Sn5, Ag3Sn, Ag3Sb, Ni2MnSb, CeSb3, LaSn3, La3Co2Sn7, CoSb3, InSb, 및 SbSn이 포함된다. 여기서, 리튬과의 합금 반응 및 탈합금 반응에 의하여 충방전 반응이 가능한 원소, 및 상기 원소를 포함하는 화합물 등을 합금계 재료라고 할 수 있다.
본 명세서 등에서, SiO란 예를 들어, 일산화 실리콘을 말한다. SiO는 대신에 SiO x 라고 나타낼 수도 있다. 여기서, x는 약 1의 값을 갖는 것이 바람직하다. 예를 들어, x는 0.2 이상 1.5 이하가 바람직하고, 0.3 이상 1.2 이하가 더 바람직하다.
탄소계 재료로서는, 흑연, 흑연화 탄소(소프트 카본), 비흑연화 탄소(하드 카본), 카본 나노튜브, 그래핀, 및 카본 블랙 등을 사용할 수 있다.
흑연의 예에는 인조 흑연 및 천연 흑연이 포함된다. 인조 흑연의 예에는 메소카본 마이크로비즈(MCMB), 코크스계 인조 흑연, 및 피치계 인조 흑연이 포함된다. 인조 흑연으로서는, 구상형(spherical shape)을 갖는 구상 흑연을 사용할 수 있다. 예를 들어, MCMB는 구상형을 가질 수 있기 때문에 적합하게 사용된다. 또한, MCMB는 표면적을 비교적 쉽게 작게 할 수 있기 때문에 적합하게 사용할 수 있다. 천연 흑연의 예에는 인편상 흑연(flake graphite) 및 구상 천연 흑연이 포함된다.
흑연은 리튬 이온이 흑연에 삽입되었을 때(리튬 흑연 층간 화합물이 형성되었을 때), 리튬 금속과 실질적으로 같은 낮은 전위를 갖는다(0.05V 이상 0.3V 이하 vs. Li/Li+). 이러한 이유로, 리튬 이온 이차 전지는 높은 작동 전압을 가질 수 있다. 또한, 흑연은 단위 체적당 용량이 비교적 크고, 체적 팽창이 비교적 작고, 저렴하고, 리튬 금속보다 안전성이 높은 등의 장점 때문에 바람직하다.
또는, 음극 활물질에, 이산화 타이타늄(TiO2), 리튬 타이타늄 산화물(Li4Ti5O12), 리튬 흑연 층간 화합물(Li x C6), 오산화 나이오븀(Nb2O5), 산화 텅스텐(WO2), 또는 산화 몰리브데넘(MoO2) 등의 산화물을 사용할 수 있다.
또는, 음극 활물질에, 리튬 및 전이 금속을 포함하는 질화물인 Li3N 구조의 Li3- x M x N(M=Co, Ni, 또는 Cu)을 사용할 수 있다. 예를 들어, Li2.6Co0.4N3은 충방전 용량이 크기(900mAh/g 및 1890mAh/cm3) 때문에 바람직하다.
리튬 및 전이 금속을 포함하는 질화물을 사용하면, 음극 활물질에 리튬 이온이 포함되기 때문에, V2O5 또는 Cr3O8 등, 리튬 이온을 포함하지 않는 양극 활물질용 재료와 조합하여 음극 활물질을 사용할 수 있어 바람직하다. 양극 활물질로서 리튬 이온을 포함하는 재료를 사용하는 경우에는, 양극 활물질에 포함되는 리튬 이온을 미리 추출함으로써, 리튬 및 전이 금속을 포함하는 질화물을 음극 활물질에 사용할 수 있다.
또는, 컨버전(conversion) 반응을 일으키는 재료를 음극 활물질에 사용할 수 있으며, 예를 들어 산화 코발트(CoO), 산화 니켈(NiO), 및 산화 철(FeO) 등, 리튬과의 합금을 형성하지 않는 전이 금속 산화물을 사용하여도 좋다. 컨버전 반응을 일으키는 재료의 다른 예에는, Fe2O3, CuO, Cu2O, RuO2, 및 Cr2O3 등의 산화물, CoS0.89, NiS, 및 CuS 등의 황화물, Zn3N2, Cu3N, 및 Ge3N4 등의 질화물, NiP2, FeP2, 및 CoP3 등의 인화물, 및 FeF3 및 BiF3 등의 플루오린화물이 포함된다.
음극 활물질층에 포함될 수 있는 도전조제 및 바인더에는, 양극 활물질층에 포함될 수 있는 도전조제 및 바인더와 비슷한 재료를 사용할 수 있다.
<음극 집전체>
음극 집전체에는, 양극 집전체와 비슷한 재료를 사용할 수 있다. 또한, 음극 집전체에는, 리튬 등 캐리어 이온과 합금화하지 않는 재료를 사용하는 것이 바람직하다.
[전해액]
전해액은 용매 및 전해질을 포함한다. 전해액의 용매로서는, 비양성자성 유기 용매를 사용하는 것이 바람직하다. 예를 들어, 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 뷰틸렌 카보네이트, 클로로에틸렌 카보네이트, 바이닐렌 카보네이트, γ-뷰티로락톤, γ-발레로락톤, 다이메틸 카보네이트(DMC), 다이에틸 카보네이트(DEC), 에틸 메틸 카보네이트(EMC), 폼산 메틸, 아세트산 메틸, 아세트산 에틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 프로필, 뷰티르산 메틸, 1,3-다이옥세인, 1,4-다이옥세인, 다이메톡시에테인(DME), 다이메틸 설폭사이드, 다이에틸 에터, 메틸 다이글라임, 아세토나이트릴, 벤조나이트릴, 테트라하이드로퓨란, 설폴레인, 및 설톤 중 하나를 사용할 수 있고, 또는 이들 용매 중 2개 이상을 적절히 조합하여 적절한 비율로 사용할 수 있다.
전해액의 용매로서 겔화된 고분자 재료를 사용하면, 누액(漏液) 등에 대한 안전성이 향상된다. 또한, 이차 전지를 더 얇고 더 가볍게 할 수 있다. 겔화된 고분자 재료의 대표적인 예에는, 실리콘(silicone) 겔, 아크릴 겔, 아크릴로나이트릴 겔, 폴리에틸렌옥사이드계 겔, 폴리프로필렌옥사이드계 겔, 및 플루오린계 폴리머의 겔 등이 포함된다.
또는, 전해액의 용매로서 비인화성 및 비휘발성의 특징을 갖는 이온성 액체(상온 용융염)를 1종류 이상 사용하면, 이차 전지가 내부 단락되거나, 과충전 등에 의하여 내부 온도가 상승되더라도, 이차 전지가 폭발되거나 발화되는 것을 방지할 수 있다. 이온성 액체는 양이온 및 음이온을 포함한다. 이온성 액체는 유기 양이온 및 음이온을 포함한다. 전해액에 사용하는 유기 양이온의 예에는 4급 암모늄 양이온, 3급 설포늄 양이온, 및 4급 포스포늄 양이온 등의 지방족 오늄 양이온, 및 이미다졸륨 양이온 및 피리디늄 양이온 등의 방향족 양이온이 포함된다. 전해액에 사용하는 음이온의 예에는 1가 아마이드계 음이온, 1가 메티드계 음이온, 플루오로설폰산 음이온, 퍼플루오로알킬설폰산 음이온, 테트라플루오로붕산 음이온, 퍼플루오로알킬붕산 음이온, 헥사플루오로인산 음이온, 및 퍼플루오로알킬인산 음이온이 포함된다.
상술한 용매에 용해되는 전해질로서는 LiPF6, LiClO4, LiAsF6, LiBF4, LiAlCl4, LiSCN, LiBr, LiI, Li2SO4, Li2B10Cl10, Li2B12Cl12, LiCF3SO3, LiC4F9SO3, LiC(CF3SO2)3, LiC(C2F5SO2)3, LiN(CF3SO2)2, LiN(C4F9SO2)(CF3SO2), 및 LiN(C2F5SO2)2 등의 리튬염 중 하나를 사용할 수 있고, 또는 이들 리튬염 중 2개 이상을 적절히 조합하여 적절한 비율로 사용할 수 있다.
축전 장치에 사용하는 전해액은, 고순도화되고, 먼지 입자, 및 전해액의 구성 원소 이외의 원소(이하에서, 단순히 불순물이라고도 함)의 함유량이 적은 것이 바람직하다. 구체적으로는, 전해액에 대한 불순물의 중량비가 1% 이하, 바람직하게는 0.1% 이하, 더 바람직하게는 0.01% 이하이다.
또한, 바이닐렌 카보네이트, 프로페인 설톤(PS), tert-뷰틸벤젠(TBB), 플루오로에틸렌 카보네이트(FEC), LiBOB, 또는 석시노나이트릴 또는 아디포나이트릴 등의 다이나이트릴 화합물 등의 첨가제를 전해액에 첨가하여도 좋다. 용매 전체에 대한 첨가되는 재료의 농도는 예를 들어 0.1wt% 이상 5wt% 이하이다.
또는, 폴리머가 전해액으로 부풀어 얻어진 겔 전해질을 사용하여도 좋다. 폴리머 겔 전해질을 사용하면, 액체 누설 등에 대한 안전성이 향상된다. 또한, 이차 전지를 더 얇고 더 가볍게 할 수 있다.
겔화되는 폴리머로서는, 실리콘 겔, 아크릴 겔, 아크릴로나이트릴 겔, 폴리에틸렌 옥사이드계 겔, 폴리프로필렌 옥사이드계 겔, 또는 플루오린계 폴리머 겔 등을 사용할 수 있다.
폴리머의 예에는, 폴리에틸렌 옥사이드(PEO) 등의 폴리알킬렌 옥사이드 구조를 갖는 폴리머; PVDF; 폴리아크릴로나이트릴; 및 이들 중 임의의 것을 포함하는 공중합체가 포함된다. 예를 들어, PVDF와 헥사플루오로프로필렌(HFP)의 공중합체인 PVDF-HFP를 사용할 수 있다. 형성된 폴리머는 다공성(多孔性)이어도 좋다.
또는, 전해액 대신에, 황화물계 무기 재료 또는 산화물계 무기 재료 등의 무기 재료를 포함하는 고체 전해질, 또는 폴리에틸렌 옥사이드(PEO)계 고분자 재료 등의 고분자 재료를 포함하는 고체 전해질을 사용하여도 좋다. 고체 전해질을 사용하는 경우, 세퍼레이터 및 스페이서가 불필요하다. 또한, 전지를 전체적으로 고체화할 수 있기 때문에, 액체 누설의 가능성이 없으므로 전지의 안전성이 극적으로 높아진다.
[세퍼레이터]
이차 전지는 세퍼레이터를 포함하는 것이 바람직하다. 세퍼레이터로서는 예를 들어, 종이; 부직포; 유리 섬유; 세라믹; 또는 나일론(폴리아마이드), 바이닐론(폴리바이닐 알코올계 섬유), 폴리에스터, 아크릴, 폴리올레핀, 또는 폴리우레탄을 사용한 합성 섬유를 사용할 수 있다. 세퍼레이터는 봉투 형상을 갖도록 형성되어, 양극 및 음극 중 한쪽을 감싸는 것이 바람직하다.
세퍼레이터는 다층 구조를 가져도 좋다. 예를 들어, 세라믹계 재료, 플루오린계 재료, 폴리아마이드계 재료, 또는 그 혼합물 등으로 폴리프로필렌 또는 폴리에틸렌 등의 유기 재료 필름을 피복할 수 있다. 세라믹계 재료의 예에는 산화 알루미늄 입자 및 산화 실리콘 입자가 포함된다. 플루오린계 재료의 예에는 PVDF 및 폴리테트라플루오로에틸렌이 포함된다. 폴리아마이드계 재료의 예에는 나일론 및 아라미드(메타계 아라미드 및 파라계 아라미드)가 포함된다.
세퍼레이터를 세라믹계 재료로 피복하면 내산화성이 향상되기 때문에, 높은 전압에서의 충방전 시에 세퍼레이터가 열화되는 것을 억제할 수 있어, 이차 전지의 신뢰성을 향상시킬 수 있다. 또한, 세퍼레이터를 플루오린계 재료로 피복하면, 세퍼레이터는 전극과 밀착하기 쉬워지기 때문에, 출력 특성이 높아진다. 세퍼레이터를 폴리아마이드계 재료, 특히 아라미드로 피복하면, 내열성이 향상되기 때문에 이차 전지의 안전성이 향상된다.
예를 들어, 폴리프로필렌 필름의 양쪽 면을 산화 알루미늄과 아라미드의 혼합 재료로 피복하여도 좋다. 또는, 폴리프로필렌 필름 중 양극과 접촉하는 면을 산화 알루미늄과 아라미드의 혼합 재료로 피복하고, 폴리프로필렌 필름 중 음극과 접촉하는 면을 플루오린계 재료로 피복하여도 좋다.
다층 구조를 갖는 세퍼레이터를 사용하면, 세퍼레이터의 총두께가 얇더라도 이차 전지의 안전성을 유지할 수 있기 때문에, 이차 전지의 체적당 용량을 증가시킬 수 있다.
(실시형태 3)
본 실시형태에서는, 상술한 실시형태에서 설명한 양극 활물질(100)을 포함하는 이차 전지의 형상의 예에 대하여 설명한다. 본 실시형태에서 설명하는 이차 전지에 사용하는 재료에 대해서는, 상술한 실시형태의 설명을 참조할 수 있다.
[코인형 이차 전지]
우선, 코인형 이차 전지의 예에 대하여 설명한다. 도 4의 (A)는 코인형(단층 편평형(flat type)) 이차 전지의 외관도이고, 도 4의 (B)는 그 단면도이다.
코인형 이차 전지(300)에서는, 양극 단자로서의 기능을 겸하는 양극 캔(301)과 음극 단자로서의 기능을 겸하는 음극 캔(302)이 폴리프로필렌 등으로 이루어진 개스킷(303)에 의하여 서로 절연되고 밀봉되어 있다. 양극(304)은 양극 집전체(305), 및 양극 집전체(305)와 접촉하여 제공된 양극 활물질층(306)을 포함한다. 음극(307)은 음극 집전체(308), 및 음극 집전체(308)와 접촉하여 제공된 음극 활물질층(309)을 포함한다.
또한, 코인형 이차 전지(300)에 사용하는 양극(304) 및 음극(307) 각각의 한쪽 면에만 활물질층을 제공한다.
양극 캔(301) 및 음극 캔(302)에는, 니켈, 알루미늄, 또는 타이타늄 등, 전해액에 대하여 내부식성을 갖는 금속, 이러한 금속의 합금, 또는 이러한 금속과 다른 금속의 합금(예를 들어, 스테인리스강)을 사용할 수 있다. 또는, 전해액으로 인한 부식을 방지하기 위하여 양극 캔(301) 및 음극 캔(302)을 니켈 또는 알루미늄 등으로 피복하는 것이 바람직하다. 양극 캔(301) 및 음극 캔(302)은 각각 양극(304) 및 음극(307)과 전기적으로 접속된다.
음극(307), 양극(304), 및 세퍼레이터(310)를 전해액에 담근다. 그리고, 도 4의 (B)에 도시된 바와 같이 양극 캔(301)이 밑에 위치한 상태로 양극(304), 세퍼레이터(310), 음극(307), 및 음극 캔(302)을 이 순서대로 적층하고, 개스킷(303)을 개재(介在)하여 양극 캔(301)과 음극 캔(302)을 압착한다. 이러한 식으로 코인형 이차 전지(300)를 제작할 수 있다.
상술한 실시형태에서 설명한 양극 활물질을 양극(304)에 사용하면, 고용량이며 사이클 특성이 우수한 코인형 이차 전지(300)를 얻을 수 있다.
[원통형 이차 전지]
다음으로, 원통형 이차 전지의 예에 대하여 도 5의 (A) 내지 (D)를 참조하여 설명한다. 원통형 이차 전지(600)는 도 5의 (A)에 도시된 바와 같이, 상면에 양극 캡(전지 뚜껑)(601)을, 그리고 측면 및 저면에 전지 캔(외부 캔)(602)을 포함한다. 양극 캡 및 전지 캔(외부 캔)(602)은 개스킷(절연 패킹)(610)에 의하여 서로 절연되어 있다.
도 5의 (B)는 원통형 이차 전지의 단면 모식도이다. 중공 원통형의 전지 캔(602) 내에는, 스트립(strip) 형상의 양극(604) 및 스트립 형상의 음극(606)이 스트립 형상의 세퍼레이터(605)를 개재하여 감긴 전지 소자가 제공되어 있다. 도시하지 않았지만, 전지 소자는 센터 핀을 중심으로 하여 감긴다. 전지 캔(602)의 한쪽 끝은 닫혀 있고, 그 다른 쪽 끝은 열려 있다. 전지 캔(602)에는 니켈, 알루미늄, 또는 타이타늄 등 전해액에 대하여 내부식성을 갖는 금속, 이러한 금속의 합금, 또는 이러한 금속과 다른 금속의 합금(예를 들어, 스테인리스강)을 사용할 수 있다. 또는, 전해액으로 인한 부식을 방지하기 위하여 전지 캔(602)을 니켈 또는 알루미늄 등으로 피복하는 것이 바람직하다. 전지 캔(602) 내에는, 양극, 음극, 및 세퍼레이터가 감긴 전지 소자가, 마주 보는 한 쌍의 절연판(608 및 609) 사이에 제공되어 있다. 또한, 전지 소자가 제공된 전지 캔(602) 내에 비수 전해액(미도시)이 주입되어 있다. 비수 전해액으로서는, 코인형 이차 전지와 비슷한 비수 전해액을 사용할 수 있다.
원통형 이차 전지의 양극 및 음극은 감기기 때문에, 집전체의 양측에 활물질이 형성되는 것이 바람직하다. 양극(604)에 양극 단자(양극 집전 리드)(603)가 접속되고, 음극(606)에 음극 단자(음극 집전 리드)(607)가 접속된다. 양극 단자(603) 및 음극 단자(607)는 모두 알루미늄 등의 금속 재료를 사용하여 형성될 수 있다. 양극 단자(603) 및 음극 단자(607)는 각각 안전 밸브 기구(612) 및 전지 캔(602) 바닥에 저항 용접된다. 안전 밸브 기구(612)는 PTC(positive temperature coefficient) 소자(611)를 통하여 양극 캡(601)에 전기적으로 접속된다. 안전 밸브 기구(612)는 전지의 내부 압력이 소정의 문턱값을 넘었을 때 양극 캡(601)과 양극(604) 사이의 전기적인 접속을 차단한다. 온도가 상승될 때 저항이 커지는 서미스터(thermally sensitive resistor)로서 기능하는 PTC 소자(611)는, 저항을 크게 함으로써 전류량을 제한하여 비정상적인 발열을 방지한다. PTC 소자에는 타이타늄산 바륨(BaTiO3)계 반도체 세라믹을 사용할 수 있다.
또는, 도 5의 (C)에 도시된 바와 같이, 도전판(613)과 도전판(614) 사이에 복수의 이차 전지(600)를 끼워 모듈(615)을 형성하여도 좋다. 복수의 이차 전지(600)는 서로 병렬로 접속되어도 좋고, 직렬로 접속되어도 좋고, 또는 서로 병렬로 접속된 후에 직렬로 접속되어도 좋다. 복수의 이차 전지(600)를 포함하는 모듈(615)에 의하여, 큰 전력을 추출할 수 있다.
도 5의 (D)는 모듈(615)의 상면도이다. 도면의 명료화를 위하여 도전판(613)을 점선으로 나타내었다. 도 5의 (D)에 도시된 바와 같이, 모듈(615)은 복수의 이차 전지(600)를 서로 전기적으로 접속시키는 배선(616)을 포함하여도 좋다. 배선(616) 위에 도전판(613)을 서로 중첩하도록 제공할 수 있다. 또한, 복수의 이차 전지(600) 간에 온도 제어 장치(617)를 제공하여도 좋다. 이차 전지(600)가 과열된 경우에는, 온도 제어 장치(617)에 의하여 냉각될 수 있고, 이차 전지(600)가 지나치게 냉각된 경우에는, 온도 제어 장치(617)에 의하여 가열될 수 있다. 그러므로, 모듈(615)의 성능이 외기 온도에 의하여 쉽게 영향을 받지 않는다.
상술한 실시형태에서 설명한 양극 활물질을 양극(604)에 사용하면, 고용량이며 사이클 특성이 우수한 원통형 이차 전지(600)를 얻을 수 있다.
[이차 전지의 구조예]
이차 전지의 다른 구조예에 대하여 도 6의 (A) 및 (B), 도 7의 (A-1), (A-2), (B-1), 및 (B-2), 도 8의 (A) 및 (B), 그리고 도 9를 참조하여 설명한다.
도 6의 (A) 및 (B)는 전지 팩의 외관도이다. 전지 팩은 회로 기판(900) 및 이차 전지(913)를 포함한다. 이차 전지(913)는 단자(951) 및 단자(952)를 포함하고, 라벨(910)에 의하여 덮여 있다. 전지 팩은 안테나(914)를 포함하여도 좋다.
회로 기판(900)은 실재(915)로 고정된다. 회로 기판(900)은 회로(912)를 포함한다. 단자(911)는 회로 기판(900)을 개재하여 이차 전지(913)의 단자(951 및 952)와 전기적으로 접속된다. 단자(911)는 회로 기판(900)을 개재하여 안테나(914) 및 회로(912)와 전기적으로 접속된다. 또한, 제어 신호 입력 단자 및 전원 단자 등으로서 기능하는 복수의 단자(911)를 제공하여도 좋다.
예를 들어, 회로(912)는 과충전, 과방전, 및 과전류로부터 이차 전지(913)를 보호하는 보호 회로로서 기능한다. 회로(912)는 회로 기판(900) 배후면에 제공되어도 좋다. 또한, 안테나(914)의 형상은 코일 형상에 한정되지 않고, 선 형상 또는 판 형상이어도 좋다. 또한, 평면 안테나, 개구 안테나, 진행파 안테나, EH 안테나, 자기장 안테나, 또는 유전체 안테나를 사용하여도 좋다. 안테나(914)는 예를 들어, 외부 장치와 데이터 통신을 하는 기능을 갖는다. 안테나(914)를 사용한, 전지 팩과 다른 장치 사이의 통신 시스템으로서는, NFC 등, 축전지와 다른 장치 사이에서 사용할 수 있는 응답 방식을 채용할 수 있다.
전지 팩은 이차 전지(913)와 안테나(914) 사이에 층(916)을 포함한다. 층(916)은 예를 들어, 이차 전지(913)로부터의 전자기장을 차단하는 기능을 갖는다. 층(916)으로서는 예를 들어, 자기체(magnetic body)를 사용할 수 있다.
또한, 전지 팩의 구조는 도 6의 (A) 및 (B)에 나타낸 것에 한정되지 않는다.
예를 들어, 도 7의 (A-1) 및 (A-2)에 나타낸 바와 같이, 도 6의 (A) 및 (B)의 이차 전지(913)에서 마주 보는 2개의 표면에 안테나를 각각 제공하여도 좋다. 도 7의 (A-1)은 이 마주 보는 표면들 중 한쪽을 나타낸 외관도이고, 도 7의 (A-2)는 이 마주 보는 표면들 중 다른 쪽을 나타낸 외관도이다. 도 6의 (A) 및 (B)와 비슷한 부분에 대해서는 도 6의 (A) 및 (B)에 도시된 전지 팩의 설명을 적절히 참조할 수 있다.
도 7의 (A-1)에 도시된 바와 같이, 이차 전지(913)의 마주 보는 표면들 중 한쪽에 층(916)을 개재하여 안테나(914)가 제공되고, 도 7의 (A-2)에 도시된 바와 같이, 이차 전지(913)의 마주 보는 표면들 중 다른 쪽에 층(917)을 개재하여 안테나(918)가 제공된다. 층(917)은 예를 들어, 이차 전지(913)로부터의 전자기장을 차단하는 기능을 갖는다. 층(917)으로서는 예를 들어, 자기체를 사용할 수 있다.
상술한 구조에 의하여, 전지 팩은 2개의 안테나를 가질 수 있고, 안테나(914 및 918)의 양쪽 모두의 크기를 크게 할 수 있다.
안테나(918)로서는 안테나(914)에 적용될 수 있는 형상을 갖는 안테나를 사용할 수 있다. 안테나(918)는 평판 도체이어도 좋다. 이 평판 도체는 전계 결합용 도체 중 하나로서 기능할 수 있다. 즉, 안테나(914)는 용량 소자의 2개의 도체 중 한쪽으로서 기능할 수 있다. 따라서, 전자기장 또는 자기장뿐만 아니라 전계에 의해서도 전력을 송수신할 수 있다.
또는, 도 7의 (B-1)에 도시된 바와 같이, 도 6의 (A) 및 (B)의 전지 팩에 표시 장치(920)가 제공되어도 좋다. 표시 장치(920)는 단자(911)에 전기적으로 접속된다. 도 6의 (A) 및 (B)와 비슷한 부분에 대해서는 도 6의 (A) 및 (B)에 도시된 전지 팩의 설명을 적절히 참조할 수 있다.
표시 장치(920)는 예를 들어, 충전이 수행되는 중인지 여부를 나타내는 화상 또는 축전량을 나타내는 화상 등을 표시할 수 있다. 표시 장치(920)로서는 전자 종이, 액정 표시 장치, 또는 EL(electroluminescent) 표시 장치 등을 사용할 수 있다. 예를 들어, 전자 종이를 사용하면 표시 장치(920)의 소비전력을 저감시킬 수 있다.
또는, 도 7의 (B-2)에 도시된 바와 같이, 도 6의 (A) 및 (B)에 도시된 이차 전지(913)에 센서(921)가 제공되어도 좋다. 센서(921)는 단자(922) 및 회로 기판(900)을 통하여 단자(911)에 전기적으로 접속된다. 도 6의 (A) 및 (B)와 비슷한 부분에 대해서는 도 6의 (A) 및 (B)에 도시된 축전 장치의 설명을 적절히 참조할 수 있다.
센서(921)는, 예를 들어 변위, 위치, 속도, 가속도, 각속도, 회전 진동수, 거리, 광, 액체, 자력, 온도, 화학 물질, 소리, 시간, 경도(硬度), 전계, 전류, 전압, 전력, 방사선, 유량, 습도, 경사도, 진동, 냄새, 또는 적외선을 측정하는 기능을 갖는다. 센서(921)에 의하여, 예를 들어, 축전 장치가 놓여 있는 환경(예를 들어, 온도)에 관한 데이터를 판정하고 회로(912) 내의 메모리에 저장할 수 있다.
또한, 이차 전지(913)의 구조예에 대하여 도 8의 (A) 및 (B), 그리고 도 9를 참조하여 설명한다.
도 8의 (A)에 도시된 이차 전지(913)는 단자(951 및 952)가 제공된 권회체(wound body)(950)를 하우징(930) 내에 포함한다. 권회체(950)는 하우징(930) 내에서 전해액에 담긴다. 단자(952)는 하우징(930)과 접촉한다. 절연체 등에 의하여 단자(951)와 하우징(930) 사이의 접촉을 억제한다. 또한, 도 8의 (A)에는 편의상 2개로 분리된 하우징(930)을 도시하였지만, 실제의 구조에서는 권회체(950)가 하우징(930)으로 덮여 있고, 단자(951 및 952)가 하우징(930) 외부로 연장되어 있다. 하우징(930)에는, 금속 재료(알루미늄 등) 또는 수지 재료를 사용할 수 있다.
또한, 도 8의 (B)에 도시된 바와 같이, 도 8의 (A)의 하우징(930)을 복수의 재료를 사용하여 형성하여도 좋다. 예를 들어, 도 8의 (B)의 이차 전지(913)에서는, 하우징(930a)과 하우징(930b)이 서로 접합되고, 하우징(930a)과 하우징(930b)으로 둘러싸인 영역에 권회체(950)가 제공되어 있다.
하우징(930a)에는 유기 수지 등의 절연 재료를 사용할 수 있다. 특히, 안테나가 형성되는 측에 유기 수지 등의 재료를 사용하면, 이차 전지(913)로부터의 전계의 차단을 억제할 수 있다. 하우징(930a)에 의하여 전계가 크게 차단되지 않는 경우에는, 안테나(914 및 918) 등의 안테나를 하우징(930a) 내에 제공하여도 좋다. 하우징(930b)에는, 예를 들어 금속 재료를 사용할 수 있다.
도 9는 권회체(950)의 구조를 도시한 것이다. 권회체(950)는 음극(931), 양극(932), 및 세퍼레이터(933)를 포함한다. 권회체(950)는, 음극(931)이 세퍼레이터(933)를 개재하여 양극(932)과 중첩되는 적층의 시트를 감음으로써 얻어진다. 또한, 음극(931), 양극(932), 및 세퍼레이터(933)를 각각 포함하는 복수의 적층을 적층하여도 좋다.
음극(931)은 단자(951 및 952) 중 한쪽을 통하여 도 6의 (A) 및 (B)의 단자(911)와 접속된다. 양극(932)은 단자(951 및 952) 중 다른 쪽을 통하여 도 6의 (A) 및 (B)의 단자(911)와 접속된다.
상술한 실시형태에서 설명한 양극 활물질을 양극(932)에 사용하면, 고용량이며 사이클 특성이 우수한 이차 전지(913)를 얻을 수 있다.
[래미네이트 이차 전지]
다음으로, 래미네이트 이차 전지의 예에 대하여 도 10의 (A) 내지 (C), 도 11의 (A) 및 (B), 도 12, 도 13, 도 14의 (A) 내지 (C), 도 15의 (A), (B1), (B2), (C), 및 (D), 그리고 도 16의 (A) 및 (B)를 참조하여 설명한다. 래미네이트 이차 전지가 가요성을 갖고, 적어도 일부에 가요성을 갖는 전자 기기에 사용되는 경우에는, 전자 기기가 구부러짐에 따라 이차 전지를 구부릴 수 있다.
도 10의 (A) 내지 (C)를 참조하여 래미네이트 이차 전지(980)에 대하여 설명한다. 래미네이트 이차 전지(980)는 도 10의 (A)에 도시된 권회체(993)를 포함한다. 권회체(993)는 음극(994), 양극(995), 및 세퍼레이터(996)를 포함한다. 권회체(993)는, 도 9에 도시된 권회체(950)와 같이, 음극(994)이 세퍼레이터(996)를 개재하여 양극(995)과 중첩되는 적층의 시트를 감음으로써 얻어진다.
또한, 음극(994), 양극(995), 및 세퍼레이터(996)를 각각 포함하는 적층수는, 필요한 용량 및 소자 체적에 따라 적절히 결정될 수 있다. 음극(994)은 리드 전극(997) 및 리드 전극(998) 중 한쪽을 통하여 음극 집전체(미도시)와 접속된다. 양극(995)은 리드 전극(997) 및 리드 전극(998) 중 다른 쪽을 통하여 양극 집전체(미도시)와 접속된다.
도 10의 (B)에 도시된 바와 같이, 외장체로서 기능하는, 필름(981) 및 오목부를 갖는 필름(982)을 열 압착 등에 의하여 접합하여 형성되는 공간에 권회체(993)가 수납됨으로써, 도 10의 (C)에 도시된 바와 같이 이차 전지(980)를 형성할 수 있다. 권회체(993)는 리드 전극(997) 및 리드 전극(998)을 포함하고, 필름(981) 및 오목부를 갖는 필름(982)으로 둘러싸인 공간 내에서 전해액에 담긴다.
필름(981) 및 오목부를 갖는 필름(982)에는, 예를 들어 알루미늄 등의 금속 재료 또는 수지 재료를 사용할 수 있다. 필름(981) 및 오목부를 갖는 필름(982)에 수지 재료를 사용하면, 외력이 가해졌을 때 필름(981) 및 오목부를 갖는 필름(982)을 변형시킬 수 있어, 가요성 이차 전지를 제작할 수 있다.
도 10의 (B) 및 (C)는 2개의 필름에 의하여 공간이 형성되는 예를 도시한 것이지만, 하나의 필름을 구부려서 형성된 공간에 권회체(993)를 배치하여도 좋다.
상술한 실시형태에서 설명한 양극 활물질을 양극(995)에 사용하면, 고용량이며 사이클 특성이 우수한 이차 전지(980)를 얻을 수 있다.
도 10의 (A) 내지 (C)에서는, 외장체로서 기능하는 필름에 의하여 형성된 공간에 이차 전지(980)가 권회체를 포함하는 예를 설명하였지만, 도 11의 (A) 및 (B)에 도시된 바와 같이 예를 들어, 외장체로서 기능하는 필름에 의하여 형성된 공간에 이차 전지가 복수의 스트립 형상의 양극, 복수의 스트립 형상의 세퍼레이터, 및 복수의 스트립 형상의 음극을 포함하여도 좋다.
도 11의 (A)에 도시된 래미네이트 이차 전지(500)는 양극 집전체(501) 및 양극 활물질층(502)을 포함하는 양극(503), 음극 집전체(504) 및 음극 활물질층(505)을 포함하는 음극(506), 세퍼레이터(507), 전해액(508), 및 외장체(509)를 포함한다. 세퍼레이터(507)는 외장체(509) 내의 양극(503)과 음극(506) 사이에 제공된다. 외장체(509)는 전해액(508)으로 채워져 있다. 실시형태 2에서 설명한 전해액을 전해액(508)에 사용할 수 있다.
도 11의 (A)에 도시된 래미네이트 이차 전지(500)에서, 양극 집전체(501) 및 음극 집전체(504)는 외부와의 전기적인 접촉을 위한 단자로서도 기능한다. 이러한 이유로, 양극 집전체(501) 및 음극 집전체(504)는 외장체(509)의 외부로 부분적으로 노출되도록 배치되어도 좋다. 또는, 리드 전극과, 양극 집전체(501) 또는 음극 집전체(504)를 초음파 용접에 의하여 서로 접합하여도 좋고, 양극 집전체(501) 및 음극 집전체(504) 대신에 리드 전극을 외장체(509)의 외측으로 노출시켜도 좋다.
래미네이트 이차 전지(500)의 외장체(509)로서는, 예를 들어 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 이오노머, 또는 폴리아마이드 등의 재료로 형성되는 막 위에 알루미늄, 스테인리스강, 구리, 또는 니켈 등 가요성이 높은 금속 박막을 제공하고, 상기 금속 박막 위에 외장체의 외측면으로서 폴리아마이드계 수지 또는 폴리에스터계 수지 등의 절연성 합성 수지막을 제공한 3층 구조를 갖는 래미네이트 필름을 채용할 수 있다.
도 11의 (B)는 래미네이트 이차 전지(500)의 단면 구조의 예를 도시한 것이다. 도 18의 (A)에는 간략화를 위하여 2개의 집전체만을 포함하는 예를 도시하였지만, 실제의 전지는 복수의 전극층을 포함한다.
도 11의 (B)의 예는 16개의 전극층을 포함한다. 래미네이트 이차 전지(500)는 16개의 전극층을 포함하지만 가요성을 갖는다. 도 11의 (B)에는 음극 집전체(504) 8층과 양극 집전체(501) 8층, 즉 총 16층을 포함하는 구조를 도시하였다. 또한, 도 11의 (B)는 음극의 리드 부분의 단면을 도시한 것이고, 8개의 음극 집전체(504)가 초음파 용접에 의하여 서로 접합되어 있다. 전극층의 수가 16개에 한정되지 않는 것은 말할 나위 없고, 16개보다 많아도 좋고 16개보다 적어도 좋다. 전극층의 수가 많으면, 용량이 큰 이차 전지로 할 수 있다. 한편, 전극층의 수가 적으면, 두께가 얇고 가요성이 높은 이차 전지로 할 수 있다.
도 12 및 도 13은 각각 래미네이트 이차 전지(500)의 외관도의 예를 도시한 것이다. 도 12 및 도 13에서는, 양극(503), 음극(506), 세퍼레이터(507), 외장체(509), 양극 리드 전극(510), 및 음극 리드 전극(511)이 포함된다.
도 14의 (A)는 양극(503) 및 음극(506)의 외관도를 도시한 것이다. 양극(503)은 양극 집전체(501)를 포함하고, 양극 활물질층(502)은 양극 집전체(501) 표면에 형성되어 있다. 양극(503)은 양극 집전체(501)가 부분적으로 노출된 영역(이하, 탭 영역(tab region)이라고 함)도 포함한다. 음극(506)은 음극 집전체(504)를 포함하고, 음극 활물질층(505)은 음극 집전체(504) 표면에 형성되어 있다. 음극(506)은 음극 집전체(504)가 부분적으로 노출된 영역, 즉 탭 영역도 포함한다. 양극 및 음극에 포함되는 탭 영역의 면적 및 형상은 도 14의 (A)에 도시된 것에 한정되지 않는다.
[래미네이트 이차 전지의 제작 방법]
여기서, 도 12에 외관도가 도시된 래미네이트 이차 전지의 제작 방법의 예에 대하여 도 14의 (B) 및 (C)를 참조하여 설명한다.
우선, 음극(506), 세퍼레이터(507), 및 양극(503)을 적층한다. 도 14의 (B)는 음극(506), 세퍼레이터(507), 및 양극(503)을 포함하는 적층을 도시한 것이다. 여기서 설명하는 예는 5개의 음극과 4개의 양극을 포함한다. 다음으로, 양극(503)의 탭 영역들을 서로 접합하고, 가장 바깥쪽의 표면 상의 양극의 탭 영역과 양극 리드 전극(510)을 서로 접합한다. 접합은, 예를 들어 초음파 용접에 의하여 수행될 수 있다. 비슷한 식으로, 음극(506)의 탭 영역들을 서로 접합하고, 가장 바깥쪽의 표면 상의 음극의 탭 영역과 음극 리드 전극(511)을 접합한다.
그 후, 음극(506), 세퍼레이터(507), 및 양극(503)을 외장체(509) 위에 배치한다.
이어서, 도 14의 (C)에 도시된 바와 같이, 외장체(509)를 파선(dashed line)을 따라 접는다. 그리고, 외장체(509)의 외주를 접합한다. 접합은 예를 들어, 열압착에 의하여 수행될 수 있다. 이때, 나중에 전해액(508)을 도입할 수 있도록 외장체(509)의 일부(또는 한 변)를 접합되지 않은 상태로 한다(주입구를 제공함).
다음으로, 외장체(509)의 주입구로부터 외장체(509) 내로 전해액(508)을 도입한다. 전해액(508)은 감압 분위기 또는 불활성 가스 분위기에서 도입되는 것이 바람직하다. 마지막에 주입구를 접합한다. 상술한 식으로, 래미네이트 이차 전지(500)를 제작할 수 있다.
상술한 실시형태에서 설명한 양극 활물질을 양극(503)에 사용하면, 고용량이며 사이클 특성이 우수한 이차 전지(500)를 얻을 수 있다.
[구부릴 수 있는 이차 전지]
다음으로, 구부릴 수 있는 이차 전지의 예에 대하여 도 15의 (A), (B1), (B2), (C), 및 (D), 그리고 도 16의 (A) 및 (B)를 참조하여 설명한다.
도 15의 (A)는 구부릴 수 있는 이차 전지(250)의 상면 모식도이다. 도 15의 (B1), (B2), 및 (C)는 각각 도 15의 (A)의 절단선 C1-C2, 절단선 C3-C4, 및 절단선 A1-A2를 따라 취한 단면 모식도이다. 전지(250)는 외장체(251), 및 외장체(251) 내부에 수용된 양극(211a) 및 음극(211b)을 포함한다. 양극(211a)과 전기적으로 접속되는 리드(212a) 및 음극(211b)과 전기적으로 접속되는 리드(212b)는 외장체(251)의 외측으로 연장된다. 외장체(251)로 둘러싸인 영역에는, 양극(211a) 및 음극(211b)에 더하여 전해액(미도시)이 밀봉되어 있다.
도 16의 (A) 및 (B)는 전지(250)에 포함되는 양극(211a) 및 음극(211b)을 도시한 것이다. 도 16의 (A)는 양극(211a), 음극(211b), 및 세퍼레이터(214)의 적층 순서를 도시한 사시도이다. 도 16의 (B)는 양극(211a) 및 음극(211b)에 더하여 리드(212a) 및 리드(212b)를 도시한 사시도이다.
도 16의 (A)에 도시된 바와 같이, 전지(250)는 복수의 스트립 형상의 양극(211a), 복수의 스트립 형상의 음극(211b), 및 복수의 세퍼레이터(14)를 포함한다. 양극(211a) 및 음극(211b)은 각각 돌출된 탭부(tab portion) 및 탭 이외의 부분을 포함한다. 양극 활물질층은 양극(211a)의 한쪽 면에서 탭부 이외에 형성되고, 음극 활물질층은 음극(211b)의 한쪽 면에서 탭부 이외에 형성된다.
양극(211a) 중 양극 활물질층이 각각 형성되지 않은 면들이 서로 접촉하고, 음극(211b) 중 음극 활물질층이 각각 형성되지 않은 면들이 서로 접촉하도록, 양극(211a)과 음극(211b)이 적층된다.
또한, 양극(211a) 중 양극 활물질이 형성된 면과, 음극(211b) 중 음극 활물질이 형성된 면 사이에 세퍼레이터(214)가 제공된다. 도 16의 (A)에서는, 보기 쉽게 세퍼레이터(214)를 점선으로 나타내었다.
또한, 도 16의 (B)에 도시된 바와 같이, 복수의 양극(211a)은 접합부(215a)에서 리드(212a)와 전기적으로 접속되어 있다. 복수의 음극(211b)은 접합부(215b)에서 리드(212b)와 전기적으로 접속되어 있다.
다음으로, 외장체(251)에 대하여 도 15의 (B1), (B2), (C), 및 (D)를 참조하여 설명한다.
외장체(251)는 필름 형상을 갖고, 양극(211a)과 음극(211b)을 외장체(251)의 마주 보는 부분들 사이에 개재하여 반으로 접혀 있다. 외장체(251)는 접힌 부분(261), 한 쌍의 밀봉부(262), 및 밀봉부(263)를 포함한다. 한 쌍의 밀봉부(262)는 양극(211a) 및 음극(211b)을 개재하여 제공되기 때문에, 사이드 실(side seal)이라고 할 수도 있다. 밀봉부(263)는 리드(212a) 및 리드(212b)와 중첩되는 부분을 갖고, 톱 실(top seal)이라고 할 수도 있다.
외장체(251)에서 양극(211a) 및 음극(211b)과 중첩되는 부분은, 능선(271)과 골짜기선(272)이 교대로 배치된 물결 형상을 갖는 것이 바람직하다. 외장체(251)의 밀봉부(262) 및 밀봉부(263)는 평평한 것이 바람직하다.
도 15의 (B1)는 능선(271)과 중첩되는 부분을 따라 자른 단면을 나타낸 것이다. 도 15의 (B2)는 골짜기선(272)과 중첩되는 부분을 따라 자른 단면을 나타낸 것이다. 도 15의 (B1) 및 (B2)는 전지(250), 양극(211a), 및 음극(211b)의 폭 방향의 단면에 대응한다.
음극(211b)의 폭 방향의 단부와, 밀봉부(262) 사이의 거리를 거리 La라고 한다. 전지(250)가 변형될 때, 예를 들어 구부러질 때, 나중에 설명하는 바와 같이 양극(211a) 및 음극(211b)은 그 위치가 길이 방향으로 서로 움직이도록 변형된다. 이때, 거리 La가 지나치게 짧으면, 외장체(251)와 양극(211a) 및 음극(211b)이 서로 강하게 마찰되어, 외장체(251)가 손상되는 경우가 있다. 특히, 외장체(251)의 금속 필름이 노출되면, 상기 금속 필름이 전해액에 의하여 부식될 우려가 있다. 따라서, 거리 La는 가능한 한 길게 설정되는 것이 바람직하다. 그러나, 거리 La가 지나치게 길면, 전지(250)의 체적이 커진다.
적층된 양극(211a) 및 음극(211b)의 총두께가 두꺼울수록, 음극(211b)의 단부와 밀봉부(262) 사이의 거리 La가 커지는 것이 바람직하다.
구체적으로는, 적층된 양극(211a) 및 음극(211b), 및 세퍼레이터(214)(미도시)의 총두께를 두께 t라고 하는 경우, 거리 La는 두께 t의 0.8배 이상 3.0배 이하가 바람직하고, 0.9배 이상 2.5배 이하가 더 바람직하고, 1.0배 이상 2.0배 이하가 더욱 바람직하다. 거리 La를 상술한 범위 내로 하면, 구부러짐에 대한 신뢰성이 높은 소형의 전지를 얻을 수 있다.
또한, 한 쌍의 밀봉부(262) 간의 거리를 거리 Lb라고 하는 경우, 거리 Lb를 음극(211b)의 폭 Wb보다 충분히 길게 하는 것이 바람직하다. 이 경우, 반복적으로 구부러지는 등 전지(250)가 변형되어 양극(211a) 및 음극(211b)이 외장체(251)와 접촉되더라도, 양극(211a) 및 음극(211b)의 일부의 위치가 폭 방향으로 움직일 수 있기 때문에, 양극(211a) 및 음극(211b)과 외장체(251)가 서로 마찰되는 것을 효과적으로 방지할 수 있다.
예를 들어, 거리 Lb(즉, 한 쌍의 밀봉부(262) 간의 거리)와 음극(211b)의 폭 Wb의 차이는, 양극(211a) 및 음극(211b)의 총두께 t의 1.6배 이상 6.0배 이하가 바람직하고, 1.8배 이상 5.0배 이하가 더 바람직하고, 2.0배 이상 4.0배 이하가 더욱 바람직하다.
바꿔 말하면, 거리 Lb, 폭 Wb, 및 두께 t는 이하의 식 1의 관계를 만족시키는 것이 바람직하다.
Figure 112019133662881-pat00001
(식 1)
상기 식에서, a는 0.8 이상 3.0 이하, 바람직하게는 0.9 이상 2.5 이하, 더 바람직하게는 1.0 이상 2.0 이하이다.
도 15의 (C)는 리드(212a)를 포함하는 단면을 도시한 것이고, 전지(250), 양극(211a), 및 음극(211b)의 길이 방향의 단면에 대응한다. 도 15의 (C)에 도시된 바와 같이, 접힌 부분(261)에서, 양극(211a) 및 음극(211b)의 길이 방향의 단부와, 외장체(251) 사이에 공간(273)을 제공하는 것이 바람직하다.
도 15의 (D)는 구부러진 상태의 전지(250)의 단면 모식도이다. 도 15의 (D)는 도 15의 (A)의 절단선 B1-B2를 따르는 단면에 대응한다.
전지(250)를 구부리면, 구부림의 외측에 위치하는 외장체(251)의 일부는 펴지고, 내측에 위치하는 다른 일부는 줄어들도록 변형된다. 더 구체적으로는, 구부림의 외측에 위치하는 외장체(251)의 일부는, 파진폭이 작아지고 파도 주기의 길이가 길어지도록 변형된다. 한편, 구부림의 내측에 위치하는 외장체(251)의 일부는, 파진폭이 커지고 파도 주기의 길이가 짧아지도록 변형된다. 이러한 식으로 외장체(251)가 변형되면, 구부림으로 인하여 외장체(251)에 가해지는 응력이 완화되기 때문에, 외장체(251)를 형성하는 재료 자체가 팽창 및 수축될 필요가 없다. 이 결과, 외장체(251)에 대한 손상 없이 약한 힘으로 전지(250)를 구부릴 수 있다.
또한, 도 15의 (D)에 도시된 바와 같이, 전지(250)를 구부리면, 양극(211a) 및 음극(211b)의 위치가 상대적으로 움직인다. 이때, 밀봉부(263) 측에 있는, 적층된 양극들(211a) 및 음극들(211b)의 단부가 고정 부재(217)에 의하여 고정되어 있다. 따라서, 복수의 양극(211a) 및 복수의 음극(211b)은 위치가 접힌 부분(261)에 가까워질수록 더 움직인다. 따라서, 양극(211a) 및 음극(211b)에 가해지는 응력이 완화되고, 양극(211a) 및 음극(211b) 자체가 팽창 및 수축될 필요가 없다. 이 결과, 양극(211a) 및 음극(211b)에 대한 손상 없이 전지(250)를 구부릴 수 있다.
또한, 양극(211a) 및 음극(211b)의 단부와, 외장체(251) 사이에 공간(273)을 제공함으로써, 전지(250)를 구부렸을 때 내측에 위치하는 양극(211a) 및 음극(211b)의 단부가 외장체(251)와 접촉하지 않고, 양극(211a) 및 음극(211b)의 상대적인 위치가 움직일 수 있다.
도 15의 (A), (B1), (B2), (C), 및 (D), 그리고 도 16의 (A) 및 (B)에 도시된 전지(250)에서는, 전지(250)를 반복적으로 구부렸다가 폈다가 하여도 외장체, 양극(211a), 및 음극(211b)이 손상되기 어렵고, 전지의 특성이 저하되기 어렵다. 전지(250)에 포함되는 양극(211a)에 상술한 실시형태에서 설명한 양극 활물질을 사용하면, 사이클 특성이 더 우수한 전지를 얻을 수 있다.
(실시형태 4)
본 실시형태에서는, 본 발명의 일 형태의 이차 전지를 포함하는 전자 기기의 예에 대하여 설명한다.
우선, 실시형태 3에서 설명한 구부릴 수 있는 이차 전지를 포함하는 전자 기기의 예를 도 17의 (A) 내지 (G)에 나타내었다. 가요성 이차 전지를 포함하는 전자 기기의 예에는, 텔레비전 장치(텔레비전 또는 텔레비전 수신기라고도 함), 컴퓨터 등의 모니터, 디지털 카메라 또는 디지털 비디오 카메라, 디지털 액자, 휴대 전화(휴대 전화기 또는 휴대 전화 장치라고도 함), 휴대용 게임기, 휴대 정보 단말기, 오디오 재생 장치, 및 파친코기 등의 대형 게임기가 포함된다.
또한, 가요성 이차 전지는 집 또는 빌딩의 만곡된 내벽/외벽의 표면, 또는 자동차의 만곡된 내장/외장의 표면을 따라 포함될 수 있다.
도 17의 (A)는 휴대 전화의 예를 도시한 것이다. 휴대 전화(7400)에는, 하우징(7401)에 포함된 표시부(7402), 조작 버튼(7403), 외부 접속 포트(7404), 스피커(7405), 및 마이크로폰(7406) 등이 제공되어 있다. 또한, 휴대 전화(7400)는 이차 전지(7407)를 포함한다. 본 발명의 일 형태의 이차 전지를 이차 전지(7407)로서 사용하면, 수명이 길고 가벼운 휴대 전화를 제공할 수 있다.
도 17의 (B)는 구부러진 휴대 전화(7400)를 도시한 것이다. 휴대 전화(7400) 전체가 외력으로 만곡되면, 휴대 전화(7400)에 포함되는 이차 전지(7407)도 만곡된다. 도 17의 (C)는 만곡된 이차 전지(7407)를 도시한 것이다. 이차 전지(7407)는 박형 축전지이다. 이차 전지(7407)는 만곡되고 고정된다. 또한, 이차 전지(7407)는 집전체(7409)와 전기적으로 접속된 리드 전극(7408)을 포함한다.
도 17의 (D)는 뱅글형 표시 장치의 예를 도시한 것이다. 휴대용 표시 장치(7100)는 하우징(7101), 표시부(7102), 조작 버튼(7103), 및 이차 전지(7104)를 포함한다. 도 17의 (E)는 구부러진 이차 전지(7104)를 도시한 것이다. 만곡된 이차 전지(7104)가 사용자의 팔 상에 있을 때, 하우징이 변형되고 이차 전지(7104)의 일부 또는 전체의 곡률이 변화된다. 또한, 어느 지점에서의 곡선의 곡률 반경이란, 그 지점에서의 곡선에 가장 근사한 원호의 반경을 말한다. 곡률 반경의 역수는 곡률이다. 구체적으로는, 하우징 또는 이차 전지(7104)의 주된 표면의 일부 또는 전체가 곡률 반경 40mm 내지 150mm의 범위에서 변화된다. 이차 전지(7104)의 주된 표면의 곡률 반경이 40mm 이상 150mm 이하이면, 신뢰성을 높게 유지할 수 있다. 본 발명의 일 형태의 이차 전지를 이차 전지(7104)로서 사용하면, 수명이 길고 가벼운 휴대용 표시 장치를 제공할 수 있다.
도 17의 (F)는 손목시계형 휴대 정보 단말기의 예를 도시한 것이다. 휴대 정보 단말기(7200)는 하우징(7201), 표시부(7202), 밴드(7203), 버클(7204), 조작 버튼(7205), 및 입출력 단자(7206) 등을 포함한다.
휴대 정보 단말기(7200)는 휴대 전화 통화, 전자 메일, 문장 열람 및 편집, 음악 재생, 인터넷 통신, 및 컴퓨터 게임 등의 다양한 애플리케이션을 실행할 수 있다.
표시부(7202)의 표시면은 만곡되어 있고, 만곡된 표시면에 화상을 표시할 수 있다. 또한, 표시부(7202)는 터치 센서를 포함하고, 손가락 또는 스타일러스 등으로 화면을 터치함으로써 조작을 할 수 있다. 예를 들어, 표시부(7202)에 표시된 아이콘(7207)을 터치함으로써 애플리케이션을 기동할 수 있다.
조작 버튼(7205)에 의하여, 시각 설정, 전원의 온/오프, 무선 통신의 온/오프, 매너 모드의 설정 및 해제, 및 절전 모드의 설정 및 해제 등 다양한 기능을 수행할 수 있다. 예를 들어, 휴대 정보 단말기(7200)에 포함된 운영 체계를 설정함으로써, 조작 버튼(7205)의 기능을 자유로이 설정할 수 있다.
휴대 정보 단말기(7200)는 기존의 통신 표준에 따른 통신 방식인 근거리 무선 통신을 채용할 수 있다. 예를 들어, 무선 통신이 가능한 헤드 셋과 휴대 정보 단말기(7200) 간의 상호 통신을 수행할 수 있어 핸즈프리로 통화할 수 있다.
또한, 휴대 정보 단말기(7200)는 입출력 단자(7206)를 포함하고, 커넥터를 통하여 다른 정보 단말기에 데이터를 직접 송신하거나 다른 정보 단말기로부터 데이터를 직접 수신할 수 있다. 또한, 입출력 단자(7206)를 통한 충전이 가능하다. 또한, 충전 동작은 입출력 단자(7206)를 사용하지 않고 무선 급전으로 수행하여도 좋다.
휴대 정보 단말기(7200)의 표시부(7202)는 본 발명의 일 형태의 이차 전지를 포함한다. 본 발명의 일 형태의 이차 전지를 사용하면, 수명이 길고 가벼운 휴대 정보 단말기를 제공할 수 있다. 예를 들어, 만곡된 상태에 있는 도 17의 (E)에 도시된 이차 전지(7104)를 하우징(7201)에 제공할 수 있다. 또는, 도 17의 (E)에 도시된 이차 전지(7104)를 만곡시킬 수 있도록 밴드(7203)에 제공할 수 있다.
휴대 정보 단말기(7200)는 센서를 포함하는 것이 바람직하다. 센서로서는, 예를 들어 지문 센서, 맥박 센서, 또는 온도 센서 등의 인체 센서, 터치 센서, 감압 센서, 또는 가속도 센서 등이 탑재되는 것이 바람직하다.
도 17의 (G)는 완장형 표시 장치의 예를 도시한 것이다. 표시 장치(7300)는 표시부(7304)와, 본 발명의 일 형태의 이차 전지를 포함한다. 표시 장치(7300)는 표시부(7304)에 터치 센서를 포함할 수 있고, 휴대 정보 단말기로서 기능할 수 있다.
표시부(7304)의 표시면은 구부러지고, 구부러진 표시면에 화상을 표시할 수 있다. 표시 장치(7300)의 표시 상태는 예를 들어, 기존의 통신 표준에 따른 통신 방식인 근거리 무선 통신에 의하여 변경할 수 있다.
표시 장치(7300)는 입출력 단자를 포함하고, 커넥터를 통하여 다른 정보 단말기에 데이터를 직접 송신하거나 다른 정보 단말기로부터 데이터를 직접 수신할 수 있다. 또한, 입출력 단자를 통한 충전이 가능하다. 또한, 충전 동작은 입출력 단자를 사용하지 않고 무선 급전으로 수행하여도 좋다.
본 발명의 일 형태의 이차 전지를 표시 장치(7300)에 포함되는 이차 전지로서 사용하면, 수명이 길고 가벼운 표시 장치를 제공할 수 있다.
다음으로, 도 18의 (A) 및 (B)에 폴더블 태블릿 단말기의 예를 도시하였다. 도 18의 (A) 및 (B)에 도시된 태블릿 단말기(9600)는 하우징(9630a), 하우징(9630b), 하우징들(9630a 및 9630b)을 접속시키는 가동부(9640), 표시부(9631), 표시 모드 전환 스위치(9626), 전원 스위치(9627), 절전 모드 전환 스위치(9625), 잠금장치(9629), 및 조작 스위치(9628)를 포함한다. 플렉시블 패널을 표시부(9631)에 사용함으로써, 더 큰 표시부를 갖는 태블릿 단말기를 제공할 수 있다. 도 18의 (A)는 펼쳐진 태블릿 단말기(9600)를 도시한 것이고, 도 18의 (B)는 닫힌 태블릿 단말기(9600)를 도시한 것이다.
태블릿 단말기(9600)는 하우징(9630a 및 9630b)의 내부에 축전 유닛(9635)을 포함한다. 축전 유닛(9635)은 가동부(9640)를 통하여 하우징(9630a)과 하우징(9630b)에 걸쳐 제공된다.
표시부(9631)의 일부를 터치 패널 영역으로 할 수 있고, 표시된 조작 키를 터치하면 데이터를 입력할 수 있다. 터치 패널의 키보드를 표시하거나 숨기는 전환 버튼을 손가락 또는 스타일러스 등으로 터치하면, 표시부(9631)에 키보드 버튼을 표시할 수 있다.
표시 모드 스위치(9626)는 예를 들어, 세로 모드와 가로 모드 사이, 및 흑백 표시와 컬러 표시 사이에서 표시를 전환할 수 있다. 절전 모드 전환 스위치(9625)는, 태블릿 단말기(9600)에 내장된 광학 센서에 의하여 측정되는, 태블릿 단말기(9600) 사용 시의 외광의 양에 따라 표시 휘도를 제어할 수 있다. 광학 센서에 더하여, 자이로스코프 센서 또는 가속도 센서 등 기울기를 검출하는 센서를 포함하는 다른 검출 장치가 태블릿 단말기에 내장되어도 좋다.
도 18의 (B)에서 태블릿 단말기는 닫혀 있다. 태블릿 단말기는 하우징(9630), 태양 전지(9633), 및 DC-DC 컨버터(9636)를 포함하는 충방전 제어 회로(9634)를 포함한다. 본 발명의 일 형태의 이차 전지를 축전 유닛(9635)으로서 사용한다.
태블릿 단말기(9600)는 사용하지 않을 때는 하우징(9630a)과 하우징(9630b)이 서로 중첩되도록 접을 수 있다. 이에 의하여, 표시부(9631)를 보호할 수 있어, 태블릿 단말기(9600)의 내구성이 높아진다. 고용량이며 사이클 특성이 우수한, 본 발명의 일 형태의 이차 전지를 포함하는 축전 유닛(9635)에 의하여, 장기간에 걸쳐 장시간 사용할 수 있는 태블릿 단말기(9600)를 제공할 수 있다.
도 18의 (A) 및 (B)에 도시된 태블릿 단말기는 다양한 종류의 데이터(예를 들어, 정지 화상, 동영상, 및 텍스트 화상)를 표시하는 기능, 달력, 날짜, 또는 시각을 표시부에 표시하는 기능, 표시부에 표시된 데이터를 터치 입력에 의하여 조작 또는 편집하는 터치 입력 기능, 및 다양한 종류의 소프트웨어(프로그램)에 의하여 처리를 제어하는 기능 등을 가질 수도 있다.
태블릿 단말기의 표면에 부착된 태양 전지(9633)는 터치 패널, 표시부, 및 화상 신호 처리부 등에 전력을 공급한다. 또한, 태양 전지(9633)는 하우징(9630)의 한쪽 면 또는 양쪽 면에 제공될 수 있고, 축전 유닛(9635)을 효율적으로 충전할 수 있다.
도 18의 (B)에 도시된 충방전 제어 회로(9634)의 구조 및 동작에 대하여 도 18의 (C)의 블록도를 참조하여 설명한다. 도 18의 (C)에는 태양 전지(9633), 축전 유닛(9635), DC-DC 컨버터(9636), 컨버터(9637), 스위치(SW1 내지 SW3), 및 표시부(9631)를 도시하였고, 축전 유닛(9635), DC-DC 컨버터(9636), 컨버터(9637), 및 스위치(SW1 내지 SW3)는 도 18의 (B)에서의 충방전 제어 회로(9634)에 대응한다.
우선, 외광을 사용하여 태양 전지(9633)에 의하여 전력이 발생되는 경우의 동작의 예에 대하여 설명한다. 태양 전지에 의하여 발생된 전력의 전압은, 축전 유닛(9635)을 충전하기 위한 전압으로 DC-DC 컨버터(9636)에 의하여 상승 또는 강하된다. 태양 전지(9633)로부터의 전력이 표시부(9631)의 동작에 사용되는 경우에는, 스위치(SW1)를 온으로 하고, 전력의 전압을 표시부(9631)를 동작하는 데 필요한 전압으로 컨버터(9637)에 의하여 상승 또는 강하시킨다. 표시부(9631)에서의 표시를 수행하지 않는 경우에는, 스위치(SW1)를 오프로 하고 스위치(SW2)를 온으로 하여 축전 유닛(9635)을 충전할 수 있다.
또한, 태양 전지(9633)에 대하여 발전 수단의 예로서 설명하였지만, 본 발명의 일 형태는 이 예에 한정되지 않는다. 축전 유닛(9635)은 압전 소자 또는 열전 변환 소자(펠티에 소자) 등 다른 발전 수단을 사용하여 충전되어도 좋다. 예를 들어, 무선으로(접촉 없이) 전력을 송수신하여 전지를 충전하는 무접점 전력 전송 모듈에 의하여, 또는 다른 충전 수단과 조합하여 축전 유닛(9635)을 충전하여도 좋다.
도 19는 전자 기기의 다른 예를 도시한 것이다. 도 19에서, 표시 장치(8000)는 본 발명의 일 형태의 이차 전지(8004)를 포함하는 전자 기기의 예이다. 구체적으로, 표시 장치(8000)는 TV 방송 수신용 표시 장치에 상당하며, 하우징(8001), 표시부(8002), 스피커부(8003), 및 이차 전지(8004) 등을 포함한다. 본 발명의 일 형태의 이차 전지(8004)는 하우징(8001)에 제공된다. 표시 장치(8000)는 상용 전원으로부터 전력을 수신할 수 있다. 또는, 표시 장치(8000)는 이차 전지(8004)에 저장된 전력을 사용할 수 있다. 그러므로, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없는 경우에도, 본 발명의 일 형태의 이차 전지(8004)를 무정전 전원으로서 사용함으로써 표시 장치(8000)를 동작시킬 수 있다.
표시부(8002)에는 액정 표시 장치, 각 화소에 유기 EL 소자 등의 발광 소자가 제공된 발광 장치, 전기 영동 표시 장치, DMD(digital micromirror device), PDP(plasma display panel), 또는 FED(field emission display) 등의 반도체 표시 장치를 사용할 수 있다.
또한, 표시 장치는, TV 방송 수신용 이외에, 퍼스널 컴퓨터용 및 광고 표시용 등 모든 정보 표시 장치를 그 범주에 포함한다.
도 19에서, 설치형 조명 장치(8100)는 본 발명의 일 형태의 이차 전지(8103)를 사용한 전자 기기의 예이다. 구체적으로, 조명 장치(8100)는 하우징(8101), 광원(8102), 및 이차 전지(8103) 등을 포함한다. 도 19에는 하우징(8101) 및 광원(8102)이 설치된 천장(8104)에 이차 전지(8103)가 제공되는 경우를 도시하였지만, 이차 전지(8103)는 하우징(8101)에 제공되어도 좋다. 조명 장치(8100)는 상용 전원으로부터 전력을 공급받을 수 있다. 또는, 조명 장치(8100)는 이차 전지(8103)에 저장된 전력을 사용할 수 있다. 그러므로, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없는 경우에도 본 발명의 일 형태의 이차 전지(8103)를 무정전 전원으로서 사용함으로써 조명 장치(8100)를 동작시킬 수 있다
또한, 도 19에는 천장(8104)에 제공된 설치형 조명 장치(8100)를 예로서 도시하였지만, 본 발명의 일 형태의 이차 전지는 천장(8104) 이외에, 예를 들어 벽(8105), 바닥(8106), 또는 창문(8107) 등에 제공된 설치형 조명 장치로서 사용할 수 있다. 또는, 이차 전지를 탁상 조명 장치 등에 사용할 수 있다.
광원(8102)으로서는, 전력을 사용하여 광을 인공적으로 방출하는 인공 광원을 사용할 수 있다. 구체적으로는, 백열등, 형광등 등의 방전등, 및 LED 또는 유기 EL 소자 등의 발광 소자를 상기 인공 광원의 예로서 든다.
도 19에서, 실내기(8200) 및 실외기(8204)를 포함하는 에어컨은 본 발명의 일 형태의 이차 전지(8203)를 포함하는 전자 기기의 예이다. 구체적으로는, 실내기(8200)는 하우징(8201), 송풍구(8202), 및 이차 전지(8203) 등을 포함한다. 도 19는, 이차 전지(8203)가 실내기(8200)에 제공되는 경우를 도시한 것이지만, 이차 전지(8203)는 실외기(8204)에 제공되어도 좋다. 또는, 이차 전지(8203)는 실내기(8200) 및 실외기(8204)의 양쪽 모두에 제공되어도 좋다. 에어컨은 상용 전원으로부터 전력을 공급받을 수 있다. 또는, 에어컨은 이차 전지(8203)에 저장된 전력을 사용할 수 있다. 특히 실내기(8200) 및 실외기(8204)의 양쪽 모두에 이차 전지(8203)가 제공되는 경우, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없는 경우에도 본 발명의 일 형태의 이차 전지(8203)를 무정전 전원으로서 사용함으로써 에어컨을 동작시킬 수 있다.
또한, 도 19에는 실내기 및 실외기를 포함하는 스플릿형(split-type) 에어컨을 예로서 도시하였지만, 본 발명의 일 형태의 이차 전지는 실내기의 기능과 실외기의 기능이 하나의 하우징에 통합된 에어컨에 사용될 수 있다.
도 19에서, 전기 냉동 냉장고(8300)는 본 발명의 일 형태의 이차 전지(8304)를 사용한 전자 기기의 예이다. 구체적으로는 전기 냉동 냉장고(8300)는 하우징(8301), 냉장고용 도어(8302), 냉동고용 도어(8303), 및 이차 전지(8304) 등을 포함한다. 도 19에서는 이차 전지(8304)가 하우징(8301)에 제공되어 있다. 전기 냉동 냉장고(8300)는 상용 전원으로부터 전력을 공급받을 수 있다. 또는, 전기 냉동 냉장고(8300)는 이차 전지(8304)에 저장된 전력을 사용할 수 있다. 그러므로, 정전 등으로 인하여 상용 전원으로부터 전력을 공급받을 수 없는 경우에도 본 발명의 일 형태의 이차 전지(8304)를 무정전 전원으로서 사용함으로써 전기 냉동 냉장고(8300)를 동작시킬 수 있다.
또한, 전자 기기가 사용되지 않는 시간대, 특히 상용 전원으로부터 공급 가능한 총전력량에 대한 실제로 사용되는 전력량의 비율(이러한 비율을 전력의 사용률이라고 함)이 낮을 때, 이차 전지에 전력을 저장할 수 있기 때문에, 전자 기기가 사용되는 시간대에 전력의 사용률을 저감시킬 수 있다. 예를 들어, 전기 냉동 냉장고(8300)의 경우에는, 기온이 낮고 냉장고용 도어(8302) 및 냉동고용 도어(8303)가 자주 개폐되지 않는 야간에 이차 전지(8304)에 전력을 저장할 수 있다. 한편, 기온이 높고 냉장고용 도어(8302) 및 냉동고용 도어(8303)가 자주 개폐되는 낮에 이차 전지(8304)를 보조 전원으로서 사용함으로써, 낮의 전력의 사용률을 저감시킬 수 있다.
본 발명의 일 형태에 따르면, 사이클 특성이 우수한 이차 전지로 할 수 있다. 또한, 본 발명의 일 형태에 따르면, 용량이 큰 이차 전지를 얻을 수 있기 때문에, 이차 전지 자체를 더 소형으로, 그리고 더 가볍게 할 수 있다. 그러므로, 본 발명의 일 형태의 이차 전지를 본 실시형태에서 설명하는 전자 기기에 사용함으로써, 수명이 더 길고 더 가벼운 전자 기기를 얻을 수 있다. 본 실시형태는 다른 실시형태 중 임의의 것과 적절히 조합하여 실시할 수 있다.
(실시형태 5)
본 실시형태에서는, 본 발명의 일 형태의 이차 전지를 포함하는 차량의 예에 대하여 설명한다.
이차 전지를 차량에 사용하면, 하이브리드 전기 자동차(HEV), 전기 자동차(EV), 및 플러그인 하이브리드 전기 자동차(PHEV) 등 차세대 클린 에너지 차량을 생산할 수 있다.
도 20의 (A) 내지 (C)는 본 발명의 일 형태의 이차 전지를 사용한 차량의 예를 각각 도시한 것이다. 도 20의 (A)에 도시된 자동차(8400)는 전기 모터의 동력으로 달리는 전기 자동차이다. 또는, 자동차(8400)는 전기 모터 및 엔진 중 어느 한쪽을 적절히 사용하여 구동될 수 있는 하이브리드 전기 자동차이다. 본 발명의 일 형태는 연비가 좋은 차량을 제공할 수 있다. 자동차(8400)는 이차 전지를 포함한다. 이차 전지로서는, 도 12의 (C) 및 (D)에 도시된 이차 전지의 모듈을 자동차의 바닥 부분에 배열하여 사용할 수 있다. 또는, 도 17의 (A) 내지 (C)에 도시된 복수의 이차 전지 각각을 조합한 전지 팩을 자동차의 바닥 부분에 설치하여도 좋다. 이차 전지는 전기 모터(8406)를 구동할 뿐만 아니라, 전조등(8401) 또는 실내 전등(미도시) 등의 발광 장치에 전력을 공급하기 위해서도 사용된다.
이차 전지는 자동차(8400)에 포함되는 속도계 또는 태코미터 등의 표시 장치에 전력을 공급할 수도 있다. 또한, 이차 전지는 내비게이션 시스템 등, 자동차(8400)에 포함되는 반도체 장치에 전력을 공급할 수 있다.
도 20의 (B)는 이차 전지를 포함하는 자동차(8500)를 도시한 것이다. 플러그인 시스템 또는 비접촉 급전 시스템 등에 의하여 외부의 충전 설비를 통하여 이차 전지에 전력이 공급될 때, 자동차(8500)가 충전될 수 있다. 도 20의 (B)에서는, 케이블(8022)을 통하여 지상 충전 기기(8021)를 사용하여 자동차(8500)에 포함된 이차 전지(8024)가 충전된다. 충전 시, 충전 방법 또는 커넥터의 규격 등으로서 CHAdeMO(등록 상표) 또는 Combined Charging System 등의 소정의 방법을 적절히 채용할 수 있다. 지상 충전 기기(8021)는 상용 시설에 제공된 충전 스테이션 또는 가정용 전원이어도 좋다. 예를 들어, 플러그인 기술을 이용하여, 외부로부터 전력이 공급됨으로써 자동차(8500)에 포함된 이차 전지(8024)를 충전할 수 있다. 충전은 AC-DC 컨버터 등의 컨버터를 통하여 AC 전력을 DC 전력으로 변환함으로써 수행할 수 있다.
또한, 도시하지 않았지만, 상기 차량은, 지상 송전 장치로부터 전력을 비접촉 방식으로 공급받아 충전될 수 있도록 수전 장치를 포함하여도 좋다. 비접촉 급전 시스템의 경우, 도로 또는 외벽에 송전 장치를 설치함으로써 전기 자동차가 멈출 때뿐만 아니라 움직일 때도 충전을 수행할 수 있다. 또한, 이 비접촉 급전 시스템은 차량 간에서 전력의 송수신을 수행하는 데 이용되어도 좋다. 자동차의 외장에 태양 전지를 제공하여, 자동차가 멈출 때 또는 움직일 때, 이차 전지를 충전하여도 좋다. 이러한 비접촉 방식으로 전력을 공급하기 위해서는 전자기 유도 방식 또는 자기 공명 방식을 사용할 수 있다.
도 20의 (C)는 본 발명의 일 형태의 이차 전지를 사용한 오토바이의 예를 나타낸 것이다. 도 20의 (C)에 도시된 모터 스쿠터(8600)는 이차 전지(8602), 사이드미러(8601), 및 방향 지시기(8603)를 포함한다. 이차 전지(8602)는 방향 지시기(8603)에 전력을 공급할 수 있다.
또한, 도 20의 (C)에 도시된 모터 스쿠터(8600)에서는, 이차 전지(8602)를 시트 아래의 수납 부분(8604)에서 보관할 수 있다. 시트 아래의 수납 부분(8604)이 소형이어도 이차 전지(8602)를 보관할 수 있는 것이 바람직하다. 이차 전지(8602)는 떼어낼 수 있기 때문에, 충전 시에는 이차 전지(8602)를 실내로 옮기고, 오토바이를 운전하기 전에 수납하는 것이 바람직하다.
본 발명의 일 형태에 따르면, 사이클 특성이 향상된 이차 전지로 할 수 있고, 이차 전지의 용량을 증가시킬 수 있다. 그러므로, 이차 전지 자체를 더 소형으로, 그리고 더 가볍게 할 수 있다. 소형이고 가벼운 이차 전지는 차량의 중량 감소에 기여하기 때문에, 운전 거리가 증가된다. 또한, 차량에 포함되는 이차 전지를 차량 이외의 제품에 전력을 공급하는 전원으로서 사용할 수 있다. 이러한 경우, 예를 들어 전력이 요구되는 피크 시에 상용 전원을 사용하는 것을 피할 수 있다. 전력이 요구되는 피크 시에 상용 전원의 사용을 피할 수 있으면, 에너지 절약 및 이산화탄소 배출의 삭감에 기여할 수 있다. 또한, 사이클 특성이 우수하면, 이차 전지를 장기간 사용할 수 있기 때문에, 코발트 등의 희금속의 사용량을 줄일 수 있다.
본 실시형태는 다른 실시형태와 적절히 조합하여 실시할 수 있다.
(실시예 1)
본 실시예에서는, 양극 활물질의 제 1 영역에 포함되는 전이 금속에 코발트를 사용하였다. 그리고, 출발 물질에 마그네슘 및 플루오린을 첨가함으로써 준비한 양극 활물질, 및 비교예로서 마그네슘 및 플루오린을 첨가하지 않고 준비한 양극 활물질을 준비하고, 이들의 특성을 분석하였다. 또한, 출발 물질에 첨가되는 마그네슘 및 플루오린의 농도를 변경하여 사이클 특성을 평가하였다.
<양극 활물질의 시료 1 내지 시료 6의 제작>
마그네슘원 및 플루오린원의 농도가 다른, 양극 활물질의 시료 1 내지 시료 6을 준비하였다. 공통 출발 물질로서 탄산 리튬 및 산화 코발트를 사용하였다. 시료마다 상이한 첨가 출발 물질로서 산화 마그네슘 및 플루오린화 리튬을 사용하였다.
시료 1에서는, 공통 출발 물질에 포함되는 코발트에 대하여 0.5atomic%의 마그네슘 및 1atomic%의 플루오린이 포함되도록, 산화 마그네슘 및 플루오린화 리튬을 출발 물질에 첨가하였다. 이하, 이를 "시료 1에서 0.5mol%의 MgO 및 1mol%의 LiF를 첨가 출발 물질로서 사용하였다"라고 한다.
상술한 바와 같이 본 명세서 등에서는, 첨가 출발 물질의 양을 공통 출발 물질에 포함되는 전이 금속에 대한 atomic% 또는 mol%로 나타낸다. 시료 2 이후에 대해서도 마찬가지로 적용된다.
시료 2에는, 코발트에 대하여 0.5mol%의 MgO 및 0.5mol%의 LiF를 첨가 출발 물질로서 사용하였다. 시료 3에는, 0.5mol%의 MgO 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예인 시료 4에는, 1mol%의 LiF를 첨가 출발 물질로서 사용하고, 마그네슘은 첨가하지 않았다. 비교예인 시료 5에는, 0.5mol%의 MgO를 첨가 출발 물질로서 사용하고, 플루오린은 첨가하지 않았다. 비교예인 시료 6에는, 마그네슘도 플루오린도 첨가하지 않았다. 각 시료의 공통 출발 물질 및 첨가 출발 물질을 표 1에 나타낸다.
Figure 112019133662881-pat00002
실시형태 1에서 설명한 제작 방법과 같이, 이하의 공정에서 상술한 6개의 시료 각각으로부터 양극 활물질을 얻었다: 출발 물질의 혼합, 제 1 가열, 냉각, 체로 치기, 제 2 가열, 냉각, 및 회수. 이 공정의 도중의 입자 및 이 공정 후의 양극 활물질에 대하여, 이하의 분석을 실시하였다.
<STEM-EDX>
시료 1 및 시료 5(비교예)에 대하여, 제 2 가열 전의 입자의 표면 근방의 단면을 STEM-EDX를 사용하여 분석하였다. 도 22의 (A) 내지 (C)는 제 2 가열 전의 시료 1의 STEM-EDX 이미지를 나타낸 것이다. 도 23의 (A) 내지 (C)는 제 2 가열 전의 시료 5(비교예)의 STEM-EDX 이미지를 나타낸 것이다. 도 22의 (A) 및 도 23의 (A)는 STEM 이미지를 나타낸 것이다. 도 22의 (B) 및 도 23의 (B)는 마그네슘의 매핑을 나타낸 것이다. 도 22의 (C) 및 도 23의 (C)는 플루오린의 매핑을 나타낸 것이다.
도 22의 (B)에 나타낸 바와 같이, 출발 물질로서 마그네슘 및 플루오린을 포함하는 시료 1에서는, 제 2 가열을 수행하기 전에 마그네슘이 입자의 표면 근방에 어느 정도 편석되는 것이 관찰되었다. 편석된 영역은 입자의 표면으로부터 약 1nm 내지 2nm이었다.
한편, 도 23의 (B)의 EDX 매핑에 나타낸 바와 같이, 출발 물질로서 마그네슘을 포함하지만 플루오린은 포함하지 않는 시료 5에서는, 표면 근방에 마그네슘이 편석되는 것이 관찰되지 않았다.
또한 도 22의 (C) 및 도 23의 (C)에 나타낸 바와 같이, 시료 1 및 시료 5의 양쪽에서, 양극 활물질의 내부에서 플루오린이 거의 관찰되지 않았다. 이는, EDX가 가벼운 원소인 플루오린을 검출하기 어렵기 때문이라고 생각된다.
<XPS(X-ray photoelectron spectroscopy)>
다음으로, 시료 1 및 시료 5(비교예)에 대하여, 제 2 가열 전후의 양극 활물질의 표면 근방의 마그네슘의 양을 분석하였다.
XPS 분석의 조건은 이하와 같다.
측정 장치: PHI, Inc. 제조의 Quantera II
X선원: 단색화 A1(1486.6eV)
검출 영역: 100μmφ
검출 깊이: 약 4nm 내지 5nm(추출각 45°)
측정 스펙트럼: 와이드(wide), Li1s, Co2p, Ti2p, O1s, C1s, F1s, S2p, Ca2p, Mg1s, Na1s, Zr3d
XPS를 사용하여 각 원소의 농도를 정량화시킨 결과를 표 2에 나타낸다. 정량적 정확도는 약 ±1atomic%이다. 검출 하한은 약 1atomic%이고, 원소에 따른다. Ca에서는, 파형으로 분리된 Mg Auger 피크가 제거되어, 정량적 오차가 보통보다 크다.
표 3은, 코발트가 1인 경우의 각 원소의 존재비의 계산 결과를 나타낸 것이다.
Figure 112019133662881-pat00003
Figure 112019133662881-pat00004
표 3에 나타낸 원소의 존재비 중, 마그네슘의 그래프를 도 24에 나타내었다.
표 2, 표 3, 및 도 24에 나타낸 바와 같이, 첨가 출발 물질로서 마그네슘 및 플루오린을 포함하는 시료 1에서는, 제 2 가열 전에도, XPS에 의하여 측정 가능한 양극 활물질의 표면 근방에 마그네슘이 존재하였다. 제 2 가열 후, 양극 활물질의 표면 근방의 마그네슘의 양은 더 증가하였다.
바꿔 말하면, 양극 활물질의 표면에서의 마그네슘의 편석은 제 2 가열에 의하여 진행되었다고 생각된다. 따라서, 시료 1의 양극 활물질은 내부에 제 1 영역, 그리고 표층부에 제 2 영역을 갖는 것, 및 제 1 영역은 코발트산 리튬을 포함하고 제 2 영역은 마그네슘을 포함하는 것이 확인되었다.
한편, 첨가 출발 물질로서 플루오린을 포함하지 않고, 마그네슘만을 포함하는 시료 5에서는, 양극 활물질의 표면 근방의 마그네슘의 양이 제 2 가열 전후 모두에서 검출 하한보다 낮았다. 바꿔 말하면, 출발 물질에 포함되는 플루오린은 놀랍게도 양극 활물질의 표층부에 마그네슘을 편석시키는 효과가 있다는 것이 판명되었다.
<사이클 특성>
다음으로, 제 2 가열 전후의 시료 1의 양극 활물질, 제 1 가열 전후의 시료 5의 양극 활물질, 그리고 시료 2, 시료 3, 시료 4, 및 시료 6의 양극 활물질을 사용하여, CR2032(직경 20mm, 높이 3.2mm)의 코인형 이차 전지를 제작하였다. 이들의 사이클 특성을 평가하였다.
양극에는, 형성된 양극 활물질과, 아세틸렌 블랙(AB)과, 폴리플루오린화바이닐리덴(PVDF)을 양극 활물질:AB:PVDF=95:2.5:2.5의 중량비에서 혼합한 슬러리를 집전체에 도포함으로써 형성한 양극을 사용하였다.
대향 전극에는 리튬 금속을 사용하였다.
전해액에 포함되는 전해질로서는 1mol/L의 헥사플루오로 인산 리튬(LiPF6)을 사용하고, 전해액으로서는 에틸렌 카보네이트(EC)와 다이에틸 카보네이트(DEC)가 체적비 EC:DEC=3:7에서, 그리고 바이닐렌 카보네이트(VC)가 2wt%에서 혼합된 용액을 사용하였다.
양극 캔 및 음극 캔은 스테인리스강(SUS)으로 형성하였다.
사이클 특성 시험을 위한 측정 온도는 25℃이었다. 충전을 활물질 중량당 전류 밀도 68.5mA/g의 정전류, 그리고 상한 전압 4.6V에서 수행한 후, 전류 밀도가 1.4mA/g에 도달될 때까지 정전압 충전을 하였다. 방전은 활물질 중량당 전류 밀도 68.5mA/g의 정전류, 그리고 하한 전압 2.5V에서 수행하였다. 30사이클의 충방전이 수행되었다.
도 25의 (A) 및 (B)는, 시료 1의 제 2 가열 전후 및 시료 5의 제 1 가열 전후의 양극 활물질을 사용한 이차 전지의 사이클 특성을 나타낸 그래프이다. 도 25의 (A)는 4.6V 충전에서의 에너지 밀도이다. 도 25의 (B)는 4.6V 충전에서의 에너지 밀도 유지율의 그래프이다. 에너지 밀도는 방전 용량과 방전 평균 전압의 적이다.
도 25의 (A) 및 (B)에 나타낸 바와 같이, 출발 물질로서 첨가된 마그네슘 및 플루오린을 포함하는 시료 1에서는, 제 2 가열을 수행함으로써 사이클 성능이 크게 향상되었다. 에너지 밀도도 양호하였다.
이는, 상술한 XPS 결과로부터 명백한 바와 같이, 양극 활물질의 표면 근방에 존재하는 마그네슘의 양이 제 2 가열을 수행함으로써 증가하였기 때문이라고 생각된다.
한편, 첨가 출발 물질로서 마그네슘만을 포함하는 시료 5에서는, 제 2 가열 전후에서 사이클 특성의 큰 차이는 관찰되지 않았다.
도 26 및 도 27은, 제 2 가열 후의 시료 1 내지 시료 6의 양극 활물질을 사용한 이차 전지의 사이클 특성의 그래프를 나타낸 것이다. 도 26은 4.6V 충전에서의 에너지 밀도의 그래프이고, 도 27은 4.6V 충전에서의 에너지 밀도 유지율의 그래프이다.
도 26 및 도 27에 나타낸 바와 같이, 출발 물질에 플루오린만이 첨가된 시료 4(비교예) 및 마그네슘만이 첨가된 시료 5(비교예)는, 마그네슘도 플루오린도 첨가되지 않은 시료 6(비교예)보다 낮은 사이클 특성을 나타내었다.
한편, 출발 물질에 마그네슘 및 플루오린이 첨가된 시료 1 내지 시료 3은 양호한 사이클 특성을 나타내었다. 가장 양호한 사이클 특성은 마그네슘 대 플루오린의 원자수비가 1:2인 시료 1에서 나타내어졌다. 마그네슘 대 플루오린의 함유비가 1:4의 시료 2는 양호한 사이클 특성을 나타내었다. 도 26으로부터 명백한 바와 같이, 사이클 특성뿐만 아니라 에너지 밀도도 양호하였다.
이러한 식으로, 출발 물질에 마그네슘 및 플루오린을 첨가함으로써, 양호한 사이클 특성을 나타내는 양극 활물질을 얻을 수 있다는 것이 밝혀졌다. 또한, 출발 물질에 포함되는 마그네슘 대 플루오린의 원자수비는 Mg:F=1:x(1.5≤x≤4)인 것이 바람직하고, Mg:F=1:2 정도가 가장 바람직하다는 것이 밝혀졌다.
<시료 7 및 시료 8의 양극 활물질의 제작>
다음으로, 마그네슘과 플루오린의 비율을 일정하게(Mg:F=1:2) 유지하면서 첨가량을 변경한, 시료 7 및 시료 8의 양극 활물질을 준비하였다.
시료 7에는, 1mol%의 MgO 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 시료 8에는, 2mol%의 MgO 및 4mol%의 LiF를 첨가 출발 물질로서 사용하였다. 시료 7 및 시료 8 각각에 대하여, 실시형태 1에서 설명한 제작 방법과 마찬가지로, 출발 물질을 혼합하고, 제 1 가열을 수행하고, 냉각시키고, 체로 치고, 제 2 가열을 수행하고, 냉각시키고, 회수하였다. 이러한 식으로, 양극 활물질 및 이차 전지를 제작하였다.
표 4는, 원료로서의 마그네슘 대 플루오린의 원자수비가 Mg:F=1:2인, 시료 1, 시료 7, 및 시료 8, 그리고 비교예로서 마그네슘 및 플루오린이 첨가되지 않는 시료 6의, 공통 출발 물질 및 첨가 출발 물질을 나타낸 것이다.
Figure 112019133662881-pat00005
<사이클 특성>
도 28의 (A) 및 (B)는, 시료 1, 시료 7, 시료 8, 및 시료 6(비교예)의 양극 활물질을 사용한 이차 전지의 사이클 특성의 그래프이다. 도 28의 (A)는 4.6V 충전에서의 에너지 밀도의 그래프이고, 도 28의 (B)는 4.6V 충전에서의 에너지 밀도 유지율의 그래프이다.
도 28의 (A) 및 (B)에 나타낸 바와 같이, 원료로서의 마그네슘 대 플루오린의 원자수비가 Mg:F=1:2의 시료는 모두 양호한 사이클 특성을 나타내었다. 이들 중에서, 첨가 출발 물질로서 1mol%의 MgO 및 2mol%의 LiF를 사용한 시료 7은 가장 양호한 사이클 특성을 나타내었고, 30사이클 후의 에너지 밀도 유지율은 93%이었다. 도 28의 (A)로부터도 명백한 바와 같이, 사이클 특성뿐만 아니라 에너지 밀도도 양호하였다.
(실시예 2)
본 실시예에는, 마그네슘의 편석에 의하여 형성된 제 2 영역을 갖는 양극 활물질과, 외부로부터의 피복에 의하여 형성된 산화 마그네슘층을 갖는 양극 활물질의 비교 결과를 나타낸다.
<편석에 의하여 형성된 제 2 영역을 갖는 양극 활물질>
마그네슘의 편석에 의하여 형성된 제 2 영역을 갖는 양극 활물질로서는, 1mol%의 MgO 및 2mol%의 LiF를 첨가 출발 물질로서 사용한, 실시예 1의 시료 7을 사용하였다.
<외부로부터의 피복에 의하여 형성된 MgO를 갖는 양극 활물질>
외부로부터의 피복에 의하여 형성된 산화 마그네슘층을 갖는 양극 활물질로서는, 다각형 배럴(barrel) 스퍼터링을 사용하여 코발트산 리튬을 산화 마그네슘으로 피복한 시료 9(비교예) 및 시료 10(비교예)의 양극 활물질을 사용하였다. 시료 9(비교예) 및 시료 10(비교예)의 제작 방법에 대하여 이하에서 설명한다.
NIPPON CHEMICAL INDUSTRIAL CO., LTD.가 제조한 코발트산 리튬(제품명: C-10N)을 사용하였다. 다각형 배럴 스퍼터링에는, 타깃으로서 산화 마그네슘을 사용하고, 전력을 450W로 설정하고, Ar 및 O2를 스퍼터링 가스로서 사용하여 막을 형성하였다. Ar 및 O2의 분압을 0.6Pa 및 0.5Pa로 각각 설정하였다. 처리 시간은, 시료 9에 대해서는 36분, 시료 10에 대해서는 180분으로 하였다.
다각형 배럴 스퍼터링 처리 후의 STEM 관찰에 의하여, 약 1nm 내지 3nm의 산화 마그네슘층이 시료 9의 양극 활물질의 표면에 부착되었다는 것이 밝혀졌다. 시료 10에서는, 약 6nm 내지 8nm의 산화 마그네슘층이 양극 활물질의 표면에 부착되었다.
그 후, 실시형태 1에서 설명한 제 2 가열과 마찬가지로, 시료 9 및 시료 10을 2시간 동안 800℃에서 가열하였다. 승온이 200℃/h, 이슬점이 -109℃인 건조 공기를 10L/min으로 흘렸다.
본 실시예에서 비교하는 시료 7, 시료 9(비교예), 및 시료 10(비교예)의 조건을 표 5에 나타낸다.
Figure 112019133662881-pat00006
<STEM>
시료 7 및 시료 10(비교예)의 양극 활물질의 단면을 STEM을 사용하여 관찰하였다. 도 29의 (A) 및 (B)에는, 편석에 의하여 형성된 제 2 영역을 갖는 시료 7의 STEM 이미지를 나타낸다. 도 30의 (A) 및 (B)에는, 외부로부터의 피복에 의하여 형성된 산화 마그네슘층을 갖는 시료 10(비교예)의 STEM 이미지를 나타낸다.
시료 7에서는, 제 1 영역과 제 2 영역이 상이한 영역인 것을 화상의 밝기의 차이 등으로부터 관찰할 수 있었다. 도 29의 (A) 및 (B)에 나타낸 바와 같이, 편석에 의하여 형성된 제 2 영역을 갖는 시료 7에서는, 약 1nm 내지 2nm의 제 2 영역이 관찰되었다.
시료 10(비교예)에서도, 도 30의 (A) 및 (B)에 나타낸 바와 같이, 산화 마그네슘층이 코발트산 리튬 상에 형성된 것을 화상의 밝기의 차이 등으로부터 관찰할 수 있었다. 시료 10(비교예)에서는, 약 8nm의 산화 마그네슘층이 관찰되었다.
시료 7 및 시료 10(비교예)의 양쪽 모두에서, 상이한 층 간에서의 양이온 및 음이온의 배열의 적어도 일부는 정렬되고, 제 1 영역의 결정 및 제 2 영역의 결정의 배향은 일치하였다.
<충방전 특성>
시료 7, 시료 9(비교예), 및 시료 10(비교예)의 양극 활물질을 사용하여, 실시예 1과 마찬가지로 이차 전지를 제작하여, 충방전 특성을 평가하였다. 도 31의 (A), (B), 및 (C)는 각각, 시료 7, 시료 9(비교예), 및 시료 10(비교예)의 양극 활물질을 사용한 이차 전지의 충방전 특성을 나타낸 것이다.
도 31의 (A) 내지 (C)에 나타낸 바와 같이, 마그네슘의 편석에 의하여 형성된 제 2 영역을 갖는 시료 7은, 다각형 배럴 스퍼터링에 의하여 형성된 산화 마그네슘층을 갖는 시료 9 및 시료 10보다 용량이 크고, 더 양호한 사이클 특성을 나타내었다.
다음으로, 시료 7, 시료 9(비교예), 및 시료 10(비교예)의 양극 활물질을 사용한 이차 전지의 사이클 특성의 평가 결과를 도 32의 (A) 및 (B)에 나타내었다. 사이클 특성 시험은 실시예 1과 마찬가지로 수행되었다.
도 32의 (A)는 4.6V 충전에서의 에너지 밀도의 그래프이고, 도 32의 (B)는 4.6V 충전에서의 에너지 밀도 유지율의 그래프이다. 도 32의 (B)에 나타낸 바와 같이, 편석에 의하여 형성된 제 2 영역을 갖는 시료 7은, 다각형 배럴 스퍼터링에 의하여 형성된 산화 마그네슘층을 각각 갖는 시료 9 및 시료 10보다 사이클 특성이 매우 양호하다. 도 32의 (A)에 나타낸 바와 같이, 에너지 밀도도 시료 7에서 더 양호하였다.
따라서, 마그네슘의 편석에 의하여 형성된 제 2 영역은, 다각형 배럴 스퍼터링에 의하여 형성된 산화 마그네슘층보다 더 양호한 충방전 특성 및 사이클 특성에 기여하는 것이 밝혀졌다.
이들 결과로부터, 출발 물질에 미리 포함된 마그네슘이 표면에 편석된 결과로서 형성된 마그네슘 함유 영역은, 코발트산 리튬 입자의 외부로부터 피복된 산화 마그네슘층보다 코발트산 리튬의 결정 구조의 안정화에 기여하는 것이 추정되었다.
(실시예 3)
본 실시예에서는, 마그네슘의 편석에 의하여 형성된 제 2 영역을 갖는 양극 활물질의 특성이 다양한 분석으로 밝혀졌다.
<분석된 양극 활물질>
첨가 출발 물질로서 1mol%의 MgO 및 2mol%의 LiF를 사용한 실시예 1의 시료 7을 본 실시예의 분석 시료로서 사용하였다.
<STEM, FFT>
도 33의 (A) 내지 (C) 및 도 34의 (A) 내지 (C)에는, 편석에 의하여 형성된 제 2 영역을 갖는 시료 7의 양극 활물질의 표면 근방의 단면의 STEM-FFT 이미지를 나타내었다. 도 33의 (A)는 양극 활물질의 표면 근방의 STEM 이미지이고, 도 33의 (B)는 도 33의 (A)에서 FFT1로 나타내어진 영역의 FFT(Fast Fourier Transform) 이미지이다. 도 33의 (B)의 FFT 이미지의 휘점의 일부를 도 33의 (C)에 나타낸 바와 같이, A, B, C, O라고 부른다.
FFT1로 나타내어진 영역의 FFT 이미지의 휘점에 관하여, 측정값은 OA에 대해서는 d=0.20nm, OB에 대해서는 d=0.24nm, 그리고 OC에 대해서는 d=0.25nm이었다. 또한, ∠AOB=53°, ∠BOC=74°, 및 ∠AOC=127°이다.
이 결과는, ICDD(International Centre for Diffraction Data)에서의 산화 마그네슘(MgO)의 데이터(ICDD45-0945)로부터 얻어지는, OA(200)의 d=0.21nm, OB(1-11)의 d=0.24nm, OC(-1-11)의 d=0.24nm, ∠AOB=55°, ∠BOC=70°, 및 ∠AOC=125°와 가깝다. 그러므로, FFT1로 나타내어진 영역은 암염 결정 구조를 갖는 영역이고, [011] 입사의 이미지인 것이 밝혀졌다.
도 34의 (A)는 도 33의 (A)의 양극 활물질의 표면 근방의 STEM 이미지이다. 도 34의 (B)는, 도 34의 (A)에서 FFT2로 나타내어진 영역의 FFT 이미지를 나타낸 것이다. 도 34의 (B)의 FFT 이미지의 휘점의 일부를 도 34의 (C)에 나타낸 바와 같이, A, B, C, O라고 부른다.
FFT2로 나타내어진 영역의 FFT 이미지의 휘점에 관하여, 측정값은 OA에 대해서는 d=0.24nm, OB에 대해서는 d=0.20nm, 그리고 OC에 대해서는 d=0.45nm이었다. 또한, ∠AOB=25°, ∠BOC=53°, 및 ∠AOC=78°이다.
이 결과는, ICDD 데이터 베이스에서의 코발트산 리튬(LiCoO2)의 데이터(ICDD50-0653)로부터 얻어지는, OA(101)의 d=0.24nm, OB(104)의 d=0.20nm, OC(003)의 d=0.47nm, ∠AOB=25°, ∠BOC=55°, 및 ∠AOC=80°와 가깝다. 그러므로, FFT2로 나타내어진 영역은 코발트산 리튬을 포함하는 영역이고, [010] 입사의 이미지인 것이 밝혀졌다.
또한, 도 33의 (A) 및 도 34의 (A)의 STEM 이미지로부터, 화상의 밝기가 제 1 영역과 제 2 영역 사이에서 상이하다는 것, 그리고 제 1 영역의 결정 및 제 2 영역의 결정의 배향이 일치하다는 것이 관찰되었다.
<STEM-EDX>
다음으로, STEM-EDX를 사용한, 시료 7의 표면 근방 및 결정 결함 근방의 분석 결과를 도 35의 (A) 내지 (C), 도 36, 및 도 37의 (A1) 내지 (B2)에 나타내었다.
도 35의 (A) 내지 (C)는 시료 7의 양극 활물질의 표면 근방의 STEM-EDX 분석 결과를 나타낸 것이다. 도 35의 (A)에는 STEM 이미지를 나타내고, 도 35의 (B)에는 마그네슘의 매핑을 나타내고, 도 35의 (C)에는 플루오린의 매핑을 나타내었다.
양극 활물질의 표면 근방의 마그네슘은, 실시예 1에서 설명한 출발 물질로서 0.5mol%의 MgO 및 1mol%의 LiF를 첨가한 시료 1(도 22의 (A) 내지 (C))보다, 출발 물질로서 1mol%의 MgO 및 2mol%의 LiF를 첨가한 시료 7(도 35의 (A) 내지 (C))에서 더 명확하게 관찰되었다. 이는, 양극 활물질의 표면 근방의 마그네슘의 양이 많을수록, 사이클 특성이 양호하다는 실시예 1의 결과를 지지하는 것이다.
도 36은 시료 7의 양극 활물질의 결정 결함 근방의 단면 TEM 이미지이다. 도 36의 결정 결함(1001)에서, 다른 부분과 밝기가 상이한, 결정 결함이라고 생각되는 부분이 관찰되었다.
도 37의 (A1) 내지 (B2)는 도 36의 결정 결함(1001)의 STEM-EDX 분석 결과를 나타낸 것이다.
도 37의 (A1)에는 결정 결함(1001)의 STEM 이미지를 나타내었다. 도 37의 (A2)에는 마그네슘의 매핑을 나타내었다. 도 37의 (B1)에는 플루오린의 매핑을 나타내었다. 도 37의 (B2)에는 지르코늄의 매핑을 나타내었다.
도 37의 (A2)에 나타낸 바와 같이, 마그네슘의 편석이 시료 7의 양극 활물질의 결정 결함 및 그 근방에서 관찰되었다. 이는, 시료 7이 표면 근방뿐만 아니라 내부에도 제 2 영역을 갖는 양극 활물질인 것을 나타낸다. 또한, 도 37의 (B2)에 나타낸 바와 같이, 지르코늄의 편석도 제 2 영역의 내부에서 관찰되었다. 볼밀에 의하여 출발 물질을 혼합하는 단계가 수행되고 볼밀의 재료에 지르코늄이 사용되기 때문에, 지르코늄이 시료 7에 들어갈 가능성이 있다. 또한, 도 37의 (B1)에 나타낸 바와 같이, 플루오린은 제 2 영역의 내부에서 거의 검출되지 않는다. 이는, EDX에 의해서는 가벼운 원소인 플루오린이 검출되기 어렵기 때문이라고 생각된다.
<ToF-SIMS>
다음으로, 깊이 방향에서의 마그네슘 및 플루오린의 분포를 조사하기 위하여, 편석에 의하여 형성된 제 2 영역을 갖는 시료 7의 양극 활물질을, ToF-SIMS를 사용하여 분석하고, 그 분석 결과를 도 38에 나타내었다.
시료로서 복수의 양극 활물질을 사용하여, ToF-SIMS 분석 및 스퍼터링을 교대로 반복함으로써, 양극 활물질의 표면으로부터 깊이 방향에서 분석을 수행하였다. 측정 장치로서 TOF.SIMS5-300(ION-TOF GmbH 제조)을 사용하였다. 스퍼터링의 이온원으로서 Cs를 사용하였다. 분석은 약 50μm×50μm의 범위에서 수행하였다.
도 38은, 산화 마그네슘 이온([MgO2]2-) 및 플루오린화 이온(F-)의 강도의 그래프를 나타낸 것이다. 가로축은 측정 횟수(사이클 수)를 나타낸다. 이 측정에서는 음 이온에 대한 분석이 수행되기 때문에, 마그네슘의 분포는 [MgO2]2-의 강도로 평가되었다. 또한, 각 강도는 최대값을 1로 설정함으로써 정규화되었다.
도 38에 나타낸 바와 같이, 마그네슘의 편석에 의하여 형성된 제 2 영역을 갖는 시료 7에서는, 깊이 방향에서의 마그네슘 및 플루오린의 분포가 피크와 중첩된다는 것이 밝혀졌다.
<XPS>
다음으로, 표 6 및 도 39에는, 제 2 가열 전후에 XPS를 사용하여 시료 7의 양극 활물질을 분석한 결과를 나타내었다. XPS 분석은 실시예 1과 마찬가지로 수행되었다.
XPS를 사용하여 시료 7의 각 원소의 농도를 정량화시킨 결과를 표 6에 나타낸다. 또한, 정량적 정확도는 약 ±1atomic%이고, 검출 하한은 약 1atomic%이고 원소에 따른다. Ca에서는, 곡선 맞춤된 Mg Auger 피크가 제거되어, 정량적 오차가 보통보다 크다.
Figure 112019133662881-pat00007
표 6의 정량값은, XPS에 의하여 분석할 수 있는, 양극 활물질의 표면으로부터 중심을 향한 깊이 4nm 내지 5nm의 범위에 있고, 그리고 리튬, 코발트, 타이타늄, 산소, 탄소, 플루오린, 황, 칼슘, 마그네슘, 소듐, 및 지르코늄의 총량을 100atomic%로 간주할 때의 값이다.
표 6에 나타낸 바와 같이, 제 2 가열 후의, 편석에 의하여 형성된 제 2 영역을 갖는 시료 7의 표면으로부터 중심을 향한 깊이 4nm 내지 5nm의 범위에서, 리튬, 코발트, 타이타늄, 산소, 탄소, 플루오린, 황, 칼슘, 마그네슘, 소듐, 및 지르코늄의 총량을 100%로 간주하였을 때, 마그네슘 농도는 5.5atomic%이고, 플루오린 농도는 1.4atomic%이었다.
리튬, 코발트, 산소, 플루오린, 및 마그네슘의 총량을 100%로 간주하였을 때, 마그네슘 농도는 6.7%인 것으로 계산되고, 플루오린 농도는 1.7%인 것으로 계산되었다.
마그네슘 대 플루오린의 농도의 비율은 Mg:F=y:1(3≤y≤5)의 범위 내에 있고, 더 정확하게는 Mg:F=3.9:1 정도이었다.
다음으로, 표면 XPS 분석에 의하여 제 2 가열 후의 시료 7에서의 플루오린의 결합 상태를 분석한 결과를 도 39에 나타내었다. 비교예로서, 첨가 출발 물질로서 10mol%의 LiF를 사용하고 마그네슘을 첨가하지 않은 것을 제외하고, 시료 7과 마찬가지로 준비한 시료의 결과를 나타낸다. MgF2 및 LiF의 표준 시료의 XPS 스펙트럼도 나타낸다.
도 39에 나타낸 바와 같이, 첨가 출발 물질로서 10mol%의 LiF를 사용하고 마그네슘을 첨가하지 않은 시료에서는, 플루오린의 결합 에너지의 피크는 LiF와 동등한 약 685eV이고, 양극 활물질의 표층부의 플루오린에 대해서는 LiF가 주된 결합 상태인 것으로 생각되었다. 한편, 출발 물질로서 첨가된 1mol%의 MgO 및 2mol%의 LiF를 가지며 제 2 영역을 갖는 시료 7에서, 양극 활물질의 표층부의 플루오린의 결합 에너지의 피크는 682eV 이상 685eV 미만, 더 정확하게는 684.3eV이었고, 이는 MgF2 또는 LiF와 일치하지 않았다. 바꿔 말하면, 양극 활물질의 제 2 영역에 포함된 플루오린은 MgF2 또는 LiF의 어느 쪽도 아닌 결합 상태에서 존재한다는 것이 추정되었다.
(실시예 4)
본 실시예에서는, 편석에 의하여 형성된 제 2 영역을 갖는 양극 활물질을 형성한 경우의, 제 2 가열의 온도 및 제 2 가열 시의 분위기의 검토 결과에 대하여 설명한다.
<<제 2 가열의 온도>>
<시료 11 내지 시료 13의 양극 활물질의 준비>
제 2 가열의 온도가 변경된 시료 11 내지 시료 13의 양극 활물질을 준비하였다. 모든 출발 물질에, 공통 출발 물질로서 탄산 리튬 및 산화 코발트를 사용하고, 첨가 출발 물질로서 1mol%의 MgO 및 2mol%의 LiF를 사용하였다.
제 2 가열의 온도가 시료 11에 대해서는 700℃, 시료 12에 대해서는 900℃, 시료 13에 대해서는 1000℃인 것을 제외하여, 실시예 1의 시료 7과 마찬가지로 양극 활물질을 준비하였다. 또한, 시료 7의 제 2 가열의 온도는 800℃이었다. 각 시료의 제 2 가열의 온도를 표 7에 나타낸다.
Figure 112019133662881-pat00008
시료 7 및 시료 11 내지 시료 13의 양극 활물질을 사용하여, 실시예 1과 마찬가지로 이차 전지를 준비하여, 사이클 특성을 평가하였다. 시료 7 및 시료 11 내지 시료 13의 사이클 특성을 도 40의 (A) 및 (B)에 나타내었다. 충방전 조건은 실시예 1과 같았다.
도 40의 (A)는 4.6V 충전에서의 에너지 밀도의 그래프이고, 도 40의 (B)는 4.6V 충전에서의 에너지 밀도 유지율의 그래프이다. 도 40의 (B)에서 나타낸 바와 같이, 제 2 가열 온도가 800℃의 시료 7이 가장 양호한 사이클 특성을 나타내었다. 제 2 가열 온도가 700℃의 시료 11 및 900℃의 시료 12는 두 번째로 가장 양호한 사이클 특성을 갖는다. 제 2 가열 온도가 1000℃의 시료 13에서도, 20사이클 후의 에너지 밀도 유지율은 76%이었다. 이는, 첨가 출발 물질을 갖지 않고 20사이클 후의 에너지 밀도 유지율이 63%인, 도 26에 나타낸 시료 6과 비교하여, 시료 13이 양호한 사이클 특성을 나타내었다고 할 수 있다.
따라서, 제 2 가열의 온도는 700℃ 이상 1000℃ 이하인 것이 바람직하고, 700℃ 이상 900℃ 이하인 것이 더 바람직하고, 약 800℃인 것이 더욱 바람직하다.
<<제 2 가열의 분위기>>
<시료 14 내지 시료 16의 양극 활물질의 준비>
시료 14 내지 시료 16의 양극 활물질은, 제 2 가열의 분위기를 건조 공기로부터 100% 산소로 변경함으로써 준비하였다. 모든 출발 물질에, 공통 출발 물질로서 탄산 리튬 및 산화 코발트를 사용하고, 첨가 출발 물질로서 1mol%의 MgO 및 2mol%의 LiF를 사용하였다. 제 2 가열을 산소 분위기로 변경한 것을 제외하여, 시료 7, 시료 12, 및 시료 13과 마찬가지로 양극 활물질을 준비하였다.
시료 14 내지 시료 16의 양극 활물질을 사용하여, 실시예 1과 마찬가지로 이차 전지를 제작하고, 시료 7, 시료 12, 및 시료 13과 함께 사이클 특성을 평가하였다.
시료 7 및 시료 12 내지 시료 16의 에너지 밀도 및 사이클 특성의 그래프를 도 41의 (A) 내지 (C) 및 도 42의 (A) 내지 (C)에 나타내었다. 도 41의 (A) 내지 (C)는 에너지 밀도의 그래프이고, 도 42의 (A) 내지 (C)는 사이클 특성의 그래프이다. 도 41의 (A) 및 도 42의 (A)는, 제 2 가열 온도가 800℃의 시료 14 및 시료 7의 에너지 밀도 및 사이클 특성을 나타낸 것이다. 도 41의 (B) 및 도 42의 (B)는, 제 2 가열 온도가 900℃의 시료 15 및 시료 12의 에너지 밀도 및 사이클 특성을 나타낸 것이다. 도 41의 (C) 및 도 42의 (C)는, 제 2 가열 온도가 1000℃의 시료 16 및 시료 13의 에너지 밀도 및 사이클 특성을 나타낸 것이다. 도 41의 (A) 내지 (C) 및 도 42의 (A) 내지 (C)에 나타낸 각 시료의 제 2 가열 분위기 및 제 2 가열 온도를 표 8에 나타낸다.
Figure 112019133662881-pat00009
도 41의 (A) 내지 (C)에 나타낸 바와 같이, 800℃, 900℃, 및 1000℃의 제 2 가열이 수행된 경우, 산소 분위기에서 수행된 제 2 가열은 건조 공기에서 수행된 제 2 가열보다 더 양호한 사이클 특성에 기여하였다.
(실시예 5)
본 실시예에서는, 첨가 출발 물질로서 마그네슘 및 플루오린을 사용한 경우의 사이클 특성과, 마그네슘 또는 플루오린 외의 원소를 사용한 경우의 사이클 특성을 비교하였다.
<<플루오린과 염소의 비교>>
우선, 첨가 출발 물질로서 마그네슘 및 플루오린을 사용한 경우와, 플루오린 대신에 염소를 사용한 경우에서 사이클 특성을 비교하였다.
<시료 17 및 시료 18의 양극 활물질의 준비>
시료 7에는, 코발트에 대하여 1mol%의 MgO 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 시료 17에는, 1mol%의 MgO, 1mol%의 LiF, 및 1mol%의 LiCl을 사용하였다. 비교예로서의 시료 18에는, 1mol%의 MgO 및 2mol%의 LiCl을 사용하였다. 비교예로서의 시료 6에는, 마그네슘도 플루오린도 염소도 첨가하지 않았다.
시료 7, 시료 17, 시료 18, 및 시료 6에는, 실시예 2와 마찬가지로 양극 활물질을 준비하고, 이들을 사용한 이차 전지를 준비하여, 사이클 특성을 평가하였다. 사이클 특성 시험은 실시예 1과 마찬가지로 수행되었다.
<사이클 특성>
표 9는, 각 시료의 첨가 출발 물질 및 20사이클 후의 에너지 밀도 유지율을 나타낸 것이다.
Figure 112019133662881-pat00010
표 9에 나타낸 바와 같이, 플루오린 대신에 염소를 첨가하면 사이클 특성이 저하되는 경향이 있었다. 그러나, 1mol%의 플루오린 및 1mol%의 염소를 갖는 시료 17에서, 20사이클 후의 에너지 밀도 유지율은 80% 이상이었다. 이는, 마그네슘도 플루오린도 염소도 갖지 않는 시료 6과 비교하여 양호한 사이클 특성이었다.
<<마그네슘과, 다른 금속의 비교>>
다음으로, 첨가 출발 물질로서 마그네슘과 플루오린을 사용한 경우와, 마그네슘 대신에 다른 금속을 사용한 경우에서, 사이클 특성을 비교하였다.
<시료 19 내지 시료 29의 양극 활물질의 준비>
첨가 출발 물질로서 마그네슘 및 플루오린을 사용한 시료로서, 실시예 1의 시료 7을 사용하였다. 비교예로서의 시료 19에는, 1mol%의 MgO, 1mol%의 TiO2, 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 20에는, 1mol%의 ZrO2 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 21에는, 1mol%의 TiO2 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 22에는, 1mol%의 V2O5 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 23에는, 1mol%의 ZnO 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 24에는, 1mol%의 CaO 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 25에는, 1mol%의 Al2O3 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 26에는, 1mol%의 MoO2 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 27에는, 1mol%의 SrO 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 28에는, 1mol%의 NaF 및 1mol%의 LiF를 첨가 출발 물질로서 사용하였다. 비교예로서의 시료 29에는, 1mol%의 BaO 및 2mol%의 LiF를 첨가 출발 물질로서 사용하였다. 플루오린도 어떤 금속도 첨가되지 않은 비교예로서, 실시예 1의 시료 6을 사용하였다.
시료 6, 시료 7, 및 시료 19 내지 시료 29에는, 실시예 1과 마찬가지로 양극 활물질을 준비하고, 이들을 사용한 이차 전지를 준비하여, 사이클 특성을 평가하였다.
<사이클 특성>
표 10은, 각 시료의 첨가 출발 물질 및 20사이클 후의 에너지 밀도 유지율을 나타낸 것이다.
Figure 112019133662881-pat00011
표 10에 나타낸 바와 같이, 마그네슘 대신에 다른 금속을 첨가하면 사이클 특성이 저하되는 경향이 있었다.
이들 결과로부터, 첨가 출발 물질로서 마그네슘과 플루오린을 조합하여 사용하는 것은 매우 효과적인 방법이라는 것이 밝혀졌다.
앞의 실시예로부터, 양극 활물질의 출발 물질로서 마그네슘과 플루오린을 첨가함으로써, 마그네슘이 양극 활물질의 표면에 편석되는 것이 밝혀졌다. 또한, 편석에 의하여 형성된 양호한 피복층을 갖기 때문에, 고용량이며 사이클 특성이 우수한 양극 활물질로 할 수 있다는 것이 밝혀졌다.
이러한 양극 활물질을 갖는 이차 전지는 고용량 및 장수명이기 때문에, 휴대용 전자 기기에 적합하다. 또한, 자동차 및 다른 차량에 사용하면, 전력 수요의 피크 시에 상용 전원을 사용하는 것을 피하는 것도 가능하므로, 에너지 절약 및 이산화탄소 배출 삭감에 기여할 수 있다.
(실시예 6)
본 실시예에서는, 니켈, 망가니즈, 및 코발트를 제 1 영역의 전이 금속으로서 사용하여 준비된 양극 활물질의 평가 결과에 대하여 설명한다.
<시료 31, 시료 32>
마그네슘 및 플루오린을 갖는 시료 31, 및 비교예로서 마그네슘도 플루오린도 갖지 않는 시료 32를 준비하였다.
시료 31은, 출발 물질로서의 니켈, 망가니즈, 및 코발트의 합에 대하여, 1atomic%의 마그네슘 및 2atomic%의 플루오린을 첨가함으로써 얻어진 시료이었다. 또한, 출발 물질로서의 니켈, 망가니즈, 및 코발트의 원자수비는 Ni:Mn:Co=1:1:1이었다.
우선, 공통 출발 물질의 리튬원으로서, 탄산 리튬(Li2CO3)을 사용하였다. 니켈원으로서는, 산화 니켈(NiO)을 사용하였다. 망가니즈원으로서는, 산화 망가니즈(MnO2)를 사용하였다. 코발트원으로서는, 산화 코발트(Co3O4)를 사용하였다. 첨가 출발 물질의 마그네슘원으로서는, 산화 마그네슘(MgO)을 사용하였다. 플루오린원으로서는, 플루오린화 리튬(LiF)을 사용하였다.
각 출발 물질을, 원자수비가 LiCo0.323Mn0.333Ni0.333O2+MgO0.01LiF0.02가 되도록 칭량하였다.
다음으로, 칭량한 출발 물질을 볼밀을 사용하여 혼합하였다.
그리고, 혼합한 출발 물질을 소성하였다. 소성은 승온 속도를 200℃/h로 하고, 건조 공기 분위기의 유량을 10L/min으로 한 조건하에서, 950℃에서 10시간 동안 수행하였다.
상술한 공정을 거쳐, 리튬, 니켈, 망가니즈, 코발트, 플루오린, 및 마그네슘을 포함하는 복합 산화물의 입자를 합성하였다.
합성된 복합 산화물의 입자를 실온까지 냉각하였다.
다음으로, 복합 산화물의 입자를 가열하였다. 가열은 온도를 800℃로 하고(승온 속도를 200℃/h로 함), 유지 시간을 2시간으로 한 조건하에서, 건조 공기 분위기에서 수행하였다.
가열한 입자를 실온까지 냉각시키고 해쇄 처리를 실시하였다. 해쇄 처리에서는, 입자를 체눈의 크기가 53μm의 체로 치었다.
해쇄 처리를 실시한 입자를 시료 31의 양극 활물질로서 사용하였다.
시료 32에는, 각 출발 물질을 원자수비가 LiCo0.333Mn0.333Ni0.333O2가 되도록 칭량하였다. 또한, 소성을 1000℃에서 수행하였다. 그 외에는, 시료 31의 제작 방법을 참조할 수 있다.
표 11은 시료 31 및 시료 32의 제작 조건을 나타낸 것이다.
Figure 112019133662881-pat00012
<사이클 특성>
다음으로, 상술한 식으로 형성한 시료 31 및 시료 32의 양극 활물질을 사용하여 CR2032 코인형 이차 전지(직경 20mm 및 높이 3.2mm)를 제작하였다. 이들의 사이클 특성을 평가하였다.
시료 31 및 시료 32의 양극 활물질과, 아세틸렌 블랙(AB)과, 폴리플루오린화바이닐리덴(PVDF)을 양극 활물질:AB:PVDF=95:2.5:2.5의 중량비에서 혼합한 슬러리를 알루미늄박 집전체에 도포함으로써 형성한 양극을 사용하였다. 용매로서 N-메틸-2-피롤리돈(NMP)을 사용하였다.
대향 전극에는 리튬 금속을 사용하였다.
전해액에 포함되는 전해질로서는 1mol/L의 헥사플루오로 인산 리튬(LiPF6)을 사용하였다. 전해액으로서는, 체적비 EC:DEC=3:7의 에틸렌 카보네이트(EC)와 다이에틸 카보네이트(DEC)와, 2wt%의 바이닐렌 카보네이트(VC)를 혼합한 용액을 사용하였다.
양극 캔 및 음극 캔은 스테인리스강(SUS)으로 형성하였다.
사이클 특성 시험에서의 측정 온도는 25℃이었다. 충전을 활물질 중량당 전류 밀도 68.5mA/g의 정전류, 그리고 상한 전압 4.6V에서 수행하였다. 그 후, 전류 밀도가 1.4mA/g에 도달될 때까지 정전압 충전을 수행하였다. 방전을 활물질 중량당 전류 밀도 68.5mA/g의 정전류, 그리고 하한 전압 2.5V에서 수행하였다.
도 43의 (A)는, 4.6V 충전에서의, 시료 31 및 시료 32의 양극 활물질을 사용한 이차 전지의 방전 용량을 나타낸 것이다. 도 43의 (B)는 그 방전 용량 유지율을 나타낸 것이다.
마그네슘 또는 플루오린을 첨가하지 않은 시료 32와 비교하여, 마그네슘 및 플루오린을 첨가한 시료 31은 매우 양호한 사이클 특성을 나타내었다.
다음으로, 시료 31의 각종 분석 결과를 이하에 나타낸다.
<STEM-FFT>
시료 31의 양극 활물질의 표면 근방의 단면의 STEM 이미지를 도 44의 (A) 및 (B), 그리고 도 45의 (A) 및 (B)에 나타내었다. 도 44의 (B)는 도 44의 (A)의 일부를 확대함으로써 얻어진 STEM 이미지이다. 도 45의 (A) 및 (B)는 도 44의 (A)의 일부를 확대함으로써 얻어진 HAADF-STEM 이미지이다.
도 45의 (A) 및 (B)로부터 명백한 바와 같이, 양극 활물질의 표면으로부터 약 0.5nm의 영역에서는, 다른 영역과 밝기가 상이한 상태가 관찰되었다. 이는, 전이 금속보다 가벼운 원소인 마그네슘의 양이 많기 때문이라고 생각된다.
또한, 양극 활물질의 표면으로부터 약 0.5nm 내지 5nm의 영역에서는, 내부 영역과 규칙성이 상이한 상태가 관찰되었다. 이는, 표면으로부터 약 0.5nm 내지 5nm의 영역과 내부 영역 사이에서 결정의 배향이 상이하기 때문이라고 생각되었다.
도 46의 (A)는, 도 45의 (B)와 같은 범위에서의 명시야 STEM 이미지이다. 도 46의 (B)는, 도 46의 (A)에서 FFT1로 나타낸 영역의 FFT(fast Fourier transform) 이미지를 나타낸 것이다. 도 46의 (B)에 나타낸 바와 같이, FFT1 이미지의 휘점의 일부를 A, B, C, O라고 부른다.
FFT1로 나타내어진 영역의 FFT 이미지의 휘점에 관하여, 측정값은 OA에 대해서는 d=0.22nm, OB에 대해서는 d=0.25nm, 그리고 OC에 대해서는 d=0.23nm이었다. 또한, ∠AOB=58°, ∠BOC=69°, 및 ∠AOC=127°이다.
이 결과는, ICDD(International Centre for Diffraction Data)에서의 산화 마그네슘(MgO)의 데이터(ICDD45-0945)로부터 얻어지는, OA(200)의 d=0.21nm, OB(1-11)의 d=0.24nm, OC(-1-11)의 d=0.24nm, ∠AOB=55°, ∠BOC=70°, ∠AOC=125°와 가깝다. 그러므로, FFT1로 나타내어진 영역은 암염 결정 구조를 갖는 영역이고, [011] 입사의 이미지인 것이 밝혀졌다.
도 46의 (C)는, 도 46의 (A)의 FFT2로 나타내어진 영역의 FFT 이미지를 나타낸 것이다. 도 46의 (C)에 나타낸 바와 같이, FFT2 이미지의 휘점의 일부를 A, B, C, O라고 부른다.
FFT2로 나타내어진 영역의 FFT 이미지의 휘점에 관하여, 측정값은 OA에 대해서는 d=0.25nm, OB에 대해서는 d=0.21nm, 그리고 OC에 대해서는 d=0.49nm이었다. 또한, ∠AOB=26°, ∠BOC=57°, ∠AOC=83°이다.
이 결과는, ICDD 데이터 베이스에서의 코발트산 리튬(LiCoO2)의 데이터(ICDD50-0653)로부터 얻어지는, OA(10-11)의 d=0.24nm, OB(10-14)의 d=0.20nm, OC(0003)의 d=0.47nm, ∠AOB=25°, ∠BOC=55°, ∠AOC=80°와 가깝다. 그러므로, FFT2로 나타내어진 영역은 층상 암염 결정 구조를 갖는 영역이고, [-12-10] 입사의 이미지인 것이 밝혀졌다.
도 46의 (D)는, 도 46의 (A)에서 FFT3으로 나타내어진 영역의 FFT 이미지를 나타낸 것이다. 도 46의 (D)에 나타낸 바와 같이, FFT3 이미지의 휘점의 일부를 A, B, C, O라고 부른다.
FFT3으로 나타내어진 영역의 FFT 이미지의 휘점에 관하여, 측정값은 OA에 대해서는 d=0.21nm, OB에 대해서는 d=0.26nm, 그리고 OC에 대해서는 d=0.24nm이었다. 또한, ∠AOB=56°, ∠BOC=72°, ∠AOC=128°이다.
이 결과는, ICDD 데이터 베이스에서의 코발트산 리튬(LiCoO2)의 데이터(ICDD50-0653)로부터 얻어지는, OA(01-14)의 d=0.20nm, OB(10-1-2)의 d=0.23nm, OC(1-102)의 d=0.23nm, ∠AOB=55°, ∠BOC=70°, ∠AOC=125°와 가깝다. 그러므로, FFT2로 나타내어진 영역은 층상 암염 결정 구조를 갖는 영역이고, [02-21] 입사의 이미지인 것이 밝혀졌다.
바꿔 말하면, FFT2 및 FFT3으로 나타내어진 영역은, 같은 층상 암염 결정 구조를 갖지만, 결정축의 방향이 서로 상이하다는 것이 발견되었다.
도 45의 (A), (B), 및 도 46의 (A)에서 관찰할 수 있는 범위에서는, 밝기가 상이하더라도 결정 배향은 서로 대략 일치하는 것이 관찰되었다.
도 47은, STEM-FFT 결과로부터 추정되는, 양극 활물질의 표면 근방의 구조를 STEM 이미지와 함께 나타낸 것이다. 도 47에서의 M은 니켈, 망가니즈, 및 코발트 중 어느 하나를 나타낸다.
양극 활물질의 내부의 영역인 FFT3은 층상 암염 결정 구조를 갖는다. 또한, 이는 리튬과 M의 원자가 서로 중첩되는 경우에 관찰되는 [02-21] 입사의 이미지이다.
또한, 양극 활물질의 표층부의 영역인 FFT2는 층상 암염 결정 구조를 갖는다. FFT2는, 산소 원자의 층, M(니켈, 망가니즈, 및 코발트 중 하나) 원자의 층, 및 리튬 원자의 층이 반복되는 상태를 나타낸 [-12-10] 입사의 이미지이다. M의 층과 산소 및 리튬의 층이 반복되기 때문에 명시야 STEM 이미지에서 더 어두운 층과 더 밝은 층이 반복된다고 생각된다. 즉, FFT3 및 FFT2는 같은 층상 암염 결정 구조를 갖지만, 결정축의 방향은 서로 상이하다.
또한, 양극 활물질의 표층부의 영역에서, FFT2보다 표면에 가까운 영역인 FFT1은 암염 결정 구조를 갖고, [011] 입사의 이미지이다.
<EDX>
다음으로, 표면 근방의 시료 31의 양극 활물질의 단면을 EDX를 사용하여 분석하고, 그 결과를 도 48의 (A1) 내지 (B2) 및 도 49의 (A1) 내지 (B2)에 나타내었다.
도 48의 (A1)은 HAADF-STEM 이미지이고, 도 48의 (A2)는 산소의 매핑이고, 도 48의 (B1)은 마그네슘의 매핑이고, 도 48의 (B2)는 플루오린의 매핑이다. 도 49의 (A1)은 도 48의 (A1)과 같은 HAADF-STEM 이미지이고, 도 49의 (A2)는 망가니즈의 매핑이고, 도 49의 (B1)은 니켈의 매핑이고, 도 49의 (B2)는 코발트의 매핑이다.
도 48의 (B1)로부터, 양극 활물질의 표면으로부터 약 3nm의 영역에서 마그네슘이 편석되는 것이 관찰되었다. 도 49의 (A2), (B1), 및 (B2)를 비교함으로써, 양극 활물질의 표층부에, 내측보다 망가니즈는 적게, 니켈 및 코발트는 많이 포함하는 영역이 있는 것이 관찰되었다. 이 영역은 표면으로부터 약 5nm이고, STEM 이미지에서 내부와 상이한 규칙성이 관찰된 영역과 거의 중첩하였다.
그러므로, 시료 31의 양극 활물질이, 표층부에 마그네슘을 포함하는 영역, 그리고 내부의 일부에 망가니즈의 함유량이 적은 영역을 갖는 양극 활물질인 것이 확인되었다.
상술한 결과로부터, 출발 물질의 몰비를 LiNi1/3Mn1/3Co1/3O2+1mol%MgO+2mol%LiF로 설정하고 800℃에서 가열함으로써 준비한, 시료 31의 양극 활물질이 이하의 특성을 갖는 것이 밝혀졌다.
우선, 시료 31의 양극 활물질은 표층부에 산화 마그네슘을 갖는 제 2 영역을 포함한다. 양극 활물질의 내부에는, 중심부와 더 가까운 부분에 층상 암염 결정 구조를 갖는 LiNixMnyCozO2(x+y+z=1)를 포함하는 영역, 및 표면과 더 가까운 부분에 층상 암염 결정 구조를 갖는 LiNiaMnbCocO2(a+b+c=1)를 포함하는 영역이 포함된다.
내부의 LiNixMnyCozO2 및 LiNiaMnbCocO2는 같은 층상 암염 결정 구조를 갖지만, 결정축의 방향이 상이한 경우가 있다.
각 원소의 함유량은 y>b이고, 니켈, 망가니즈, 및 코발트의 합에 대한 망가니즈의 함유량은 표면에 가까운 영역에서 낮을 수 있다.
상술한 특성을 갖는 시료 31의 양극 활물질은, 이차 전지에 사용되는 경우에 매우 양호한 사이클 특성을 나타낸다.
(실시예 7)
본 실시예에서는, 전이 금속으로서 코발트를 첨가하고, 출발 물질로서 마그네슘 및 플루오린을 첨가함으로써 준비한 양극 활물질의, EELS를 사용한 분석 결과에 대하여 설명한다.
1mol%의 MgO 및 2mol%의 LiF를 첨가 출발 물질로서 사용한 실시예 1의 시료 7을 본 실시예의 분석 시료로서 사용하였다.
시료 7의 단면의 *1 내지 *6의 6개의 분석점에서의 코발트의 상태를 EELS를 사용하여 분석하였다. 도 50은 EELS 분석에 사용된 시료 7의 양극 활물질의 표면 근방의 단면의 STEM 이미지이고, 여기에는 *1(표면으로부터의 깊이가 약 1nm), *2(약 2.5nm), 및 *3(약 5nm)의 분석점이 나타내어졌다. 또한, *4는 양극 활물질의 표면으로부터 약 10nm이고, *5는 양극 활물질의 표면으로부터 약 100nm이고, *6은 양극 활물질의 입자의 중심 근방이다.
표 12 및 도 51은 각 분석점에서의 코발트의 L2 준위 및 L3 준위의 EELS 스펙트럼의 강도비를 나타낸 것이다. L3/L2가 높아질수록, 코발트의 원자가는 낮아진다.
Figure 112019133662881-pat00013
표 12 및 도 51로부터 명백한 바와 같이, 양극 활물질의 표면과 가장 가까운 분석점 *1의 L3/L2가 가장 높은 4.6이었다. 분석점 *2 내지 분석점 *6에서, L3/L2는 분석점 *1의 L3/L2보다 낮으며 2.9 내지 3.2의 범위 내에 있고, 큰 차이는 관찰되지 않았다.
이들 결과로부터, 분석점 *1에서는 산화 코발트(CoO)로서 존재하는 2가의 코발트의 양이 많고, 분석점 *2 내지 분석점 *6에서는 코발트산 리튬(LiCoO2)으로서 존재하는 3가의 코발트의 양이 많다는 것이 추정되었다.
100: 양극 활물질, 101: 제 1 영역, 102: 제 2 영역, 103: 제 3 영역, 200: 활물질층, 201: 그래핀 화합물, 211a: 양극, 211b: 음극, 212a: 리드, 212b: 리드, 214: 세퍼레이터, 215a: 접합부, 215b: 접합부, 217: 고정 부재, 250: 이차 전지, 251: 외장체, 261: 접힌 부분, 262: 밀봉부, 263: 밀봉부, 271: 능선, 272: 골짜기선, 273: 공간, 300: 이차 전지, 301: 양극 캔, 302: 음극 캔, 303: 개스킷, 304: 양극, 305: 양극 집전체, 306: 양극 활물질층, 307: 음극, 308: 음극 집전체, 309: 음극 활물질층, 310: 세퍼레이터, 500: 이차 전지, 501: 양극 집전체, 502: 양극 활물질층, 503: 양극, 504: 음극 집전체, 505: 음극 활물질층, 506: 음극, 507: 세퍼레이터, 508: 전해액, 509: 외장체, 510: 양극 리드 전극, 511: 음극 리드 전극, 600: 이차 전지, 601: 양극 캡, 602: 전지 캔, 603: 양극 단자, 604: 양극, 605: 세퍼레이터, 606: 음극, 607: 음극 단자, 608: 절연판, 609: 절연판, 611: PTC 소자, 612: 안전 밸브 기구, 900: 회로 기판, 910: 라벨, 911: 단자, 912: 회로, 913: 이차 전지, 914: 안테나, 915: 실재, 916: 층, 917: 층, 918: 안테나, 920: 표시 장치, 921: 센서, 922: 단자, 930: 하우징, 930a: 하우징, 930b: 하우징, 931: 음극, 932: 양극, 933: 세퍼레이터, 950: 권회체, 951: 단자, 952: 단자, 980: 이차 전지, 993: 권회체, 994: 음극, 995: 양극, 996: 세퍼레이터, 997: 리드 전극, 998: 리드 전극, 1001: 결정 결함, 7100: 휴대용 표시 장치, 7101: 하우징, 7102: 표시부, 7103: 조작 버튼, 7104: 이차 전지, 7200: 휴대 정보 단말기, 7201: 하우징, 7202: 표시부, 7203: 밴드, 7204: 버클, 7205: 조작 버튼, 7206: 입출력 단자, 7207: 아이콘, 7300: 표시 장치, 7304: 표시부, 7400: 휴대 전화, 7401: 하우징, 7402: 표시부, 7403: 조작 버튼, 7404: 외부 접속 포트, 7405: 스피커, 7406: 마이크로폰, 7407: 이차 전지, 7408: 리드 전극, 7409: 집전체, 8000: 표시 장치, 8001: 하우징, 8002: 표시부, 8003: 스피커부, 8004: 이차 전지, 8021: 충전 기기, 8022: 케이블, 8024: 이차 전지, 8100: 조명 장치, 8101: 하우징, 8102: 광원, 8103: 이차 전지, 8104: 천장, 8105: 벽, 8106: 바닥, 8107: 창문, 8200: 실내기, 8201: 하우징, 8202: 송풍구, 8203: 이차 전지, 8204: 실외기, 8300: 전기 냉동 냉장고, 8301: 하우징, 8302: 냉장고용 도어, 8303: 냉동고용 도어, 8304: 이차 전지, 8400: 자동차, 8401: 전조등, 8406: 전기 모터, 8500: 자동차, 8600: 모터 스쿠터, 8601: 사이드미러, 8602: 이차 전지, 8603: 방향 지시기, 8604: 시트 아래의 수납 부분, 9600: 태블릿 단말기, 9625: 스위치, 9626: 스위치, 9627: 전원 스위치, 9628: 조작 스위치, 9629: 잠금장치, 9630: 하우징, 9630a: 하우징, 9630b: 하우징, 9631: 표시부, 9633: 태양 전지, 9634: 충방전 제어 회로, 9635: 축전 유닛, 9636: DC-DC 컨버터, 9637: 컨버터, 9640: 가동부
본 출원은 2016년 10월 12일에 일본 특허청에 출원된 일련 번호 2016-200835의 일본 특허 출원, 2017년 3월 17일에 일본 특허청에 출원된 일련 번호 2017-052309의 일본 특허 출원, 및 2017년 5월 22일에 일본 특허청에 출원된 일련 번호 2017-100619의 일본 특허 출원에 기초하고, 본 명세서에 그 전문이 참조로 통합된다.

Claims (12)

  1. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속과 알루미늄을 포함하고,
    상기 제 2 영역은 상기 전이 금속과 마그네슘과 플루오린을 포함하고,
    상기 제 2 영역은 상기 양극 활물질 입자의 표층부에 위치하고,
    상기 제 1 영역은 제 1 측정 영역을 포함하고,
    상기 제 2 영역은 제 2 측정 영역을 포함하고,
    상기 제 2 측정 영역에서의 모든 상기 전이 금속에 대한 2가의 상기 전이 금속의 비율은, 상기 제 1 측정 영역에서의 모든 상기 전이 금속에 대한 2가의 상기 전이 금속의 비율보다 높은, 리튬 이온 이차 전지.
  2. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 전이 금속과 알루미늄을 포함하고,
    상기 제 2 영역은 상기 전이 금속과 마그네슘과 플루오린을 포함하고,
    상기 제 2 영역은 상기 제 1 영역의 적어도 일부를 덮고,
    상기 제 1 영역은 제 1 측정 영역을 포함하고,
    상기 제 2 영역은 제 2 측정 영역을 포함하고,
    상기 제 2 측정 영역에서의 모든 상기 전이 금속에 대한 2가의 상기 전이 금속의 비율은, 상기 제 1 측정 영역에서의 모든 상기 전이 금속에 대한 2가의 상기 전이 금속의 비율보다 높은, 리튬 이온 이차 전지.
  3. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자와, 도전조제 또는 바인더를 포함하는 제3 영역을 포함하고,
    상기 제 1 영역은 전이 금속과 알루미늄을 포함하고,
    상기 제 2 영역은 상기 전이 금속과 마그네슘과 플루오린을 포함하고,
    상기 제 2 영역은 상기 제 1 영역과 상기 제3 영역 사이에 위치하고,
    상기 제 1 영역은 제 1 측정 영역을 포함하고,
    상기 제 2 영역은 제 2 측정 영역을 포함하고,
    상기 제 2 측정 영역에서의 모든 상기 전이 금속에 대한 2가의 상기 전이 금속의 비율은, 상기 제 1 측정 영역에서의 모든 상기 전이 금속에 대한 2가의 상기 전이 금속의 비율보다 높은, 리튬 이온 이차 전지.
  4. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트와 알루미늄을 포함하고,
    상기 제 2 영역은 코발트와 마그네슘과 플루오린을 포함하고,
    상기 제 2 영역은 상기 양극 활물질 입자의 표층부에 위치하고,
    상기 양극 활물질 입자를 전자 에너지 손실 분광법에 의하여 분석하는 경우, 상기 제 2 영역이 포함하는 제 2 측정 영역에서의 코발트의 L3/L2는, 상기 제 1 영역이 포함하는 제 1 측정 영역에서의 코발트의 L3/L2보다 큰, 리튬 이온 이차 전지.
  5. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트와 알루미늄을 포함하고,
    상기 제 2 영역은 코발트와 마그네슘과 플루오린을 포함하고,
    상기 제 2 영역은 상기 제 1 영역의 적어도 일부를 덮고,
    상기 양극 활물질 입자를 전자 에너지 손실 분광법에 의하여 분석하는 경우, 상기 제 2 영역이 포함하는 제 2 측정 영역에서의 코발트의 L3/L2는, 상기 제 1 영역이 포함하는 제 1 측정 영역에서의 코발트의 L3/L2보다 큰, 리튬 이온 이차 전지.
  6. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자와, 도전조제 또는 바인더를 포함하는 제3 영역을 포함하고,
    상기 제 1 영역은 코발트와 알루미늄을 포함하고,
    상기 제 2 영역은 코발트와 마그네슘과 플루오린을 포함하고,
    상기 제 2 영역은 상기 제 1 영역과 상기 제3 영역 사이에 위치하고,
    상기 양극 활물질 입자를 전자 에너지 손실 분광법에 의하여 분석하는 경우, 상기 제 2 영역이 포함하는 제 2 측정 영역에서의 코발트의 L3/L2는, 상기 제 1 영역이 포함하는 제 1 측정 영역에서의 코발트의 L3/L2보다 큰, 리튬 이온 이차 전지.
  7. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트와 알루미늄을 포함하고,
    상기 제 2 영역은 코발트와 마그네슘과 플루오린을 포함하고,
    상기 제 1 영역은 층상 암염 결정 구조를 갖고,
    상기 제 2 영역은 상기 제 1 영역의 적어도 일부를 덮고,
    상기 양극 활물질 입자에 있어서의 마그네슘의 최대 피크는 상기 제 2 영역에 존재하고,
    상기 제 1 영역은 제 1 측정 영역을 포함하고,
    상기 제 2 영역은 제 2 측정 영역을 포함하고,
    상기 제 2 측정 영역에서의 모든 코발트에 대한 2가의 코발트의 비율은, 상기 제 1 측정 영역에서의 모든 코발트에 대한 2가의 코발트의 비율보다 높은, 리튬 이온 이차 전지.
  8. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트와 알루미늄을 포함하고,
    상기 제 2 영역은 코발트와 마그네슘과 플루오린을 포함하고,
    상기 제 1 영역은 층상 암염 결정 구조를 갖고,
    상기 제 2 영역은 상기 제 1 영역의 적어도 일부를 덮고,
    상기 양극 활물질 입자에 있어서의 마그네슘의 최대 피크는 상기 제 2 영역에 존재하고,
    상기 양극 활물질 입자를 전자 에너지 손실 분광법에 의하여 분석하는 경우, 상기 제 2 영역이 포함하는 제 2 측정 영역에서의 코발트의 L3/L2는, 상기 제 1 영역이 포함하는 제 1 측정 영역에서의 코발트의 L3/L2보다 큰, 리튬 이온 이차 전지.
  9. 제 1 영역 및 제 2 영역을 포함하는 양극 활물질 입자를 포함하고,
    상기 제 1 영역은 코발트와 알루미늄을 포함하고,
    상기 제 2 영역은 코발트와 마그네슘과 플루오린을 포함하고,
    상기 제 1 영역은 층상 암염 결정 구조를 갖고,
    상기 제 2 영역은 상기 제 1 영역의 적어도 일부를 덮고,
    상기 양극 활물질 입자에 있어서의 마그네슘의 최대 피크는 상기 제 2 영역에 존재하고,
    상기 제 2 영역이 포함하는 측정 영역은 2가의 코발트를 포함하는, 리튬 이온 이차 전지.
  10. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 양극 활물질 입자의 표면의 X선 광전자 분광 측정에서,
    리튬, 상기 전이 금속, 산소, 마그네슘, 및 플루오린을 포함하는 원자의 총량을 100atomic%로 할 때,
    마그네슘 농도가 1atomic% 이상 16atomic% 이하이며,
    플루오린 농도가 0.2atomic% 이상 4atomic% 이하인,
    리튬 이온 이차 전지.
  11. 제 4 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 양극 활물질 입자의 표면의 X선 광전자 분광 측정에서,
    리튬, 코발트, 산소, 마그네슘, 및 플루오린을 포함하는 원자의 총량을 100atomic%로 할 때,
    마그네슘 농도가 1atomic% 이상 16atomic% 이하이며,
    플루오린 농도가 0.2atomic% 이상 4atomic% 이하인,
    리튬 이온 이차 전지.
  12. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 제 2 영역의 두께는 0.5 nm 이상 50 nm 이하인,
    리튬 이온 이차 전지.
KR1020197038230A 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법 KR102392937B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JPJP-P-2016-200835 2016-10-12
JP2016200835 2016-10-12
JP2017052309 2017-03-17
JPJP-P-2017-052309 2017-03-17
JPJP-P-2017-100619 2017-05-22
JP2017100619 2017-05-22
KR1020197011875A KR20190065324A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
PCT/IB2017/056168 WO2018069799A1 (en) 2016-10-12 2017-10-06 Positive electrode active material particle and manufacturing method of positive electrode active material particle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197011875A Division KR20190065324A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법

Publications (2)

Publication Number Publication Date
KR20200000488A KR20200000488A (ko) 2020-01-02
KR102392937B1 true KR102392937B1 (ko) 2022-05-03

Family

ID=61830113

Family Applications (9)

Application Number Title Priority Date Filing Date
KR1020197038230A KR102392937B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020197038231A KR102398195B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020237014444A KR102676051B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020227008258A KR102530225B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020237021585A KR102702963B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020197011875A KR20190065324A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020247029388A KR20240134253A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020227008260A KR20220038810A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020237021584A KR102697171B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법

Family Applications After (8)

Application Number Title Priority Date Filing Date
KR1020197038231A KR102398195B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020237014444A KR102676051B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020227008258A KR102530225B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020237021585A KR102702963B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020197011875A KR20190065324A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020247029388A KR20240134253A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020227008260A KR20220038810A (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR1020237021584A KR102697171B1 (ko) 2016-10-12 2017-10-06 양극 활물질 입자 및 양극 활물질 입자의 제작 방법

Country Status (6)

Country Link
US (7) US11094927B2 (ko)
JP (10) JP2018190700A (ko)
KR (9) KR102392937B1 (ko)
CN (11) CN111446425B (ko)
DE (4) DE112017005164T5 (ko)
WO (1) WO2018069799A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544521A (zh) 2016-07-05 2023-08-04 株式会社半导体能源研究所 锂离子二次电池的制造方法
US20180145317A1 (en) * 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN115966675A (zh) * 2016-11-24 2023-04-14 株式会社半导体能源研究所 正极活性物质粒子及正极活性物质粒子的制造方法
CN110268334B (zh) 2017-02-03 2024-10-29 Asml荷兰有限公司 曝光设备
KR20240049630A (ko) * 2017-05-12 2024-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자
EP3625842A4 (en) 2017-05-19 2021-03-10 Semiconductor Energy Laboratory Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY
KR20230146129A (ko) 2017-06-26 2023-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지
KR20230010816A (ko) * 2018-08-03 2023-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 양극 활물질의 제작 방법
CN111384350B (zh) * 2018-12-29 2024-10-15 宁德时代新能源科技股份有限公司 二次电池以及电池模组
US11936036B2 (en) 2019-11-28 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, secondary battery, and electronic device
KR20210154748A (ko) * 2020-06-12 2021-12-21 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
CN114430037B (zh) * 2022-04-06 2022-07-15 比亚迪股份有限公司 一种正极材料及其应用
WO2023248047A1 (ja) * 2022-06-24 2023-12-28 株式会社半導体エネルギー研究所 正極活物質およびその作製方法および二次電池
JP2024097693A (ja) * 2023-01-06 2024-07-19 エルジー エナジー ソリューション リミテッド 正極活物質、正極活物質スラリー、正極、リチウムイオン二次電池、および正極活物質の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103566A (ja) 2002-07-16 2004-04-02 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
KR100696619B1 (ko) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP2011138718A (ja) 2009-12-29 2011-07-14 Sony Corp 正極活物質、正極および非水電解質二次電池

Family Cites Families (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4739780Y1 (ko) 1970-09-10 1972-12-01
EP0017400B1 (en) 1979-04-05 1984-05-30 United Kingdom Atomic Energy Authority Electrochemical cell and method of making ion conductors for said cell
DE3680249D1 (de) 1985-05-10 1991-08-22 Asahi Chemical Ind Sekundaerbatterie.
GB2251119B (en) 1990-12-20 1995-06-07 Technology Finance Corp Electrochemical cell
JPH05314965A (ja) 1992-05-06 1993-11-26 Nippon Telegr & Teleph Corp <Ntt> 電池正極シートとその製造方法、並びに全固体二次電池
JPH05314995A (ja) 1992-05-07 1993-11-26 Japan Energy Corp 電解質複合体
JP3238954B2 (ja) 1992-09-25 2001-12-17 三洋電機株式会社 非水系二次電池
KR0145631B1 (ko) 1993-07-30 1998-08-01 사토 후미오 수은증기방전등용형광체와 이 형광체를 이용한 수은증기 방전등 및 이 방전등을 이용한 조명장치
JP3550783B2 (ja) 1994-05-16 2004-08-04 東ソー株式会社 リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途
JP3584501B2 (ja) 1994-09-30 2004-11-04 大日本インキ化学工業株式会社 エポキシ樹脂と金属酸化物の複合体及びその製造法
JP3172388B2 (ja) 1995-02-27 2001-06-04 三洋電機株式会社 リチウム二次電池
JPH08310802A (ja) 1995-03-15 1996-11-26 Takeshi Yao ペロブスカイト型複合酸化物析出物の製造方法
US5834139A (en) 1995-07-05 1998-11-10 Nippon Telegraph And Telephone Corporation Negative electrode material for use in lithium secondary batteries and lithium secondary batteries incorporating this material
US5705291A (en) 1996-04-10 1998-01-06 Bell Communications Research, Inc. Rechargeable battery cell having surface-treated lithiated intercalation positive electrode
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
JP3031546U (ja) 1996-05-09 1996-11-29 新日本製鐵株式会社 曲げ加工機
TW363940B (en) 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
US5871866A (en) 1996-09-23 1999-02-16 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and use thereof
US5783333A (en) 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
US6085015A (en) 1997-03-25 2000-07-04 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
US6127065A (en) 1997-04-25 2000-10-03 Sony Corporation Method of manufacturing cathode active material and nonaqueous electrolyte secondary battery
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
JPH1125983A (ja) 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd リチウム電池用活物質
WO1999005734A1 (fr) 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Materiau actif et positif, et element d'accumulateur non aqueux fabrique a partir de ce materiau
JP3882285B2 (ja) 1997-09-22 2007-02-14 トヨタ自動車株式会社 リチウムイオン2次電池用負極
JP3949303B2 (ja) 1998-03-20 2007-07-25 三星エスディアイ株式会社 リチウム二次電池負極用炭素材及びこれを用いたリチウム二次電池
JP3031546B1 (ja) 1998-11-13 2000-04-10 宇部興産株式会社 リチウム遷移金属系ハロゲン化酸化物とその製造方法及びその用途
EP1137598B2 (en) 1998-11-13 2016-03-16 Umicore Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
JP3670875B2 (ja) 1999-02-09 2005-07-13 三洋電機株式会社 リチウム二次電池
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
US6737195B2 (en) 2000-03-13 2004-05-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
JP4559587B2 (ja) 2000-05-08 2010-10-06 独立行政法人産業技術総合研究所 固体型リチウムポリマー電池
US6541112B1 (en) 2000-06-07 2003-04-01 Dmc2 Degussa Metals Catalysts Cerdec Ag Rare earth manganese oxide pigments
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP4280436B2 (ja) 2000-09-25 2009-06-17 三星エスディアイ株式会社 リチウム二次電池用正極活物質及びその製造方法
US6753111B2 (en) 2000-09-25 2004-06-22 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium batteries and method for preparing same
JP3921931B2 (ja) 2000-09-29 2007-05-30 ソニー株式会社 正極活物質及び非水電解質電池
US7138209B2 (en) 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
JP3777988B2 (ja) 2001-01-23 2006-05-24 日亜化学工業株式会社 リチウム二次電池用正極活物質及びその製造方法
JP3695366B2 (ja) 2001-03-21 2005-09-14 日亜化学工業株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
KR100728108B1 (ko) 2001-04-02 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 그의 제조 방법
US7239800B2 (en) 2001-05-02 2007-07-03 David H. Sitrick Portable player for personal video recorders
JP3870846B2 (ja) 2001-06-13 2007-01-24 三菱化学株式会社 層状リチウムニッケルマンガン複合酸化物
WO2003015198A2 (en) 2001-08-07 2003-02-20 3M Innovative Properties Company Cathode compositions for lithium ion batteries
US6878490B2 (en) 2001-08-20 2005-04-12 Fmc Corporation Positive electrode active materials for secondary batteries and methods of preparing same
JP3959333B2 (ja) 2001-11-20 2007-08-15 日本化学工業株式会社 リチウムコバルト系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
TW565961B (en) 2001-11-30 2003-12-11 Sanyo Electric Co Nonaqueous electrolyte secondary battery and its manufacturing method
JP4111806B2 (ja) 2001-11-30 2008-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP2003217667A (ja) 2002-01-16 2003-07-31 Japan Storage Battery Co Ltd 非水電解質二次電池
KR100441524B1 (ko) 2002-01-24 2004-07-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 슬러리 조성물
AU2003212009A1 (en) 2002-02-15 2003-09-04 Seimi Chemical Co., Ltd. Particulate positive electrode active material for lithium secondary cell
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP4258170B2 (ja) 2002-05-10 2009-04-30 日本電気株式会社 二次電池用正極およびそれを用いた二次電池
JP2004014381A (ja) 2002-06-10 2004-01-15 Ise Chemicals Corp 非水電解液二次電池用電極活物質及び非水電解液二次電池
WO2004030126A1 (ja) 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. リチウム二次電池用正極材料およびその製造方法
CN100382363C (zh) 2002-09-26 2008-04-16 清美化学股份有限公司 锂二次电池用正极活性物质及其制备方法
US20060121352A1 (en) 2002-11-18 2006-06-08 Kejha Joseph B Cathode compositions and method for lithium-ion cell construction having a lithum compound additive, eliminating irreversible capacity loss
TW200423458A (en) * 2002-11-29 2004-11-01 Seimi Chem Kk Method for preparing positive electrode active material for lithium secondary cell
JP4156358B2 (ja) 2002-12-19 2008-09-24 日本化学工業株式会社 コバルト酸リチウム複合化合物及びその製造方法並びに非水電解質ニ次電池
JP4274801B2 (ja) 2003-01-09 2009-06-10 パナソニック株式会社 非水電解質二次電池用正極活物質の製造法
TWI286849B (en) 2003-03-25 2007-09-11 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4404564B2 (ja) 2003-03-25 2010-01-27 三洋電機株式会社 非水電解質二次電池、正極活物質
JP2006318928A (ja) 2003-03-25 2006-11-24 Hitachi Metals Ltd リチウム二次電池用正極活物質及び非水系リチウム二次電池
JP4919147B2 (ja) 2003-03-25 2012-04-18 日立金属株式会社 非水系リチウム二次電池用正極活物質の製造方法
US7294435B2 (en) 2003-05-15 2007-11-13 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4170145B2 (ja) * 2003-05-19 2008-10-22 日本化学工業株式会社 リチウム二次電池正極活物質の製造方法
JP4271488B2 (ja) * 2003-05-19 2009-06-03 日本化学工業株式会社 リチウムコバルト系複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
EP1652819A1 (en) 2003-07-18 2006-05-03 Tosoh Corporation Lithium-nickel-manganese composite oxide, process for producing the same and use thereof
US7615315B2 (en) * 2003-08-19 2009-11-10 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary cell and process for producing the same
JP2005158612A (ja) 2003-11-27 2005-06-16 Nichia Chem Ind Ltd 非水電解質二次電池用正極副活物質、非水電解質二次電池用正極活物質、非水電解質二次電池および非水電解質二次電池の製造方法
JP2005225734A (ja) 2004-02-16 2005-08-25 Nippon Chem Ind Co Ltd フッ素含有リチウムコバルト系複合酸化物及びその製造方法
JP2005302510A (ja) 2004-04-12 2005-10-27 Rikogaku Shinkokai リチウムイオン二次電池
JP2005332629A (ja) 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd 非水電解液二次電池用正極活物質およびその製造方法
CN100398454C (zh) 2004-06-28 2008-07-02 南通奥克赛德新材料有限公司 制备高品质四氧化三钴的新方法
CN1981396A (zh) 2004-07-20 2007-06-13 清美化学股份有限公司 锂二次电池用正极活性物质及其制造方法
US7635536B2 (en) 2004-09-03 2009-12-22 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
CN104795533B (zh) 2004-09-03 2018-09-14 芝加哥大学阿尔贡有限责任公司 锂电池用氧化锰复合电极
US8080340B2 (en) 2004-09-03 2011-12-20 Uchicago Argonne, Llc Manganese oxide composite electrodes for lithium batteries
JP4582579B2 (ja) 2004-12-07 2010-11-17 Agcセイミケミカル株式会社 リチウム二次電池用正極材料
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
JP4739780B2 (ja) 2005-03-11 2011-08-03 三洋電機株式会社 非水電解質電池
KR101347671B1 (ko) 2005-06-07 2014-01-03 히다치 막셀 가부시키가이샤 비수전해액 이차 전지
JP5260821B2 (ja) 2005-07-11 2013-08-14 パナソニック株式会社 リチウムイオン二次電池
KR100728783B1 (ko) 2005-11-02 2007-06-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
WO2007052712A1 (ja) 2005-11-02 2007-05-10 Agc Seimi Chemical Co., Ltd. リチウム含有複合酸化物及びその製造方法
JP5124933B2 (ja) 2005-11-02 2013-01-23 日亜化学工業株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
KR100728160B1 (ko) 2005-11-30 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
JP5078334B2 (ja) 2005-12-28 2012-11-21 三洋電機株式会社 非水電解質二次電池
JP2007184145A (ja) 2006-01-06 2007-07-19 Hitachi Vehicle Energy Ltd リチウム二次電池
JP5223166B2 (ja) 2006-02-07 2013-06-26 日産自動車株式会社 電池活物質および二次電池
JP2007250198A (ja) 2006-03-13 2007-09-27 Sanyo Electric Co Ltd 非水電解質二次電池
JP4586991B2 (ja) * 2006-03-24 2010-11-24 ソニー株式会社 正極活物質およびその製造方法、並びに二次電池
JP4736943B2 (ja) 2006-05-17 2011-07-27 日亜化学工業株式会社 リチウム二次電池用正極活物質およびその製造方法
JP2008060033A (ja) 2006-09-04 2008-03-13 Sony Corp 正極活物質、これを用いた正極および非水電解質二次電池、並びに正極活物質の製造方法
CN101148263A (zh) 2006-09-19 2008-03-26 上海杉杉新材料研究院有限责任公司 高电压锂离子电池正极材料锂镍锰氧的制备方法
US7935270B2 (en) 2006-10-04 2011-05-03 Samsung Sdi Co., Ltd Cathode active material and lithium battery using the same
US7927506B2 (en) 2006-10-04 2011-04-19 Samsung Sdi Co., Ltd. Cathode active material and lithium battery using the same
KR100814826B1 (ko) 2006-11-20 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지
JP4788579B2 (ja) * 2006-11-30 2011-10-05 東ソー株式会社 リチウム−ニッケル−マンガン複合酸化物、及びその製造方法、並びにその用途
EP2110871B1 (en) 2006-12-26 2012-05-02 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
JP2008166156A (ja) 2006-12-28 2008-07-17 Tdk Corp 蓄電素子
US9728809B2 (en) 2007-01-04 2017-08-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US10665892B2 (en) 2007-01-10 2020-05-26 Eocell Limited Lithium batteries with nano-composite positive electrode material
WO2008123038A1 (ja) 2007-03-19 2008-10-16 Mitsubishi Chemical Corporation 非水系電解液および非水系電解液電池
JP5014218B2 (ja) 2007-03-22 2012-08-29 三洋電機株式会社 非水電解質二次電池
US20080241693A1 (en) 2007-03-30 2008-10-02 Minoru Fukuchi Lithium transition metal complex oxide for lithium ion secondary battery cathode active material and method for producing the same, lithium ion secondary battery cathode active material, and lithium ion secondary battery
TW200840121A (en) * 2007-03-30 2008-10-01 Nippon Chemical Ind Lithium transition metal complex oxide for lithium ion secondary battery cathode active material and method for producing the same, lithium ion secondary battery cathode active material, and lithium ion secondary battery
JP2009004285A (ja) 2007-06-25 2009-01-08 Sanyo Electric Co Ltd 正極活物質、正極活物質の製造方法および非水電解質二次電池
EP2171791A4 (en) 2007-07-12 2014-09-10 A123 Systems Inc MULTIFUNCTIONAL MIXED METAL OLIVES FOR LITHIUM ION BATTERIES
JP5172231B2 (ja) * 2007-07-20 2013-03-27 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2009048981A (ja) 2007-08-23 2009-03-05 Sony Corp 非水電解液二次電池
US20090087731A1 (en) 2007-09-27 2009-04-02 Atsushi Fukui Lithium secondary battery
JP4715830B2 (ja) 2007-10-19 2011-07-06 ソニー株式会社 正極活物質、正極および非水電解質二次電池
JP5193189B2 (ja) 2007-11-01 2013-05-08 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質の製造方法
KR101323126B1 (ko) 2007-11-12 2013-10-30 가부시키가이샤 지에스 유아사 리튬 이차전지의 제조방법
JP5516926B2 (ja) 2008-01-30 2014-06-11 独立行政法人産業技術総合研究所 規則構造を有する単斜晶系リチウムマンガン系複合酸化物およびその製造方法
JP5189384B2 (ja) 2008-02-29 2013-04-24 株式会社日立製作所 リチウム二次電池
KR20090111130A (ko) 2008-04-21 2009-10-26 엘에스엠트론 주식회사 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를이용한 리튬 이차전지
JP2010080407A (ja) 2008-09-29 2010-04-08 Sony Corp 正極活物質、正極および非水電解質二次電池に関する。
US8916294B2 (en) 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
JP5290699B2 (ja) 2008-10-22 2013-09-18 シャープ株式会社 リチウム二次電池
US8945770B2 (en) 2008-11-10 2015-02-03 Lg Chem, Ltd. Cathode active material exhibiting improved property in high voltage
JP5199844B2 (ja) 2008-11-21 2013-05-15 株式会社日立製作所 リチウム二次電池
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
KR101681950B1 (ko) 2009-01-15 2016-12-05 삼성전자주식회사 그라펜 에지의 화학적 변형 방법 및 이에 의하여 얻어진 그라펜
KR101687040B1 (ko) 2009-01-20 2016-12-15 도다 고교 가부시끼가이샤 비수전해액 이차 전지용 정극 활성 물질 및 그의 제조 방법, 비수전해액 이차 전지
JP5312099B2 (ja) 2009-02-26 2013-10-09 国立大学法人東京工業大学 正極活物質の製造方法及び正極活物質
JP5111421B2 (ja) * 2009-03-27 2013-01-09 株式会社日立製作所 リチウム二次電池用正極材料,リチウム二次電池及びそれを用いた二次電池モジュール
US20120064406A1 (en) 2009-04-01 2012-03-15 Namics Corporation Electrode material, method for producing same, and lithium ion secondary battery
JP5602380B2 (ja) 2009-04-06 2014-10-08 トヨタ自動車株式会社 固体電解質材料
JP5487719B2 (ja) 2009-05-19 2014-05-07 トヨタ自動車株式会社 全固体リチウム二次電池の製造方法、及び当該製造方法により得られる全固体リチウム二次電池
JP5671831B2 (ja) * 2009-05-21 2015-02-18 トヨタ自動車株式会社 窒化リチウム−遷移金属複合酸化物の製造方法、窒化リチウム−遷移金属複合酸化物およびリチウム電池
WO2010101306A2 (ja) * 2009-06-25 2010-09-10 日本碍子株式会社 正極活物質及びリチウム二次電池
JP5526636B2 (ja) 2009-07-24 2014-06-18 ソニー株式会社 非水電解質二次電池の正極活物質、非水電解質二次電池の正極および非水電解質二次電池
JP5589536B2 (ja) 2009-09-09 2014-09-17 ソニー株式会社 正極活物質、正極、非水電解質電池および正極活物質の製造方法
CN102024950B (zh) 2009-09-09 2018-05-25 株式会社村田制作所 正极活性物质及其制备方法、正极和非水电解质电池
JP5644176B2 (ja) 2009-11-18 2014-12-24 ソニー株式会社 正極活物質、およびリチウムイオン二次電池
JP5791877B2 (ja) 2009-09-30 2015-10-07 三洋電機株式会社 正極活物質、この正極活物質の製造方法、及び、正極活物質を用いた非水電解質二次電池
CN102576872A (zh) 2009-10-05 2012-07-11 日本化学工业株式会社 锂二次电池用正极活性物质、其制造方法及锂二次电池
WO2011078112A1 (ja) 2009-12-22 2011-06-30 石原産業株式会社 チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池
WO2011082064A1 (en) 2009-12-29 2011-07-07 Montclair State University Chelating agent modified graphene oxides, methods of preparation and use
JP5474597B2 (ja) 2010-02-16 2014-04-16 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP5149927B2 (ja) 2010-03-05 2013-02-20 株式会社日立製作所 リチウム二次電池用正極材料、リチウム二次電池及びそれを用いた二次電池モジュール
KR101428498B1 (ko) 2010-03-09 2014-08-08 가부시키가이샤 도요다 지도숏키 복합 산화물의 제조 방법, 리튬 이온 2차 전지용 정극 활물질, 리튬 이온 2차 전지 및 차량
JP2011210694A (ja) 2010-03-12 2011-10-20 Sanyo Electric Co Ltd 非水電解質二次電池
WO2011114842A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP5193248B2 (ja) 2010-03-31 2013-05-08 ナミックス株式会社 リチウムイオン二次電池
JP5534595B2 (ja) 2010-04-19 2014-07-02 日立マクセル株式会社 リチウム二次電池用正極およびリチウム二次電池
JP5455766B2 (ja) * 2010-04-23 2014-03-26 トヨタ自動車株式会社 複合正極活物質、全固体電池、および、それらの製造方法
CN102859765B (zh) 2010-04-28 2017-09-19 株式会社半导体能源研究所 电力储存装置
WO2011152183A1 (en) 2010-06-02 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device
WO2011155781A2 (ko) 2010-06-09 2011-12-15 주식회사 루트제이제이 리튬 이차전지용 양극 활 물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
EP2399869B1 (de) * 2010-06-25 2015-07-29 Evonik Degussa GmbH Mischoxidpulver enthaltend die elemente lithium, mangan, nickel und cobalt und verfahren zu deren herstellung
WO2012005180A1 (ja) 2010-07-05 2012-01-12 独立行政法人産業技術総合研究所 電極材料およびそれを含む電極、電池、ならびに電極材料前駆体の製造方法およびそれを用いた電極材料の製造方法
CN102339998B (zh) 2010-07-21 2016-06-22 北京当升材料科技股份有限公司 一种锂离子电池正极材料及其制备方法
DE102010032207B4 (de) 2010-07-26 2014-02-13 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Verminderung von magnetischen und/oder oxidischen Verunreinigungen in Lithium-Metall-Sauerstoff-Verbindungen
EP2421077B1 (en) 2010-08-17 2013-10-23 Umicore Positive electrode materials combining high safety and high power in a Li rechargeable battery
WO2012023464A1 (en) 2010-08-19 2012-02-23 Semiconductor Energy Laboratory Co., Ltd. Electrical appliance
JP5758743B2 (ja) 2010-09-02 2015-08-05 日本化学工業株式会社 水酸化コバルト及びその製造方法並びに酸化コバルト及びその製造方法
JP5732351B2 (ja) 2010-09-02 2015-06-10 日本化学工業株式会社 コバルト酸リチウムの製造方法
US9558860B2 (en) 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
JP5724269B2 (ja) 2010-09-21 2015-05-27 株式会社豊田自動織機 複合酸化物の製造方法
JP5552685B2 (ja) 2010-10-07 2014-07-16 株式会社豊田自動織機 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
GB201016925D0 (en) 2010-10-07 2010-11-24 Univ Manchester Graphene oxide
WO2012046791A1 (en) 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for energy storage device and energy storage device
US20120088151A1 (en) 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Positive-electrode active material and power storage device
WO2012058644A1 (en) 2010-10-28 2012-05-03 Board Of Trustees Of Northern Illinois University Rare-earth manganese oxides for gas separation and oxygen storage
EP2635525A2 (en) 2010-11-03 2013-09-11 Massachusetts Institute Of Technology Compositions comprising functionalized carbon-based nanostructures and related methods
CN103262326A (zh) 2010-11-16 2013-08-21 日立麦克赛尔株式会社 非水二次电池
KR101956651B1 (ko) 2010-12-27 2019-03-11 가부시키가이샤 지에스 유아사 비수 전해질 2차 전지용 양극 활물질, 그 양극 활물질의 제조 방법, 비수 전해질 2차 전지용 전극, 비수 전해질 2차 전지및 그 2차 전지의 제조 방법
JP2012142155A (ja) 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
CN103339767B (zh) 2011-02-02 2016-01-06 丰田自动车株式会社 复合活性物质、复合活性物质的制造方法及电池
JP2012169217A (ja) 2011-02-16 2012-09-06 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
JP5768967B2 (ja) 2011-03-07 2015-08-26 日産自動車株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2012124242A1 (ja) 2011-03-14 2012-09-20 株式会社豊田自動織機 非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池
KR102250080B1 (ko) 2011-03-25 2021-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 2차 전지
WO2012132387A1 (ja) 2011-03-28 2012-10-04 株式会社豊田自動織機 電極材料及びその製造方法、並びに電極、二次電池及び車両
JP5838579B2 (ja) 2011-03-29 2016-01-06 株式会社豊田中央研究所 正極活物質、リチウム二次電池および正極活物質の製造方法
WO2012137391A1 (ja) 2011-04-07 2012-10-11 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
US20120258365A1 (en) 2011-04-07 2012-10-11 Ngk Insulators, Ltd. Cathode active material precursor particle, cathode active material particle for lithium secondary battery and lithium secondary battery
WO2012137533A1 (ja) 2011-04-07 2012-10-11 日本碍子株式会社 正極活物質前駆体粒子及びその製造方法、並びにリチウム二次電池の正極活物質粒子の製造方法
JP5255138B2 (ja) 2011-05-18 2013-08-07 富士重工業株式会社 蓄電デバイス及び蓄電デバイス用正極
KR101753197B1 (ko) 2011-05-31 2017-07-03 제온 코포레이션 리튬 2 차 전지 정극용 복합 입자, 리튬 2 차 전지 정극용 복합 입자의 제조 방법, 리튬 2 차 전지용 정극의 제조 방법, 리튬 2 차 전지용 정극, 및 리튬 2 차 전지
KR20240042196A (ko) 2011-06-03 2024-04-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전극을 제조하기 위한 방법
CN102244258B (zh) * 2011-06-16 2013-06-05 中南大学 一种多相锰基正极材料及其制备方法
WO2012171780A1 (en) * 2011-06-17 2012-12-20 Umicore Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
CN105366666A (zh) 2011-06-24 2016-03-02 株式会社半导体能源研究所 多层石墨烯及蓄电装置
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
JP2013012410A (ja) 2011-06-29 2013-01-17 Tanaka Chemical Corp 非水電解質二次電池用正極材料及び非水電解質二次電池用正極材料の製造方法
JP5970978B2 (ja) 2011-07-04 2016-08-17 日産自動車株式会社 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス
WO2013027561A1 (en) 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
JP6025284B2 (ja) 2011-08-19 2016-11-16 株式会社半導体エネルギー研究所 蓄電装置用の電極及び蓄電装置
JP2013048061A (ja) 2011-08-29 2013-03-07 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN106410192B (zh) 2011-08-29 2019-11-19 株式会社半导体能源研究所 锂离子电池用正极活性物质的制造方法
JP6000017B2 (ja) 2011-08-31 2016-09-28 株式会社半導体エネルギー研究所 蓄電装置及びその作製方法
JP5734793B2 (ja) 2011-08-31 2015-06-17 株式会社半導体エネルギー研究所 蓄電装置
JP6029898B2 (ja) 2011-09-09 2016-11-24 株式会社半導体エネルギー研究所 リチウム二次電池用正極の作製方法
JP2013062082A (ja) 2011-09-12 2013-04-04 Nec Corp 二次電池
US9099735B2 (en) 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
JP5675540B2 (ja) 2011-09-22 2015-02-25 信越化学工業株式会社 非水電解液二次電池用負極材及び非水電解液二次電池
KR20130033154A (ko) 2011-09-26 2013-04-03 전자부품연구원 리튬 이차전지용 양극 활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지
KR102304204B1 (ko) 2011-09-30 2021-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극, 리튬 이차 전지, 전기 자동차, 하이브리드 자동차, 이동체, 시스템, 및 전기 기기
JP2013093316A (ja) 2011-10-04 2013-05-16 Semiconductor Energy Lab Co Ltd 二次粒子の作製方法と蓄電装置の電極の作製方法
CN103035922B (zh) 2011-10-07 2019-02-19 株式会社半导体能源研究所 蓄电装置
CN102779976B (zh) 2011-10-10 2015-05-20 北大先行泰安科技产业有限公司 一种钴酸锂基锂离子电池正极材料的制备方法
KR101669111B1 (ko) 2011-10-11 2016-10-26 삼성에스디아이 주식회사 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 포함한 리튬 이차 전지용 전극 및 이를 이용한 리튬 이차 전지
CN102447107A (zh) 2011-10-17 2012-05-09 江苏科捷锂电池有限公司 高密度锂离子电池正极材料钴酸锂及其制备方法
JP2013087040A (ja) 2011-10-21 2013-05-13 Toyota Motor Corp リチウム複合酸化物とその製造方法、及びリチウムイオン二次電池
JP5741371B2 (ja) 2011-10-25 2015-07-01 トヨタ自動車株式会社 リチウム複合酸化物とその製造方法、及びリチウムイオン二次電池
JP5958926B2 (ja) 2011-11-08 2016-08-02 国立研究開発法人産業技術総合研究所 リチウムマンガン系複合酸化物およびその製造方法
KR102014983B1 (ko) 2011-11-18 2019-08-28 삼성전자주식회사 양극 및 이를 채용한 리튬 전지
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
JP6016597B2 (ja) 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 リチウムイオン二次電池用正極の製造方法
CN102569775B (zh) 2011-12-23 2017-01-25 东莞新能源科技有限公司 锂离子二次电池及其正极活性材料
JP6009343B2 (ja) 2011-12-26 2016-10-19 株式会社半導体エネルギー研究所 二次電池用正極および二次電池用正極の作製方法
US20130183579A1 (en) 2012-01-17 2013-07-18 Seung-Mo Kim Positive active material for rechargeable lithium battery and rechargeable lithium battery including the same
WO2013108396A1 (ja) 2012-01-20 2013-07-25 トヨタ自動車株式会社 非水電解質二次電池の製造方法及び非水電解質二次電池
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9680272B2 (en) 2012-02-17 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming negative electrode and method for manufacturing lithium secondary battery
CN102569722B (zh) * 2012-02-20 2016-09-07 宁德新能源科技有限公司 一种锂离子二次电池及其正极
CN102610806B (zh) 2012-02-27 2014-11-12 宁德新能源科技有限公司 一种锂离子电池及其正极活性材料
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
JP6077347B2 (ja) 2012-04-10 2017-02-08 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
JP2013246936A (ja) 2012-05-24 2013-12-09 Hitachi Ltd 非水系二次電池用正極活物質
CN102694201A (zh) 2012-06-04 2012-09-26 东莞新能源科技有限公司 一种锂离子电池
US9225003B2 (en) 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
US20140004412A1 (en) 2012-06-29 2014-01-02 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
US20140023920A1 (en) 2012-07-20 2014-01-23 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
TWI441947B (zh) 2012-07-20 2014-06-21 Academia Sinica 電化學石墨烯及包含其之電極複合材料與鋰電池
KR101666879B1 (ko) 2012-08-14 2016-10-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 리튬 이차 전지용 양극 활물질의 제조 방법 및 상기 양극 활물질을 포함하는 리튬 이차 전지
JP6207923B2 (ja) * 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
JP6083505B2 (ja) 2012-08-28 2017-02-22 株式会社Gsユアサ リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池
JP6175763B2 (ja) 2012-08-28 2017-08-09 株式会社Gsユアサ リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池
JP5846446B2 (ja) 2012-08-30 2016-01-20 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池
US9754728B2 (en) 2012-10-09 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Material for electrode of power storage device, power storage device, and electrical appliance
CA2888419A1 (en) 2012-10-17 2014-04-24 Toda Kogyo Corp. Li-ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
KR101658503B1 (ko) * 2012-11-06 2016-09-21 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 이차전지
JP6159228B2 (ja) 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
WO2014073461A1 (en) 2012-11-07 2014-05-15 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
JP6303260B2 (ja) 2012-12-06 2018-04-04 株式会社村田製作所 正極活物質およびその製造方法、正極、電池、電池パック、電子機器、電動車両、蓄電装置ならびに電力システム
CN103022502A (zh) 2012-12-19 2013-04-03 天津巴莫科技股份有限公司 锂离子电池正极材料的复合包覆方法
JP2014139119A (ja) 2012-12-20 2014-07-31 Tosoh Corp ニッケル−コバルト−マンガン系複合酸化物及びその製造方法、並びにその用途
JP2014143185A (ja) * 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd 蓄電装置及びその充電方法
EP2950374B1 (en) 2013-01-23 2019-08-28 Toray Industries, Inc. Positive electrode active material/graphene composite particles, positive electrode material for lithium ion cell, and method for manufacturing positive electrode active material/graphene composite particles
JP5979251B2 (ja) 2013-01-25 2016-08-24 株式会社豊田自動織機 高電圧特性に優れる活物質
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
WO2014132550A1 (ja) 2013-02-28 2014-09-04 三洋電機株式会社 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
US9391322B2 (en) 2013-03-15 2016-07-12 E I Du Pont De Nemours And Company Cathode material and battery
US9490472B2 (en) 2013-03-28 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
CN105164054B (zh) 2013-05-10 2019-05-14 株式会社半导体能源研究所 锂锰复合氧化物、二次电池及它们的制造方法
EP3007253B1 (en) 2013-05-31 2019-10-02 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Cathode active material for lithium cell and method for manufacturing same
KR20160030932A (ko) 2013-07-15 2016-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 이차 전지
TWI661600B (zh) 2013-07-15 2019-06-01 日商半導體能源研究所股份有限公司 鋰錳複合氧化物、二次電池以及電器設備
JP6078650B2 (ja) 2013-08-28 2017-02-08 エルジー・ケム・リミテッド リチウム遷移金属リン酸化物粒子を含む正極活物質、この製造方法、及びこれを含むリチウム二次電池
JP6302322B2 (ja) 2013-09-26 2018-03-28 積水化学工業株式会社 リチウムイオン二次電池
EP2854204B1 (en) 2013-09-30 2017-06-14 Samsung Electronics Co., Ltd Composite, carbon composite including the composite, electrode, lithium battery, electroluminescent device, biosensor, semiconductor device, and thermoelectric device including the composite and/or the carbon composite
JP6207329B2 (ja) 2013-10-01 2017-10-04 日立マクセル株式会社 非水二次電池用正極材料及びその製造方法、並びに該非水二次電池用正極材料を用いた非水二次電池用正極合剤層、非水二次電池用正極及び非水二次電池
WO2015050176A1 (en) * 2013-10-04 2015-04-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, electronic device, and method for forming layer
US9865867B2 (en) * 2013-10-04 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
CN103490060A (zh) 2013-10-11 2014-01-01 宁德新能源科技有限公司 锂镍钴锰正极材料及其制备方法
JP2015082374A (ja) 2013-10-22 2015-04-27 株式会社半導体エネルギー研究所 電極の作製方法、二次電池の電極、及びそれを用いた二次電池
JP6194235B2 (ja) 2013-11-20 2017-09-06 日本化学工業株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法及びリチウム二次電池
KR102353681B1 (ko) 2013-11-29 2022-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 망가니즈 복합 산화물 및 이차 전지
WO2015083900A1 (ko) * 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015083901A1 (ko) 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US20150166348A1 (en) 2013-12-18 2015-06-18 Semiconductor Energy Laboratory Co., Ltd. Graphene, graphene-including layer, electrode, and power storage device
JP6246109B2 (ja) 2014-01-20 2017-12-13 マクセルホールディングス株式会社 リチウム・コバルト含有複合酸化物及びその製造方法、並びにそのリチウム・コバルト含有複合酸化物を用いた非水二次電池用電極及びそれを用いた非水二次電池
JP6517703B2 (ja) 2014-01-24 2019-05-22 マクセルホールディングス株式会社 非水二次電池
WO2015115699A1 (ko) 2014-01-29 2015-08-06 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
TWI600202B (zh) 2014-03-06 2017-09-21 烏明克公司 用於在汽車應用中的電池組之摻雜並且塗覆的鋰過渡金屬氧化物陰極材料
JP6414589B2 (ja) 2014-03-11 2018-10-31 三洋電機株式会社 非水電解質二次電池
CN106104862B (zh) 2014-03-13 2020-04-28 株式会社半导体能源研究所 电极、蓄电装置、电子设备、以及电极的制造方法
JP2015201432A (ja) 2014-03-31 2015-11-12 戸田工業株式会社 非水電解液二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解液二次電池
WO2015163356A1 (ja) 2014-04-22 2015-10-29 三菱化学株式会社 非水二次電池用正極活物質及び非水二次電池
CN105024047B (zh) 2014-04-23 2017-06-16 宁德时代新能源科技股份有限公司 锂离子二次电池及其复合正极活性材料及制备方法
CN110380046B (zh) 2014-05-09 2022-09-20 株式会社半导体能源研究所 锂离子二次电池及电子装置
JP6007942B2 (ja) 2014-05-19 2016-10-19 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP6471025B2 (ja) * 2014-06-27 2019-02-13 住友化学株式会社 リチウム含有複合酸化物およびその製造方法
JP6172529B2 (ja) * 2014-07-22 2017-08-02 トヨタ自動車株式会社 リチウムイオン二次電池用正極活物質およびその利用
JP2016033901A (ja) * 2014-07-31 2016-03-10 ソニー株式会社 正極活物質、正極および電池
JP2016033902A (ja) * 2014-07-31 2016-03-10 ソニー株式会社 正極活物質、正極および電池
WO2016030811A1 (en) 2014-08-27 2016-03-03 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, electronic device, and graphene
KR101758992B1 (ko) 2014-10-02 2017-07-17 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101762508B1 (ko) * 2014-10-02 2017-07-27 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
JP6520037B2 (ja) 2014-10-09 2019-05-29 日立化成株式会社 リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
CN104347880A (zh) 2014-10-14 2015-02-11 东莞新能源科技有限公司 可快充的锂离子电池
US9728770B2 (en) 2014-10-24 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
KR102682732B1 (ko) 2014-10-27 2024-07-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 입자, 전극, 전력 저장 장치, 전자 장치, 및 전극의 제작 방법
KR102004069B1 (ko) * 2015-01-23 2019-07-25 유미코아 고전압 리튬 이온 배터리용 리튬 금속 산화물 캐소드 분말
KR101788561B1 (ko) 2015-01-28 2017-10-20 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US20180034112A1 (en) * 2015-02-27 2018-02-01 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP6536939B2 (ja) * 2015-03-05 2019-07-03 住友金属鉱山株式会社 非水系電解液二次電池用正極活物質及びそれを用いた非水系電解液二次電池
US10243215B2 (en) 2015-03-27 2019-03-26 Tdk Corporation Positive electrode active material including lithium transition metal particles with graphene coating layer positive electrode and lithium ion secondary battery including the same
CN104701534A (zh) 2015-03-31 2015-06-10 南通瑞翔新材料有限公司 高能量密度的镍钴基锂离子正极材料及其制备方法
WO2016178117A1 (en) 2015-05-06 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
JP2016222526A (ja) 2015-05-29 2016-12-28 株式会社半導体エネルギー研究所 膜の作製方法および素子
US10784516B2 (en) 2015-06-25 2020-09-22 Semiconductor Energy Laboratory Co., Ltd. Conductor, power storage device, electronic device, and method for forming conductor
US10333140B2 (en) * 2015-07-02 2019-06-25 Umicore Cobalt-based lithium metal oxide cathode material
US10686207B2 (en) 2015-07-03 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery and electronic device
JP6560917B2 (ja) 2015-07-09 2019-08-14 マクセルホールディングス株式会社 正極材料、および正極材料を用いた非水電解質二次電池
JP6604080B2 (ja) * 2015-08-04 2019-11-13 日立化成株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料及びリチウムイオン二次電池
JP2017045726A (ja) 2015-08-27 2017-03-02 株式会社半導体エネルギー研究所 電極、及びその製造方法、蓄電池、並びに電子機器
JP2017052309A (ja) 2015-09-07 2017-03-16 トヨタ紡織株式会社 乗物用シート
JP7140321B2 (ja) 2015-10-09 2022-09-21 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および非水系電解質二次電池
US20170117589A1 (en) 2015-10-27 2017-04-27 Semiconductor Energy Laboratory Co., Ltd. Power storage device electronic device
JP6578189B2 (ja) 2015-11-09 2019-09-18 マクセルホールディングス株式会社 非水二次電池用正極材料及びその製造方法、並びにその非水二次電池用正極材料を用いた非水二次電池用正極及びそれを用いた非水二次電池
JP6357459B2 (ja) 2015-12-03 2018-07-11 オートリブ ディベロップメント エービー シートベルトリトラクタ
WO2017149405A1 (en) 2016-03-02 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Graphene compound, method for forming graphene compound, and lithium-ion storage battery
CN116544521A (zh) 2016-07-05 2023-08-04 株式会社半导体能源研究所 锂离子二次电池的制造方法
CN106099098B (zh) 2016-07-07 2020-06-16 电子科技大学 一种锂离子电池高电压正极材料LiδCo1-xMgxO2@AlF3及其制备方法
WO2018011675A1 (en) 2016-07-13 2018-01-18 Semiconductor Energy Laboratory Co., Ltd. Graphene compound, method for forming graphene compound, and power storage device
KR102256296B1 (ko) 2016-08-02 2021-05-26 삼성에스디아이 주식회사 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지
KR102256299B1 (ko) 2016-08-02 2021-05-26 삼성에스디아이 주식회사 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지
JP6264408B2 (ja) 2016-08-10 2018-01-24 東洋紡株式会社 偏光板
US20180076489A1 (en) 2016-09-12 2018-03-15 Semiconductor Energy Laboratory Co., Ltd. Electrode and power storage device
US10707524B2 (en) 2016-10-19 2020-07-07 Semiconductor Energy Laboratory Co., Ltd. Graphene compound and manufacturing method thereof, electrolyte, and power storage device
US20180145317A1 (en) 2016-11-18 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN115966675A (zh) 2016-11-24 2023-04-14 株式会社半导体能源研究所 正极活性物质粒子及正极活性物质粒子的制造方法
JP7097690B2 (ja) 2016-12-02 2022-07-08 株式会社半導体エネルギー研究所 電極および蓄電池
JP6760140B2 (ja) 2017-03-06 2020-09-23 トヨタ自動車株式会社 リチウムイオン二次電池用正極材料の製造方法およびリチウムイオン二次電池用正極材料
WO2018203168A1 (ja) 2017-05-03 2018-11-08 株式会社半導体エネルギー研究所 正極活物質粒子の作製方法、および二次電池
KR20240049630A (ko) 2017-05-12 2024-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자
EP3625842A4 (en) 2017-05-19 2021-03-10 Semiconductor Energy Laboratory Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY
KR20230146129A (ko) 2017-06-26 2023-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696619B1 (ko) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP2004103566A (ja) 2002-07-16 2004-04-02 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2011138718A (ja) 2009-12-29 2011-07-14 Sony Corp 正極活物質、正極および非水電解質二次電池

Also Published As

Publication number Publication date
DE202017007644U1 (de) 2023-12-19
CN109792049A (zh) 2019-05-21
KR102530225B1 (ko) 2023-05-08
KR20220038810A (ko) 2022-03-29
JP7088898B2 (ja) 2022-06-21
KR20240134253A (ko) 2024-09-06
CN115188931A (zh) 2022-10-14
CN116454360A (zh) 2023-07-18
JP2018190700A (ja) 2018-11-29
JP2023063610A (ja) 2023-05-09
KR102697171B1 (ko) 2024-08-22
KR20230098921A (ko) 2023-07-04
US20180102536A1 (en) 2018-04-12
JP2020043089A (ja) 2020-03-19
KR102676051B1 (ko) 2024-06-17
KR20230066123A (ko) 2023-05-12
CN109792049B (zh) 2023-03-14
CN111446424A (zh) 2020-07-24
US20230299274A1 (en) 2023-09-21
JP2022153404A (ja) 2022-10-12
KR20220038809A (ko) 2022-03-29
JP7198193B2 (ja) 2022-12-28
KR102702963B1 (ko) 2024-09-04
CN115188932A (zh) 2022-10-14
JP2023101598A (ja) 2023-07-21
JP2023096104A (ja) 2023-07-06
CN116154269A (zh) 2023-05-23
US20220285673A1 (en) 2022-09-08
CN111446425A (zh) 2020-07-24
JP2023123835A (ja) 2023-09-05
US11094927B2 (en) 2021-08-17
JP2023157994A (ja) 2023-10-26
US20200106093A1 (en) 2020-04-02
JP2020031071A (ja) 2020-02-27
KR102398195B1 (ko) 2022-05-17
US20210305553A1 (en) 2021-09-30
DE202017007622U1 (de) 2023-09-13
DE112017005164T5 (de) 2019-07-25
US20220199983A1 (en) 2022-06-23
JP7546725B2 (ja) 2024-09-06
JP2023072004A (ja) 2023-05-23
CN111446424B (zh) 2023-06-09
WO2018069799A1 (en) 2018-04-19
CN116387603A (zh) 2023-07-04
KR20230101939A (ko) 2023-07-06
CN116435580A (zh) 2023-07-14
CN111446425B (zh) 2023-09-05
KR20200000488A (ko) 2020-01-02
KR20200000489A (ko) 2020-01-02
US20230327088A1 (en) 2023-10-12
CN116387601A (zh) 2023-07-04
DE202017007645U1 (de) 2023-12-19
KR20190065324A (ko) 2019-06-11
CN116387602A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
KR102392937B1 (ko) 양극 활물질 입자 및 양극 활물질 입자의 제작 방법
KR102481146B1 (ko) 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant