JPH05267090A - Heat resistant and highly conductive composite strand - Google Patents
Heat resistant and highly conductive composite strandInfo
- Publication number
- JPH05267090A JPH05267090A JP3132912A JP13291291A JPH05267090A JP H05267090 A JPH05267090 A JP H05267090A JP 3132912 A JP3132912 A JP 3132912A JP 13291291 A JP13291291 A JP 13291291A JP H05267090 A JPH05267090 A JP H05267090A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- alloy
- outer layer
- layer portion
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 29
- 238000005452 bending Methods 0.000 abstract description 37
- 229910045601 alloy Inorganic materials 0.000 abstract description 16
- 239000000956 alloy Substances 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 27
- 239000010949 copper Substances 0.000 description 23
- 229910052802 copper Inorganic materials 0.000 description 21
- 230000008859 change Effects 0.000 description 11
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 229910017770 Cu—Ag Inorganic materials 0.000 description 8
- 229910017755 Cu-Sn Inorganic materials 0.000 description 6
- 229910017927 Cu—Sn Inorganic materials 0.000 description 6
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910002530 Cu-Y Inorganic materials 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- 229910017985 Cu—Zr Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Details Of Resistors (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は抵抗器、コンデンサー、
シリコンまたはゲルマニウム半導体素子などの電子機器
部品の端子リード線の素線に利用するものである。BACKGROUND OF THE INVENTION The present invention relates to resistors, capacitors,
It is used as a wire of a terminal lead wire of an electronic device component such as a silicon or germanium semiconductor element.
【0002】[0002]
【従来技術】電子機器部品のリード線には純銅線、半田
メッキ銅線、錫メッキ銅線などが多用されてきた。2. Description of the Related Art Pure copper wires, solder-plated copper wires, tin-plated copper wires and the like have been frequently used as lead wires for electronic equipment parts.
【0003】これらのリード線は電子機器部品の製造工
程において、種々な熱処理と不可避的な曲げ応力を受け
るので、素線の純銅線は軟化され、曲げ応力を受けて曲
げられる。Since these lead wires are subjected to various heat treatments and inevitable bending stress in the process of manufacturing electronic equipment parts, the pure copper wires are softened and bent under bending stress.
【0004】例えば、抵抗器、コンデンサーに使用され
るリード線は、ろう接、モールド、塗装、安定化処理な
どの製造工程で250℃以下の熱処理を受ける。また、
半導体素子にあっては、両端リード線のろう接に300
〜400℃、約10分間の熱処理が施された後、該接続
部は合成樹脂材でモールドされる。特に素線として使用
される無酸素銅線の場合、高い導電率と熱伝導性を有す
るが、200℃前後の熱処理で再結晶化し、軟化されて
曲げ強さが低下するため、銅線上にメツキする次のバレ
ルメツキ工程でリード線が曲げられる。For example, lead wires used for resistors and capacitors are subjected to heat treatment at 250 ° C. or lower in manufacturing processes such as brazing, molding, painting and stabilizing treatments. Also,
In the case of semiconductor elements, 300
After heat treatment at 400 ° C. for about 10 minutes, the connection part is molded with a synthetic resin material. In particular, in the case of oxygen-free copper wire used as an element wire, it has high electrical conductivity and thermal conductivity, but it is recrystallized by heat treatment at about 200 ° C and is softened to reduce bending strength. The lead wire is bent in the next barrel plating step.
【0005】一方、これらの電子機器部品の製造には、
自動化による大量生産方式が採用されているので、端子
リード線が軟化されて曲げられると、自動化に支障をき
たすと共に、人手で曲がりを選別し、これを矯正するこ
とは最早自動化に追随することができず、且つこれら素
子部品のプリント基板への実装に際し、トラブルの原因
となる。On the other hand, in manufacturing these electronic device parts,
Since the mass production method by automation is adopted, if the terminal lead wire is softened and bent, it will hinder automation, and it is no longer possible to manually select and correct the bend and follow the automation. This is not possible, and causes a trouble when mounting these element parts on the printed circuit board.
【0006】かかる問題を解決するために、純銅線に代
る素線として、銅被鉄線(cp線またはcw線)または
種々の耐熱性銅合金線が用いられている。[0006] In order to solve such a problem, as an element wire replacing the pure copper wire, a copper covered wire (cp wire or cw wire) or various heat resistant copper alloy wires are used.
【0007】しかし、電子機器部品の大量生産方式に適
合するリード線として、次の総合特性を有する根強い要
求がある。すなわち、(1) 工程熱処理に対して、耐
熱性があること、(2) 曲げ応力に対して、耐曲げ性
が強いこと、(3) 95%以上の導電率があり、放熱
に対して熱伝導性がよいこと、(4) 価格が安いこ
と。However, there is a strong demand for the following comprehensive characteristics as a lead wire suitable for mass production of electronic equipment parts. That is, (1) heat resistance to the heat treatment in the process, (2) strong bending resistance to bending stress, (3) conductivity of 95% or more, and heat Good conductivity, (4) Cheap price.
【0008】これらの要求に対して、銅被鉄線は導電率
が低く、製品価格が高い。また、耐熱性銅合金線につい
て、Cu−Zr系、Cu−Cr系、Cu−Fe系、Cu
−Si系、Cu−Sn系などの析出硬化型の合金線は高
温熱処理と時効処理が必要となるため、価格が高く、且
つ導電率が銅に比し著しく低く要求を満足することがで
きない。In response to these requirements, the copper covered wire has a low conductivity and a high product price. Regarding the heat resistant copper alloy wire, Cu-Zr system, Cu-Cr system, Cu-Fe system, Cu
Precipitation hardening type alloy wires such as —Si type and Cu—Sn type require high-temperature heat treatment and aging treatment, and therefore are expensive and their electrical conductivity is significantly lower than that of copper, and the requirements cannot be satisfied.
【0009】一方、Cu−Ag(0.02〜0.15w
t%)、Cu−In(0.02〜0.15wt%)、C
u−Sn(0.02〜0.15wt%)、Cu−Cd
(0.02〜0.2wt%)、Cu−Y(0.05〜
0.1wt%)系などの添加元素の少ない耐熱性銅合金
線が実用に供されている。しかし、Cu−Cd系にあっ
ては、Cdの有する毒性からその使用は適切でなく、C
u−Sn系では耐熱性、耐曲げ性を満足するが導電率が
低い。Cu−Ag系、Cu−In系、Cu−Y系らの合
金線はコストを含めた総合特性において、十分満足され
ているとはいえない。On the other hand, Cu-Ag (0.02-0.15w
t%), Cu-In (0.02-0.15 wt%), C
u-Sn (0.02-0.15 wt%), Cu-Cd
(0.02-0.2 wt%), Cu-Y (0.05-
A heat-resistant copper alloy wire with a small amount of added elements such as 0.1 wt%) has been put to practical use. However, in the Cu-Cd system, its use is not appropriate due to the toxicity of Cd, and C
In the u-Sn system, heat resistance and bending resistance are satisfied, but the conductivity is low. Cu-Ag-based, Cu-In-based, and Cu-Y-based alloy wires cannot be said to be sufficiently satisfied in terms of overall characteristics including cost.
【0010】すなわち、これらの合金に添加するAgな
どの貴金属元素は価格が高く、添加量によってはリード
線のコストを大巾に上昇させることになる。そのため、
例えばAgの添加量を減少させると耐曲げ性が著しく劣
り実用に供し難い欠点となる。That is, the noble metal element such as Ag added to these alloys is expensive, and depending on the amount added, the cost of the lead wire is greatly increased. for that reason,
For example, when the amount of Ag added is reduced, the bending resistance is remarkably inferior and it is difficult to put it into practical use.
【0011】従って、これら貴金属元素を使用する銅合
金線は電子機器部品の製造工程においてリード線に要求
される特性の範囲内に添加元素が添加されるので、コス
ト引下げは仲々なされ得なかった。Therefore, in the copper alloy wire using these noble metal elements, the additive element is added within the range of the characteristics required for the lead wire in the manufacturing process of electronic equipment parts, so that the cost reduction cannot be achieved at the same time.
【0012】[0012]
【発明の目的】本発明は、この現状に鑑み、耐熱性、耐
曲げ性、高導電性および価格面の総てを満足し得る特性
を有する耐熱高導電性銅合金線を提供することを目的と
してなされたものである。SUMMARY OF THE INVENTION In view of the present circumstances, the present invention has an object of providing a heat-resistant and high-conductivity copper alloy wire having the characteristics of satisfying all of heat resistance, bending resistance, high conductivity and price. It was made as.
【0013】[0013]
【発明の構成】本発明は内層部を電気用硬銅線(JIS
C3101規格に適合)とし、外層部を耐熱性銅合金で
構成したことを特徴とする耐熱高導電性複合線状体であ
る。According to the present invention, the inner layer portion is a hard copper wire for electrical use (JIS
It is a heat resistant and highly conductive composite linear body characterized in that it conforms to the C3101 standard) and has an outer layer portion made of a heat resistant copper alloy.
【0014】該複合線状体は内層部の電気用硬銅線と外
層部の耐熱性銅合金との断面積比を1:1〜2の範囲と
するものである。The composite linear body has a cross-sectional area ratio of the hard copper wire for electrical use in the inner layer portion to the heat resistant copper alloy in the outer layer portion in the range of 1: 1 to 2.
【0015】上記、本発明の構成において、内層部材と
外層部材との断面積比を1:1〜2に限定した理由は次
の通りである。The reason why the cross-sectional area ratio between the inner layer member and the outer layer member is limited to 1: 1 to 2 in the above-described structure of the present invention is as follows.
【0016】内層部の電気用硬銅線の同心円上に耐熱性
銅合金を均一な特定の厚さに被覆して外層部を形成させ
るには、連続鋳造圧延方式の一であるデップ・フオーミ
ング装置が適合する。しかるとき、内層部と外層部との
断面積比を1:2とするのは、該装置において溶融した
銅合金を入れたルツボの下から、たね銅線を引き上げて
外層部を形成させる場合、耐熱銅合金の付着量は銅線1
に対して最大2となる製造上の制限と、耐曲げ性に対し
て外層部の銅合金の強度で補償させるためであり、これ
以上に外層部を厚くする必要もないからである。In order to form a heat-resistant copper alloy on a concentric circle of an electric hard copper wire in an inner layer portion to a uniform and specific thickness to form an outer layer portion, a dip forming apparatus which is one of continuous casting and rolling methods. Is suitable. At this time, the cross-sectional area ratio of the inner layer portion and the outer layer portion is set to 1: 2 when the outer layer portion is formed by pulling the seed copper wire from under the crucible containing the molten copper alloy in the apparatus. The amount of heat resistant copper alloy attached is copper wire 1
This is because the maximum manufacturing limit is 2 and the bending resistance is compensated by the strength of the copper alloy of the outer layer portion, and it is not necessary to make the outer layer portion thicker than this.
【0017】また、下限に示す断面積比1:1とするの
は、たね銅線の引上げ速度によってその比を下げること
はできるが、1:1未満にすると、外層部に被覆する添
加元素量の低い銅合金の強度では耐曲げ性を補償する効
果、すなわち、銅合金の被覆厚が薄いため、耐曲げ性が
低下し、且つ生産効率が悪化するのでコスト高となり、
本発明の目的を達成することが困難となるためである。The lower limit of the cross-sectional area ratio of 1: 1 can be lowered by the pulling rate of the copper wire, but if the ratio is less than 1: 1, the amount of the additional element coated on the outer layer portion is reduced. The effect of compensating the bending resistance in the strength of the low copper alloy, that is, since the coating thickness of the copper alloy is thin, the bending resistance is reduced, and the production efficiency is deteriorated, resulting in high cost,
This is because it becomes difficult to achieve the object of the present invention.
【0018】かかる場合、被覆するCu−Ag,Cu−
In,Cu−Sn合金などにおいて、Ag,In,Sn
などの添加元素量を増加させ、銅合金の潜在的な強度を
更に向上させて、該銅合金で外層部を被覆すると、外層
部の断面積を内層部の断面積より小さくしても、耐曲げ
性が改善され得るものとなる。しかし、生産効率は改善
されないから、コスト高となる。In such a case, Cu-Ag, Cu- to be coated
In In, Cu-Sn alloy, etc., Ag, In, Sn
When the outer layer portion is covered with the copper alloy by further increasing the amount of additive element such as, and further improving the potential strength of the copper alloy, even if the cross-sectional area of the outer layer portion is smaller than that of the inner layer portion, The bendability can be improved. However, the production efficiency is not improved, resulting in high cost.
【0019】[0019]
【実施態様】第1図は本発明にかかる耐熱高導電性複合
線状体の断面の一例を示すものであって、内層部1は電
気用硬銅線で、外層部2は耐熱性銅合金で被覆されたも
のである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a cross section of a heat-resistant and highly conductive composite linear body according to the present invention, in which an inner layer 1 is a hard copper wire for electrical use and an outer layer 2 is a heat-resistant copper alloy. Is coated with.
【0020】以下本発明の実施態様について説明する。Embodiments of the present invention will be described below.
【0021】本発明の実施例と比較例および従来例を対
比させるため、第1表に示す合金組成の線状体を各々製
造した。In order to compare the examples of the present invention with the comparative examples and the conventional examples, linear bodies each having an alloy composition shown in Table 1 were manufactured.
【0022】[0022]
【表1】 [Table 1]
【0023】ここにおいて、実施例No1〜3、比較例No
4及び従来例No8はデツプ・フオーミング装置により製
造し、複合線状体については、内層部と外層部との断面
積比の異なるものとし、それぞれ外径8mmφの荒引線と
した。Here, Example Nos. 1 to 3 and Comparative Example No.
4 and the conventional example No. 8 were manufactured by a deep-foaming device, and the composite linear body was made to have different cross-sectional area ratios of the inner layer portion and the outer layer portion, and each was a rough wire having an outer diameter of 8 mmφ.
【0024】一方、従来例No5〜7は黒鉛ルツボに電気
銅(99.99%)と所要量の添加元素を入れ、更に表
面を木炭粉で十分に被覆し、高周波誘導加熱によって溶
解し、金型に鋳造し、この鋳塊を約800℃で熱間圧延
した後、酸洗いを行って8mmφの荒引線とした。On the other hand, in Conventional Examples Nos. 5 to 7, electrolytic copper (99.99%) and a required amount of additional elements were put in a graphite crucible, the surface was further sufficiently covered with charcoal powder, and melted by high-frequency induction heating to obtain gold. It was cast in a mold, and this ingot was hot-rolled at about 800 ° C. and then pickled to obtain an 8 mmφ rough drawn wire.
【0025】それぞれの荒引線は、常温で連続伸線軟化
を行ない、耐曲げ性を140g・cmとする0.6mmφの
線材に仕上げた。Each of the wire-drawn wires was subjected to continuous wire-drawing softening at room temperature to finish a wire having a bending resistance of 140 g · cm and a diameter of 0.6 mmφ.
【0026】これら0.6mmφの線材について、種々の
焼鈍処理を行ない耐曲げ性および導電率を測定した結果
を第2表に示す。Table 2 shows the results of bending resistance and electrical conductivity of these wire rods having a diameter of 0.6 mm, which were subjected to various annealing treatments.
【0027】[0027]
【表2】 [Table 2]
【0028】(注1)耐曲げ性とは、線材の片端を二個
のチャック部材にはさんで固定し、チャック部端からは
なれた位置に荷重を加え、線材を35°の角度で曲げる
に必要な荷重をトルク値で示す。(Note 1) Bending resistance means that one end of a wire is fixed by sandwiching it between two chuck members, a load is applied to a position apart from the chuck end, and the wire is bent at an angle of 35 °. The required load is indicated by the torque value.
【0029】(注2)導電率とは、JISC−3002
に準じてダブルブリッジ法により測定した値で示す。(Note 2) What is electrical conductivity? JISC-3002
The value is measured by the double bridge method according to the above.
【0030】電子機器部品の半導体素子のリード線に要
求される特性として、例えば耐曲げ性は0.6mmφに対
して85g・cm以上、導電率は95%IACS以上が必
要である。As the characteristics required for the lead wire of the semiconductor element of the electronic device part, for example, the bending resistance is required to be 85 g · cm or more with respect to 0.6 mmφ, and the electrical conductivity must be 95% IACS or more.
【0031】第2表からわかるように、300〜400
℃×10分間・焼鈍において、実施例No1〜3は耐曲げ
性、導電率とも要求特性を満足しているが、従来例のNo
8では耐曲げ性に欠き、実用性がない。No6,7では、
耐曲げ性を備えるが、導電率において要求を満足しな
い。As can be seen from Table 2, 300-400
In annealing at 10 ° C for 10 minutes, Examples Nos. 1 to 3 satisfy the required characteristics in both bending resistance and conductivity,
No. 8 lacks bending resistance and is not practical. In No6 and 7,
Although it has bending resistance, it does not meet the requirements for conductivity.
【0032】比較例No4は、耐曲げ性が焼鈍温度と共に
低下し、400℃では76g・cmとなり要求特性に欠く
傾向を示す。この原因は複合線状体の構成における内層
部と外層部との断面積比が1:0.8であり、外層部の
厚さが薄いため、Cu−Ag合金のもつ強度で耐曲げ性
を補強しにくいためである。In Comparative Example No. 4, the bending resistance decreases with the annealing temperature, and it becomes 76 g · cm at 400 ° C., which is a tendency that the required properties are lacking. The reason for this is that the cross-sectional area ratio of the inner layer portion to the outer layer portion in the structure of the composite linear body is 1: 0.8, and the thickness of the outer layer portion is thin. This is because it is difficult to reinforce.
【0033】次に、Agを使用するコストについて、実
施例No1と従来例No5を対比すると、No1はNo5より
0.6mmφ1Ton当たり0.3KgのAgを減量させ
得る。同様に、Inについて見れば、実施例No3は従来
例No7より0.6mmφ1Ton当たり0.54KgのI
nを減量させ得る。Next, when the cost of using Ag is compared between Example No. 1 and Conventional Example No. 5, No. 1 can reduce Ag by 0.3 kg per 0.6 mm.phi. Similarly, in the case of In, Example No. 3 has an I of 0.54 kg per 0.6 mmφ1 Ton, compared with Conventional Example No. 7.
n can be reduced.
【0034】かかるAg,Inなどの減量はコストに多
大な効果を与えることになる。The reduction of Ag, In, etc. has a great effect on the cost.
【0035】更に、Snを使用する実施例No2と従来例
No6を対比すると、No6の合金組成では耐曲げ性を備え
ても、導電率は低く、改善の余地がない。Further, Example No. 2 using Sn and the conventional example
Comparing No. 6 with No. 6 alloy composition, even though it has bending resistance, the conductivity is low and there is no room for improvement.
【0036】しかしながら、No2の複合線状体の構成に
することによって、耐曲げ性、導電率共に要求特性を備
えることになり、且つコスト的にも有利となる。However, by adopting the structure of the No. 2 composite linear body, both the bending resistance and the electrical conductivity are provided with the required characteristics, and it is also advantageous in terms of cost.
【0037】以上説明した如く、本発明の複合線状体は
内層部を銅、外層部をCu−Ag(0.02〜0.15
wt%)、Cu−In(0.02〜0.15wt%)ま
たはCu−Sn(0.02〜0.15wt%)若しくは
Cu−Y(0.05〜0.15wt%)の銅合金で被覆
し、内層部と外層部との断面積比を1:1〜2にするも
のであるから、耐曲げ性に対しては、外層部の該銅合金
のもつ強度で補償し、導電率、コストに対しては内層部
の銅線が導電率に寄与し、且つ内層部に電気用硬銅線を
使用するので、その断面積分が添加元素を減少させるこ
ととなり、コスト的効果をもたらすものとなる。As described above, in the composite linear body of the present invention, the inner layer portion is copper and the outer layer portion is Cu-Ag (0.02 to 0.15).
wt%), Cu-In (0.02-0.15 wt%) or Cu-Sn (0.02-0.15 wt%) or Cu-Y (0.05-0.15 wt%) copper alloy However, since the cross-sectional area ratio between the inner layer portion and the outer layer portion is set to 1: 1 to 2, the bending resistance is compensated by the strength of the copper alloy in the outer layer portion, and the conductivity and the cost are reduced. In contrast, since the copper wire in the inner layer portion contributes to the conductivity, and the hard copper wire for electrical use is used in the inner layer portion, the cross-section integration will reduce the additive element and bring about the cost effect. ..
【0038】ここに本発明で示したCu−Ag,Cu−
In,Cu−Sn以外の添加元素量の少ない耐熱性銅合
金例えば、Pb,Bi,Cr,Co,Ni,Fe,Z
r,Se,Te,Hf,B,Ti,Pなどの元素の一種
または二種以上をCuに対して0.01〜0.10wt
%の範囲に添加した銅合金を外層部に被覆しても、本発
明と同様な効果を得ることができる。The Cu--Ag and Cu-- shown in the present invention are shown here.
A heat-resistant copper alloy having a small amount of additional elements other than In and Cu-Sn, such as Pb, Bi, Cr, Co, Ni, Fe, and Z.
0.01 to 0.10 wt% of one or more elements such as r, Se, Te, Hf, B, Ti, and P with respect to Cu
Even if the outer layer portion is coated with the copper alloy added in the range of%, the same effect as that of the present invention can be obtained.
【0039】次に、本発明を実施例にもとづき説明す
る。Next, the present invention will be described based on examples.
【0040】[0040]
【実施例1】電気銅を溶解炉で低周波誘導加熱により、
溶解し、これを供給炉に送り、供給炉から還元性ガスの
圧力を制御して溶解銅の一定量を無酸化雰囲気に保持さ
れるルツボ(クルーシブル)中に入れると共に、2mmφ
のAg線をルツボ内の溶解銅中に送り込みAg含有量を
0.08wt%に調整する。[Example 1] By applying low-frequency induction heating to electrolytic copper in a melting furnace,
Melt, send this to the supply furnace, control the pressure of the reducing gas from the supply furnace, and put a certain amount of molten copper in the crucible (Crucible) maintained in the non-oxidizing atmosphere.
The Ag wire of is fed into the molten copper in the crucible to adjust the Ag content to 0.08 wt%.
【0041】一方、ルツボの下に設けたブツシングから
皮むきした9.65mmφのたね銅線を挿入し、ルツボ内
を通して上方に引き上げてCu−Ag合金を外層部に被
覆して外径15.7mmφの複合線状体のロツドを形成さ
せる。On the other hand, a 9.65 mmφ glazed copper wire stripped from a bushing provided under the crucible was inserted and pulled upward through the crucible to coat the Cu—Ag alloy on the outer layer portion to have an outer diameter of 15.7 mmφ. To form a rod of the composite linear body of.
【0042】ルツボ中のCu−Ag合金の消費に対して
は、供給炉に保持される溶解銅をルツボ内に補給すると
共に、Ag線に送り込んでAg含有量をつねに0.08
wt%に調整する。For consumption of the Cu-Ag alloy in the crucible, the molten copper held in the feeding furnace is replenished in the crucible and sent to the Ag wire to keep the Ag content always 0.08.
Adjust to wt%.
【0043】その間、引上げられ、冷却された複合線状
体のロッドは無酸化雰囲気中で連続圧延し、外径8mmφ
の荒引線とする。この荒引線を、常温で伸線し、更に連
続伸線軟化機により0.6mmφで耐曲げ性140g・cm
となるように調質する。In the meantime, the rod of the composite linear body which was pulled up and cooled was continuously rolled in an non-oxidizing atmosphere to have an outer diameter of 8 mmφ.
And the rough line. This rough wire is drawn at room temperature and then with a continuous wire softening machine at 0.6 mmφ bending resistance 140 g · cm
So that
【0044】[0044]
【実施例2】ルツボ中の溶解銅の深さを実施例1より減
ずるように、供給炉から溶解銅をルツボに入湯させ、同
時にSnの一定量を溶解銅中に投入し、Sn含有量を
0.1wt%に調整する。[Example 2] In order to reduce the depth of molten copper in the crucible from that in Example 1, molten copper was poured into the crucible from a supply furnace, and at the same time, a fixed amount of Sn was poured into the molten copper to reduce the Sn content. Adjust to 0.1 wt%.
【0045】一方、ルツボの下に設けたブツシングから
皮むきした9.65mmφのたね銅線を挿入し、ルツボ内
を通して上方に引き上げて、Cu−Sn合金を外層部に
被覆して外径14.32mmφの複合線状体のロッドを形
成させる。On the other hand, a 9.65 mmφ glazed copper wire stripped from a bushing provided under the crucible was inserted and pulled up through the crucible to cover the outer layer portion with a Cu--Sn alloy to have an outer diameter of 14. A 32 mmφ composite linear rod is formed.
【0046】以下、実施例1と同様に操作して、0.6
mmφで耐曲げ性140g・cmとなるように調質する。Thereafter, the same operation as in Example 1 was performed to obtain 0.6
It is tempered so that it has a bending resistance of 140 g · cm at mmφ.
【0047】[0047]
【実施例3】ルツボ中の溶解銅の深さを実施例1より減
ずるように、供給炉から溶解銅をルツボに入湯させ、同
時に3mmφのIn線をルツボ内の溶解銅中に送り込みI
n含有量を0.13wt%に調整する。[Example 3] In order to reduce the depth of molten copper in the crucible from that in Example 1, molten copper was poured into the crucible from a supply furnace, and simultaneously an In wire of 3 mmφ was fed into the molten copper in the crucible I
The n content is adjusted to 0.13 wt%.
【0048】一方、ルツボの下に設けたブラツシングか
ら皮むきした9.65mmφのたね銅線を挿入し、ルツボ
内を通して上方に引き上げてCu−In合金を外層部に
被覆して外径14.95mmφの複合線状体のロッドを形
成させる。On the other hand, a 9.65 mmφ glazed copper wire peeled from the brass provided under the crucible was inserted and pulled up through the crucible to cover the outer layer portion with the Cu—In alloy to give an outer diameter of 14.95 mmφ. To form a rod of a composite linear body.
【0049】以下、実施性1と同様に操作して、0.6
mmφで耐曲げ性140g・cmとなるように調質する。Thereafter, the same operation as in Embodiment 1 is performed to obtain 0.6
It is tempered so that it has a bending resistance of 140 g · cm at mmφ.
【0050】[0050]
【発明の効果】上記に説明したようにCu−Ag,Cu
−Inのような二元合金のソリツド線状体では、これら
の合金に添加する貴金属元素は価格が高いため、必然、
リード線としてのコスト高が避けられない。しかもコス
トを引下げるためにそれらの添加量を減少させると、導
電率は向上するものの耐曲げ性が低下し、実用性に問題
を生じる。As described above, Cu-Ag, Cu
In binary linear alloy linear bodies such as -In, the precious metal elements added to these alloys are expensive, so
High cost as a lead wire is inevitable. Moreover, if the addition amount of these is reduced in order to reduce the cost, the electrical conductivity is improved, but the bending resistance is reduced, which causes a problem in practicality.
【0051】また、Cu−Snの二元合金のソリッド線
状体では、耐曲げ性を備えるものの導電率が大巾に低下
し、改善の余地は望めなかった。Further, the solid linear body of the Cu-Sn binary alloy has bending resistance, but the electric conductivity is greatly lowered, and no room for improvement can be expected.
【0052】本発明の複合線状体は内層部を電気用硬銅
線とし、外層部をCu−Ag,Cu−In,Cu−Sn
合金などの耐熱性銅合金で被覆して、耐曲げ性には、外
層部の該銅合金のもつ強度で補償し、導電率、コストに
対しては、内層部に電気用硬銅線を使用することによ
り、導電率の向上をはかり、且つ貴金属添加元素の減量
を実現させ、しかも、この種のリード線に要求される耐
熱性、耐曲げ性、高導電率性、価格の引下げという多大
の効果を得たもので、電子機器部品の半導体素子用のリ
ード線に使用されることは勿論、同様な機器部品の抵抗
器、コンデンサーのリード線として顕著な効果を奏する
ものである。In the composite linear body of the present invention, the inner layer portion is a hard copper wire for electrical use, and the outer layer portion is Cu-Ag, Cu-In, Cu-Sn.
Covered with a heat-resistant copper alloy such as an alloy, the bending resistance is compensated by the strength of the copper alloy in the outer layer part, and the electric hard copper wire is used in the inner layer part for conductivity and cost. By doing so, the conductivity can be improved and the amount of the noble metal additive element can be reduced, and further, the heat resistance, bending resistance, high conductivity, and price reduction required for this type of lead wire can be greatly reduced. It has obtained the effect, and of course it is used as a lead wire for a semiconductor element of an electronic device part, and also has a remarkable effect as a lead wire for a resistor and a capacitor of a similar device part.
第1図は、本発明にかかる耐熱高導電性複合線状体の断
面図であって、1は内層部の電気用硬銅線、2は外層部
の耐熱性銅合金を示す。FIG. 1 is a cross-sectional view of a heat-resistant and highly conductive composite linear body according to the present invention, in which 1 is a hard copper wire for electrical use in an inner layer portion, and 2 is a heat-resistant copper alloy in an outer layer portion.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成3年6月27日[Submission date] June 27, 1991
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】[0013]
【発明の構成】本発明は、内層部を電気用硬銅線(JI
SC3101規格に適合)、外層部を耐熱性銅合金で構
成し、両者の断面積比を内層部:外層部=1:1〜2と
することを特徴とする耐熱高導電性複合線状体を提供す
るものである。According to the present invention, a hard copper wire for electrical use (JI
Complies with SC3101 standard) , the outer layer part is made of heat resistant copper alloy, and the cross-sectional area ratio of both is as follows : inner layer part: outer layer part = 1: 1 to 2
The present invention provides a heat-resistant and highly conductive composite linear body characterized by the following.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0022[Name of item to be corrected] 0022
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0022】[0022]
【表1】 [Table 1]
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0023[Name of item to be corrected] 0023
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0023】 ここにおいて、実施例No1〜5、比較
例No6及び従来例No10はデツプ・フオーミング装
置により製造し、複合線状体については、内層部と外層
部との断面積比の異なるものとし、それぞれ外径8mm
φの荒引線とした。Here, Example Nos. 1 to 5 , Comparative Example No. 6 and Conventional Example No. 10 are manufactured by a deep-foaming device, and the composite linear body has different cross-sectional area ratios between the inner layer portion and the outer layer portion. And each has an outer diameter of 8 mm
A rough wire of φ was used.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0024[Correction target item name] 0024
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0024】 一方、従来例No7〜9は黒鉛ルツボに
電気銅(99.99%)と所要量の添加元素を入れ、更
に表面を木炭粉で十分に被覆し、高周波誘導加熱によっ
て溶解し、金型に鋳造し、この鋳塊を約800℃で熱間
圧延した後、酸洗いを行って8mmφの荒引線とした。On the other hand, in Conventional Examples Nos. 7 to 9 , graphite graphite crucibles were filled with electrolytic copper (99.99%) and a required amount of additional elements, and the surfaces thereof were sufficiently covered with charcoal powder and melted by high frequency induction heating. It was cast in a mold, and this ingot was hot-rolled at about 800 ° C. and then pickled to obtain an 8 mmφ rough wire.
【手続補正6】[Procedure Amendment 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0027[Name of item to be corrected] 0027
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0027】[0027]
【表2】 [Table 2]
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0031[Correction target item name] 0031
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0031】 第2表からわかるように、300〜40
0℃×10分間・焼鈍において、実施例No1〜5は耐
曲げ性、導電率とも要求特性を満足しているが、従来例
のNo10では耐曲げ性に欠き、実用性がない。No
8,9では、耐曲げ性を備えるが、導電率において要求
を満足しない。As can be seen from Table 2, 300-40
In 0 ° C. × 10 minutes / annealing, Examples Nos. 1 to 5 satisfy the required characteristics in both bending resistance and electrical conductivity, but Conventional Example No. 10 lacks bending resistance and is not practical. No
Nos. 8 and 9 have bending resistance, but do not satisfy the requirement in electric conductivity.
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0032[Name of item to be corrected] 0032
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0032】 比較例No6は、耐曲げ性が焼鈍温度と
共に低下し、400℃では76g・cmとなり要求特性
に欠く傾向を示す。この原因は複合線状体の構成におけ
る内層部と外層部との断面積比が1:0.8であり、外
層部の厚さが薄いため、Cu−Ag合金のもつ強度で耐
曲げ性を補強しにくいためである。In Comparative Example No. 6 , the bending resistance decreases with the annealing temperature, and becomes 76 g · cm at 400 ° C., which is a tendency that the required properties are lacking. The reason for this is that the cross-sectional area ratio of the inner layer portion to the outer layer portion in the structure of the composite linear body is 1: 0.8, and the thickness of the outer layer portion is thin. This is because it is difficult to reinforce.
【手続補正9】[Procedure Amendment 9]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0033[Correction target item name] 0033
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0033】 次に、Agを使用するコストについて、
実施例No1と従来例No7を対比すると、No1はN
o7より0.6mmφ1Ton当たり0.3KgのAg
を減量させ得る。同様に、Inについて見れば、実施例
No3は従来例No9より0.6mmφ1Ton当たり
0.54KgのInを減量させ得る。Next, regarding the cost of using Ag,
When Example No. 1 and Conventional Example No. 7 are compared, No. 1 is N
0.3mm Ag per 0.6mmφ1Ton from o 7
Can be reduced. Similarly, in the case of In, Example No. 3 can reduce In of 0.54 Kg per 0.6 mmφ 1 Ton, compared with Conventional Example No 9 .
【手続補正10】[Procedure Amendment 10]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0035[Correction target item name] 0035
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0035】 更に、Snを使用する実施例No2と従
来例No8を対比すると、No8の合金組成では耐曲げ
性を備えても、導電率は低く、改善の余地がない。Further, comparing Example No. 2 using Sn and Conventional Example No. 8 , the alloy composition of No. 8 has a bending resistance, but has low electrical conductivity, and there is no room for improvement.
【手続補正11】[Procedure Amendment 11]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明にかかる耐熱高導電性複合線状体の断面
図である。 [1] Ru sectional view der of heat-resistant high-conductive composite linear body according to the present invention.
【符号の説明】1 内層部の電気用硬銅線 2 外層部の耐熱性銅合金[ Explanation of reference symbols ] 1 hard copper wire for electrical use in the inner layer 2 heat-resistant copper alloy in the outer layer
Claims (2)
性銅合金で構成したことを特徴とする耐熱高導電性複合
線状体。1. A heat-resistant and highly conductive composite linear body, wherein an inner layer portion is a hard copper wire for electrical use and an outer layer portion is composed of a heat-resistant copper alloy.
耐熱性銅合金との断面積比を1:1〜2とすることを特
徴とする特許請求の範囲第1項記載の耐熱高導電性複合
線状体。2. The cross-sectional area ratio of the hard copper wire for electrical use of the inner layer portion to the heat resistant copper alloy coated on the outer layer portion is set to 1: 1 to 2 as set forth in claim 1. Heat resistant and highly conductive composite linear body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3132912A JPH0752604B2 (en) | 1991-06-04 | 1991-06-04 | Heat resistant and highly conductive composite linear body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3132912A JPH0752604B2 (en) | 1991-06-04 | 1991-06-04 | Heat resistant and highly conductive composite linear body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05267090A true JPH05267090A (en) | 1993-10-15 |
JPH0752604B2 JPH0752604B2 (en) | 1995-06-05 |
Family
ID=15092429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3132912A Expired - Lifetime JPH0752604B2 (en) | 1991-06-04 | 1991-06-04 | Heat resistant and highly conductive composite linear body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0752604B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115423A (en) * | 2006-11-02 | 2008-05-22 | Hitachi Cable Ltd | Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor |
WO2013085003A1 (en) * | 2011-12-07 | 2013-06-13 | 大電株式会社 | Composite conductor and electric wire using same |
JP2018041818A (en) * | 2016-09-07 | 2018-03-15 | 株式会社フジクラ | Power storage device, power storage module, and method for manufacturing power storage module |
-
1991
- 1991-06-04 JP JP3132912A patent/JPH0752604B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115423A (en) * | 2006-11-02 | 2008-05-22 | Hitachi Cable Ltd | Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor |
WO2013085003A1 (en) * | 2011-12-07 | 2013-06-13 | 大電株式会社 | Composite conductor and electric wire using same |
JPWO2013085003A1 (en) * | 2011-12-07 | 2015-04-27 | 大電株式会社 | Composite conductor and electric wire using the same |
US9293232B2 (en) | 2011-12-07 | 2016-03-22 | Dyden Corporation | Composite conductor and electric wire using the same |
JP2018041818A (en) * | 2016-09-07 | 2018-03-15 | 株式会社フジクラ | Power storage device, power storage module, and method for manufacturing power storage module |
Also Published As
Publication number | Publication date |
---|---|
JPH0752604B2 (en) | 1995-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4233067A (en) | Soft copper alloy conductors | |
EP2381001B1 (en) | Aluminum alloy wire | |
WO2007126011A1 (en) | TIN-PLATED Cu-Ni-Si ALLOY STRIP | |
US4486250A (en) | Copper-based alloy and method for producing the same | |
JP3904118B2 (en) | Copper alloy for electric and electronic parts and manufacturing method thereof | |
JP2007039789A (en) | Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF | |
WO2011039875A1 (en) | Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating | |
JP2012007242A (en) | Cu-Ni-Si ALLOY-TINNED STRIP | |
JP4820228B2 (en) | Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof | |
JPH05267090A (en) | Heat resistant and highly conductive composite strand | |
JPS63307232A (en) | Copper alloy | |
CN1039245C (en) | Nickel base Ni-Cu-Cr-Mn resistance alloy for sputter target | |
JPS6164834A (en) | Copper alloy having high strength, heat resistance and electric conductivity | |
JP2003089832A (en) | Copper alloy foil having excellent thermal peeling resistance of plating | |
CN102485924A (en) | Preparation method of phosphorus-copper anode for integrated circuit | |
CN115198133A (en) | High-strength heat-resistant conductive copper alloy pipe and preparation method thereof | |
JPH0718355A (en) | Copper alloy for electronic appliance and its production | |
GB2123851A (en) | Cu-sl-ni alloys for electrical or electronic devices | |
JPH09324230A (en) | High conductivity wire | |
JPS6220265B2 (en) | ||
JPH01165733A (en) | High strength and high electric conductive copper alloy | |
JPS60207217A (en) | Refractory highly conductive composite linear material | |
JP2991319B2 (en) | High strength and high conductivity copper alloy and manufacturing method (2) | |
JPS6017039A (en) | Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity | |
JP2012089686A (en) | Three-dimentional wiring body and method for manufacturing three-dimentional wiring body |