Nothing Special   »   [go: up one dir, main page]

JP2008115423A - Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor - Google Patents

Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor Download PDF

Info

Publication number
JP2008115423A
JP2008115423A JP2006299509A JP2006299509A JP2008115423A JP 2008115423 A JP2008115423 A JP 2008115423A JP 2006299509 A JP2006299509 A JP 2006299509A JP 2006299509 A JP2006299509 A JP 2006299509A JP 2008115423 A JP2008115423 A JP 2008115423A
Authority
JP
Japan
Prior art keywords
conductor
wire
flexible cable
final
final wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006299509A
Other languages
Japanese (ja)
Inventor
Tomoya Kuji
智也 久慈
Hiromitsu Kuroda
洋光 黒田
Koji Kumagai
幸治 熊谷
Yoshito Mori
好人 森
Masao Suzuki
雅雄 鈴木
Ryohei Okada
良平 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006299509A priority Critical patent/JP2008115423A/en
Publication of JP2008115423A publication Critical patent/JP2008115423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor which has ≥98% IACS electric conductivity and ≥15% elongation percentage and in which flexibility is improved without reducing productivity, its manufacturing method, and a flexible cable using the conductor. <P>SOLUTION: The conductor for flexible cable is composed of copper of single composition or copper alloy. Wire drawing to a diameter close to final wire diameter and annealing are carried out to prepare a conductor wire. Then, the conductor wire is subjected to cold working to the final wire diameter in such a way that elongation percentage at fracture becomes ≥15%, and hereby hardness in the surface part of a final wire is made higher than that in the central part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、産業用ロボットや自動工作機械等に用いられるケーブルに係り、耐屈曲性を向上させた導体及びその製造方法並びにその導体を用いた耐屈曲性ケーブルに関するものである。   The present invention relates to a cable used for an industrial robot, an automatic machine tool, and the like, and relates to a conductor having improved bending resistance, a manufacturing method thereof, and a bending resistant cable using the conductor.

産業用ロボットや自動工作機械等の駆動部に用いられる部品(ケーブル)は、その使用環境から優れた繰り返し曲げ特性、すなわち耐屈曲性が要求される。   Components (cables) used in drive units of industrial robots and automatic machine tools are required to have excellent repeated bending characteristics, that is, bending resistance, in view of the usage environment.

従来、この種のケーブル(以下、耐屈曲性ケーブルという)の導体には、一般的にはタフピッチ銅(JIS C3102準拠)が用いられている。しかし、タフピッチ銅は耐屈曲性が不十分であり、耐屈曲性が特に重要視される用途では、固溶強化型のCu−Sn合金(特許文献1〜3)、析出強化型のCu−Zr合金(特許文献4,5)、Cu−Fe−P合金(特許文献6,7)等も用いられている。   Conventionally, tough pitch copper (conforming to JIS C3102) is generally used as a conductor of this type of cable (hereinafter referred to as a flex-resistant cable). However, tough pitch copper has insufficient bending resistance, and in applications where bending resistance is particularly important, solid solution strengthened Cu-Sn alloys (Patent Documents 1 to 3), precipitation strengthened Cu-Zr. Alloys (Patent Documents 4 and 5), Cu-Fe-P alloys (Patent Documents 6 and 7), and the like are also used.

また、冷間加工率30%以下の冷間加工と最終時効処理を組み合わせて、銅合金の強度、弾性、導電性、耐応力緩和特性を向上させる方法がある(特許文献8)。更に、伸線、焼鈍後の電気用銅線に10%以下の軽リダクションによる伸線加工を加えて、0.2%耐力、引張強さ、伸び、導電率の特性を調整する方法がある(特許文献9)。   Further, there is a method of improving the strength, elasticity, conductivity, and stress relaxation resistance characteristics of a copper alloy by combining cold working with a cold working rate of 30% or less and final aging treatment (Patent Document 8). Furthermore, there is a method of adjusting the characteristics of 0.2% proof stress, tensile strength, elongation, and conductivity by adding a wire drawing process by light reduction of 10% or less to the electric copper wire after wire drawing and annealing ( Patent Document 9).

特開平6−76640号公報JP-A-6-76640 特開平11−172391号公報Japanese Patent Laid-Open No. 11-172391 特開2004−179151号公報JP 2004-179151 A 特開平5−20208号公報JP-A-5-20208 特開2000−242139号公報JP 2000-242139 A 特開平5−20207号公報JP-A-5-20207 特開平6−283038号公報JP-A-6-283038 特開平1−309948号公報JP-A-1-309948 特開昭60−24284号公報Japanese Patent Laid-Open No. 60-24284

しかし、Cu−Sn系の固溶強化型の合金を用いた場合、Sn固溶量の増加とともに耐屈曲性は向上するものの、導電率は低下するという不具合がある。例えば、Sn固溶量が0.3質量%の場合、導電率は80%IACSであるが、Sn固溶量が0.7質量%になると、導電率が65%IACSまで低下する。   However, when a Cu—Sn solid solution strengthened alloy is used, although the flex resistance is improved as the Sn solid solution amount is increased, there is a problem that the conductivity is lowered. For example, when the Sn solid solution amount is 0.3% by mass, the conductivity is 80% IACS. However, when the Sn solid solution amount is 0.7% by mass, the conductivity decreases to 65% IACS.

また、Cu−Zr系、Cu−Fe−P系等の析出強化型の合金は、優れた導電性および耐屈曲性を有するものの、伸線後に所定の引張強さに調質するために長時間の時効処理を施す必要があるため、生産性に劣るという問題がある。   Further, precipitation-strengthened alloys such as Cu-Zr and Cu-Fe-P have excellent electrical conductivity and bending resistance, but they have a long time to refining to a predetermined tensile strength after wire drawing. Therefore, there is a problem that productivity is inferior.

そこで、本発明の目的は、導電率98%IACS以上、伸び率15%以上を満たし、かつ、生産性を低下させることなく、耐屈曲性を向上させた耐屈曲性ケーブル用導体及びその製造方法並びにその導体を用いた耐屈曲性ケーブルを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a flexible cable conductor that satisfies an electrical conductivity of 98% IACS or higher and an elongation of 15% or higher and has improved flex resistance without reducing productivity, and a method for manufacturing the same. It is another object of the present invention to provide a bend-resistant cable using the conductor.

上記の目的を達成するために、請求項1の発明は、単一組成の銅又は銅合金で構成される耐屈曲性ケーブル用導体において、最終線径近くまで伸線し、焼鈍して導体線材を作製し、その導体線材に、最終線径まで、かつ、破断時の伸び率が15%以上となるように冷間加工を施して、最終線材の表面部を中央部より硬く形成したことを特徴とする耐屈曲性ケーブル用導体である。   In order to achieve the above object, the invention according to claim 1 is a conductor wire material in which a conductor for a flexible cable made of copper or a copper alloy having a single composition is drawn to near the final wire diameter and annealed. The conductor wire was cold-worked to the final wire diameter so that the elongation at break was 15% or more, and the surface portion of the final wire was made harder than the central portion. It is a conductor for a flexible cable.

請求項2の発明は、上記最終線材の表面部と中央部の硬さの比が1.09〜1.11である請求項1記載の耐屈曲性ケーブル用導体である。   A second aspect of the present invention is the flexible cable conductor according to the first aspect, wherein the ratio of the hardness of the surface portion to the central portion of the final wire is 1.09 to 1.11.

請求項3の発明は、上記最終線材の0.2%耐力が160MPa以上、245MPa以下、導電率が98%IACS以上である請求項1又は2記載の耐屈曲性ケーブル用導体である。   The invention according to claim 3 is the flexible cable conductor according to claim 1 or 2, wherein the final wire has a 0.2% yield strength of 160 MPa or more and 245 MPa or less and an electrical conductivity of 98% IACS or more.

請求項4の発明は、上記最終線材が、その表面にSn、Ni、又はAgのめっき膜を有する請求項1〜3いずれかに記載の耐屈曲性ケーブル用導体である。   The invention according to claim 4 is the flexible cable conductor according to any one of claims 1 to 3, wherein the final wire has a plated film of Sn, Ni, or Ag on the surface thereof.

請求項5の発明は、上記最終線材を複数本撚り合わせてなる撚線材で形成された請求項1〜4いずれかに記載の耐屈曲性ケーブル用導体である。   A fifth aspect of the present invention is the flexible cable conductor according to any one of the first to fourth aspects, wherein the conductor is formed of a stranded wire formed by twisting a plurality of the final wires.

請求項6の発明は、請求項1〜5いずれかに記載の耐屈曲性ケーブル用導体の周囲を絶縁層で被覆したことを特徴とする耐屈曲性ケーブルである。   The invention of claim 6 is a bend-resistant cable characterized in that the periphery of the bend-resistant cable conductor according to any one of claims 1 to 5 is covered with an insulating layer.

請求項7の発明は、単一組成の銅又は銅合金で構成される耐屈曲性ケーブル用導体の製造方法において、線材を最終線径近くまで伸線し、焼鈍して導体線材を作製し、その導体線材に、最終線径まで、かつ、破断時の伸び率が15%以上となるように冷間加工を施して、最終線材の表面部を中央部より硬く形成することを特徴とする耐屈曲性ケーブル用導体の製造方法である。   The invention of claim 7 is a method for producing a flexible cable conductor composed of copper or a copper alloy having a single composition. In the method for producing a conductor for a flexible cable, the wire is drawn to near the final wire diameter and annealed to produce a conductor wire. The conductor wire is cold-worked to the final wire diameter so that the elongation at break is 15% or more, and the surface portion of the final wire is formed to be harder than the central portion. It is a manufacturing method of the conductor for flexible cables.

請求項8の発明は、上記冷間加工の加工率が0.8%以上、6.0%以下である請求項7記載の耐屈曲性ケーブル用導体の製造方法である。   The invention according to claim 8 is the method for producing a flexible cable conductor according to claim 7, wherein the cold working rate is 0.8% or more and 6.0% or less.

請求項9の発明は、上記冷間加工がスキンパス加工である請求項7又は8記載の耐屈曲性ケーブル用導体の製造方法である。   A ninth aspect of the present invention is the method for producing a flexible cable conductor according to the seventh or eighth aspect, wherein the cold working is a skin pass working.

請求項10の発明は、上記冷間加工がピーニング加工である請求項7又は8記載の耐屈曲性ケーブル用導体の製造方法である。   A tenth aspect of the present invention is the method for producing a flexible cable conductor according to the seventh or eighth aspect, wherein the cold working is peening.

本発明に基づけば、導電率及び伸び率に優れ、かつ、良好な耐屈曲性を有する耐屈曲性ケーブル用導体が得られる。   Based on this invention, the conductor for bending-resistant cables which is excellent in electrical conductivity and elongation rate and has favorable bending resistance can be obtained.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明では、耐屈曲性ケーブル用導体の耐屈曲性を向上させる対策として、従来のように合金化ではなく、表面加工(冷間加工)を行うことにある。具体的には、線材表面に圧縮残留応力の付加(導入)又は表面塑性加工(即ちスキンパス加工、ショットピーニング加工、レーザーピーニング加工やジェットピーニング加工)による表面硬化を行う。スキンパス加工は、板材、条材、管材、線材などの表面つや出し又はひずみ矯正のために行う軽度の圧延、引き抜き加工(JIS H0500記載)である。   In the present invention, as a measure for improving the flex resistance of the flex-resistant cable conductor, surface processing (cold processing) is performed instead of alloying as in the prior art. Specifically, surface hardening is performed by adding (introducing) compressive residual stress to the surface of the wire or by surface plastic processing (that is, skin pass processing, shot peening processing, laser peening processing, or jet peening processing). Skin pass processing is mild rolling and drawing (described in JIS H0500) for surface polishing or distortion correction of plate materials, strip materials, pipe materials, wire materials, and the like.

すなわち、本発明の好適一実施の形態に係る耐屈曲性ケーブル用導体は、導体線材に低加工率で冷間加工を行うことに特徴がある。具体的には、単一組成の銅(又は銅合金)で構成される線材を最終線径近く(R1)まで伸線し、焼鈍して導体線材を作製し、その導体線材に、最終線径(R2<R1)まで、かつ、破断時の伸び率が15%以上となるように冷間加工を施して、最終線材の表面部を中央部より硬く形成したものである。   That is, the flexible cable conductor according to the preferred embodiment of the present invention is characterized in that the conductor wire is cold worked at a low working rate. Specifically, a wire composed of a single composition of copper (or copper alloy) is drawn to near the final wire diameter (R1), annealed to produce a conductor wire, and the final wire diameter is applied to the conductor wire. The surface portion of the final wire is made harder than the central portion by cold working so that the elongation at break is 15% or more until (R2 <R1).

最終線材(耐屈曲性ケーブル用導体)の表面部と中央部の硬さの比(表面部/中央部)は1.1前後(1.09〜1.11)、0.2%耐力は160MPa以上、245MPa以下、好ましくは200MPa以上、225MPa以下、及び導電率は98%IACS以上である。0.2%耐力は、後述する冷間加工の加工率に依存しており、加工率の上限値、下限値から0.2%耐力の上限値、下限値が定められる。   The ratio of the hardness of the surface portion to the central portion (surface portion / central portion) of the final wire rod (flexible cable conductor) is around 1.1 (1.09 to 1.11), and the 0.2% proof stress is 160 MPa. As described above, 245 MPa or less, preferably 200 MPa or more and 225 MPa or less, and the conductivity is 98% IACS or more. The 0.2% yield strength depends on the working rate of cold working described later, and the upper limit value and lower limit value of the 0.2% yield strength are determined from the upper limit value and lower limit value of the working rate.

耐屈曲性ケーブル用導体を構成する単一組成の銅としては、タフピッチ銅が挙げられる。また、耐屈曲性ケーブル用導体を構成する銅合金としては、タフピッチ銅に耐屈曲性を向上させる元素を微量添加し、タフピッチ銅よりも耐屈曲性を向上させたものが挙げられるが、この耐屈曲性を除けば、銅合金はタフピッチ銅と同等の特性(導電率及び伸び)を有する。銅合金としては、例えば、Cu−Sn合金、Cu−Ni合金、Cu−Ag合金などが挙げられる。更に、耐屈曲性ケーブル用導体は、その表面にSn、Ni、又はAgのめっき膜を有していてもよい。すなわち、タフピッチ銅で線材を構成すると共に、その線材表面にSn、Ni、又はAgのめっき膜を設けるようにしてもよい。   A tough pitch copper is mentioned as copper of the single composition which comprises the conductor for flexible cables. In addition, examples of the copper alloy that constitutes the cable conductor for bending resistance include those obtained by adding a small amount of an element that improves bending resistance to tough pitch copper to improve bending resistance compared to tough pitch copper. Except for flexibility, copper alloys have the same properties (conductivity and elongation) as tough pitch copper. Examples of the copper alloy include a Cu—Sn alloy, a Cu—Ni alloy, and a Cu—Ag alloy. Further, the flexible cable conductor may have a Sn, Ni, or Ag plating film on its surface. That is, the wire rod may be made of tough pitch copper, and a Sn, Ni, or Ag plating film may be provided on the surface of the wire rod.

耐屈曲性ケーブル用導体は、単線材に限定されるものではなく、この単線材を複数本撚り合わせてなる撚線材であってもよい。   The conductor for a flexible cable is not limited to a single wire, and may be a stranded wire formed by twisting a plurality of single wires.

本実施の形態に係る耐屈曲性ケーブル用導体は、特にJIS C3102に準拠した導体をターゲットとしており、導体径は0.1mm以上、0.7mm以下、好ましくは0.1mm以上、0.26mm以下及び0.29mm以上、0.7mm以下とされる。   The conductor for a flexible cable according to the present embodiment is particularly targeted for a conductor conforming to JIS C3102, and the conductor diameter is 0.1 mm or more and 0.7 mm or less, preferably 0.1 mm or more and 0.26 mm or less. And 0.29 mm or more and 0.7 mm or less.

次に、本実施の形態の製造方法を説明する。   Next, the manufacturing method of this embodiment will be described.

本実施の形態に係る耐屈曲性ケーブル用導体の製造方法は、単一組成の銅(又は銅合金)で構成される線材を最終線径近くまで伸線し、焼鈍して導体線材を作製し、その導体線材に、最終線径まで、かつ、破断時の伸び率が15%以上となるようにスキンパス加工(冷間加工)を施して、最終線材の表面部を中央部より硬く形成するものである。このスキンパス加工の加工率(減面率)は0.8%以上、6.0%以下、好ましくは2.0%以上、3.8%以下とされる。   The method for manufacturing a flexible cable conductor according to the present embodiment is to produce a conductor wire by drawing a wire composed of copper (or copper alloy) having a single composition to near the final wire diameter and annealing. The conductor wire is subjected to skin pass processing (cold working) until the final wire diameter and the elongation at break is 15% or more, and the surface portion of the final wire is made harder than the central portion. It is. The processing rate (area reduction rate) of this skin pass processing is 0.8% or more and 6.0% or less, preferably 2.0% or more and 3.8% or less.

このようにして得られた本実施の形態に係る耐屈曲性ケーブル用導体の周囲を絶縁層で被覆することで、耐屈曲性ケーブルが得られる。絶縁層の構成材としては、耐屈曲性ケーブルの絶縁層として慣用的に用いられているものが適用可能である。   A bend-resistant cable is obtained by covering the periphery of the bend-resistant cable conductor according to the present embodiment thus obtained with an insulating layer. As the constituent material of the insulating layer, those conventionally used as the insulating layer of the bending resistant cable can be applied.

スキンパス加工の加工率の下限値を0.8%以上としたのは、これより低い加工率は加工率の制御自体が困難であるためである。また、加工率の下限値を好ましくは2.0%以上としたのは、耐屈曲性が従来の耐屈曲性ケーブル用導体(以下、従来導体という)と比較して1.1倍以上となるためである。耐屈曲性の基準を1.1倍としたのは、耐屈曲性のばらつきが平均値(1.0)に対して±1割(0.1)程度あるためである。ここで言う従来導体とは、単一組成の銅(又は銅合金)で構成される線材を最終線径まで伸線し、焼鈍したものである。   The reason why the lower limit of the skin pass processing rate is set to 0.8% or more is that it is difficult to control the processing rate at a processing rate lower than this. The lower limit of the processing rate is preferably set to 2.0% or more because the bending resistance is 1.1 times or more compared to a conventional bending-resistant cable conductor (hereinafter referred to as a conventional conductor). Because. The reason why the standard of bending resistance is 1.1 times is that the variation in bending resistance is about ± 10% (0.1) with respect to the average value (1.0). Here, the conventional conductor is a wire made of copper (or copper alloy) having a single composition, drawn to the final wire diameter and annealed.

一方、スキンパス加工の加工率の上限値を6.0%以下としたのは、加工率がこれより大きくなると、伸び率が15%を下回るためである。また、加工率の上限値を好ましくは3.8%以下としたのは、これより大きくなると伸び率が20%を下回るためである。   On the other hand, the reason why the upper limit of the skin pass processing rate is set to 6.0% or less is that when the processing rate is larger than this, the elongation rate is less than 15%. Moreover, the upper limit of the processing rate is preferably set to 3.8% or less because the elongation is less than 20% when the upper limit is increased.

この伸び率の基準値は、JIS C3102から定めており、伸び率20%以上が好ましいのは、より広範囲の線径の規格を満たすためである。具体的には、伸び率15%以上では、線径0.1mm以上、0.26mm以下、伸び率20%以上では、線径0.1mm以上、0.26mm以下及び0.29mm以上、0.7mm以下の範囲でJIS C3102の規格を満たす。   The standard value of the elongation rate is determined from JIS C3102, and the elongation rate of 20% or more is preferable in order to satisfy a wider range of wire diameter standards. Specifically, when the elongation rate is 15% or more, the wire diameter is 0.1 mm or more and 0.26 mm or less, and when the elongation rate is 20% or more, the wire diameter is 0.1 mm or more, 0.26 mm or less, 0.29 mm or more, 0. Meets JIS C3102 standards within a range of 7 mm or less.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態に係る耐屈曲性ケーブル用導体の製造方法では、線材などの表面つや出し又はひずみ矯正のために行っていたスキンパス加工を、最終線径近くまで伸線し、焼鈍した導体線材に対して施している。具体的には、導体線材に、最終線径まで、かつ、破断時の伸び率が15%以上となるようにスキンパス加工を、加工率0.8〜6.0%の範囲で施している。これによって、得られた最終線材(耐屈曲性ケーブル用導体)の表面に塑性加工による圧縮応力が残留し、最終線材の表面に加工硬化が生じる。この加工硬化が生じても、最終線材の引張強さは殆ど(又はあまり)向上しない。   In the method for producing a flexible cable conductor according to the present embodiment, the skin pass processing that has been performed for surface polishing or distortion correction of a wire or the like is drawn to near the final wire diameter, and the annealed conductor wire It is given. Specifically, the skin pass processing is performed on the conductor wire in the range of the processing rate of 0.8 to 6.0% so that the elongation to the final wire diameter is 15% or more. As a result, compressive stress due to plastic working remains on the surface of the obtained final wire (flexible cable conductor), and work hardening occurs on the surface of the final wire. Even if this work hardening occurs, the tensile strength of the final wire is hardly (or not much) improved.

この加工硬化された最終線材に、繰り返し曲げなどの外的応力が加えられて最終線材の表面に引張応力が作用しても、この引張応力は圧縮残留応力によって相殺されるので、本実施の形態の耐屈曲性ケーブル用導体は疲れ強さが著しく改善される。   Even if an external stress such as repetitive bending is applied to the work-hardened final wire and a tensile stress acts on the surface of the final wire, the tensile stress is offset by the compressive residual stress. The bending-resistant cable conductors have significantly improved fatigue strength.

また、加工硬化が生じるのは最終線材の表面のみであるため、加工率が0.8〜6.0%の範囲であれば、最終線材の伸びが著しく減少することはなく、結果として、破断時の伸び率15%以上を確保することができる。同様の理由により、加工率が0.8〜6.0%の範囲であれば、最終線材の内部に歪みが大量に導入されることはなく、結果として、98%IACS以上の導電率を確保することができる。   In addition, since work hardening occurs only on the surface of the final wire, if the processing rate is in the range of 0.8 to 6.0%, the elongation of the final wire is not significantly reduced, resulting in breakage. An elongation rate of 15% or more can be ensured. For the same reason, if the processing rate is in the range of 0.8 to 6.0%, a large amount of distortion is not introduced into the final wire, and as a result, a conductivity of 98% IACS or more is ensured. can do.

本実施の形態においては、導体線材に施す冷間加工としてスキンパス加工を例に挙げて説明を行ったが、スキンパス加工の代わりに、ショットピーニング加工、レーザーピーニング加工、又はジェットピーニング加工を施すようにしてもよい。この場合においても、ショット粒の衝撃エネルギによって最終線材の表面に圧縮残留応力が導入され、最終線材の表面に加工硬化が生じるので、スキンパス加工と同様の作用効果が得られる。   In the present embodiment, description has been made by taking skin pass processing as an example of cold processing to be applied to a conductor wire, but shot peening processing, laser peening processing, or jet peening processing is performed instead of skin pass processing. May be. Even in this case, the compressive residual stress is introduced to the surface of the final wire due to the impact energy of the shot grains, and work hardening occurs on the surface of the final wire, so that the same effect as skin pass processing can be obtained.

(従来例)
タフピッチ銅(酸素含有量300〜350ppm)からなる線径8mmの線材を線径0.9mmまで冷間伸線加工した後、通電による焼鈍を施し、中間材を作製した。こうして得られた中間材を線径0.262mmまで冷間伸線加工した後、再び、通電による焼鈍を施し、導体A(導体線材)を作製した。
(実施例1)
導体Aを線径0.261mmまでスキンパス加工し、実施例1の導体を得た。このスキンパスの加工率(減面率)は0.8%である。
(実施例2)
導体Aを線径0.260mmまでスキンパス加工し、実施例2の導体を得た。このスキンパスの加工率は1.5%である。
(実施例3)
導体Aを線径0.259mmまでスキンパス加工し、実施例3の導体を得た。このスキンパスの加工率は2.3%である。
(実施例4)
導体Aを線径0.258mmまでスキンパス加工し、実施例4の導体を得た。このスキンパスの加工率は3.0%である。
(実施例5)
導体Aを線径0.257mmまでスキンパス加工し、実施例5の導体を得た。このスキンパスの加工率は3.8%である。
(実施例6)
導体Aを線径0.256mmまでスキンパス加工し、実施例6の導体を得た。このスキンパスの加工率は4.5%である。
(実施例7)
導体Aを線径0.255mmまでスキンパス加工し、実施例7の導体を得た。このスキンパスの加工率は5.3%である。
(実施例8)
導体Aを線径0.254mmまでスキンパス加工し、実施例8の導体を得た。このスキンパスの加工率は6.0%である。
(比較例1)
導体Aを線径0.253mmまでスキンパス加工し、比較例1の導体を得た。このスキンパスの加工率は6.8%である。
(比較例2)
導体Aを線径0.247mmまでスキンパス加工し、比較例2の導体を得た。このスキンパスの加工率は11.1%である。
(Conventional example)
A wire rod having a wire diameter of 8 mm made of tough pitch copper (oxygen content of 300 to 350 ppm) was cold drawn to a wire diameter of 0.9 mm, and then annealed by energization to produce an intermediate material. The intermediate material thus obtained was cold-drawn to a wire diameter of 0.262 mm, and then subjected to annealing again by energization to produce a conductor A (conductor wire).
(Example 1)
The conductor A was subjected to skin pass processing to a wire diameter of 0.261 mm to obtain the conductor of Example 1. The processing rate (area reduction rate) of this skin pass is 0.8%.
(Example 2)
The conductor A was subjected to skin pass processing to a wire diameter of 0.260 mm to obtain a conductor of Example 2. The processing rate of this skin pass is 1.5%.
(Example 3)
The conductor A was subjected to skin pass processing to a wire diameter of 0.259 mm to obtain a conductor of Example 3. The processing rate of this skin pass is 2.3%.
Example 4
The conductor A was subjected to skin pass processing to a wire diameter of 0.258 mm to obtain a conductor of Example 4. The processing rate of this skin pass is 3.0%.
(Example 5)
The conductor A was subjected to skin pass processing to a wire diameter of 0.257 mm to obtain a conductor of Example 5. The processing rate of this skin pass is 3.8%.
(Example 6)
The conductor A was subjected to skin pass processing to a wire diameter of 0.256 mm to obtain a conductor of Example 6. The processing rate of this skin pass is 4.5%.
(Example 7)
The conductor A was subjected to skin pass processing to a wire diameter of 0.255 mm to obtain a conductor of Example 7. The processing rate of this skin pass is 5.3%.
(Example 8)
The conductor A was subjected to skin pass processing to a wire diameter of 0.254 mm to obtain a conductor of Example 8. The processing rate of this skin pass is 6.0%.
(Comparative Example 1)
The conductor A was subjected to skin pass processing to a wire diameter of 0.253 mm to obtain a conductor of Comparative Example 1. The processing rate of this skin pass is 6.8%.
(Comparative Example 2)
The conductor A was subjected to skin pass processing to a wire diameter of 0.247 mm to obtain a conductor of Comparative Example 2. The processing rate of this skin pass is 11.1%.

表1に実施例1〜8、比較例1,2及び従来例の導体の、スキンパス加工前後の線径及びそのときの加工率を示す。   Table 1 shows the wire diameters of the conductors of Examples 1 to 8, Comparative Examples 1 and 2 and the conventional example before and after skin pass processing and the processing rate at that time.

ここで加工率は、伸線前と伸線後の横断面(伸線方向と垂直な面)面積の差を伸線前の横断面面積で規格化し、百分率で表現したものである(JIS H0500)。なお、加工率はマイクロメータにて測定した線径から算出した。   Here, the processing rate is expressed as a percentage by standardizing the difference in the cross-sectional area (surface perpendicular to the drawing direction) before and after drawing with the cross-sectional area before drawing (JIS H0500). ). The processing rate was calculated from the wire diameter measured with a micrometer.

Figure 2008115423
Figure 2008115423

次に、実施例1〜8、比較例1,2及び従来例の導体に対し、引張強さ、0.2%耐力、伸び率、導電率、耐屈曲性及びビッカース硬さの評価を行った。この評価方法を次に記す。   Next, the tensile strength, 0.2% proof stress, elongation, conductivity, flex resistance, and Vickers hardness were evaluated for the conductors of Examples 1 to 8, Comparative Examples 1 and 2, and the conventional example. . This evaluation method is described below.

引張試験は、条件を試験片長100mm、歪速度20mm/minで実施し、その結果から、引張強さ、0.2%耐力、伸び率を評価した。   In the tensile test, the test piece length was 100 mm and the strain rate was 20 mm / min, and the tensile strength, 0.2% proof stress, and elongation rate were evaluated from the results.

導電率は、ダブルブリッジ法にて測定した電気抵抗値からJIS C3002に従って算出した。ダブルブリッジ法による電気抵抗値の測定条件は、試料長は500mm、測定温度は20℃とした。この結果、いずれの導体も100%IACS以上の優れた導電率を有しており、J1S C3102を満たしていた。   The conductivity was calculated according to JIS C3002 from the electric resistance value measured by the double bridge method. The measurement conditions of the electrical resistance value by the double bridge method were a sample length of 500 mm and a measurement temperature of 20 ° C. As a result, all the conductors had excellent conductivity of 100% IACS or higher and satisfied J1S C3102.

耐屈曲性は、左右90゜曲げを繰り返し、導体が疲労破断するまでの回数を用いて評価した。屈曲条件は、曲げ半径40mm、屈曲速度13回/分とした。また、この試験では導体に荷重を負荷するが、本評価では28〜29gの荷重を負荷している。この荷重は、各導体の引張破断荷重の2%に当たる。   The bending resistance was evaluated using the number of times until the conductor was subjected to fatigue fracture after repeated 90 ° right and left bending. The bending conditions were a bending radius of 40 mm and a bending speed of 13 times / minute. In this test, a load is applied to the conductor. In this evaluation, a load of 28 to 29 g is applied. This load corresponds to 2% of the tensile breaking load of each conductor.

ビッカース硬さは、押付け荷重10g、押付け時間15秒の試験条件にて測定した。   The Vickers hardness was measured under test conditions of a pressing load of 10 g and a pressing time of 15 seconds.

表2に実施例1〜8、比較例1,2及び従来例の導体の、加工率、引張強さ、0.2%耐力、伸び率及び耐屈曲性を示す。   Table 2 shows the processing rate, tensile strength, 0.2% yield strength, elongation rate, and bending resistance of the conductors of Examples 1 to 8, Comparative Examples 1 and 2, and the conventional example.

Figure 2008115423
Figure 2008115423

表2によれば、加工率の増大と共に、耐屈曲性及び0.2%耐力は向上するため、耐屈曲性を向上させる場合、本発明の加工率の範囲(0.8〜6.0%)においては、加工率を極力大きくすることが望ましい。   According to Table 2, since the bending resistance and the 0.2% proof stress are improved with the increase of the processing rate, when the bending resistance is improved, the range of the processing rate of the present invention (0.8 to 6.0%). ), It is desirable to increase the processing rate as much as possible.

一方、伸び率は加工率の増大と共に減少する。このため、加工率の上限は、伸び率が15%以上を満たす範囲、即ち加工率6.0%以下とし、また、好ましくは伸び率が20%以上を満たす範囲、すなわち加工率3.8%以下とした。この伸び率15%、20%の規定は、前述のとおりである。   On the other hand, the elongation decreases as the processing rate increases. For this reason, the upper limit of the processing rate is a range where the elongation rate satisfies 15% or more, that is, a processing rate of 6.0% or less, and preferably a range where the elongation rate satisfies 20% or more, that is, a processing rate of 3.8%. It was as follows. The rules for the elongations of 15% and 20% are as described above.

また、加工率の下限は、加工率制御の困難性から0.8%以上とし、好ましくは2.0%以上とした。これは、表2の耐屈曲性の値は平均値であって、実際の耐屈曲性は平均値に対して±1割程度ばらつきがあると考えられる。よって、従来例の導体の耐屈曲性(1.0)以上を満足するには、耐屈曲性が1.1以上必要であり、これを満足するのは実施例3〜8の導体である。これを基にして好ましい加工率の下限(2.0%以上)が決定された。   Further, the lower limit of the processing rate is set to 0.8% or more, preferably 2.0% or more, because of difficulty in controlling the processing rate. This is because the values of the bending resistance in Table 2 are average values, and the actual bending resistance is considered to vary by about ± 10% with respect to the average value. Therefore, in order to satisfy the bending resistance (1.0) or more of the conductor of the conventional example, the bending resistance is 1.1 or more, and the conductors of Examples 3 to 8 satisfy this. Based on this, a preferable lower limit (2.0% or more) of the processing rate was determined.

表3に実施例1〜8、比較例1,2及び従来例の導体の、加工率及び導体中央の硬さを基準とした導体表面の硬さ(表面部と中央部の硬さの比)を示す。   Table 3 shows the hardness of the conductor surface based on the processing rate and the hardness of the conductor center of the conductors of Examples 1 to 8, Comparative Examples 1 and 2 and the conventional example (ratio of the hardness of the surface portion to the center portion). Indicates.

Figure 2008115423
Figure 2008115423

表3によれば、加工率と導体中央の硬さを基準とした導体表面の硬さは、実施例、比較例いずれも、従来例よりも大きく、導体表面部が導体中央部よりも1割硬い(表面部硬さ/中央部硬さ:1.1)ことがわかる。   According to Table 3, the hardness of the conductor surface based on the processing rate and the hardness of the conductor center is larger than that of the conventional example in both the examples and comparative examples, and the conductor surface portion is 10% higher than the conductor center portion. It turns out that it is hard (surface part hardness / center part hardness: 1.1).

以上から、導体線材に加工率0.8%以上、6.0%以下の範囲でスキンパス加工を施すことで、屈曲特性向上及び伸び率15%以上が達成できる。また、導電率は、100%IACS以上が達成できる。   From the above, it is possible to achieve an improvement in flexural properties and an elongation rate of 15% or more by subjecting the conductor wire material to skin pass processing in a range of 0.8% or more and 6.0% or less. The conductivity can be 100% IACS or more.

Claims (10)

単一組成の銅又は銅合金で構成される耐屈曲性ケーブル用導体において、最終線径近くまで伸線し、焼鈍して導体線材を作製し、その導体線材に、最終線径まで、かつ、破断時の伸び率が15%以上となるように冷間加工を施して、最終線材の表面部を中央部より硬く形成したことを特徴とする耐屈曲性ケーブル用導体。   In a flexible cable conductor composed of copper or copper alloy of a single composition, drawn to near the final wire diameter, annealed to produce a conductor wire, to the conductor wire, to the final wire diameter, and A flex-resistant cable conductor characterized in that a cold working is performed so that an elongation at break is 15% or more, and a surface portion of a final wire is formed harder than a central portion. 上記最終線材の表面部と中央部の硬さの比が1.09〜1.11である請求項1記載の耐屈曲性ケーブル用導体。   The conductor for a flexible cable according to claim 1, wherein the ratio of the hardness of the surface portion to the central portion of the final wire is 1.09 to 1.11. 上記最終線材の0.2%耐力が160MPa以上、245MPa以下、導電率が98%IACS以上である請求項1又は2記載の耐屈曲性ケーブル用導体。   The flexible cable conductor according to claim 1 or 2, wherein the final wire has a 0.2% proof stress of 160 MPa or more and 245 MPa or less and an electrical conductivity of 98% IACS or more. 上記最終線材が、その表面にSn、Ni、又はAgのめっき膜を有する請求項1〜3いずれかに記載の耐屈曲性ケーブル用導体。   The conductor for bending-resistant cables according to any one of claims 1 to 3, wherein the final wire has a Sn, Ni, or Ag plating film on a surface thereof. 上記最終線材を複数本撚り合わせてなる撚線材で形成された請求項1〜4いずれかに記載の耐屈曲性ケーブル用導体。   The conductor for bend-resistant cables according to any one of claims 1 to 4, wherein the conductor is a twisted wire formed by twisting a plurality of the final wires. 請求項1〜5いずれかに記載の耐屈曲性ケーブル用導体の周囲を絶縁層で被覆したことを特徴とする耐屈曲性ケーブル。   A bend-resistant cable, wherein the conductor for a bend-resistant cable according to any one of claims 1 to 5 is covered with an insulating layer. 単一組成の銅又は銅合金で構成される耐屈曲性ケーブル用導体の製造方法において、線材を最終線径近くまで伸線し、焼鈍して導体線材を作製し、その導体線材に、最終線径まで、かつ、破断時の伸び率が15%以上となるように冷間加工を施して、最終線材の表面部を中央部より硬く形成することを特徴とする耐屈曲性ケーブル用導体の製造方法。   In a method for manufacturing a flexible cable conductor composed of copper or copper alloy having a single composition, a wire is drawn to near the final wire diameter, annealed to produce a conductor wire, and the final wire is applied to the conductor wire. Production of a flexible cable conductor characterized by forming the surface portion of the final wire rod harder than the center portion by cold working so that the elongation at break is 15% or more up to the diameter Method. 上記冷間加工の加工率が0.8%以上、6.0%以下である請求項7記載の耐屈曲性ケーブル用導体の製造方法。   The method for producing a conductor for a flexible cable according to claim 7, wherein a processing rate of the cold working is 0.8% or more and 6.0% or less. 上記冷間加工がスキンパス加工である請求項7又は8記載の耐屈曲性ケーブル用導体の製造方法。   The method for producing a flexible cable conductor according to claim 7 or 8, wherein the cold working is a skin pass working. 上記冷間加工がピーニング加工である請求項7又は8記載の耐屈曲性ケーブル用導体の製造方法。   The method for manufacturing a conductor for a flexible cable according to claim 7 or 8, wherein the cold working is peening.
JP2006299509A 2006-11-02 2006-11-02 Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor Pending JP2008115423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299509A JP2008115423A (en) 2006-11-02 2006-11-02 Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299509A JP2008115423A (en) 2006-11-02 2006-11-02 Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor

Publications (1)

Publication Number Publication Date
JP2008115423A true JP2008115423A (en) 2008-05-22

Family

ID=39501616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299509A Pending JP2008115423A (en) 2006-11-02 2006-11-02 Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor

Country Status (1)

Country Link
JP (1) JP2008115423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243659A (en) * 2010-05-14 2011-12-01 Furukawa Electric Co Ltd:The Square copper wire, method of manufacturing same, square copper wire for solar cell, and method of manufacturing same
CN103151115A (en) * 2013-02-28 2013-06-12 天恒达电工科技股份有限公司 Method for producing high-tension copper alloy enameled wire
JP2014191885A (en) * 2013-03-26 2014-10-06 Hitachi Metals Ltd Flat cable and method for manufacturing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388996A (en) * 1977-01-18 1978-08-04 Sumitomo Electric Ind Ltd Manufacturing method of electronics part lead material which has excellent heading workability
JPS6024284A (en) * 1983-07-19 1985-02-06 Furukawa Electric Co Ltd:The Production of copper electrode wire for can making
JPS6289520A (en) * 1985-10-15 1987-04-24 Tatsuta Electric Wire & Cable Co Ltd Manufacture of terminal lead wire for electronic equipment
JPH0329213A (en) * 1989-06-26 1991-02-07 Sumitomo Electric Ind Ltd Conductor for acoustic and image recording appliance
JPH03101818A (en) * 1989-09-13 1991-04-26 Toray Dow Corning Silicone Co Ltd Gas separating membrane
JPH0586445A (en) * 1991-09-27 1993-04-06 Hitachi Cable Ltd Copper wire
JPH05267090A (en) * 1991-06-04 1993-10-15 Tatsuta Electric Wire & Cable Co Ltd Heat resistant and highly conductive composite strand
JP2001155548A (en) * 1999-11-29 2001-06-08 Hitachi Cable Ltd Lead wire for electronic parts
JP2001295011A (en) * 2000-04-05 2001-10-26 Hitachi Cable Ltd Bending resistant copper alloy wire and cable using the same
JP2001345018A (en) * 2000-05-31 2001-12-14 Hitachi Cable Ltd Tin-plated copper wire
JP2002363668A (en) * 2001-06-07 2002-12-18 Hitachi Cable Ltd Conductor for bending resistant cable and production method therefor
JP2005063765A (en) * 2003-08-08 2005-03-10 Sumitomo Electric Ind Ltd Electric wire for automobile
JP2005336510A (en) * 2004-05-24 2005-12-08 Hitachi Cable Ltd Extra-thin copper-alloy wire and its manufacturing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388996A (en) * 1977-01-18 1978-08-04 Sumitomo Electric Ind Ltd Manufacturing method of electronics part lead material which has excellent heading workability
JPS6024284A (en) * 1983-07-19 1985-02-06 Furukawa Electric Co Ltd:The Production of copper electrode wire for can making
JPS6289520A (en) * 1985-10-15 1987-04-24 Tatsuta Electric Wire & Cable Co Ltd Manufacture of terminal lead wire for electronic equipment
JPH0329213A (en) * 1989-06-26 1991-02-07 Sumitomo Electric Ind Ltd Conductor for acoustic and image recording appliance
JPH03101818A (en) * 1989-09-13 1991-04-26 Toray Dow Corning Silicone Co Ltd Gas separating membrane
JPH05267090A (en) * 1991-06-04 1993-10-15 Tatsuta Electric Wire & Cable Co Ltd Heat resistant and highly conductive composite strand
JPH0586445A (en) * 1991-09-27 1993-04-06 Hitachi Cable Ltd Copper wire
JP2001155548A (en) * 1999-11-29 2001-06-08 Hitachi Cable Ltd Lead wire for electronic parts
JP2001295011A (en) * 2000-04-05 2001-10-26 Hitachi Cable Ltd Bending resistant copper alloy wire and cable using the same
JP2001345018A (en) * 2000-05-31 2001-12-14 Hitachi Cable Ltd Tin-plated copper wire
JP2002363668A (en) * 2001-06-07 2002-12-18 Hitachi Cable Ltd Conductor for bending resistant cable and production method therefor
JP2005063765A (en) * 2003-08-08 2005-03-10 Sumitomo Electric Ind Ltd Electric wire for automobile
JP2005336510A (en) * 2004-05-24 2005-12-08 Hitachi Cable Ltd Extra-thin copper-alloy wire and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243659A (en) * 2010-05-14 2011-12-01 Furukawa Electric Co Ltd:The Square copper wire, method of manufacturing same, square copper wire for solar cell, and method of manufacturing same
CN103151115A (en) * 2013-02-28 2013-06-12 天恒达电工科技股份有限公司 Method for producing high-tension copper alloy enameled wire
JP2014191885A (en) * 2013-03-26 2014-10-06 Hitachi Metals Ltd Flat cable and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4177266B2 (en) High strength and high conductivity copper alloy wire with excellent stress relaxation resistance
KR101521408B1 (en) Electrical wire conductor for wiring, method for producing electrical wire conductor for wiring, electrical wire for wiring, and copper alloy wire
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
KR101919677B1 (en) Copper alloy strand, copper alloy twisted wire, and automotive electric wire
KR101719889B1 (en) Copper-alloy wire rod and manufacturing method therefor
CN106029930B (en) Copper-alloy stranded conductor and its manufacture method, electric wire for automobiles
KR20160070089A (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
JPWO2014155819A1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
KR20160100922A (en) Copper alloy wire, twisted copper alloy wire, electric wire, electric wire having terminal attached thereto, and method for producing copper alloy wire
EP3604579B1 (en) Aluminium alloy material, conductive member using same, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structure member, and structure component
EP2219193A1 (en) Conductor material for electronic device and electric wire for wiring using the same
KR20170041164A (en) Copper alloy wire, stranded copper alloy wire, coated electric wire, and terminal-equipped electric wire
JP2008041447A (en) Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same
JP2008115423A (en) Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor
JP7503240B2 (en) Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
JP5376396B2 (en) Wire conductor for wire harness
CN107887053B (en) Plated copper wire, plated stranded wire, insulated wire, and method for producing plated copper wire
JP2001040439A (en) Cu-Ag ALLOY AND ITS MANUFACTURE
JP5497321B2 (en) Compressed stranded conductor, method for producing the same, and insulated wire
JP7054482B2 (en) Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire
JP5510879B2 (en) Wire conductor and wire
JP5136248B2 (en) Copper alloy wire and manufacturing method thereof, copper alloy twisted wire and manufacturing method thereof, insulated electric wire, coaxial cable and multi-core cable using these
JP5672939B2 (en) Cable for movable part and manufacturing method thereof
JPH05302155A (en) Manufacture of high strength and high conductivity copper alloy wire rod
JP2012246530A (en) Copper alloy wrought material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227