Nothing Special   »   [go: up one dir, main page]

JP5497321B2 - Compressed stranded conductor, method for producing the same, and insulated wire - Google Patents

Compressed stranded conductor, method for producing the same, and insulated wire Download PDF

Info

Publication number
JP5497321B2
JP5497321B2 JP2009084217A JP2009084217A JP5497321B2 JP 5497321 B2 JP5497321 B2 JP 5497321B2 JP 2009084217 A JP2009084217 A JP 2009084217A JP 2009084217 A JP2009084217 A JP 2009084217A JP 5497321 B2 JP5497321 B2 JP 5497321B2
Authority
JP
Japan
Prior art keywords
wire
diameter
conductor
stranded
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009084217A
Other languages
Japanese (ja)
Other versions
JP2010238477A (en
Inventor
哲哉 芦田
照一 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2009084217A priority Critical patent/JP5497321B2/en
Publication of JP2010238477A publication Critical patent/JP2010238477A/en
Application granted granted Critical
Publication of JP5497321B2 publication Critical patent/JP5497321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

本発明は、主に自動車搭載用として、その他電子機器、医療機器、産業用ロボットの配線等に用いられる絶縁電線、及び、その圧縮撚線導体とその製造方法に関する。   The present invention relates to an insulated wire used for wiring of other electronic devices, medical devices, industrial robots, etc., mainly for mounting on automobiles, and a compressed stranded wire conductor thereof, and a manufacturing method thereof.

主に自動車用途に適用される電線に於て、排ガス低減や燃費向上を目的とした自動車の軽量化が強く要望されており、これに伴って、自動車に搭載される部品の軽量化が要求されている。その中でワイヤーハーネスも例外ではなく、軽量化を目的とした電線の細径化が進んできている。
従来、自動車用電線の導体には主に軟銅(同心撚り)が用いられているが、細径化するに伴い強度不足による配策時の断線などが懸念される。そこで、強度向上のために銅合金を冷間加工して加工硬化を利用した対策を行っているのが実状である。ただし、その場合、強度は向上し、前記問題は解決するものの、伸びが不足するため、自動車用途として、重要視されている特性である「耐屈曲性」に劣るという問題が指摘されている。
There is a strong demand for reducing the weight of automobiles for the purpose of reducing exhaust gas and improving fuel efficiency, especially in electric wires used for automobiles. ing. Among them, the wire harness is no exception, and the diameter of the electric wire for the purpose of reducing the weight has been reduced.
Conventionally, soft copper (concentric stranded) is mainly used as a conductor of an automobile electric wire. However, there is a concern about disconnection at the time of routing due to insufficient strength as the diameter is reduced. Therefore, the actual situation is that the copper alloy is cold worked to improve the strength and measures are taken using work hardening. However, in that case, although the strength is improved and the above-mentioned problem is solved, the elongation is insufficient, and therefore, the problem of being inferior to “flexibility” which is an important characteristic for automobile applications has been pointed out.

これまで、物性の異なる素線を用いて撚り線を製造する技術は多く知られている。例えば、特許文献1のように、同心撚りした導体の外層線に純銅あるいは銅合金を使用し、電導性を確保しつつ、中心線には弾性係数の大きいMoまたはW等の金属線を使用して、耐屈曲性を改善する方法が知られている。
また、特許文献2のように、導体を焼鈍し、外層線の引張強さ及び延性(伸び)を調整する方法が知られている。
Until now, many techniques for manufacturing a stranded wire using strands having different physical properties are known. For example, as in Patent Document 1, pure copper or copper alloy is used for the outer layer wire of the concentric twisted conductor, and a metal wire such as Mo or W having a large elastic coefficient is used for the center line while ensuring conductivity. Thus, a method for improving the bending resistance is known.
Also, as disclosed in Patent Document 2, a method is known in which a conductor is annealed to adjust the tensile strength and ductility (elongation) of an outer layer wire.

特開平7−249315号公報JP 7-249315 A 特開平8−127830号公報JP-A-8-127830

しかし、自動車用電線には一層の細径化及び軽量化が要求されている。特許文献1記載の導体をさらに細径化するために円形圧縮すると、その圧縮加工度によっては、外層線のみが加工を受け、導電性に優れた外層線が細径に圧縮される。外層線の断面積が減少することで、電気抵抗が増大し、導電性が劣化する。最終製品の電線としては、細径であることは実現できるが、電気特性に問題があった。また、特許文献2記載の製造プロセスには、焼鈍処理が必要となるため、圧縮導体の製造能率が下がり、製造に余分な時間とコストが費やされる問題があった。以上のように、細径にして軽量であり、強度と破断時伸びとを高水準で備えた電気性能の良い電線を製造することは至難であった。   However, a further reduction in diameter and weight is required for electric wires for automobiles. When the conductor described in Patent Document 1 is subjected to circular compression in order to further reduce the diameter, only the outer layer wire is processed depending on the degree of compression processing, and the outer layer wire excellent in conductivity is compressed to a small diameter. As the cross-sectional area of the outer layer wire decreases, the electrical resistance increases and the conductivity deteriorates. Although it is possible to realize that the final product electric wire has a small diameter, there is a problem in electrical characteristics. In addition, since the manufacturing process described in Patent Document 2 requires an annealing process, there is a problem in that the manufacturing efficiency of the compressed conductor is lowered, and extra time and cost are consumed for manufacturing. As described above, it has been extremely difficult to produce an electric wire having a small diameter, a light weight, and having a high level of strength and elongation at break with good electrical performance.

そこで、本発明は、耐屈曲性に優れ、かつ、強度(抗張力)も大きい軽量かつ高性能な圧縮撚線導体と絶縁電線、及び、その製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a lightweight and high-performance compression stranded conductor and insulated wire that are excellent in bending resistance and large in strength (tensile strength), and a manufacturing method thereof.

上記目的を達成するために、本発明は、中心線の外周に、6本の外層線を同心撚りして、撚線を作製し、さらに、該撚線を縮径加工して圧縮撚線導体とする製造方法であって、上記中心線が純度99.99 wt%以上の純アルミニウムから成るとともに、上記外層線が純度99.99 wt%以上の純銅から成り、上記外層線の加工硬化係数を、上記中心線の加工硬化係数より大きく設定し、かつ、上記縮径加工は、縮径加工前の上記撚線の外径D0 と、縮径加工後の上記圧縮撚線導体の外径D1 との、比(D1 /D0 )を、0.88〜0.98とした製造方法である。
また、本発明に係る圧縮撚線導体は、請求項1記載の圧縮撚線導体の製造方法で作製されたものである。
また、本発明に係る絶縁電線は、上記圧縮撚線導体の外周に、ハロゲン元素が配合されない絶縁材料の絶縁層を被覆したものである。
In order to achieve the above object, the present invention provides a stranded wire conductor in which six outer layer wires are concentrically twisted on the outer periphery of a center line to produce a stranded wire, and the diameter of the stranded wire is reduced. a manufacturing method of a, with the center lines consisting of pure a aluminum above purity 99.99 wt%, the outer layer wire is made from pure 99.99 wt% or more pure copper, the work hardening coefficient of the outer layer line, the central The wire diameter is set to be larger than the work hardening coefficient of the wire, and the diameter reduction processing is performed between the outer diameter D 0 of the stranded wire before the diameter reduction processing and the outer diameter D 1 of the compressed stranded wire conductor after the diameter reduction processing. , The ratio (D 1 / D 0 ) is 0.88 to 0.98.
Moreover, the compression twisted wire conductor which concerns on this invention is produced with the manufacturing method of the compression twisted wire conductor of Claim 1.
Moreover, the insulated wire which concerns on this invention coat | covers the outer periphery of the said compression strand wire conductor with the insulating layer of the insulating material in which a halogen element is not mix | blended.

本発明の圧縮撚線導体の製造方法によれば、上記外層線C5 の加工硬化係数が、上記中心線C1 の加工硬化係数より大きいものを用いて、さらに、縮径加工前後による外径の比を特定して圧縮撚線導体を製造しているので、外層線が優先的に加工(縮径加工)されて、加工硬化による強度(引張強さ)が向上する。一方、中心線は、外層線より縮径加工の影響を受けない(加工硬化しない)ので、縮径加工前後による伸びの低下や、導電率の低下が抑制され、その結果、強度(引張強さ)、伸びを高水準に備え、導電性の良い圧縮撚線導体を製造可能となる。
また、本発明の製造方法から得られる圧縮撚線導体は、耐屈曲性に優れるので、絶縁材料を圧縮絶縁導体線の外周に被覆して得られる絶縁電線は、自動車用途など、軽量化が望まれる製品に好適である。
According to the method for producing a compression twisted wire conductor of the present invention, the outer layer wire C 5 having a work hardening coefficient larger than that of the center line C 1 is used, and the outer diameter before and after the diameter reducing process is further increased. Since the compression stranded conductor is manufactured by specifying the ratio, the outer layer wire is preferentially processed (diameter reduction processing), and the strength (tensile strength) by work hardening is improved. On the other hand, the center line is less affected by the diameter reduction process than the outer layer line (it does not work harden), so the decrease in elongation and the decrease in conductivity before and after the diameter reduction process are suppressed, and as a result, the strength (tensile strength) ), A stretched wire conductor having good elongation and good conductivity can be manufactured.
In addition, since the compression twisted wire conductor obtained from the production method of the present invention is excellent in bending resistance, the insulated wire obtained by coating the outer periphery of the compression insulation conductor wire with an insulating material is desired to be reduced in weight, such as for automotive applications. Suitable for products.

縮径加工前の撚線の拡大断面図である。It is an expanded sectional view of the stranded wire before diameter reduction processing. 縮径加工後の圧縮撚線導体の拡大断面図である。It is an expanded sectional view of the compression twisted wire conductor after diameter reduction processing. 本発明に係る電線の実施の一形態を示す拡大断面図である。It is an expanded sectional view showing one embodiment of an electric wire concerning the present invention. 比較例を示す電線の拡大断面図である。It is an expanded sectional view of the electric wire which shows a comparative example.

以下、実施の形態を示す図面に基づき本発明を詳説する。
図2は、本発明に係る圧縮撚線導体の実施の一形態を示す拡大断面図であり、図3は、その圧縮撚線導体に絶縁層を被覆した電線を示す。
本発明の絶縁電線4は、中心線C1 の周りに6本の外層線C5 を有する圧縮撚線導体2と、圧縮撚線導体2の外周に被覆形成された絶縁層3と、から構成される。
圧縮撚線導体2は、断面形状が略真円形の中心線C1 を、断面形状が偏円形の外層線C5 が取り囲むように密着配置された同心撚りの構成である。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments.
FIG. 2 is an enlarged cross-sectional view showing an embodiment of a compression stranded conductor according to the present invention, and FIG. 3 shows an electric wire in which the compression stranded conductor is covered with an insulating layer.
The insulated wire 4 of the present invention is composed of a compression stranded wire conductor 2 having six outer layer wires C 5 around a center line C 1 , and an insulation layer 3 coated on the outer periphery of the compression stranded wire conductor 2. Is done.
The compression stranded wire conductor 2 has a concentric stranded configuration in which the center line C 1 having a substantially true circular cross section is disposed in close contact with the outer layer wire C 5 having an eccentric circular cross section.

図1は、縮径加工前の撚線1の拡大断面図であり、図2は縮径加工後の圧縮撚線導体2の拡大断面図である。
撚線1は、外層線C5 の加工硬化係数が、上記中心線C1 の加工硬化係数より大きいものを用いて作製されている。
そうすることで、縮径加工(冷間加工)で、外層線C5 は加工硬化され、中心線C1 は、外層線C5 に比べ、加工硬化せず縮径加工前後で、伸びが変わらない(低下しない)ようになる。
加工硬化係数(n値)は、JIS Z 2241に定められている方法により測定する。
外層線C5 の加工硬化係数が、上記中心線C1 の加工硬化係数と同じ、または、小さいと、縮径加工(冷間加工)しても外層線C5 が十分な加工硬化をしないので、得られる圧縮撚線導体全体の抗張力の向上は望めない。
FIG. 1 is an enlarged cross-sectional view of the stranded wire 1 before diameter reduction processing, and FIG. 2 is an enlarged cross-sectional view of the compression stranded wire conductor 2 after diameter reduction processing.
The stranded wire 1 is produced using a wire having a work hardening coefficient of the outer layer wire C 5 larger than that of the center line C 1 .
By doing so, the outer layer wire C 5 is work-hardened in the diameter reduction processing (cold processing), and the center line C 1 is not work hardened and the elongation changes before and after the diameter reduction processing compared to the outer layer wire C 5. No (does not fall).
The work hardening coefficient (n value) is measured by a method defined in JIS Z 2241.
If the work hardening coefficient of the outer layer wire C 5 is the same as or smaller than the work hardening coefficient of the center line C 1 , the outer layer wire C 5 will not be sufficiently work hardened even when the diameter is reduced (cold working). The improvement of the tensile strength of the entire compression stranded conductor obtained cannot be expected.

中心線C1 としては、銅線、銅合金線、アルミニウム線、アルミニウム合金線、鉄線、鉄合金線などが挙げられる。銅線としては、純銅(純度:99.99 wt%以上Cu)からなる線が好適であり、銅合金線としては、Cu−Sn合金からなる線であり、詳しくは、Cu− 0.2wt%〜 0.4wt%Sn合金からなる線が好適である。
外層線C5 としては、中心線C1 の加工硬化係数より大きいものとする。
例えば、中心線C1 に純銅線(純度:99.99 wt%以上Cu、加工硬化係数n0 =0.44)、外層線C5 に銅合金線(Cu− 0.3wt%Sn、加工硬化係数n1 =0.46)の構成などが好適である。
The center line C 1, copper wire, copper alloy wire, aluminum wire, aluminum alloy wire, iron wire, iron alloy wire and the like can be mentioned, et al are. The copper wire is preferably a wire made of pure copper (purity: 99.99 wt% or more Cu), and the copper alloy wire is a wire made of a Cu-Sn alloy. Specifically, Cu-0.2 wt% to 0.4 wt% A wire made of% Sn alloy is preferred.
The outer layer line C 5 is larger than the work hardening coefficient of the center line C 1 .
For example, a pure copper wire (purity: 99.99 wt% or more Cu, work hardening coefficient n 0 = 0.44) is used as the center line C 1 , and a copper alloy wire (Cu-0.3 wt% Sn, work hardening coefficient n 1 = 0.46) is used as the outer layer wire C 5. ) Is preferable.

また、後述する表1には、上記純銅線を「純銅」、上記銅合金線の一例であるCu− 0.3wt%Snを「Cu− 0.3Sn」、上記アルミニウム線を「アルミ」、上記鉄合金の一例であるステンレス鋼線を「ステンレス鋼」、鋼線を「鋼」と表記した。   In Table 1 to be described later, the pure copper wire is “pure copper”, Cu-0.3 wt% Sn as an example of the copper alloy wire is “Cu-0.3Sn”, the aluminum wire is “aluminum”, and the iron alloy. As an example, a stainless steel wire is represented as “stainless steel” and a steel wire as “steel”.

図2に示すような圧縮撚線導体2は、図1の撚線1をダイス等で引抜加工、又は伸線加工し、中心方向に圧縮して製造される。圧縮撚線導体2の外径をD1 とし、撚線1の外径をD0 とすると、0.88≦D1 /D0 ≦0.98の範囲内で縮径加工(冷間加工)を行っている。図2の圧縮撚線導体2は、6本の外層線C5 が中心線C1 よりも大きく冷間加工されている。外層線C5 は、中心線C1 よりも大きく加工硬化して引張強さが縮径加工前より大きくなり、中心線C1 は外層線C5 よりも加工硬化していないので、縮径加工前の引張強さは、外層線C5 に比べ変化は小さい。同じく、中心線C1 の伸びに、縮径加工前後で、変化は小さい。 A compression stranded conductor 2 as shown in FIG. 2 is manufactured by drawing or drawing the stranded wire 1 of FIG. 1 with a die or the like and compressing it in the center direction. When the outer diameter of the compressed stranded wire conductor 2 is D 1 and the outer diameter of the stranded wire 1 is D 0 , diameter reduction processing (cold processing) is performed within a range of 0.88 ≦ D 1 / D 0 ≦ 0.98. . In the compression stranded wire conductor 2 of FIG. 2, the six outer layer wires C 5 are cold worked larger than the center line C 1 . The outer layer wire C 5 is work hardened larger than the center line C 1 and the tensile strength is larger than that before the diameter reduction processing, and the center line C 1 is less work hardened than the outer layer wire C 5. tensile strength before the change as compared to the outer layer line C 5 is small. Similarly, the elongation of the center line C 1 is small before and after the diameter reduction processing.

次に、本発明の電線の製造方法について説明する。
まず、図1に示すように、中心線C1 の周りに6本の外層線C5 を同心撚りして撚線1を作製する。撚線1は、公知の撚線機を適用すればよい。また、撚りピッチは、層心径(最外層の中心直径、例えば、外径が1mm素線の7本撚りの撚線(中心線1本、外層線6本)であれば、層心径=1mm+0.5mm +0.5mm =2mm)の20倍〜80倍が好ましく、より好ましくは、30〜70倍である。下限値未満であると撚線1の捻れが大きくなり生産性が低下する傾向があり、上限値を越えると素線C1 ,C5 のばらけが大きくなり、屈曲性が低下する傾向となる。
撚線1を作製後、ダイス等を用いて引抜加工方法、伸線加工方法を用いて、縮径加工(冷間加工)を行い、図2に示すような圧縮撚線導体2を製造する。この際、図1の撚線1が縮径加工後に図2に示すように全体の断面形状が、略円形となるように外層線C5 を均等に加工し、圧縮撚線導体2が外径D1 となるように縮径加工する。
Next, the manufacturing method of the electric wire of this invention is demonstrated.
First, as shown in FIG. 1, to prepare a stranded wire 1 an outer line C 5 six around the center line C 1 and twisted concentrically. The stranded wire 1 may be a known stranded wire machine. Further, if the twist pitch is a layer core diameter (center diameter of the outermost layer, for example, a 7-strand strand having an outer diameter of 1 mm strand (one center line, six outer layer wires), the layer core diameter = 1 mm + 0.5 mm + 0.5 mm = 2 mm) is preferably 20 times to 80 times, and more preferably 30 times to 70 times. If it is less than the lower limit, the twist of the stranded wire 1 tends to increase and the productivity tends to decrease. If the upper limit is exceeded, the dispersion of the strands C 1 and C 5 increases and the flexibility tends to decrease.
After producing the stranded wire 1, diameter reduction processing (cold processing) is performed using a drawing method or a wire drawing method using a die or the like, and a compressed stranded wire conductor 2 as shown in FIG. 2 is manufactured. At this time, after the diameter reduction processing of the stranded wire 1 in FIG. 1, the outer layer wire C 5 is uniformly processed so that the overall cross-sectional shape is substantially circular as shown in FIG. The diameter is reduced to D 1 .

縮径加工前の撚線1の外径D0 と縮径加工後の圧縮撚線導体2の外径D1 との比(D1 /D0 )の値が、0.88〜0.98の範囲となるように、使用するダイスの孔径を特定する。上述の方法によって、撚線1を縮径加工すると、外層線C5 は中心線C1 に比べ、大きく加工硬化するので、引張強さは、縮径加工前より大きくなり、伸びは、縮径加工前より小さくなる。
一方、中心線C1 は、外層線C5 に比べ、加工硬化しないので、縮径加工前後で引張強さは変化なく(外層線C5 に比べて変化量が小さい)、伸びも同様に変化はない(外層線C5 に比べて変化量が小さい)。
つまり、引張強さと伸びを高水準で維持するため、圧縮撚線導体を構成する中心線C1 と外層線C5 にそれぞれの特性(外層線C5 には引張強さ、中心線C1 には伸び)に特化して有している圧縮撚線導体2が得られる。
The value of the ratio of the outer diameter D 1 of the reduced diameter outer diameter of unprocessed stranded 1 D 0 and diameter compression after processing stranded conductor 2 (D 1 / D 0) is in the range of 0.88 to 0.98 Thus, the hole diameter of the die to be used is specified. When the diameter of the stranded wire 1 is reduced by the above-described method, the outer layer wire C 5 is hardened and hardened compared to the center line C 1 , so that the tensile strength is greater than that before the diameter reduction processing, and the elongation is reduced. Smaller than before processing.
On the other hand, since the center line C 1 is not work hardened compared to the outer layer line C 5 , the tensile strength does not change before and after the diameter reduction processing (the change amount is small compared to the outer layer line C 5 ), and the elongation changes similarly. (The amount of change is small compared to the outer layer line C 5 ).
In other words, in order to maintain the tensile strength and elongation at a high level, the center line C 1 and the outer layer wire C 5 constituting the compression stranded conductor have respective characteristics (the outer layer wire C 5 has the tensile strength and the center line C 1 has Compressed stranded conductor 2 having a specific elongation).

また、本発明の圧縮撚線導体の製造方法では、上記した工程を経ることで、引張強さ、伸びが高水準となる圧縮撚線導体2を得ることができるので、撚線後の工程で、焼鈍工程を必要としないという生産工程上の利点があり、圧縮撚線導体2を作製後、引続いて絶縁層3を被覆する工程(図3参照)へ進むことができ、絶縁電線4を得ることができる。
この際、圧縮撚線導体2の外周面は、平滑状に形成されているため、絶縁層3の被覆厚さtが周方向にわたって均一に被覆形成され、絶縁層3による細径化の阻害は最小限に抑えることができる。なお、絶縁層3としてハロゲン元素が配合されていない材質とする。
Moreover, in the manufacturing method of the compression twisted wire conductor of this invention, since it can obtain the compression twisted wire conductor 2 with which tensile strength and elongation become a high level by passing through an above-described process, There is an advantage in the production process that an annealing process is not required, and after the compression stranded conductor 2 is manufactured, the process can proceed to the process of covering the insulating layer 3 (see FIG. 3), Can be obtained.
At this time, since the outer peripheral surface of the compressed stranded wire conductor 2 is formed in a smooth shape, the coating thickness t of the insulating layer 3 is uniformly coated over the circumferential direction, and the inhibition of the diameter reduction by the insulating layer 3 is prevented. Can be minimized. The insulating layer 3 is made of a material not containing a halogen element.

図4は、比較例(比較例1)を示す絶縁電線14の拡大断面図である。
縮径加工前の撚線1の外径D0 と縮径加工後の圧縮撚線導体2の外径D1 との比(D1 /D0 )の値が、0.98より大きく(0.99)設定した構成を示し、この比較例では、ダイスによる引抜加工の際に、外層線C5 ′が均等に圧縮されないため、作製される圧縮撚線導体全体の断面形状は偏円状に形成される。つまり、外層線C5 ′の中に、図4に示すように圧縮されないものが発生するので、圧縮撚線導体の引張強さが所望の特性を満足できない。また、隣接する外層線C5 ′間に隙間Yを生じ、絶縁層13が隙間Y内にも形成されるため、絶縁層13は、導体外周に均一に被覆されない。絶縁層13の被覆厚さであるt′が周方向にわたって大きく変化し、平均厚さが増大して、絶縁電線の重量が大きくなる。
FIG. 4 is an enlarged cross-sectional view of an insulated wire 14 showing a comparative example (Comparative Example 1).
The value of the ratio of the outer diameter D 1 of the reduced diameter outer diameter of unprocessed stranded 1 D 0 and diameter compression after processing stranded conductor 2 (D 1 / D 0) is greater than 0.98 (0.99) Settings In this comparative example, the outer layer wire C 5 ′ is not evenly compressed during drawing with a die, so that the overall cross-sectional shape of the produced compression stranded conductor is formed in an eccentric shape. That is, since some of the outer layer wires C 5 ′ are not compressed as shown in FIG. 4, the tensile strength of the compressed stranded wire conductor cannot satisfy the desired characteristics. Further, since the gap Y is formed between the adjacent outer layer lines C 5 ′ and the insulating layer 13 is also formed in the gap Y, the insulating layer 13 is not uniformly covered on the outer periphery of the conductor. The coating thickness t ′ of the insulating layer 13 varies greatly in the circumferential direction, the average thickness increases, and the weight of the insulated wire increases.

次に、縮径加工前の撚線1の外径D0 と縮径加工後の圧縮撚線導体2の外径D1 との比(D1 /D0 )の値が、0.88より小さいと、ダイスによる縮径加工の際に、縮径した圧縮撚線導体2が切断する確率が大きくなるとともに、伸びが低下するので、その結果、耐屈曲性が低下する。 Then, the value of the ratio of the outer diameter D 1 of the outer diameter D 0 and diameter reduction after compression stranded conductor 2 of diameter reduction before the stranded wire 1 (D 1 / D 0) is a 0.88 smaller In the diameter reduction process using a die, the probability that the compressed twisted wire conductor 2 having a reduced diameter is cut increases and the elongation decreases. As a result, the bending resistance decreases.

以下、本発明の実施例について説明する。
表1に示す中心線(素線)、外層線(素線)を用いて圧縮撚線導体の断面積が0.13mm2 の圧縮撚線導体を製造し、各特性評価を行った。撚線のピッチは、層心径の40倍とした。なお、本発明は、これらの実施例に限定されない。
Examples of the present invention will be described below.
A compressed stranded conductor having a cross-sectional area of 0.13 mm 2 was manufactured using the center line (elementary wire) and outer layer wire (elementary wire) shown in Table 1, and each characteristic was evaluated. The pitch of the stranded wire was 40 times the layer core diameter. The present invention is not limited to these examples.

Figure 0005497321
Figure 0005497321

上記の表1に記載の純銅(99.99 wt%以上Cu)の加工硬化係数は、0.44であり、また、Cu− 0.3wt%Sn(表1では、Cu− 0.3Snと表示)の加工硬化係数は、0.46であり、SUS304(表1では、ステンレス鋼)の加工硬化係数は、0.42、純アルミニウム(99.99 wt%Al)(表1では、アルミ)の加工硬化係数は、0.25、鋼の加工硬化係数は、 0.2である。 The work hardening coefficient of pure copper (99.99 wt% or more Cu) described in Table 1 is 0.44, and the work hardening coefficient of Cu-0.3 wt% Sn (shown as Cu-0.3 Sn in Table 1) is 0.46, the work hardening coefficient of SUS304 ( stainless steel in Table 1 ) is 0.42, the work hardening coefficient of pure aluminum (99.99 wt% Al) (aluminum in Table 1) is 0.25, work hardening of steel The coefficient is 0.2.

中心線、外層線に使用した線(素線)の伸びは、JIS Z 2241に規定されている方法で測定した値である。
圧縮撚線導体の破断荷重は、JIS Z 2241に規定されている方法で測定した。
耐屈曲性は、屈曲試験の試験条件を負荷荷重を 100g、屈曲Rを5mmで行った。また、破断時荷重が、60N以上で、耐屈曲性が 400以上であれば、合格とした。その結果、本発明の製造方法から得られる圧縮撚線導体2は、耐屈曲性、引張強さ(破断時荷重/断面積)に優れていることが判る。
また、撚線後に熱処理工程を施す必要がないので、引続き、絶縁層3を被覆することで、耐屈曲性、引張強さに優れた絶縁電線4が得られる。このような、絶縁電線4は、自動車用途に使用されるワイヤーハーネスに好適である。
The elongation of the wire (elementary wire) used for the center line and the outer layer wire is a value measured by a method defined in JIS Z 2241.
The breaking load of the compression twisted wire conductor was measured by a method defined in JIS Z 2241.
For bending resistance, the test conditions for the bending test were 100 g applied load and 5 mm bending R. Further, if the load at break was 60 N or more and the bending resistance was 400 or more, it was judged as acceptable. As a result, it can be seen that the compressed stranded conductor 2 obtained from the production method of the present invention is excellent in bending resistance and tensile strength (load at break / cross-sectional area).
Moreover, since it is not necessary to perform a heat treatment step after the stranded wire, by continuously covering the insulating layer 3, the insulated wire 4 having excellent bending resistance and tensile strength can be obtained. Such an insulated wire 4 is suitable for a wire harness used for automotive applications.

1 撚線
2 圧縮撚線導体
3 絶縁層
4 電線(絶縁電線)
13 絶縁層
0 縮径加工前の撚線の外径寸法
1 縮径加工後の圧縮撚線導体の外径寸法
1 中心線
5 外層線
0 中心線の加工硬化係数
1 外層線の加工硬化係数
DESCRIPTION OF SYMBOLS 1 Stranded wire 2 Compression strand wire conductor 3 Insulation layer 4 Electric wire (insulated wire)
13 Insulating layer D 0 Outer diameter of stranded wire before diameter reduction D 1 Outer diameter of compressed stranded conductor after diameter reduction C 1 center line C 5 outer layer wire n 0 Work hardening coefficient of center line n 1 outer layer Work hardening coefficient of wire

Claims (3)

中心線(C1 )の外周に、6本の外層線(C5 )を同心撚りして、撚線(1)を作製し、さらに、該撚線(1)を縮径加工して圧縮撚線導体(2)とする製造方法であって、
上記中心線(C1 )が純度99.99 wt%以上の純アルミニウムから成るとともに、上記外層線(C5 )が純度99.99 wt%以上の純銅から成り、上記外層線(C5 )の加工硬化係数を、上記中心線(C1 )の加工硬化係数より大きく設定し、
かつ、上記縮径加工は、縮径加工前の上記撚線(1)の外径(D0 )と、縮径加工後の上記圧縮撚線導体(2)の外径(D1 )との、比(D1 /D0 )を、0.88〜0.98としたことを特徴とする圧縮撚線導体の製造方法。
Six outer layer wires (C 5 ) are concentrically twisted on the outer periphery of the center line (C 1 ) to produce a twisted wire (1), and the twisted wire (1) is further reduced in diameter to be compressed and twisted. A manufacturing method for a wire conductor (2),
The center line (C 1 ) is made of pure aluminum with a purity of 99.99 wt% or more, and the outer layer wire (C 5 ) is made of pure copper with a purity of 99.99 wt% or more. The work hardening coefficient of the outer layer wire (C 5 ) is , Set larger than the work hardening coefficient of the center line (C 1 ),
And, the diameter reduction processing, the outer diameter of the diameter reduction before the stranded wire (1) (D 0), the outer diameter of the diameter reduction after the compression stranded conductor (2) (D 1) and the The ratio (D 1 / D 0 ) is 0.88 to 0.98.
請求項1記載の圧縮撚線導体の製造方法で作製されたことを特徴とする圧縮撚線導体。 A compression stranded conductor produced by the method for producing a compression stranded conductor according to claim 1 . 請求項1記載の圧縮撚線導体の製造方法で作製された圧縮撚線導体の外周に、ハロゲン元素が配合されていない絶縁材料の絶縁層(3)を被覆したことを特徴とする絶縁電線。 An insulated wire comprising an insulating layer (3) made of an insulating material not containing a halogen element on the outer periphery of a compressed stranded wire conductor produced by the method for producing a compressed stranded wire conductor according to claim 1 .
JP2009084217A 2009-03-31 2009-03-31 Compressed stranded conductor, method for producing the same, and insulated wire Expired - Fee Related JP5497321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084217A JP5497321B2 (en) 2009-03-31 2009-03-31 Compressed stranded conductor, method for producing the same, and insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084217A JP5497321B2 (en) 2009-03-31 2009-03-31 Compressed stranded conductor, method for producing the same, and insulated wire

Publications (2)

Publication Number Publication Date
JP2010238477A JP2010238477A (en) 2010-10-21
JP5497321B2 true JP5497321B2 (en) 2014-05-21

Family

ID=43092639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084217A Expired - Fee Related JP5497321B2 (en) 2009-03-31 2009-03-31 Compressed stranded conductor, method for producing the same, and insulated wire

Country Status (1)

Country Link
JP (1) JP5497321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104404A (en) * 2010-11-11 2012-05-31 Yazaki Corp Electric wire
JP2012182000A (en) * 2011-03-01 2012-09-20 Yazaki Corp Electric wire
CN102592721B (en) * 2012-03-20 2013-12-25 青岛光电电子器具有限公司 Electrocardiogram cable and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225006A (en) * 1988-03-04 1989-09-07 Yazaki Corp Compressed conductor for wire harness
JP2517793Y2 (en) * 1988-09-08 1996-11-20 住友電装 株式会社 Electric wire for device wiring
JPH0740258Y2 (en) * 1990-02-09 1995-09-13 住友電装株式会社 Bending resistant insulation displacement wire
JPH04372313A (en) * 1991-06-18 1992-12-25 Furukawa Electric Co Ltd:The Wire electric discharge machining electrode wire
JP2006032081A (en) * 2004-07-15 2006-02-02 Sumitomo Wiring Syst Ltd Electric wire for automobile
JP2008166141A (en) * 2006-12-28 2008-07-17 Auto Network Gijutsu Kenkyusho:Kk Electric wire conductor, and insulation wire

Also Published As

Publication number Publication date
JP2010238477A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5607853B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
CN110012676B (en) Covered electric wire, electric wire with terminal, copper alloy wire, and copper alloy stranded wire
CN110373567B (en) Copper alloy wire rod, copper alloy stranded wire and electric wire for automobile
JP6080336B2 (en) Electric wire / cable
JP6108951B2 (en) Method for manufacturing aluminum wire
JP5497321B2 (en) Compressed stranded conductor, method for producing the same, and insulated wire
JP6212946B2 (en) Aluminum alloy wire excellent in bendability and manufacturing method thereof
JP5442294B2 (en) Wire conductor manufacturing method, and wire conductor and insulated wire
JP2010205549A (en) Method of manufacturing wire conductor, and wire conductor
JP7503240B2 (en) Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
CN107887053B (en) Plated copper wire, plated stranded wire, insulated wire, and method for producing plated copper wire
JP5443744B2 (en) Electric wire conductor manufacturing method and electric wire conductor
JP4986522B2 (en) Wires for automobile wires and electric wires for automobiles
JP5744649B2 (en) Conductor wire
JP5136248B2 (en) Copper alloy wire and manufacturing method thereof, copper alloy twisted wire and manufacturing method thereof, insulated electric wire, coaxial cable and multi-core cable using these
JP2018056102A (en) Wire
WO2009154239A1 (en) Electric wire conductor for wiring, electric wire for wiring, and method for manufacturing electric wire conductor for wiring
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JPH06187831A (en) Automobile wire conductor and automobile wire
JP6023901B2 (en) Electric wire or cable, wire harness, and aluminum alloy strand manufacturing method
JP6424925B2 (en) Plating copper wire, plated stranded wire and insulated wire, and method of manufacturing plated copper wire
JP4479270B2 (en) Manufacturing method of electrode wire for wire electric discharge machining
JPH11224538A (en) Electric wire conductor for automobile
JP2021140958A (en) Plated copper wire, twisted plated wire and electric insulated wire
JP4170037B2 (en) Extra-fine insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5497321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees