JP7054482B2 - Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire - Google Patents
Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire Download PDFInfo
- Publication number
- JP7054482B2 JP7054482B2 JP2020200781A JP2020200781A JP7054482B2 JP 7054482 B2 JP7054482 B2 JP 7054482B2 JP 2020200781 A JP2020200781 A JP 2020200781A JP 2020200781 A JP2020200781 A JP 2020200781A JP 7054482 B2 JP7054482 B2 JP 7054482B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- copper alloy
- terminal
- mass
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Insulated Conductors (AREA)
Description
本発明は、被覆電線、端子付き電線、銅合金線、及び銅合金撚線に関する。 The present invention relates to covered electric wires, electric wires with terminals, copper alloy wires, and copper alloy stranded wires.
従来、自動車や産業用ロボットなどの配線構造に複数の端子付き電線を束ねたワイヤーハーネスが利用されている。端子付き電線は、電線の端部において絶縁被覆層から露出させた導体に圧着端子などの端子が取り付けられたものである。代表的には、各端子は、コネクタハウジングに設けられた複数の端子孔にそれぞれ挿入されて、コネクタハウジングに機械的に接続される。このコネクタハウジングを介して、機器本体に電線が接続される。コネクタハウジング同士が接続されて、電線同士が接続されることもある。上記導体の構成材料には、銅などの銅系材料が主流である(例えば、特許文献1)。 Conventionally, a wire harness in which a plurality of electric wires with terminals are bundled in a wiring structure of an automobile or an industrial robot has been used. An electric wire with a terminal is a conductor in which a terminal such as a crimp terminal is attached to a conductor exposed from an insulating coating layer at the end of the electric wire. Typically, each terminal is inserted into a plurality of terminal holes provided in the connector housing and mechanically connected to the connector housing. An electric wire is connected to the main body of the device via this connector housing. In some cases, the connector housings are connected to each other and the electric wires are connected to each other. Copper-based materials such as copper are the mainstream of the constituent materials of the conductor (for example, Patent Document 1).
導電性及び強度に優れる上に、耐衝撃性にも優れる電線が望まれている。特に、導体を構成する線材が細くても、衝撃を受けた場合に破断し難い電線が望まれる。 An electric wire having excellent impact resistance as well as excellent conductivity and strength is desired. In particular, even if the wire rod constituting the conductor is thin, an electric wire that is hard to break when subjected to an impact is desired.
昨今、自動車の高性能化や高機能化などに伴って、車載される各種の電気機器、制御機器などが増加し、これらの機器に使用される電線も増加傾向にある。従って、電線の重量も増加傾向にある。一方で、環境保全のため、自動車の燃費の向上などを目的として、電線の軽量化が望まれる。上述の銅系材料で構成される線材は、高い導電率を有し易いものの、重量が大きくなり易い。例えば、線径0.5mm以下の細い銅系線材を導体に用いれば、加工硬化による高強度化、細径による軽量化が期待できる。しかし、上述のように細い線材では、断面積が小さく、衝撃を受けた場合に衝撃を受けられる力が小さくなり易いため、衝撃を受けると破断し易い。従って、上述のように細くても、耐衝撃性に優れる銅系線材が望まれる。 In recent years, with the increasing performance and functionality of automobiles, the number of various electric devices and control devices mounted on vehicles has increased, and the number of electric wires used for these devices has also been increasing. Therefore, the weight of the electric wire is also increasing. On the other hand, in order to protect the environment, it is desired to reduce the weight of electric wires for the purpose of improving the fuel efficiency of automobiles. The wire rod made of the above-mentioned copper-based material tends to have high conductivity, but tends to increase in weight. For example, if a thin copper-based wire having a wire diameter of 0.5 mm or less is used for the conductor, high strength due to work hardening and weight reduction due to the small diameter can be expected. However, as described above, the thin wire rod has a small cross-sectional area, and the force that can be impacted when it is impacted tends to be small, so that it is easily broken when it is impacted. Therefore, a copper-based wire rod having excellent impact resistance is desired even if it is thin as described above.
上述のように圧着端子などの端子が取り付けられた状態で使用される電線では、導体における圧縮加工が施された端子取付箇所の断面積は、その他の箇所(以下、本線箇所と呼ぶことがある)の断面積よりも小さい。このことから、導体における端子取付箇所は、衝撃を受けた場合に破断し易い箇所となり易い。従って、上述のような細い銅系線材であっても、衝撃を受けた場合に端子取付箇所近傍が破断し難いこと、即ち、端子装着状態での耐衝撃性にも優れることが望まれる。 In an electric wire used with terminals such as crimp terminals attached as described above, the cross-sectional area of the terminal attachment points that have been compressed in the conductor may be referred to as other points (hereinafter referred to as main line points). ) Is smaller than the cross section. For this reason, the terminal mounting location on the conductor tends to be a location that is easily broken when subjected to an impact. Therefore, even with the above-mentioned thin copper-based wire, it is desired that the vicinity of the terminal mounting portion is not easily broken when an impact is applied, that is, the impact resistance in the terminal mounted state is also excellent.
更に、車載用途などの電線では、配策時や、コネクタハウジングとの接続時などで引っ張られたり、曲げや捻回が加えられたり、使用時に振動が与えられたりすることが考えられる。ロボット用途などの電線では、使用時に曲げや捻回が与えられることが考えられる。このような繰り返しの曲げや捻回などの動作によっても破断し難く、耐疲労性に優れる電線や、上述のように圧着端子などの端子との固着性に優れる電線がより好ましい。 Further, it is conceivable that the electric wire for in-vehicle use may be pulled, bent or twisted at the time of arrangement, connection with the connector housing, etc., or may be subjected to vibration at the time of use. It is conceivable that electric wires for robot applications will be bent or twisted during use. It is more preferable to use an electric wire that is hard to break even by such repeated bending and twisting operations and has excellent fatigue resistance, and an electric wire having excellent adhesiveness to terminals such as crimp terminals as described above.
そこで、導電性及び強度に優れる上に、耐衝撃性にも優れる被覆電線、端子付き電線、銅合金線、及び銅合金撚線を提供することを目的の一つとする。 Therefore, one of the purposes of the present invention is to provide a coated electric wire, a wire with a terminal, a copper alloy wire, and a copper alloy stranded wire, which are excellent in conductivity and strength and also have excellent impact resistance.
本発明の一態様に係る被覆電線は、
導体と、前記導体の外側に設けられた絶縁被覆層とを備える被覆電線であって、
前記導体は、
Feを0.2質量%以上1.6質量%以下、
Pを0.05質量%以上0.4質量%以下、
Snを0.05質量%以上0.7質量%以下含有し、
残部がCu及び不純物からなり、
質量比で、Fe/Pが4.0以上である銅合金から構成され、
線径が0.5mm以下である銅合金線が複数撚り合わされてなる撚線である。
The covered electric wire according to one aspect of the present invention is
A coated electric wire including a conductor and an insulating coating layer provided on the outside of the conductor.
The conductor is
Fe is 0.2% by mass or more and 1.6% by mass or less,
P is 0.05% by mass or more and 0.4% by mass or less,
Containing Sn in an amount of 0.05% by mass or more and 0.7% by mass or less,
The rest consists of Cu and impurities
It is composed of a copper alloy having a Fe / P of 4.0 or more by mass ratio.
It is a stranded wire obtained by twisting a plurality of copper alloy wires having a wire diameter of 0.5 mm or less.
本発明の一態様に係る端子付き電線は、
上記の一態様に係る被覆電線と、前記被覆電線の端部に取り付けられた端子とを備える。
The electric wire with a terminal according to one aspect of the present invention is
A covered electric wire according to the above aspect and a terminal attached to an end portion of the coated electric wire are provided.
本発明の一態様に係る銅合金線は、
導体に利用される銅合金線であって、
Feを0.2質量%以上1.6質量%以下、
Pを0.05質量%以上0.4質量%以下、
Snを0.05質量%以上0.7質量%以下含有し、
残部がCu及び不純物からなり、
質量比で、Fe/Pが4.0以上である銅合金から構成され、
線径が0.5mm以下である。
The copper alloy wire according to one aspect of the present invention is
Copper alloy wire used for conductors
Fe is 0.2% by mass or more and 1.6% by mass or less,
P is 0.05% by mass or more and 0.4% by mass or less,
Containing Sn in an amount of 0.05% by mass or more and 0.7% by mass or less,
The rest consists of Cu and impurities
It is composed of a copper alloy having a Fe / P of 4.0 or more by mass ratio.
The wire diameter is 0.5 mm or less.
本発明の一態様に係る銅合金撚線は、
上記の一態様に係る銅合金線が複数撚り合わされてなる。
The copper alloy stranded wire according to one aspect of the present invention is
A plurality of copper alloy wires according to the above aspect are twisted together.
上記被覆電線、端子付き電線、銅合金線、及び銅合金撚線は、導電性及び強度に優れる上に、耐衝撃性にも優れる。 The coated electric wire, the electric wire with a terminal, the copper alloy wire, and the copper alloy stranded wire are excellent not only in conductivity and strength but also in impact resistance.
[本発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の一態様に係る被覆電線は、
導体と、前記導体の外側に設けられた絶縁被覆層とを備える被覆電線であって、
前記導体は、
Feを0.2質量%以上1.6質量%以下、
Pを0.05質量%以上0.4質量%以下、
Snを0.05質量%以上0.7質量%以下含有し、
残部がCu及び不純物からなり、
質量比で、Fe/Pが4.0以上である銅合金から構成され、
線径が0.5mm以下である銅合金線が複数撚り合わされてなる撚線である。
上記の撚線は、複数の銅合金線を単に撚り合せたものの他、撚り合せ後に圧縮成形された、いわゆる圧縮撚線を含む。後述する(10)の銅合金撚線についても同様である。代表的な撚り方法として、同心撚りが挙げられる。
線径とは、銅合金線が丸線の場合には直径とし、横断面形状が円形以外の線材である場合には、横断面における等価面積の円の直径とする。
[Explanation of Embodiment of the present invention]
First, the contents of the embodiments of the present invention will be listed and described.
(1) The covered electric wire according to one aspect of the present invention is
A coated electric wire including a conductor and an insulating coating layer provided on the outside of the conductor.
The conductor is
Fe is 0.2% by mass or more and 1.6% by mass or less,
P is 0.05% by mass or more and 0.4% by mass or less,
Containing Sn in an amount of 0.05% by mass or more and 0.7% by mass or less,
The rest consists of Cu and impurities
It is composed of a copper alloy having a Fe / P of 4.0 or more by mass ratio.
It is a stranded wire obtained by twisting a plurality of copper alloy wires having a wire diameter of 0.5 mm or less.
The above-mentioned stranded wire includes not only a plurality of copper alloy wires simply twisted together, but also a so-called compression stranded wire which is compression-molded after being twisted. The same applies to the copper alloy stranded wire of (10) described later. A typical twisting method is concentric twisting.
The wire diameter is the diameter when the copper alloy wire is a round wire, and is the diameter of a circle having an equivalent area in the cross section when the cross-sectional shape is a wire rod other than a circular wire.
上記の被覆電線は、銅系材料から構成される細径の線材(銅合金線)を導体に備えるため、導電性及び強度に優れる上に軽量である。この銅合金線は、特定の組成の銅合金から構成されるため、上記の被覆電線は、以下に説明するように、導電性及び強度により優れる上に、耐衝撃性にも優れる。上記銅合金においてFe及びPは、代表的には、Fe2Pなどの化合物といったFeやPを含む析出物や晶出物として母相(Cu)に存在し、析出強化による強度向上効果とCuへの固溶低減による高い導電率の維持効果とを有する。特に、Pに対してFeを多めに含むため、FeとPとが過不足なく化合物を形成し易く、過剰のPが母相に固溶して導電率が低下することを効果的に防止できる。この点から、Cuの高い導電率を更に維持し易い。かつ、Snを特定の範囲で含むため、Snの固溶強化による更なる強度向上効果が得られる。上述の析出強化と固溶強化とによって高い強度を有するため、熱処理によって伸びなどを高めた場合にも高い強度を有しつつ、高い靭性も有して耐衝撃性にも優れる。このような上記の被覆電線、この被覆電線の導体を構成する銅合金撚線、この銅合金撚線の各素線である銅合金線は、高導電率、高強度、高靭性をバランスよく備えるといえる。 Since the above-mentioned coated electric wire is provided with a wire having a small diameter (copper alloy wire) made of a copper-based material in the conductor, it is excellent in conductivity and strength and is lightweight. Since this copper alloy wire is composed of a copper alloy having a specific composition, the above-mentioned coated electric wire is excellent not only in conductivity and strength but also in impact resistance as described below. In the above copper alloy, Fe and P are typically present in the matrix (Cu) as precipitates and crystallizations containing Fe and P such as compounds such as Fe 2 P, and have an effect of improving strength by strengthening precipitation and Cu. It has the effect of maintaining high conductivity by reducing the solid solution to copper. In particular, since Fe is contained in a large amount with respect to P, it is easy for Fe and P to form a compound without excess or deficiency, and it is possible to effectively prevent the excess P from being dissolved in the parent phase and lowering the conductivity. .. From this point, it is easier to maintain the high conductivity of Cu. Moreover, since Sn is contained in a specific range, a further strength improving effect can be obtained by strengthening the solid solution of Sn. Since it has high strength by the above-mentioned precipitation strengthening and solid solution strengthening, it has high strength even when elongation is increased by heat treatment, and also has high toughness and excellent impact resistance. The above-mentioned coated electric wire, the copper alloy stranded wire constituting the conductor of the coated electric wire, and the copper alloy wire which is each element of the copper alloy stranded wire have high conductivity, high strength, and high toughness in a well-balanced manner. It can be said that.
また、上記の被覆電線は、上述のように高強度、高靭性の銅合金線の撚線を導体とするため、同一断面積の単線を導体とする場合に比較して、導体(撚線)全体として屈曲性や捻回性といった機械的特性により優れる傾向にあり、耐疲労性に優れる。更に、上記撚線や銅合金線は、圧縮加工などの断面減少を伴う塑性加工を施した場合に加工硬化し易い傾向にある。そのため、上記の被覆電線は、圧着端子などの端子が固着された場合に、加工硬化によって、上記端子を強固に固着でき、上記端子との固着性にも優れる。この加工硬化によって導体(撚線)における端子接続箇所の強度を高められる。そのため、衝撃を受けた場合に端子接続箇所で破断し難く、上記の被覆電線は、端子装着状態での耐衝撃性にも優れる。 Further, since the above-mentioned coated electric wire uses a stranded wire of a high-strength and high-toughness copper alloy wire as a conductor as described above, the conductor (twisted wire) is compared with the case where a single wire having the same cross-sectional area is used as a conductor. As a whole, it tends to be superior in mechanical properties such as flexibility and twistability, and is excellent in fatigue resistance. Further, the twisted wire and the copper alloy wire tend to be easily work-hardened when subjected to plastic working such as compression working with a reduction in cross section. Therefore, when a terminal such as a crimp terminal is fixed, the coated electric wire can be firmly fixed to the terminal by work hardening, and has excellent stickability to the terminal. By this work hardening, the strength of the terminal connection point in the conductor (twisted wire) can be increased. Therefore, it is difficult to break at the terminal connection point when it receives an impact, and the above-mentioned covered electric wire is also excellent in impact resistance when the terminal is attached.
(2)上記の被覆電線の一例として、
前記銅合金は、質量割合で、C,Si,及びMnから選択される1種以上の元素を合計で10ppm以上500ppm以下含む形態が挙げられる。
(2) As an example of the above-mentioned covered electric wire,
Examples of the copper alloy include a form containing 10 ppm or more and 500 ppm or less in total of one or more elements selected from C, Si, and Mn in terms of mass ratio.
C,Si,Mnは、特定の範囲で含有することで、Fe,P,Snなどの脱酸剤として機能し、これらの元素の酸化を低減、防止して、これらの元素の含有による高導電性及び高強度という効果を適切に得られる。また、上記形態は、C,Si,Mnの過剰含有による導電率の低下を抑制できることからも、導電性に優れる。従って、上記形態は、導電性及び強度により優れる。 By containing C, Si, and Mn in a specific range, they function as deoxidizers such as Fe, P, and Sn, reduce or prevent the oxidation of these elements, and have high conductivity due to the inclusion of these elements. The effects of sex and high strength can be appropriately obtained. In addition, the above-mentioned form is excellent in conductivity because it can suppress a decrease in conductivity due to an excessive content of C, Si, and Mn. Therefore, the above-mentioned form is superior in conductivity and strength.
(3)上記の被覆電線の一例として、
前記銅合金線の破断伸びが5%以上である形態が挙げられる。
(3) As an example of the above-mentioned covered electric wire,
Examples thereof include a form in which the breaking elongation of the copper alloy wire is 5% or more.
上記形態は、破断伸びが高い銅合金線を導体に備えるため、耐衝撃性に優れる上に、曲げや捻回によっても破断し難く、屈曲性、捻回性にも優れる。 In the above embodiment, since the conductor is provided with a copper alloy wire having high breaking elongation, it is excellent in impact resistance, is not easily broken by bending or twisting, and is also excellent in bending property and twisting property.
(4)上記の被覆電線の一例として、
前記銅合金線の導電率が60%IACS以上であり、引張強さが400MPa以上である形態が挙げられる。
(4) As an example of the above-mentioned covered electric wire,
Examples thereof include a form in which the conductivity of the copper alloy wire is 60% IACS or more and the tensile strength is 400 MPa or more.
上記形態は、導電率及び引張強さが高い銅合金線を導体に備えるため、導電性及び強度に優れる。 The above-mentioned form is excellent in conductivity and strength because the conductor is provided with a copper alloy wire having high conductivity and tensile strength.
(5)上記の被覆電線の一例として、
端子固着力が45N以上である形態が挙げられる。
端子固着力、後述する(6),(11)端子装着状態での耐衝撃エネルギー、(7),(12)耐衝撃エネルギーの測定方法は後述する(試験例1,2参照)。
(5) As an example of the above-mentioned covered electric wire,
Examples thereof include a form in which the terminal fixing force is 45 N or more.
The method for measuring the terminal fixing force, (6) and (11) impact-resistant energy in the terminal-mounted state, and (7) and (12) impact-resistant energy, which will be described later, will be described later (see Test Examples 1 and 2).
上記形態は、圧着端子などの端子が取り付けられた場合に端子を強固に固着でき、端子との固着性に優れる。従って、上記形態は、導電性及び強度並びに耐衝撃性に優れる上に、端子固着性にも優れ、上述の端子付き電線などに好適に利用できる。 In the above embodiment, when a terminal such as a crimp terminal is attached, the terminal can be firmly fixed, and the adhesiveness to the terminal is excellent. Therefore, the above-mentioned form is excellent in conductivity, strength and impact resistance, and is also excellent in terminal sticking property, and can be suitably used for the above-mentioned electric wire with a terminal.
(6)上記の被覆電線の一例として、
端子が取り付けられた状態での耐衝撃エネルギーが3J/m以上である形態が挙げられる。
(6) As an example of the above-mentioned covered electric wire,
An example is a form in which the impact resistance energy with the terminal attached is 3 J / m or more.
上記形態は、圧着端子などの端子が圧着された端子装着状態での耐衝撃エネルギーが高く、端子装着状態で衝撃を受けた場合でも端子取付箇所で破断し難い。従って、上記形態は、導電性及び強度並びに耐衝撃性に優れる上に、端子装着状態での耐衝撃性にも優れ、上述の端子付き電線などに好適に利用できる。 In the above form, the impact resistance energy is high when the terminal is crimped, such as a crimp terminal, and it is difficult to break at the terminal mounting location even when an impact is received while the terminal is mounted. Therefore, the above-mentioned form is excellent in conductivity, strength, and impact resistance, and is also excellent in impact resistance in a terminal-mounted state, and can be suitably used for the above-mentioned electric wire with a terminal.
(7)上記の被覆電線の一例として、
前記被覆電線のみの耐衝撃エネルギーが6J/m以上である形態が挙げられる。
(7) As an example of the above-mentioned covered electric wire,
Examples thereof include a form in which the impact resistance energy of only the coated electric wire is 6 J / m or more.
上記形態は、被覆電線自体の耐衝撃エネルギーが高く、衝撃を受けた場合でも破断し難く、耐衝撃性に優れる。 In the above form, the impact resistance energy of the coated electric wire itself is high, it is hard to break even when it receives an impact, and it is excellent in impact resistance.
(8)本発明の一態様に係る端子付き電線は、
上記(1)から(7)のいずれか一つに記載の被覆電線と、前記被覆電線の端部に取り付けられた端子とを備える。
(8) The electric wire with a terminal according to one aspect of the present invention is
The covered electric wire according to any one of (1) to (7) above, and a terminal attached to an end portion of the coated electric wire are provided.
上記の端子付き電線は、上記の被覆電線を備えるため、上述のように導電性及び強度に優れる上に、耐衝撃性にも優れる。また、上記の端子付き電線は、上記の被覆電線を備えるため、上述のように耐疲労性、圧着端子などの端子との固着性、端子装着状態での耐衝撃性にも優れる。 Since the above-mentioned electric wire with a terminal includes the above-mentioned coated electric wire, it is excellent in conductivity and strength as described above, and is also excellent in impact resistance. Further, since the above-mentioned electric wire with a terminal includes the above-mentioned covered electric wire, it is excellent in fatigue resistance, adhesion to a terminal such as a crimp terminal, and impact resistance in a terminal-mounted state as described above.
(9)本発明の一態様に係る銅合金線は、
導体に利用される銅合金線であって、
Feを0.2質量%以上1.6質量%以下、
Pを0.05質量%以上0.4質量%以下、
Snを0.05質量%以上0.7質量%以下含有し、
残部がCu及び不純物からなり、
質量比で、Fe/Pが4.0以上である銅合金から構成され、
線径が0.5mm以下である。
(9) The copper alloy wire according to one aspect of the present invention is
Copper alloy wire used for conductors
Fe is 0.2% by mass or more and 1.6% by mass or less,
P is 0.05% by mass or more and 0.4% by mass or less,
Containing Sn in an amount of 0.05% by mass or more and 0.7% by mass or less,
The rest consists of Cu and impurities
It is composed of a copper alloy having a Fe / P of 4.0 or more by mass ratio.
The wire diameter is 0.5 mm or less.
上記の銅合金線は、銅系材料から構成される細径の線材であるため、単線又は撚線の状態で電線などの導体に利用される場合に、導電性及び強度に優れる上に電線などの軽量化に寄与する。特に、上記の銅合金線は、Fe,P,Snを含む特定の組成の銅合金から構成されて、上述のように導電性及び強度により優れる上に耐衝撃性にも優れる。従って、上記の銅合金線を電線の導体に利用することで、導電性及び強度に優れる上に耐衝撃性にも優れる電線、更には耐疲労性、圧着端子などの端子との固着性、端子装着状態での耐衝撃性にも優れる電線を構築できる。 Since the above copper alloy wire is a small-diameter wire made of a copper-based material, it has excellent conductivity and strength when used as a conductor such as an electric wire in the state of a single wire or a stranded wire. Contributes to weight reduction. In particular, the above-mentioned copper alloy wire is composed of a copper alloy having a specific composition including Fe, P, and Sn, and is excellent in conductivity and strength as described above and also in impact resistance. Therefore, by using the above-mentioned copper alloy wire as the conductor of the electric wire, the electric wire having excellent conductivity and strength and also having excellent impact resistance, fatigue resistance, adhesion to terminals such as crimp terminals, and terminals. It is possible to construct an electric wire with excellent impact resistance in the mounted state.
(10)本発明の一態様に係る銅合金撚線は、
上記(9)に記載の銅合金線が複数撚り合わされてなる。
(10) The copper alloy stranded wire according to one aspect of the present invention is
A plurality of copper alloy wires according to (9) above are twisted together.
上記の銅合金撚線は、上記(9)の銅合金線の組成及び特性を実質的に維持しており、導電性及び強度に優れる上に耐衝撃性にも優れる。従って、上記の銅合金撚線を電線の導体に利用することで、導電性及び強度に優れる上に耐衝撃性にも優れる電線、更には耐疲労性、圧着端子などの端子との固着性、端子装着状態での耐衝撃性にも優れる電線を構築できる。 The copper alloy stranded wire substantially maintains the composition and characteristics of the copper alloy wire of the above (9), and is excellent in conductivity and strength as well as impact resistance. Therefore, by using the above-mentioned copper alloy stranded wire for the conductor of the electric wire, the electric wire having excellent conductivity and strength and also having excellent impact resistance, fatigue resistance, and sticking property to terminals such as crimp terminals can be improved. It is possible to construct an electric wire with excellent impact resistance when the terminal is attached.
(11)上記の銅合金撚線の一例として、
端子が取り付けられた状態での耐衝撃エネルギーが1.5J/m以上である形態が挙げられる。
(11) As an example of the above-mentioned copper alloy stranded wire,
An example is a form in which the impact resistance energy with the terminal attached is 1.5 J / m or more.
上記形態は、端子装着状態での耐衝撃エネルギーが高い。このような上記形態の銅合金撚線を導体とし、絶縁被覆層を備える被覆電線とすれば、端子装着状態での耐衝撃エネルギーがより高い被覆電線、代表的には上述の(6)の被覆電線を構築できる。従って、上記形態は、導電性及び強度並びに耐衝撃性に優れる上に、端子装着状態での耐衝撃性により優れる被覆電線や端子付き電線などの導体に好適に利用できる。 The above-mentioned form has high impact resistance energy when the terminal is attached. If the copper alloy stranded wire of the above-mentioned form is used as a conductor and the coated electric wire is provided with an insulating coating layer, the coated electric wire having higher impact resistance energy in the terminal-mounted state, typically the coating of (6) above. You can build electric wires. Therefore, the above-described embodiment can be suitably used for conductors such as coated electric wires and electric wires with terminals, which are excellent in electrical conductivity, strength and impact resistance, and also have excellent impact resistance in a terminal-mounted state.
(12)上記の銅合金撚線の一例として、
前記銅合金撚線のみの耐衝撃エネルギーが4J/m以上である形態が挙げられる。
(12) As an example of the above-mentioned copper alloy stranded wire,
Examples thereof include a form in which the impact resistance energy of only the copper alloy stranded wire is 4 J / m or more.
上記形態は、銅合金撚線自体の耐衝撃エネルギーが高い。このような上記形態の銅合金撚線を導体とし、絶縁被覆層を備える被覆電線とすれば、耐衝撃エネルギーがより高い被覆電線、代表的には上述の(7)の被覆電線を構築できる。従って、上記形態は、導電性及び強度に優れる上に、耐衝撃性により優れる被覆電線や端子付き電線などの導体に好適に利用できる。 In the above form, the impact resistance energy of the copper alloy stranded wire itself is high. If such a copper alloy stranded wire of the above-mentioned form is used as a conductor and a coated electric wire provided with an insulating coating layer is used, a coated electric wire having higher impact resistance energy, typically the coated electric wire of the above-mentioned (7) can be constructed. Therefore, the above-mentioned form can be suitably used for conductors such as coated electric wires and electric wires with terminals, which are excellent in electrical conductivity and strength and also excellent in impact resistance.
[本発明の実施形態の詳細]
以下、適宜、図面を参照して、本発明の実施の形態を詳細に説明する。図中、同一符号は同一名称物を示す。元素の含有量は、断りが無い限り質量割合(質量%又は質量ppm)とする。
[Details of Embodiments of the present invention]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In the figure, the same reference numerals indicate the same names. The content of the element shall be mass ratio (mass% or mass ppm) unless otherwise specified.
[銅合金線]
(組成)
実施形態の銅合金線1は、被覆電線3などの電線の導体に利用されるものであり(図1)、特定の添加元素を特定の範囲で含む銅合金から構成される。上記銅合金は、Feを0.2%以上1.6%以下、Pを0.05%以上0.4%以下、Snを0.05%以上0.7%以下含有し、残部がCu及び不純物からなるFe-P-Sn-Cu合金である。特に、上記銅合金では、Pの含有量に対するFeの含有量の割合Fe/Pが、質量比で4.0以上である。上記不純物とは主として不可避なものをいう。以下、元素ごとに詳細に説明する。
[Copper alloy wire]
(composition)
The
・Fe
Feは、主として、母相であるCuに析出して存在し、引張強さといった強度の向上に寄与する。
Feを0.2%以上含有すると、Fe及びPを含む析出物などを良好に生成でき、析出強化によって強度に優れる銅合金線1とすることができる。かつ、上記の析出によってPの母相への固溶を抑制して、高い導電率を有する銅合金線1とすることができる。P量や製造条件にもよるが、Feの含有量が多いほど、銅合金線1の強度が高くなり易い。高強度化などを望む場合には、Feの含有量を0.35%超、更に0.4%以上、0.45%以上とすることができる。
Feを1.6%以下の範囲で含有すると、Feを含む析出物などの粗大化を抑制し易い。その結果、粗大な析出物を起点とする破断を低減できて強度に優れる上に、製造過程では伸線加工時などに断線し難く、製造性にも優れる。P量や製造条件にもよるが、Feの含有量が少ないほど、上述の析出物の粗大化などを抑制し易い。析出物の粗大化の抑制(破断、断線の低減)などを望む場合には、Feの含有量を1.5%以下、更に1.2%以下、1.0%以下、0.9%未満とすることができる。
・ Fe
Fe is mainly present in the Cu which is the matrix phase and contributes to the improvement of strength such as tensile strength.
When Fe is contained in an amount of 0.2% or more, precipitates containing Fe and P can be satisfactorily generated, and the
When Fe is contained in the range of 1.6% or less, it is easy to suppress the coarsening of precipitates containing Fe. As a result, it is possible to reduce the breakage starting from the coarse precipitate and to have excellent strength, and in the manufacturing process, it is difficult to break the wire at the time of wire drawing, and the manufacturability is also excellent. Although it depends on the amount of P and the production conditions, the smaller the content of Fe, the easier it is to suppress the coarsening of the above-mentioned precipitates. If it is desired to suppress the coarsening of the precipitate (reduce breakage and disconnection), the Fe content should be 1.5% or less, 1.2% or less, 1.0% or less, and less than 0.9%. Can be.
・P
銅合金線1においてPは、主としてFeと共に析出物として存在して引張強さといった強度の向上に寄与する、即ち主として析出強化元素として機能する。
Pを0.05%以上含有すると、Fe及びPを含む析出物などを良好に生成でき、析出強化によって強度に優れる銅合金線1とすることができる。Fe量や製造条件にもよるが、Pの含有量が多いほど、銅合金線1の強度が高くなり易い。高強度化などを望む場合には、Pの含有量を0.1%超、更に0.11%以上、0.12%以上とすることができる。なお、含有するPのうちの一部が脱酸剤として機能し、母相に酸化物として存在することを許容する。
Pを0.4%以下の範囲で含有すると、Fe及びPを含む析出物などの粗大化を抑制し易く、破断や断線を低減できる。Fe量や製造条件にもよるが、Pの含有量が少ないほど、上述の粗大化を抑制し易い。析出物の粗大化の抑制(破断、断線の低減)などを望む場合には、Pの含有量を0.35%以下、更に0.3%以下、0.25%以下とすることができる。
・ P
In the
When P is contained in an amount of 0.05% or more, precipitates containing Fe and P can be satisfactorily generated, and the
When P is contained in the range of 0.4% or less, coarsening of precipitates containing Fe and P can be easily suppressed, and breakage and disconnection can be reduced. Although it depends on the amount of Fe and the production conditions, the smaller the content of P, the easier it is to suppress the above-mentioned coarsening. If it is desired to suppress the coarsening of the precipitate (reduce breakage and disconnection), the P content can be 0.35% or less, further 0.3% or less, and 0.25% or less.
・Fe/P
Fe及びPを上述の特定の範囲で含有することに加えて、Pに対してFeを適切に含むと、特にPに対してFeを同等又はそれ以上含むとFeとPとを化合物として存在させ易い。その結果、析出強化による強度向上効果を適切に得られると共に、過剰のPの固溶低減による母相の高い導電率の維持効果を適切に図ることができ、導電性に優れる上に高強度な銅合金線1とすることができる。
Fe/Pが4.0以上であれば、上述のように導電性に優れる上に高強度である。Fe/Pが大きいほど、導電性により優れる傾向にあり、Fe/Pを4.0超、更に4.1以上とすることができる。Fe/Pは例えば30以下の範囲で選択できるが、20以下、更に10以下であると、過剰なFeによる析出物の粗大化などを抑制し易い。
・ Fe / P
In addition to containing Fe and P in the above-mentioned specific range, when Fe is appropriately contained with respect to P, especially when Fe is contained at the same level or more with respect to P, Fe and P are present as a compound. easy. As a result, the effect of improving the strength by strengthening precipitation can be appropriately obtained, and the effect of maintaining the high conductivity of the parent phase by reducing the solid solution of excess P can be appropriately achieved. It can be a
When Fe / P is 4.0 or more, the conductivity is excellent and the strength is high as described above. The larger the Fe / P, the more excellent the conductivity tends to be, and the Fe / P can be more than 4.0 and further 4.1 or more. Fe / P can be selected in the range of, for example, 30 or less, but when it is 20 or less and further 10 or less, it is easy to suppress the coarsening of precipitates due to excessive Fe.
・Sn
Snは、主として、母相であるCuに固溶して存在し、引張強さといった強度の向上に寄与する、即ち主として固溶強化元素として機能する。
Snを0.05%以上含有すると、強度により優れる銅合金線1とすることができる。Snの含有量が多いほど、強度が高くなり易い。高強度化を望む場合には、Snの含有量を0.08%以上、更に0.1%以上、0.12%以上とすることができる。
Snを0.7%以下の範囲で含有すると、SnがCuに過剰に固溶することによる導電率の低下を抑制して、導電率が高い銅合金線1とすることができる。また、Snの過剰固溶に起因する加工性の低下を抑制して、伸線加工などの塑性加工が行い易く、製造性にも優れる。高導電性、良好な加工性などを望む場合には、Snの含有量を0.6%以下、更に0.55%以下、0.5%以下とすることができる。
・ Sn
Sn mainly exists in a solid solution in Cu, which is a matrix phase, and contributes to an improvement in strength such as tensile strength, that is, mainly functions as a solid solution strengthening element.
When Sn is contained in an amount of 0.05% or more, the
When Sn is contained in the range of 0.7% or less, the
実施形態の銅合金線1は、上述のようにFe及びPの析出強化とSnの固溶強化とによって高強度である。そのため、製造過程で人工時効と軟化とを行った場合にも、高い強度を有しながら高い伸びなども有して、高強度、高靭性な銅合金線1とすることができる。
The
・C,Si,Mn
実施形態の銅合金線1を構成する銅合金は、Fe,P,Snなどに対して脱酸効果を有する元素を含むことができる。具体的には、質量割合で、C,Si,及びMnから選択される1種以上の元素を合計で10ppm以上500ppm以下含むことが挙げられる。
・ C, Si, Mn
The copper alloy constituting the
ここで、製造過程で大気雰囲気などの酸素含有雰囲気とすると、Fe,P,Snなどの元素が酸化する恐れがある。これらの元素が酸化物となると、上述の析出物などを適切に形成できなかったり、母相に固溶できなかったりして、Fe及びPの含有による高導電性及び高強度、並びにSnの含有による固溶強化という効果を適切に得られない恐れがある。これらの酸化物が伸線加工時などに破断の起点となり、製造性の低下を招く恐れもある。C,Mn,及びSiの少なくとも1種の元素、好ましくは2種の元素(この場合、CとMn、又はCとSiが好ましい)、より好ましくは3種全ての元素を特定の範囲で含むことで、Fe及びPの析出による析出強化と高導電性の確保、Snの固溶強化をより確実に図り、導電性に優れ、高強度な銅合金線1とすることができる。
Here, if an oxygen-containing atmosphere such as an air atmosphere is used in the manufacturing process, elements such as Fe, P, and Sn may be oxidized. When these elements become oxides, the above-mentioned precipitates and the like cannot be formed properly or can not be dissolved in the matrix phase, resulting in high conductivity and high strength due to the inclusion of Fe and P, and the inclusion of Sn. There is a risk that the effect of strengthening the solid solution will not be obtained properly. These oxides may become the starting point of fracture during wire drawing, which may lead to a decrease in manufacturability. It contains at least one element of C, Mn, and Si, preferably two elements (in this case, C and Mn, or C and Si are preferable), and more preferably all three elements in a specific range. Therefore, it is possible to obtain a
上述の合計含有量が10ppm以上であれば、上述のFeなどの元素の酸化を防止できる。上記合計含有量が多いほど、酸化防止効果を得易く、20ppm以上、更に30ppm以上とすることができる。
上記の合計含有量が500ppm以下であれば、これら脱酸剤元素の過剰含有による導電性の低下を招き難く、導電性に優れる。上記合計含有量が少ないほど、上記導電性の低下を抑制し易いことから、300ppm以下、更に200ppm以下、150ppm以下とすることができる。
When the above-mentioned total content is 10 ppm or more, oxidation of the above-mentioned elements such as Fe can be prevented. The larger the total content is, the easier it is to obtain the antioxidant effect, and the amount can be 20 ppm or more, further 30 ppm or more.
When the total content is 500 ppm or less, the conductivity is less likely to be lowered due to the excessive content of these deoxidizing agent elements, and the conductivity is excellent. The smaller the total content is, the easier it is to suppress the decrease in conductivity. Therefore, the total content can be 300 ppm or less, further 200 ppm or less, and 150 ppm or less.
Cのみの含有量は、10ppm以上300ppm以下、更に10ppm以上200ppm以下、特に30ppm以上150ppm以下が好ましい。
Mnのみの含有量、又はSiのみの含有量は、5ppm以上100ppm以下、更に5ppm超50ppm以下が好ましい。Mn及びSiの合計含有量は、10ppm以上200ppm以下、更に10ppm超100ppm以下が好ましい。
C,Mn,Siをそれぞれ上述の範囲で含有すると、上述のFeなどの元素の酸化防止効果を良好に得易い。例えば、銅合金中の酸素の含有量を20ppm以下、15ppm以下、更に10ppm以下とすることができる。
The content of C alone is preferably 10 ppm or more and 300 ppm or less, more preferably 10 ppm or more and 200 ppm or less, and particularly preferably 30 ppm or more and 150 ppm or less.
The content of Mn alone or Si alone is preferably 5 ppm or more and 100 ppm or less, and more preferably more than 5 ppm and 50 ppm or less. The total content of Mn and Si is preferably 10 ppm or more and 200 ppm or less, and more preferably more than 10 ppm and 100 ppm or less.
When C, Mn, and Si are contained in the above ranges, the antioxidant effect of the above-mentioned elements such as Fe can be easily obtained. For example, the oxygen content in the copper alloy can be 20 ppm or less, 15 ppm or less, and further 10 ppm or less.
(組織)
実施形態の銅合金線1を構成する銅合金の組織として、Fe及びPを含む析出物や晶出物が分散する組織が挙げられる。析出物などの分散組織、好ましくは微細な析出物などが均一的に分散する組織を有することで、析出強化による高強度化、PなどのCuへの固溶低減による高い導電率の確保を期待できる。
(Organization)
Examples of the structure of the copper alloy constituting the
更に、上記銅合金の組織として、微細な結晶組織が挙げられる。この場合、上述の析出物などが均一的に分散して存在し易く、更なる高強度化が期待できる。また、破断の起点となり得る粗大結晶粒が少なく破断し難いため、伸びといった靭性も高くなり易く、耐衝撃性により優れると期待される。更に、この場合、実施形態の銅合金線1を被覆電線3などの電線の導体とし、この導体に圧着端子などの端子を取り付けると、端子を強固に固着できて、端子固着力を高め易い。
Further, examples of the structure of the copper alloy include a fine crystal structure. In this case, the above-mentioned precipitates and the like are likely to be uniformly dispersed and exist, and further increase in strength can be expected. In addition, since there are few coarse crystal grains that can be the starting point of fracture and it is difficult to fracture, toughness such as elongation tends to increase, and it is expected to be more excellent in impact resistance. Further, in this case, if the
定量的には、平均結晶粒径が10μm以下であると、上述の効果を得易く、7μm以下、更に5μm以下とすることができる。結晶粒径は、例えば、組成(Fe,P,Snの含有量、Fe/Pの値など、以下同様)に応じて製造条件(加工度や熱処理温度など、以下同様)を調整することで、所定の大きさにすることができる。 Quantitatively, when the average crystal grain size is 10 μm or less, the above-mentioned effect can be easily obtained, and it can be 7 μm or less, further 5 μm or less. The crystal grain size can be adjusted, for example, by adjusting the production conditions (processing degree, heat treatment temperature, etc., the same below) according to the composition (Fe, P, Sn content, Fe / P value, etc., the same below). It can be made to a predetermined size.
平均結晶粒径は、以下のように測定する。クロスセクションポリッシャ(CP)加工を施した横断面をとって、この横断面を走査型電子顕微鏡で観察する。観察像から、所定の面積S0の観測範囲をとり、観測範囲内に存在する全ての結晶数Nを調べる。面積S0を結晶数Nで除した面積(S0/N)を各結晶粒の面積Sgとし、結晶粒の面積Sgと等価面積の円の直径を結晶粒の直径Rとする。この結晶粒の直径Rの平均を平均結晶粒径とする。観察範囲は、結晶数nが50以上である範囲、又は横断面の全体とすることができる。このように観察範囲を十分に広くすることで、面積S0に存在し得る結晶以外のもの(析出物など)に起因する誤差を十分に小さくできる。 The average crystal grain size is measured as follows. A cross section subjected to cross-section polisher (CP) processing is taken, and this cross section is observed with a scanning electron microscope. From the observation image, an observation range with a predetermined area S 0 is taken, and all the crystal numbers N existing in the observation range are examined. The area (S 0 / N) obtained by dividing the area S 0 by the number of crystals N is defined as the area Sg of each crystal grain, and the diameter of the circle having an area equivalent to the area Sg of the crystal grains is defined as the diameter R of the crystal grains. The average of the diameters R of the crystal grains is defined as the average crystal grain size. The observation range may be a range in which the number of crystals n is 50 or more, or the entire cross section. By sufficiently widening the observation range in this way, it is possible to sufficiently reduce the error caused by something other than crystals (precipitate or the like) that may exist in the area S0 .
(線径)
実施形態の銅合金線1は、製造過程で伸線加工時の加工度(断面減少率)などを調整することで、その線径を所定の大きさにすることができる。特に、銅合金線1が線径0.5mm以下の細線であれば、軽量化が望まれる電線の導体、例えば自動車に配線される電線用導体などに好適に利用できる。上記線径を0.35mm以下、更に0.25mm以下とすることができる。
(Wire diameter)
The
(断面形状)
実施形態の銅合金線1の横断面形状は、適宜選択できる。銅合金線1の代表例として、横断面円形状の丸線が挙げられる。横断面形状は、伸線加工に用いるダイスの形状や、銅合金線1を圧縮撚線とする場合には成形金型の形状などによって変化する。銅合金線1を、例えば、横断面形状が長方形などの四角形状の角線、六角形といった多角形状や楕円形状などの異形線とすることができる。圧縮撚線を構成する銅合金線1では、代表的にはその横断面形状が不定形な異形線である。
(Cross-sectional shape)
The cross-sectional shape of the
(特性)
・引張強さ、破断伸び、導電率
実施形態の銅合金線1は、上述の特定の組成の銅合金で構成されることで、導電性に優れる上に、高強度である。適宜な熱処理が施されて製造されることで、高強度、高靭性、高導電率をバランスよく備える。定量的には、銅合金線1は、引張強さが400MPa以上であること、破断伸びが5%以上であること、及び導電率が60%IACS以上であることの少なくとも一つ、好ましくは二つ、より好ましくは三つ全てを満たすことが挙げられる。銅合金線1の一例として、導電率が60%IACS以上であり、引張強さが400MPa以上であるものが挙げられる。又は、銅合金線1の一例として、破断伸びが5%以上であるものが挙げられる。
(Characteristic)
-Tensile strength, elongation at break, conductivity The
より高強度を望む場合には、引張強さを405MPa以上、410MPa以上、更に415MPa以上とすることができる。
より高靭性を望む場合には、破断伸びを6%以上、7%以上、8%以上、9.5%以上、更に10%以上とすることができる。
より高導電率を望む場合には、導電率を62%IACS以上、63%IACS以上、更に65%IACS以上とすることができる。
If higher strength is desired, the tensile strength can be 405 MPa or more, 410 MPa or more, and further 415 MPa or more.
If higher toughness is desired, the elongation at break can be 6% or more, 7% or more, 8% or more, 9.5% or more, and further 10% or more.
If higher conductivity is desired, the conductivity can be 62% IACS or higher, 63% IACS or higher, and 65% IACS or higher.
・加工硬化指数
実施形態の銅合金線1の一例として、加工硬化指数が0.1以上であるものが挙げられる。
加工硬化指数とは、引張試験の試験力を単軸方向に適用したときの塑性ひずみ域における真応力σと真ひずみεとの式σ=C×εnにおいて、真ひずみεの指数nとして定義される。上記式において、Cは強度定数である。
上記の指数nは、市販の引張試験機を用いて引張試験を行い、S-S曲線を作成することで求められる(JIS G 2253(2011)も参照)。
-Work hardening index As an example of the
The work hardening index is defined as the index n of the true strain ε in the equation σ = C × ε n of the true stress σ and the true strain ε in the plastic strain region when the test force of the tensile test is applied in the uniaxial direction. Will be done. In the above equation, C is an intensity constant.
The above index n can be obtained by performing a tensile test using a commercially available tensile tester and creating an SS curve (see also JIS G 2253 (2011)).
加工硬化指数が大きいほど、加工硬化し易く、加工部分では、加工硬化による強度向上効果を得られる。例えば、銅合金線1を被覆電線3などの電線の導体に用いて、この導体に圧着端子などの端子を圧着などして取り付けた場合、導体における端子取付箇所は、圧縮加工などの塑性加工が施された加工部分となる。この加工部分は、圧縮加工などの断面減少を伴う塑性加工が施されているものの、上記塑性加工前よりも硬くなっており、強度が高められている。従って、この加工部分、即ち上記導体における端子取付箇所及びその近傍が強度の弱点となることを低減できる。加工硬化指数が0.11以上、更に0.12以上、0.13以上であると、加工硬化による強度向上効果を得易い。組成や製造条件によっては、導体における端子取付箇所は、導体における本線箇所と同等程度の強度を維持することが期待できる。加工硬化指数は、組成や製造条件で変わるため、上限は特に定めない。
The larger the work hardening index, the easier it is to work harden, and in the work part, the effect of improving the strength by work hardening can be obtained. For example, when a
引張強さ、破断伸び、導電率、加工硬化指数は、組成や製造条件を調整することで所定の大きさにすることができる。例えば、Fe,P,Snを多くしたり、伸線加工度を高めたり(細くしたり)すると、引張強さが高くなる傾向にある。例えば、伸線後に熱処理を行う場合に熱処理温度を高めると、破断伸び及び導電率が高く、引張強さが低くなる傾向にある。 The tensile strength, elongation at break, conductivity, and work hardening index can be set to predetermined sizes by adjusting the composition and production conditions. For example, when Fe, P, Sn are increased or the degree of wire drawing is increased (thinned), the tensile strength tends to increase. For example, if the heat treatment temperature is increased when the heat treatment is performed after the wire is drawn, the elongation at break and the conductivity tend to be high, and the tensile strength tends to be low.
・溶接性
実施形態の銅合金線1は、溶接性に優れるという効果も奏する。例えば、銅合金線1や後述の銅合金撚線10を電線の導体に利用して、この導体から分岐をとるために別の導体線などを溶接した場合に溶接箇所が破断し難く、溶接強度が高い。
-Weldability The
[銅合金撚線]
実施形態の銅合金撚線10は、実施形態の銅合金線1を素線とするものであり、銅合金線1が複数撚り合わされてなる。銅合金撚線10は、素線である銅合金線1の組成や組織、特性を実質的に維持している上に、その断面積が素線1本の場合よりも大きくなり易いため、衝撃時に受けられる力を増大できて耐衝撃性により優れる。また、銅合金撚線10は、同じ断面積を有する単線と比較して、曲げや捻じりなどを行い易く、屈曲性、捻回性にも優れており、電線の導体に用いると配策時や繰り返しの曲げなどで断線し難い。更に、銅合金撚線10は、上述のように加工硬化し易い銅合金線1が複数集められているため、銅合金撚線10を被覆電線3などの電線の導体に用いて、この導体に圧着端子などの端子を取り付けた場合に、上記端子をより強固に固着できる。図1では、7本の同心撚りの銅合金撚線10を例示するが、撚り合せ本数、撚り方法は適宜変更できる。
[Copper alloy stranded wire]
The copper alloy stranded
銅合金撚線10は、撚り合せ後に圧縮成形された圧縮撚線(図示せず)とすることができる。圧縮撚線は、撚り合せ状態の安定性に優れるため、圧縮撚線を被覆電線3などの電線の導体とする場合、導体の外周に絶縁被覆層2などを形成し易い。また、圧縮撚線は、単に撚り合せた場合よりも機械的特性により優れる傾向にある上に小径にできる。
The copper alloy stranded
銅合金撚線10の線径、断面積、撚りピッチなどは、銅合金線1の線径や断面積、撚り合せ本数などに応じて適宜選択できる。
銅合金撚線10の断面積が、例えば、0.03mm2以上であれば、導体断面積が大きいため、電気抵抗が小さく導電性に優れる。また、銅合金撚線10を被覆電線3などの電線の導体に用いて、この導体に圧着端子などの端子を取り付ける場合に断面積がある程度大きいため、上記端子を取り付け易い。更に、上述のように銅合金撚線10に上記端子を強固に固着できる上に、端子装着状態での耐衝撃性にも優れる。上記断面積を0.1mm2以上とすることができる。上記断面積が、例えば、0.5mm2以下であれば、軽量な銅合金撚線10とすることができる。
銅合金撚線10の撚りピッチが、例えば、10mm以上であれば、素線(銅合金線1)が0.5mm以下の細線であっても撚り合せ易く、銅合金撚線10の製造性に優れる。上記撚りピッチが例えば20mm以下であれば、曲げなどを行った場合にも撚りがほぐれず、屈曲性に優れる。
The wire diameter, cross-sectional area, twist pitch, and the like of the copper alloy stranded
When the cross-sectional area of the copper alloy stranded
If the twist pitch of the copper alloy stranded
・端子装着状態での耐衝撃エネルギー
実施形態の銅合金撚線10は、上述のように特定の銅合金から構成される銅合金線1を素線とするため、被覆電線などの導体に利用されて、この導体の端部に圧着端子などの端子が取り付けられた状態で衝撃を受けた場合に端子取付箇所近傍で破断し難い。定量的には、銅合金撚線10において、上記端子が取り付けられた状態での耐衝撃エネルギー(端子装着状態での耐衝撃エネルギー)が1.5J/m以上であることが挙げられる。端子装着状態での耐衝撃エネルギーが大きいほど、衝撃を受けた場合に上述の端子取付箇所近傍で破断し難い。このような銅合金撚線10を導体とすれば、端子装着状態での耐衝撃性に優れる被覆電線などを構築できる。銅合金撚線10における端子装着状態での耐衝撃エネルギーは、1.6J/m以上、更に1.7J/m以上が好ましく、上限は特に定めない。
Impact-resistant energy in the terminal-mounted state The copper alloy stranded
・耐衝撃エネルギー
実施形態の銅合金撚線10は、上述のように特定の銅合金から構成される銅合金線1を素線とするため、衝撃などを受けた場合に破断し難い。定量的には、銅合金撚線10のみの耐衝撃エネルギーが4J/m以上であることが挙げられる。耐衝撃エネルギーが大きいほど、衝撃を受けた場合に銅合金撚線10自身が破断し難い。このような銅合金撚線10を導体とすれば、耐衝撃性に優れる被覆電線などを構築できる。銅合金撚線10における耐衝撃エネルギーは、4.2J/m以上、更に4.5J/m以上が好ましく、上限は特に定めない。
-Impact resistant energy Since the copper alloy stranded
なお、単線の銅合金線1についても、端子装着状態での耐衝撃エネルギーや耐衝撃エネルギーが上述の範囲を満たすことが好ましい。実施形態の銅合金撚線10は、単線の銅合金線1と比較して、端子装着状態での耐衝撃エネルギーや耐衝撃エネルギーが高い傾向にある。
As for the single
[被覆電線]
実施形態の銅合金線1や銅合金撚線10は、そのままでも導体に利用できるが、外周に絶縁被覆層を備えると、絶縁性に優れる。実施形態の被覆電線3は、導体と、導体の外側に設けられた絶縁被覆層2とを備え、導体が実施形態の銅合金撚線10である。別の実施形態の被覆電線として、導体が銅合金線1(単線)であるものが挙げられる。図1では、導体に銅合金撚線10を備える場合を例示する。
[Covered wire]
The
絶縁被覆層2を構成する絶縁材料は、例えば、ポリ塩化ビニル(PVC)やノンハロゲン樹脂(例えば、ポリプロピレン(PP))、難燃性に優れる材料などが挙げられる。公知の絶縁材料が利用できる。
絶縁被覆層2の厚さは、所定の絶縁強度に応じて適宜選択でき、特に限定されない。
Examples of the insulating material constituting the insulating
The thickness of the insulating
・端子固着力
実施形態の被覆電線3は、上述のように特定の銅合金から構成される銅合金線1を素線とする銅合金撚線10を導体に備えるため、圧着端子などの端子を圧着などして取り付けた状態において、端子を強固に固着できる。定量的には、端子固着力が45N以上であることが挙げられる。端子固着力が大きいほど、端子を強固に固着でき、被覆電線3(導体)と端子との接続状態を維持し易く好ましい。端子固着力は50N以上、55N超、更に58N以上が好ましく、上限は特に定めない。
-Terminal fixing force The coated
・端子装着状態での耐衝撃エネルギー
実施形態の被覆電線3における端子装着状態での耐衝撃エネルギー、被覆電線3における耐衝撃エネルギーは、絶縁被覆層2を備えていない裸の導体、即ち実施形態の銅合金撚線10に比較して高い傾向にある。絶縁被覆層2の構成材料や厚さなどによっては、上記裸の導体と比較して、被覆電線3における端子装着状態での耐衝撃エネルギー、被覆電線3のみの耐衝撃エネルギーを更に高められる場合がある。定量的には、被覆電線3における端子装着状態での耐衝撃エネルギーが3J/m以上であることが挙げられる。被覆電線3における端子装着状態での耐衝撃エネルギーは、大きいほど衝撃を受けた場合に端子取付箇所近傍で破断し難く、3.2J/m以上、更に3.5J/m以上が好ましく、上限は特に定めない。
Impact-resistant energy in the terminal-mounted state The impact-resistant energy in the terminal-mounted state of the coated
・耐衝撃エネルギー
また、定量的には、被覆電線3のみの耐衝撃エネルギー(以下、本線の耐衝撃エネルギーと呼ぶことがある)が6J/m以上であることが挙げられる。本線の耐衝撃エネルギーは、大きいほど衝撃を受けた場合に破断し難く、6.5J/m以上、更に7J/m以上、8J/m以上が好ましく、上限は特に定めない。
-Impact resistance energy Quantitatively, the impact resistance energy of only the coated electric wire 3 (hereinafter, may be referred to as the impact resistance energy of the main line) is 6 J / m or more. The larger the impact resistance energy of the main line, the more difficult it is to break when it receives an impact, and it is preferably 6.5 J / m or more, more preferably 7 J / m or more, and 8 J / m or more, and the upper limit is not particularly set.
被覆電線3から絶縁被覆層2を除去して導体のみの状態、即ち銅合金撚線10のみの状態とし、この導体について端子装着状態での耐衝撃エネルギー、耐衝撃エネルギーを測定した場合、上述の銅合金撚線10と実質的に同様の値をとる。具体的には、被覆電線3に備える導体の端子装着状態での耐衝撃エネルギーが1.5J/m以上である形態、被覆電線3に備える導体の耐衝撃エネルギーが4J/m以上である形態が挙げられる。
When the insulating
なお、単線の銅合金線1を導体に備える被覆電線においても、端子固着力、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーの少なくとも一つが上述の範囲を満たすことが好ましい。導体を銅合金撚線10とする実施形態の被覆電線3は、単線の銅合金線1を導体とする被覆電線よりも、端子固着力、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーがより高い傾向にある。
Even in a coated electric wire having a single
実施形態の被覆電線3などにおける端子固着力、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーは、銅合金線1の組成や製造条件、絶縁被覆層2の構成材料や厚さなどを調整することで、所定の大きさにすることができる。例えば、上述の引張強さ、破断伸び、導電率、加工硬化指数などの特性パラメータが上述の特定の範囲を満たすように、銅合金線1の組成や製造条件を調整することが挙げられる。
The terminal fixing force of the coated
[端子付き電線]
実施形態の端子付き電線4は、図2に示すように実施形態の被覆電線3と、被覆電線3の端部に取り付けられた端子5とを備える。ここでは、端子5として、一端に雌型又は雄型の嵌合部52を備え、他端に絶縁被覆層2を把持するインシュレーションバレル部54を備え、中間部に導体(図2では銅合金撚線10)を把持するワイヤバレル部50を備える圧着端子を例示する。圧着端子は、被覆電線3の端部において絶縁被覆層2が除去されて露出された導体の端部に圧着されて、導体と電気的及び機械的に接続される。端子5は、圧着端子などの圧着型の他、溶融した導体が接続される溶融型などが挙げられる。別の実施形態の端子付き電線として、上述の銅合金線1(単線)を導体とする被覆電線を備えるものが挙げられる。
[Electric wire with terminal]
As shown in FIG. 2, the terminal-equipped
端子付き電線4は、図2に示すように被覆電線3ごとに一つの端子5が取り付けられた形態の他、複数の被覆電線3に対して一つの端子5を備える形態が挙げられる。即ち、端子付き電線4は、被覆電線3を一つ、及び端子5を一つ備える形態の他、複数の被覆電線3と一つの端子5とを備える形態、複数の被覆電線3と複数の端子5とを備える形態が挙げられる。複数の電線を備える場合には、結束具などによって複数の電線を束ねると、端子付き電線4を取り扱い易い。
As shown in FIG. 2, the
[銅合金線、銅合金撚線、被覆電線、端子付き電線の特性]
実施形態の銅合金撚線10の各素線、被覆電線3の導体を構成する各素線、端子付き電線4の導体を構成する各素線は、いずれも銅合金線1の組成、組織、特性を維持する、又は同等程度の特性を有する。そのため、上記の各素線の一例として、引張強さが400MPa以上であること、破断伸びが5%以上であること、及び導電率が60%IACS以上であることの少なくとも一つを満たす形態が挙げられる。
[Characteristics of copper alloy wire, copper alloy stranded wire, coated wire, and wire with terminal]
Each of the strands of the copper alloy stranded
端子付き電線4の端子固着力、端子装着状態での耐衝撃エネルギーの測定に用いる端子として、端子付き電線4自体に備える圧着端子などの端子5を利用することができる。
As a terminal used for measuring the terminal fixing force of the terminal-equipped
[銅合金線、銅合金撚線、被覆電線、端子付き電線の用途]
実施形態の被覆電線3は、各種の電気機器の配線部分などに利用できる。特に、実施形態の被覆電線3は、端部に端子5が取り付けられた状態で使用される用途、例えば、自動車や飛行機等の搬送機器、産業用ロボット等の制御機器などの配線に好適に利用できる。実施形態の端子付き電線4は、上記搬送機器、制御機器といった各種の電気機器の配線に利用できる。このような実施形態の被覆電線3や端子付き電線4は、自動車用ワイヤーハーネスなどの各種のワイヤーハーネスの構成要素に好適に利用できる。実施形態の被覆電線3や端子付き電線4を備えるワイヤーハーネスは、端子5との接続状態を良好に維持し易く、信頼性を高められる。実施形態の銅合金線1、実施形態の銅合金撚線10は、被覆電線3や端子付き電線4などの電線の導体に利用できる。
[Use of copper alloy wire, copper alloy stranded wire, coated wire, wire with terminal]
The covered
[効果]
実施形態の銅合金線1は、Fe,P,Snを含む特定の銅合金で構成されて、導電性及び強度に優れる上に、耐衝撃性にも優れる。このような銅合金線1を素線とする実施形態の銅合金撚線10も同様に、導電性及び強度に優れる上に、耐衝撃性にも優れる。
実施形態の被覆電線3は、導体に、実施形態の銅合金線1を素線とする実施形態の銅合金撚線10を備えるため、導電性及び強度に優れる上に耐衝撃性にも優れる。また、被覆電線3は、圧着端子などの端子5が圧着などされた場合に、端子5を強固に固着できる上に、端子5の装着状態での耐衝撃性にも優れる。
実施形態の端子付き電線4は、実施形態の被覆電線3を備えるため、導電性及び強度に優れる上に耐衝撃性にも優れる。更に、端子付き電線4は、端子5を強固に固着できる上に、端子5の装着状態での耐衝撃性にも優れる。
これらの効果を試験例1,2で具体的に説明する。
[effect]
The
Since the coated
Since the
These effects will be specifically described with reference to Test Examples 1 and 2.
[製造方法]
実施形態の銅合金線1、銅合金撚線10、被覆電線3、端子付き電線4は、例えば、以下の工程を備える製造方法によって製造することができる。以下、各工程の概要を列挙する。
[Production method]
The
(銅合金線)
<連続鋳造工程>上述の特定の組成の銅合金の溶湯を連続鋳造して鋳造材を製造する。
<伸線工程>上記鋳造材、又は上記鋳造材に加工を施した加工材に、伸線加工を施して伸線材を製造する。
<熱処理工程>上記伸線材に熱処理を施し、熱処理材を製造する。
この熱処理は、代表的にはFe,Pが固溶状態である銅合金からFe及びPを含む析出物を析出させる人工時効と、最終線径までの伸線加工によって加工硬化された伸線材の伸びを改善する軟化とを含むものとする。以下、この熱処理を時効・軟化処理と呼ぶ。
(Copper alloy wire)
<Continuous casting process> A cast material is manufactured by continuously casting a molten copper alloy having the above-mentioned specific composition.
<Wire drawing process> The cast material or a processed material obtained by processing the cast material is subjected to wire drawing to produce a wire drawing material.
<Heat treatment step> The above-mentioned wire drawing material is heat-treated to produce a heat-treated material.
This heat treatment is typically performed by artificial aging for precipitating precipitates containing Fe and P from a copper alloy in which Fe and P are in a solid solution state, and work-hardened wire drawing to the final wire diameter. It shall include softening to improve elongation. Hereinafter, this heat treatment is referred to as aging / softening treatment.
時効・軟化処理以外の熱処理として、以下の溶体化処理を含むことができる。
溶体化処理は、過飽和固溶体を形成することを目的の一つとする熱処理であり、連続鋳造工程以降、時効・軟化処理前の任意の時期に施すことができる。
The following solution heat treatment can be included as the heat treatment other than the aging / softening treatment.
The solution heat treatment is a heat treatment for the purpose of forming a supersaturated solid solution, and can be applied at any time after the continuous casting step and before the aging / softening treatment.
(銅合金撚線)
銅合金撚線10を製造する場合には、上述の<連続鋳造工程>、<伸線工程>、<熱処理工程>に加えて、以下の撚線工程を備える。圧縮撚線とする場合には、以下の圧縮工程を更に備える。
<撚線工程>複数の上記伸線材を撚り合わせて、撚線を製造する。又は複数の上記熱処理材を撚り合わせて、撚線を製造する。
<圧縮工程>上記撚線を所定の形状に圧縮成形して、圧縮撚線を製造する。
上記<撚線工程>,<圧縮工程>を備える場合、上記<熱処理工程>では上記撚線又は上記圧縮撚線に時効・軟化熱処理を施すことが挙げられる。上記熱処理材の撚線又は圧縮撚線とする場合には、この撚線又は圧縮撚線に更に時効・軟化熱処理を施す第二の熱処理工程を備えてもよいし、第二の熱処理工程を省略してもよい。時効・軟化熱処理を複数回行う場合には、上述の特性パラメータが特定の範囲を満たすように熱処理条件を調整することができる。熱処理条件を調整することで、例えば結晶粒の成長を抑制して微細な結晶組織とし易く、高い強度と高い伸びとを有し易い。
(Copper alloy stranded wire)
When the copper alloy stranded
<Twisting process> A stranded wire is manufactured by twisting a plurality of the above-mentioned wire drawing materials. Alternatively, a plurality of the above heat-treated materials are twisted together to produce a stranded wire.
<Compression step> The stranded wire is compression-molded into a predetermined shape to produce a compressed stranded wire.
When the above <twisted wire step> and <compression step> are provided, in the above <heat treatment step>, the aging / softening heat treatment may be applied to the stranded wire or the compressed stranded wire. When the stranded wire or the compression stranded wire of the heat-treated material is used, a second heat treatment step of further aging / softening the stranded wire or the compression stranded wire may be provided, or the second heat treatment step may be omitted. You may. When the aging / softening heat treatment is performed a plurality of times, the heat treatment conditions can be adjusted so that the above-mentioned characteristic parameters satisfy a specific range. By adjusting the heat treatment conditions, for example, it is easy to suppress the growth of crystal grains to obtain a fine crystal structure, and it is easy to have high strength and high elongation.
(被覆電線)
被覆電線3や単線の銅合金線1を備える被覆電線を製造する場合には、上述の銅合金線の製造方法によって製造された銅合金線(実施形態の銅合金線1)、又は上述の銅合金撚線の製造方法によって製造された銅合金撚線(実施形態の銅合金撚線10)の外周に絶縁被覆層を形成する被覆工程を備える。絶縁被覆層の形成方法には、押出被覆や粉体塗装など、公知の手法を利用できる。
(Covered wire)
When manufacturing a coated wire including a
(端子付き電線)
端子付き電線4を製造する場合には、上述の被覆電線の製造方法によって製造された被覆電線(実施形態の被覆電線3など)の端部において、絶縁被覆層を除去して露出した導体に端子を取り付ける圧着工程を備える。
(Electric wire with terminal)
When the
以下、連続鋳造工程、伸線工程、熱処理工程を詳細に説明する。
<連続鋳造工程>
この工程では、上述したFe,P,Snを特定の範囲で含む特定の組成の銅合金の溶湯を連続鋳造して鋳造材を作製する。ここで、溶解時の雰囲気を真空雰囲気とすると、Fe,P,Snなどの酸化を防止できる。一方、溶解時の雰囲気を大気雰囲気とすると、雰囲気制御が不要であり、生産性を向上できる。この場合、雰囲気中の酸素による上記元素の酸化防止のために、上述のC,Mn,Si(脱酸剤元素)を利用することが好ましい。
Hereinafter, the continuous casting process, the wire drawing process, and the heat treatment process will be described in detail.
<Continuous casting process>
In this step, a molten metal of a copper alloy having a specific composition containing the above-mentioned Fe, P, Sn in a specific range is continuously cast to produce a cast material. Here, if the atmosphere at the time of dissolution is a vacuum atmosphere, oxidation of Fe, P, Sn and the like can be prevented. On the other hand, if the atmosphere at the time of melting is the atmosphere atmosphere, the atmosphere control is unnecessary and the productivity can be improved. In this case, it is preferable to use the above-mentioned C, Mn, Si (deoxidizer element) in order to prevent the above-mentioned element from being oxidized by oxygen in the atmosphere.
C(炭素)の添加方法は、例えば、上記溶湯の湯面を木炭片や木炭粉などで覆うことが挙げられる。この場合、湯面近傍の木炭片や木炭粉などから溶湯中にCを供給できる。
MnやSiは、これらを含む原料を別途用意して、上記溶湯中に混合することが挙げられる。この場合、上記湯面における木炭片や木炭粉などがつくる隙間から露出する箇所が雰囲気中の酸素に接触しても、湯面近傍での酸化を抑制できる。上記原料には、MnやSiの単体、MnやSiとFeとの合金などが挙げられる。
Examples of the method for adding C (carbon) include covering the surface of the molten metal with charcoal pieces, charcoal powder, or the like. In this case, C can be supplied into the molten metal from charcoal pieces or charcoal powder near the surface of the molten metal.
For Mn and Si, a raw material containing them may be prepared separately and mixed in the molten metal. In this case, even if a portion exposed from a gap formed by charcoal pieces or charcoal powder on the surface of the molten metal comes into contact with oxygen in the atmosphere, oxidation in the vicinity of the surface of the molten metal can be suppressed. Examples of the raw material include simple substances of Mn and Si, alloys of Mn and Si and Fe, and the like.
上述の脱酸剤元素の添加に加えて、坩堝や鋳型として、不純物が少ない高純度カーボン製のものを利用すると、溶湯に不純物が混入され難く、好ましい。 In addition to the above-mentioned addition of the deoxidizing agent element, it is preferable to use a crucible or a mold made of high-purity carbon having few impurities because impurities are less likely to be mixed in the molten metal.
ここで、実施形態の銅合金線1は、代表的には、Fe及びPを析出物として存在させ、Snを固溶体として存在させる。そのため、銅合金線1の製造過程では過飽和固溶体を形成する過程を備えることが好ましい。例えば、溶体化処理を行う溶体化工程を別途設けることができる。この場合、任意の時期に過飽和固溶体を形成できる。一方、連続鋳造を行う場合に冷却速度を大きくして過飽和固溶体の鋳造材を作製すれば、別途、溶体化工程を設けることなく、最終的に電気的特性及び機械的特性に優れて、被覆電線3などの導体に適した銅合金線1を製造できる。そこで、銅合金線1の製造方法として、連続鋳造を行うこと、特に冷却過程で冷却速度を大きくして急冷することを提案する。
Here, in the
連続鋳造法は、ベルトアンドホイール法、双ベルト法、アップキャスト法など各種の方法が利用できる。特に、アップキャスト法は、酸素などの不純物を低減できて、CuやFe,P,Snなどの酸化を防止し易く好ましい。冷却過程の冷却速度は、5℃/sec超、更に10℃/sec超、15℃/sec以上が好ましい。 As the continuous casting method, various methods such as a belt-and-wheel method, a double belt method, and an upcast method can be used. In particular, the upcast method is preferable because it can reduce impurities such as oxygen and easily prevent oxidation of Cu, Fe, P, Sn and the like. The cooling rate in the cooling process is preferably more than 5 ° C./sec, more preferably more than 10 ° C./sec, and more preferably 15 ° C./sec or more.
鋳造材には、各種の塑性加工、切削加工などの加工を施すことができる。塑性加工は、コンフォーム押出、圧延(熱間、温間、冷間)などが挙げられる。切削加工は、皮剥ぎなどが挙げられる。これらの加工を施すことで、鋳造材の表面欠陥を低減できて、伸線加工時に断線などを低減して、生産性を向上できる。特に、アップキャスト材には、これらの加工を施すと断線などし難い。 The cast material can be subjected to various plastic working, cutting and other processing. Examples of plastic working include conform extrusion and rolling (hot, warm, cold) and the like. The cutting process includes peeling and the like. By performing these processes, surface defects of the cast material can be reduced, disconnection and the like can be reduced during wire drawing, and productivity can be improved. In particular, it is difficult for the upcast material to break if these processes are applied.
<伸線工程>
この工程では、上記鋳造材や上記鋳造材に加工を施した上記加工材などに、少なくとも1パス、代表的には複数パスの伸線加工(冷間)を施して、所定の最終線径の伸線材を作製する。複数パスを行う場合、パスごとの加工度は、組成や最終線径などに応じて適宜調整するとよい。伸線加工前に中間熱処理を行ったり、複数パスを行う場合、パス間に中間熱処理を行ったりして、加工性を高めることができる。この中間熱処理の条件は、所望の加工性が得られるように適宜選択できる。
<Wire drawing process>
In this step, the cast material, the processed material obtained by processing the cast material, and the like are subjected to wire drawing (cold) of at least one pass, typically a plurality of passes, to obtain a predetermined final wire diameter. Make a wire wire. When performing a plurality of passes, the degree of processing for each pass may be appropriately adjusted according to the composition, the final wire diameter, and the like. When intermediate heat treatment is performed before wire drawing, or when a plurality of passes are performed, intermediate heat treatment can be performed between the passes to improve workability. The conditions of this intermediate heat treatment can be appropriately selected so as to obtain desired processability.
<熱処理工程>
この工程では、上述のように人工時効と軟化とを目的とした時効・軟化処理を施す。この時効・軟化処理によって、上記の析出物などの析出強化による強度向上効果と、Cuへの固溶低減による高い導電率の維持効果とを良好に図ることができ、導電性及び強度に優れる銅合金線1や銅合金撚線10が得られる。また、時効・軟化処理によって、高い強度を維持しつつ、伸びなどの靭性を向上でき、靭性にも優れる銅合金線1や銅合金撚線10が得られる。
<Heat treatment process>
In this step, as described above, aging / softening treatment for the purpose of artificial aging and softening is performed. By this aging / softening treatment, the effect of improving the strength by strengthening the precipitation of the above-mentioned precipitates and the effect of maintaining high conductivity by reducing the solid solubility in Cu can be satisfactorily achieved, and copper having excellent conductivity and strength can be satisfactorily achieved. The
時効・軟化処理の条件は、バッチ処理であれば、例えば、以下が挙げられる。
(熱処理温度)350℃以上550℃以下、好ましくは400℃以上500℃以下
(保持時間)1時間以上40時間以下、好ましくは3時間以上20時間以下
上記の範囲から、組成、加工状態などに応じて選択するとよい。具体例として、後述の試験例1,2を参照するとよい。なお、炉式や通電式などの連続処理を利用してもよい。
The conditions for the aging / softening treatment include, for example, the following in the case of batch processing.
(Heat treatment temperature) 350 ° C. or higher and 550 ° C. or lower, preferably 400 ° C. or higher and 500 ° C. or lower (retention time) 1 hour or longer and 40 hours or lower, preferably 3 hours or longer and 20 hours or lower, depending on the composition, processing state, etc. It is good to select. As a specific example, it is advisable to refer to Test Examples 1 and 2 described later. In addition, continuous processing such as a furnace type or an energization type may be used.
同じ組成の場合に上記の範囲で熱処理温度が高いと、導電率、破断伸び、端子装着状態での耐衝撃エネルギー、本線の耐衝撃エネルギーが向上する傾向にある。上記熱処理温度が低いと、結晶粒の成長を抑制できると共に、引張強さが向上する傾向にある。上述の析出物を十分に析出させると、高強度である上に、導電率が向上する傾向にある。 When the heat treatment temperature is high in the above range in the case of the same composition, the conductivity, the elongation at break, the impact resistance energy in the terminal mounted state, and the impact resistance energy of the main line tend to be improved. When the heat treatment temperature is low, the growth of crystal grains can be suppressed and the tensile strength tends to be improved. When the above-mentioned precipitates are sufficiently precipitated, the strength tends to be high and the conductivity tends to be improved.
その他、伸線途中に主として時効処理を行って、最終的な撚線に主として軟化処理を行うことなどができる。時効処理の条件、軟化処理の条件は、上述の時効・軟化処理の条件から選択するとよい。 In addition, the aging treatment can be mainly performed during the wire drawing, and the final stranded wire can be mainly softened. The aging treatment conditions and the softening treatment conditions may be selected from the above-mentioned aging / softening treatment conditions.
[試験例1]
種々の組成の銅合金線、及び得られた銅合金線を導体に用いた被覆電線を種々の製造条件で作製して、特性を調べた。
[Test Example 1]
Copper alloy wires having various compositions and coated electric wires using the obtained copper alloy wires as conductors were manufactured under various manufacturing conditions, and their characteristics were investigated.
銅合金線は、表1に示す製造パターン(A)から(C)のいずれかによって製造した(最終線径φ0.35mm又はφ0.16mm)。被覆電線は、表1に示す製造パターン(a)から(c)のいずれかによって製造した。 The copper alloy wire was manufactured according to any of the manufacturing patterns (A) to (C) shown in Table 1 (final wire diameter φ0.35 mm or φ0.16 mm). The covered electric wire was manufactured according to any of the manufacturing patterns (a) to (c) shown in Table 1.
いずれの製造パターンにおいても、以下の鋳造材を用意した。
(鋳造材)
電気銅(純度99.99%以上)と、表2に示す各元素を含有する母合金、又は元素単体とを原料として用意した。用意した原料を高純度カーボン製の坩堝(不純物量が20質量ppm以下)を用いて、大気溶解して銅合金の溶湯を作製した。銅合金の組成(残部Cu及び不純物)を表2に示す。
The following cast materials were prepared for each production pattern.
(Casting material)
An electrolytic copper (purity of 99.99% or more) and a mother alloy containing each element shown in Table 2 or a simple substance of the element were prepared as raw materials. The prepared raw material was melted in the atmosphere using a crucible made of high-purity carbon (with an impurity content of 20 mass ppm or less) to prepare a molten copper alloy. The composition of the copper alloy (remaining Cu and impurities) is shown in Table 2.
上記の銅合金の溶湯と、高純度カーボン製鋳型(不純物量が20質量ppm以下)とを用いて、アップキャスト法によって、断面円形状の連続鋳造材(線径φ12.5mm又はφ9.5mm)を作製した。冷却速度は、10℃/sec超とした。 Using the above-mentioned molten copper alloy and a high-purity carbon mold (impurity amount is 20 mass ppm or less), a continuous cast material with a circular cross section (wire diameter φ12.5 mm or φ9.5 mm) is used by the upcast method. Was produced. The cooling rate was over 10 ° C./sec.
製造パターン(a)から(c)では、銅合金線の製造パターン(A)から(C)に示す工程と同様にして、線径φ0.16mmの伸線材を作製し、7本の伸線材を撚り合せた後、圧縮成形して横断面積0.13mm2(0.13sq)の圧縮撚線を作製し、表2に示す条件で熱処理(時効・軟化処理)を施した。得られた熱処理材の外周にポリ塩化ビニル(PVC)又はポリプロピレン(PP)を所定の厚さ(0.1mm~0.3mmより選択)に押出して絶縁被覆層を形成し、上記熱処理材を導体とする被覆電線を作製した。 In the manufacturing patterns (a) to (c), a wire drawing material having a wire diameter of φ0.16 mm is produced in the same manner as in the steps shown in the copper alloy wire manufacturing patterns (A) to (C), and seven wire drawing materials are formed. After twisting, compression molding was performed to prepare a compression stranded wire having a cross-sectional area of 0.13 mm 2 (0.13 sq), and heat treatment (aging / softening treatment) was performed under the conditions shown in Table 2. Polyvinyl chloride (PVC) or polypropylene (PP) is extruded to a predetermined thickness (selected from 0.1 mm to 0.3 mm) on the outer periphery of the obtained heat-treated material to form an insulating coating layer, and the heat-treated material is used as a conductor. A covered electric wire was manufactured.
(特性の測定)
製造パターン(A)から(C)によって製造した銅合金線(φ0.35mm又はφ0.16mm)について、引張強さ(MPa)、破断伸び(%)、導電率(%IACS)、加工硬化指数を調べた。結果を表3に示す。
(Measurement of characteristics)
For the copper alloy wire (φ0.35 mm or φ0.16 mm) manufactured according to the manufacturing patterns (A) to (C), the tensile strength (MPa), elongation at break (%), conductivity (% IACS), and work hardening index are calculated. Examined. The results are shown in Table 3.
導電率(%IACS)は、ブリッジ法によって測定した。引張強さ(MPa)、破断伸び(%)、加工硬化指数は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて測定した。 Conductivity (% IACS) was measured by the bridge method. Tensile strength (MPa), elongation at break (%), and work hardening index were measured using a general-purpose tensile tester in accordance with JIS Z 2241 (Metallic Material Tensile Test Method, 1998).
製造パターン(a)から(c)によって製造した被覆電線(導体断面積0.13mm2)について端子固着力(N)、導体の端子装着状態での耐衝撃エネルギー(J/m、端子装着 耐衝撃E)、導体の耐衝撃エネルギー(J/m、耐衝撃E)を調べた。結果を表3に示す。 For the coated electric wire (conductor cross-sectional area 0.13 mm 2 ) manufactured according to the manufacturing patterns (a) to (c), the terminal fixing force (N), the impact resistance energy (J / m, terminal mounting impact resistance) when the conductor is mounted. E), the impact resistance energy (J / m, impact resistance E) of the conductor was investigated. The results are shown in Table 3.
端子固着力(N)は、以下のように測定する。被覆電線の一端部において絶縁被覆層を剥いで導体である圧縮撚線を露出させ、この圧縮撚線の一端部に端子を取り付ける。ここでは、端子として市販の圧着端子を用いて、上記圧縮撚線に圧着する。また、ここでは、図3に示すように、導体(圧縮撚線)における端子取付箇所12の横断面積が、端子取付箇所以外の本線箇所の横断面積に対して、表3に示す値(導体残存率、70%又は80%)となるように、取付高さ(クリンプハイトC/H)を調整した。
汎用の引張試験機を用いて、端子を100mm/minで引っ張ったときに端子が抜けない最大荷重(N)を測定した。この最大荷重を端子固着力とする。
The terminal fixing force (N) is measured as follows. The insulating coating layer is peeled off at one end of the coated electric wire to expose the compressed stranded wire which is a conductor, and a terminal is attached to one end of the compressed stranded wire. Here, a commercially available crimp terminal is used as the terminal to crimp the compression stranded wire. Further, here, as shown in FIG. 3, the cross-sectional area of the
Using a general-purpose tensile tester, the maximum load (N) at which the terminal did not come off when the terminal was pulled at 100 mm / min was measured. This maximum load is defined as the terminal fixing force.
導体の耐衝撃エネルギー(J/m又は(N/m)/m)は、以下のように測定する。絶縁材の押出前の熱処理材(圧縮撚線の導体)について、その先端に錘を取り付け、この錘を1m上方に持ち上げた後、自由落下させる。導体が断線しない最大の錘の重量(kg)を測定し、この重量に重力加速度(9.8m/s2)と落下距離との積値を落下距離で除した値((錘重量×9.8×1)/1)を導体の耐衝撃エネルギーとする。 The impact resistance energy (J / m or (N / m) / m) of the conductor is measured as follows. A weight is attached to the tip of the heat-treated material (conductor of compressed stranded wire) before extrusion of the insulating material, and the weight is lifted 1 m upward and then freely dropped. The weight (kg) of the maximum weight at which the conductor does not break is measured, and the product value of the gravitational acceleration (9.8 m / s 2 ) and the fall distance divided by the fall distance ((weight weight x 9.). Let 8 × 1) / 1) be the impact resistance energy of the conductor.
導体の端子装着状態の耐衝撃エネルギー(J/m又は(N/m)/m)は、以下のように測定する。ここでは、絶縁材の押出前の熱処理材(圧縮撚線の導体)について、上述の端子固着力の測定と同様に、導体10の一端部に端子5(ここでは圧着端子)を取り付けた試料S(ここでは長さ1m)を用意し、図4に示すように端子5を治具Jによって固定する。試料Sの他端部に錘Wを取り付け、この錘Wを端子5の固定位置まで持ち上げた後、自由落下させる。上述の導体の耐衝撃エネルギーと同様に、導体10が破断しない最大の錘Wの重量を測定し、((錘重量×9.8×1)/1)を端子装着状態の耐衝撃エネルギーとする。
The impact resistance energy (J / m or (N / m) / m) of the conductor with the terminal attached is measured as follows. Here, for the heat-treated material (conductor of compressed stranded wire) before extrusion of the insulating material, the sample S in which the terminal 5 (here, the crimp terminal) is attached to one end of the
表3に示すように試料No.1-1~No.1-8はいずれも、試料No.1-101からNo.1-104と比較して、導電性と、強度と、耐衝撃性との三者に優れることが分かる。更に、試料No.1-1~No.1-8はいずれも、端子装着状態での耐衝撃性にも優れる。定量的には、以下の通りである。
試料No.1-1~No.1-8はいずれも、引張強さが400MPa以上、更に415MPa以上であり、420MPa以上の試料も多い。
試料No.1-1~No.1-8はいずれも、導電率が60%IACS以上、更に62%IACS以上であり、65%IACS以上、更に68%IACS以上の試料も多い。
試料No.1-1~No.1-8はいずれも、導体の耐衝撃エネルギーが4J/m以上、更に4.5J/m以上であり、5J/m以上、更に6J/m以上の試料も多い。
試料No.1-1~No.1-8はいずれも、導体の端子装着状態での耐衝撃エネルギーが1.5J/m以上、更に1.7J/m以上であり、2.5J/m以上、更に3J/m以上の試料も多い。このような導体を備える試料No.1-1~No.1-8の被覆電線は、端子装着状態での耐衝撃エネルギー、耐衝撃エネルギーがより高いと期待される(試験例2参照)。
As shown in Table 3, the sample No. 1-1 to No. Sample Nos. 1-8 are all No. From 1-101 to No. It can be seen that the conductivity, strength, and impact resistance are superior to those of 1-104. Furthermore, the sample No. 1-1 to No. All of 1-8 are also excellent in impact resistance when the terminals are attached. Quantitatively, it is as follows.
Sample No. 1-1 to No. In each of 1-8, the tensile strength is 400 MPa or more, further 415 MPa or more, and there are many samples of 420 MPa or more.
Sample No. 1-1 to No. In each of 1-8, the conductivity is 60% IACS or more, 62% IACS or more, and there are many samples of 65% IACS or more and 68% IACS or more.
Sample No. 1-1 to No. In each of 1-8, the impact resistance energy of the conductor is 4 J / m or more, 4.5 J / m or more, and there are many samples of 5 J / m or more, and 6 J / m or more.
Sample No. 1-1 to No. In each of 1-8, the impact resistance energy of the conductor with the terminal attached is 1.5 J / m or more, 1.7 J / m or more, 2.5 J / m or more, and 3 J / m or more. many. Sample No. equipped with such a conductor. 1-1 to No. The 1-8 covered electric wire is expected to have higher impact resistance energy and impact resistance energy when the terminal is attached (see Test Example 2).
更に、試料No.1-1~No.1-8はいずれも、破断伸びが高く、高強度、高靭性、高導電率をバランスよく備えることが分かる。定量的には、破断伸びが5%以上、更に7%超、8%以上であり、10%以上の試料も多い。また、試料No.1-1~No.1-8はいずれも、端子固着力が45N以上、更に50N以上、55N超と大きく、端子を強固に固着できることが分かる。更に、試料No.1-1~No.1-8はいずれも、加工硬化指数が0.1以上と大きく、多くの試料は0.12以上、更に0.13以上であり、加工硬化による強度向上効果を得易いことが分かる。 Furthermore, the sample No. 1-1 to No. It can be seen that all of 1-8 have high breaking elongation, high strength, high toughness, and high conductivity in a well-balanced manner. Quantitatively, the elongation at break is 5% or more, more than 7%, 8% or more, and there are many samples of 10% or more. In addition, sample No. 1-1 to No. It can be seen that in each of 1-8, the terminal fixing force is as large as 45 N or more, 50 N or more, and 55 N or more, and the terminals can be firmly fixed. Furthermore, the sample No. 1-1 to No. In each of 1-8, the work hardening index is as large as 0.1 or more, and most of the samples are 0.12 or more, further 0.13 or more, and it can be seen that the effect of improving the strength by work hardening can be easily obtained.
上述の結果が得られた理由の一つとして、Fe,P,Snを上述の特定の範囲で含むと共に、Fe/Pの質量比が4.0以上であるという特定の組成の銅合金から構成される銅合金線を導体に備えることで、Fe及びPの析出強化及びSnの固溶強化による強度向上効果と、Fe及びPの適切な析出に基づくPなどの固溶低減によるCuの高い導電率の維持効果とが良好に得られたため、と考えられる。ここでは、C,Mn,Siを適切に含むことで、これらの元素を酸化防止剤として機能させてFe,P,Snの酸化を防止したため、Fe,Pを適切に析出できたと共にSnを適切に固溶できた、と考えられる。また、C,Mn,Siの含有による導電率の低下を抑制できたため、と考えられる。この試験では、Cの含有量が100質量ppm以下、Mn及びSiの合計含有量が20質量ppm以下、これら3種の元素の合計含有量が150質量ppm以下、特に120質量ppm以下であることで、上述の酸化防止効果、導電率の低下抑制効果を適切に得られたと考えられる。更に、高強度でありながら破断伸びも高く、靭性にも優れており、衝撃を受けた場合でも破断し難いため、耐衝撃性にも優れた、と考えられる。上記導体における端子取付箇所では、圧縮加工に伴う加工硬化による強度向上効果を良好に得られたため、端子装着状態での耐衝撃性にも優れた、と考えられる。 One of the reasons for obtaining the above results is that it is composed of a copper alloy having a specific composition in which Fe, P, Sn are contained in the above-mentioned specific range and the mass ratio of Fe / P is 4.0 or more. By equipping the conductor with the copper alloy wire to be formed, the effect of improving the strength by strengthening the precipitation of Fe and P and strengthening the solid solution of Sn, and the high conductivity of Cu by reducing the solid solution of P etc. based on the appropriate precipitation of Fe and P. It is considered that this is because the maintenance effect of the rate was obtained well. Here, by appropriately containing C, Mn, and Si, these elements function as antioxidants to prevent the oxidation of Fe, P, and Sn, so that Fe and P can be appropriately precipitated and Sn is appropriately used. It is probable that it was able to dissolve in solid. Further, it is considered that the decrease in conductivity due to the inclusion of C, Mn, and Si could be suppressed. In this test, the content of C is 100 mass ppm or less, the total content of Mn and Si is 20 mass ppm or less, and the total content of these three elements is 150 mass ppm or less, especially 120 mass ppm or less. Therefore, it is considered that the above-mentioned antioxidant effect and effect of suppressing the decrease in conductivity were appropriately obtained. Further, it is considered that the impact resistance is also excellent because the strength is high, the elongation at break is high, the toughness is excellent, and the fracture is difficult even when an impact is applied. It is considered that the terminal mounting points on the conductor are also excellent in impact resistance in the terminal mounting state because the effect of improving the strength due to work hardening accompanying the compression process is satisfactorily obtained.
その他、端子固着力が高い理由の一つとして、加工硬化指数が大きく、加工硬化による強度向上効果が得られたことが考えられる。例えば、加工硬化指数が異なり、端子の取付条件(導体残存率)が同じである試料No.1-1,No.1-101を比較する。試料No.1-1は、試料No.1-101よりも引張強さが低いものの、端子固着力が同程度である上に、端子装着状態での耐衝撃エネルギーが大幅に大きい。試料No.1-1は、引張強さが小さい分を加工硬化によって補ったと考えられる。この試験では、引張強さと、端子固着力とに着目すると、引張強さが大きいほど端子固着力も大きくなるという相関があるといえる。 In addition, one of the reasons why the terminal fixing force is high is considered to be that the work hardening index is large and the strength improving effect by work hardening is obtained. For example, the sample No. which has a different work hardening index and the same terminal mounting conditions (conductor residual ratio). 1-1, No. Compare 1-101. Sample No. 1-1 is the sample No. Although the tensile strength is lower than that of 1-101, the terminal fixing force is about the same, and the impact resistance energy when the terminal is attached is significantly large. Sample No. In 1-1, it is considered that the small tensile strength was compensated by work hardening. Focusing on the tensile strength and the terminal fixing force in this test, it can be said that there is a correlation that the larger the tensile strength, the larger the terminal fixing force.
この試験から、上述のFe,P,Snを含む特定の組成の銅合金に、伸線加工などの塑性加工と、時効・軟化処理などの熱処理とを施すことで上述のように導電性及び強度に優れる上に、耐衝撃性にも優れる銅合金線や銅合金撚線、これらを導体とする被覆電線や端子付き電線が得られることが示された。また、同じ組成であっても、熱処理温度を調整することで、引張強さや導電率、耐衝撃エネルギーなどを異ならせられることが分かる(例えば、試料No.1-2とNo.1-3との比較、試料No.1-4とNo.1-5との比較、試料No.1-7とNo.1-8との比較参照)。熱処理温度を高めると、導電率や導体の耐衝撃エネルギーが高い傾向にある。その他、Snの含有量が多いほど引張強さが高い傾向にある(例えば、試料No.1-8、No.1-4,No.1-2を比較参照)。 From this test, the copper alloy having a specific composition containing Fe, P, and Sn described above is subjected to plastic processing such as wire drawing and heat treatment such as aging and softening to provide conductivity and strength as described above. It was shown that copper alloy wires and copper alloy stranded wires, which are excellent in impact resistance as well as excellent in impact resistance, and coated electric wires and electric wires with terminals using these as conductors can be obtained. Further, it can be seen that even if the composition is the same, the tensile strength, conductivity, impact resistance energy, etc. can be made different by adjusting the heat treatment temperature (for example, Samples No. 1-2 and No. 1-3). Comparison of Samples No. 1-4 and No. 1-5, Comparison of Samples No. 1-7 and No. 1-8). When the heat treatment temperature is increased, the conductivity and the impact resistance energy of the conductor tend to be high. In addition, the higher the Sn content, the higher the tensile strength tends to be (for example, compare Samples No. 1-8, No. 1-4, No. 1-2).
[試験例2]
試験例1と同様にして、種々の組成の銅合金線、及び得られた銅合金線を導体に用いた被覆電線を種々の製造条件で作製して、特性を調べた。
[Test Example 2]
In the same manner as in Test Example 1, copper alloy wires having various compositions and coated electric wires using the obtained copper alloy wires as conductors were manufactured under various manufacturing conditions, and their characteristics were investigated.
この試験では、試験例1の製造パターン(B)に従って、線径0.16mmの銅合金線(熱処理材)を作製した。熱処理条件を表4に示す。また、試験例1と同様にして、得られた銅合金線(0.16mm)について、導電率(%IACS)、引張強さ(MPa)、破断伸び(%)、加工硬化指数を調べた。結果を表4に示す。 In this test, a copper alloy wire (heat-treated material) having a wire diameter of 0.16 mm was produced according to the production pattern (B) of Test Example 1. The heat treatment conditions are shown in Table 4. Further, in the same manner as in Test Example 1, the conductivity (% IACS), tensile strength (MPa), breaking elongation (%), and work hardening index of the obtained copper alloy wire (0.16 mm) were examined. The results are shown in Table 4.
試験例1の製造パターン(b)に従って、線径0.16mmの伸線材を作製し、7本の伸線材を撚り合せた後、圧縮成形して横断面積0.13mm2の圧縮撚線を作製し、表5に示す条件で熱処理を施した。得られた熱処理材の外周に表5に示す絶縁材(PVC又はPP)を表5に示す厚さ(0.20mm又は0.23mm)に押し出して絶縁被覆層を形成し、上記熱処理材を導体とする被覆電線を作製した。 According to the production pattern (b) of Test Example 1, a wire drawing material having a wire diameter of 0.16 mm is produced, seven wire drawing materials are twisted together, and then compression molding is performed to produce a compression twisted wire having a cross-sectional area of 0.13 mm 2 . Then, the heat treatment was performed under the conditions shown in Table 5. The insulating material (PVC or PP) shown in Table 5 is extruded to the thickness (0.20 mm or 0.23 mm) shown in Table 5 on the outer periphery of the obtained heat-treated material to form an insulating coating layer, and the heat-treated material is used as a conductor. A covered electric wire was manufactured.
得られた熱処理材(圧縮線材の導体)について、破断荷重(N)、破断伸び(%)、1mあたりの電気抵抗(mΩ/m)を調べた。また、得られた被覆電線について、破断荷重(N)、破断伸び(%)、本線の耐衝撃エネルギー(J/m)を調べた。その結果を表5に示す。 With respect to the obtained heat-treated material (conductor of compressed wire material), the breaking load (N), breaking elongation (%), and electric resistance per 1 m (mΩ / m) were examined. In addition, the breaking load (N), breaking elongation (%), and impact resistance energy (J / m) of the main line were examined for the obtained coated electric wire. The results are shown in Table 5.
破断荷重(N)、破断伸び(%)は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて測定した。電気抵抗は、JASO D 618に従い、4端子法の抵抗測定装置を用いて、長さ1mにおける抵抗値を測定した。本線の耐衝撃エネルギーは、被覆電線を試験対象として試験例1と同様にして測定した。 The breaking load (N) and breaking elongation (%) were measured using a general-purpose tensile tester in accordance with JIS Z 2241 (Metallic Material Tensile Test Method, 1998). For the electrical resistance, the resistance value at a length of 1 m was measured using a resistance measuring device of a 4-terminal method according to JASO D 618. The impact resistance energy of the main line was measured in the same manner as in Test Example 1 with the coated electric wire as the test target.
得られた被覆電線について、端子装着状態での耐衝撃エネルギー(J/m)を測定した。その結果を表6に示す。この試験では、被覆電線の一端部において絶縁被覆層を剥いで導体である圧縮撚線を露出させ、この圧縮撚線の一端部に圧着端子を取り付けて、試験例1と同様にして測定した。圧着端子として、金属板(銅合金製)を所定の形状にプレス成形してなる圧着端子であって、図2に示すような嵌合部52、ワイヤバレル部50、インシュレーションバレル部54(オーバーラップ型)を備えるものを用意した。ここでは、金属板の厚さが表6に示す厚さ(mm)であり、その表面に表6に示すメッキ種(錫(Sn)又は金(Au))が施された種々のものを用意し、ワイヤバレル部50における取付高さ(C/H(mm))及びインシュレーションバレル部54における取付高さ(V/H(mm))が表6に示す大きさとなるように、各試料の被覆電線の導体に圧着端子を取り付けた。
The impact resistance energy (J / m) of the obtained covered electric wire was measured in the state where the terminal was attached. The results are shown in Table 6. In this test, the insulating coating layer was peeled off at one end of the coated electric wire to expose the compressed stranded wire as a conductor, and a crimp terminal was attached to one end of the compressed stranded wire, and the measurement was performed in the same manner as in Test Example 1. As the crimp terminal, it is a crimp terminal formed by press-molding a metal plate (made of copper alloy) into a predetermined shape, and is a
表4,表5に示すように試料No.2-11~No.2-14はいずれも、同じ線径又は同じ導体断面積である試料No.2-101と比較して、導電性と、強度と、耐衝撃性との三者をバランスよく備えることが分かる。更に、表6に示すように試料No.2-11~No.2-14はいずれも、端子装着状態での耐衝撃性にも優れる。定量的には、以下の通りである。
試料No.2-11~No.2-14はいずれも、引張強さが400MPa以上、更に450MPa以上である(表4)。
試料No.2-11~No.2-14はいずれも、導電率が60%IACS以上、更に62%IACS以上である(表4)。
試料No.2-11~No.2-14はいずれも、耐衝撃エネルギーが9J/m以上、更に10J/m以上である(表5)。
試料No.2-11~No.2-14はいずれも、端子装着状態での耐衝撃エネルギーが3J/m以上、更に3.5J/m以上、3.8J/m以上であり、4J/m以上の試料も多い(表6)。
この試験では、C/H及びV/Hが同じでも、端子のメッキ種や被覆種、被覆厚さなどを異ならせることで、端子装着状態での耐衝撃エネルギーをより高められる場合があるといえる(例えば、表6の条件No.2と条件No.3とを比較参照)。また、この試験では、同じ圧着端子を用いても、V/Hを異ならせることで(ここではV/Hを大きくする)、端子装着状態での耐衝撃エネルギーをより高められる傾向にあるといえる(例えば、表6の条件No.2,No.4,No.7からNo.10を比較参照)。
As shown in Tables 4 and 5, the sample No. 2-11 ~ No. Sample Nos. 2-14 have the same wire diameter or the same conductor cross section. It can be seen that, as compared with 2-101, it has a good balance of conductivity, strength, and impact resistance. Further, as shown in Table 6, the sample No. 2-11 ~ No. Both 2-14 have excellent impact resistance when the terminals are attached. Quantitatively, it is as follows.
Sample No. 2-11 ~ No. Both 2-14 have a tensile strength of 400 MPa or more and further 450 MPa or more (Table 4).
Sample No. 2-11 ~ No. In each of 2-14, the conductivity is 60% IACS or more, and further 62% IACS or more (Table 4).
Sample No. 2-11 ~ No. In each of 2-14, the impact resistance energy is 9 J / m or more, and further 10 J / m or more (Table 5).
Sample No. 2-11 ~ No. In each of 2-14, the impact resistance energy when the terminal is attached is 3 J / m or more, 3.5 J / m or more, 3.8 J / m or more, and many samples are 4 J / m or more (Table 6). ..
In this test, even if the C / H and V / H are the same, it can be said that the impact resistance energy in the terminal mounted state may be further enhanced by differentizing the plating type, coating type, coating thickness, etc. of the terminal. (For example, compare condition No. 2 and condition No. 3 in Table 6). Further, in this test, even if the same crimp terminal is used, it can be said that the impact resistance energy in the terminal mounted state tends to be further enhanced by making the V / H different (here, the V / H is increased). (For example, refer to conditions No. 2, No. 4, No. 7 to No. 10 in Table 6 for comparison).
更に、表4に示すように試料No.2-11~No.2-14はいずれも、破断伸びが5%以上、更に10%以上であり、試験例1と同様に、高強度、高靭性、高導電率をバランスよく備えることが分かる。また、表5に示すように、圧縮撚線では単線よりも引張強さ(破断荷重/断面積)が大きく、絶縁被覆層を備える被覆電線では圧縮撚線よりも引張強さを向上できるといえる。圧縮撚線になっても単線のときの破断伸びを実質的に維持すること(表4と比較参照)、絶縁被覆層を備える被覆電線では圧縮撚線よりも破断伸びを向上できるといえる。絶縁被覆層を備える被覆電線では、試験例1に示す導体のみの場合と比較して、端子装着状態での耐衝撃エネルギーや耐衝撃エネルギーが高い傾向にあるといえる。
その他、試料No.2-11~No.2-14はいずれも、加工硬化指数が0.1以上、更に0.12以上である。このような試料No.2-11~No.2-14はいずれも、端子の固着性にも優れると考えられる。
Further, as shown in Table 4, the sample No. 2-11 ~ No. It can be seen that each of 2-14 has a breaking elongation of 5% or more and further 10% or more, and has high strength, high toughness, and high conductivity in a well-balanced manner as in Test Example 1. Further, as shown in Table 5, it can be said that the compression stranded wire has a higher tensile strength (breaking load / cross-sectional area) than the single wire, and the coated electric wire provided with the insulating coating layer can improve the tensile strength as compared with the compression stranded wire. .. It can be said that the breaking elongation of a single wire can be substantially maintained even if it becomes a compression stranded wire (see Table 4), and that the coated electric wire provided with an insulating coating layer can improve the breaking elongation as compared with the compression stranded wire. It can be said that the coated electric wire provided with the insulating coating layer tends to have higher impact resistance energy and impact resistance energy in the terminal-mounted state than in the case of only the conductor shown in Test Example 1.
In addition, sample No. 2-11 ~ No. Both 2-14 have a work hardening index of 0.1 or more, and further have a work hardening index of 0.12 or more. Such sample No. 2-11 ~ No. Both 2-14 are considered to have excellent terminal stickiness.
上述の結果が得られた理由の一つとして、試験例1と同様に、Fe,P,Snを含む特定の組成の銅合金から構成される銅合金線を導体に備えることで、Fe及びPの析出強化及びSnの固溶強化による強度向上効果と、Pなどの固溶低減によるCuの高い導電率の維持効果とが良好に得られたため、と考えられる。特に、試験例1と同様に、C,Mn,Siの適切な含有によって、Fe,P,Snの酸化防止効果及びCなど脱酸剤元素の含有による導電率の低下抑制効果を得られたため、と考えられる。更に、高強度でありながら靭性にも優れており、耐衝撃性、端子装着状態での耐衝撃性にも優れた、と考えられる。 One of the reasons for obtaining the above results is that, as in Test Example 1, Fe and P are provided with a copper alloy wire composed of a copper alloy having a specific composition including Fe, P, Sn in the conductor. It is considered that this is because the effect of improving the strength by strengthening the precipitation and strengthening the solid solution of Sn and the effect of maintaining the high conductivity of Cu by reducing the solid solution of P and the like were obtained satisfactorily. In particular, as in Test Example 1, the proper inclusion of C, Mn, and Si provided the antioxidant effect of Fe, P, and Sn, and the inclusion of the deoxidizing agent element such as C provided the effect of suppressing the decrease in conductivity. it is conceivable that. Further, it is considered that the strength is high and the toughness is excellent, and the impact resistance and the impact resistance when the terminal is attached are also excellent.
本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、試験例1,2の銅合金の組成、銅合金線の線径、撚り合せ本数、熱処理条件などを適宜変更できる。
The present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
For example, the composition of the copper alloys of Test Examples 1 and 2, the wire diameter of the copper alloy wire, the number of twisted wires, the heat treatment conditions, and the like can be appropriately changed.
1 銅合金線 10 銅合金撚線(導体) 3 被覆電線 4 端子付き電線
12 端子取付箇所 2 絶縁被覆層
5 端子 50 ワイヤバレル部 52 嵌合部 54 インシュレーションバレル部
S 試料 J 治具 W 錘
1
Claims (3)
銅合金線を製造する工程と、
前記銅合金線を複数撚り合わせて、前記導体となる撚線を製造する工程と、
前記撚線の外周に前記絶縁被覆層を形成する工程とを備え、
前記銅合金線を製造する工程は、
銅合金の溶湯を連続鋳造して鋳造材を製造する工程と、
前記鋳造材にコンフォーム押出を施した加工材に、伸線加工を施して線径が0.5mm以下である伸線材を製造する工程と、
前記伸線材に熱処理を施して熱処理材を製造する工程とを備え、
前記銅合金は、
Feを0.2質量%以上1.6質量%以下、
Pを0.05質量%以上0.4質量%以下、
Snを0.05質量%以上0.7質量%以下含有し、
残部がCu及び不純物からなり、
質量比で、Fe/Pが4.0以上であり、
前記熱処理の条件は、
熱処理温度が400℃以上500℃以下であり、
保持時間が3時間以上20時間以下である、被覆電線の製造方法。 A method for manufacturing a coated electric wire, which comprises a conductor and an insulating coated layer provided on the outside of the conductor.
The process of manufacturing copper alloy wire and
A process of manufacturing a stranded wire to be a conductor by twisting a plurality of the copper alloy wires together.
A step of forming the insulating coating layer on the outer periphery of the stranded wire is provided.
The process of manufacturing the copper alloy wire is
The process of continuously casting molten copper alloy to manufacture cast materials,
A process of manufacturing a wire drawing material having a wire diameter of 0.5 mm or less by wire drawing a processed material obtained by subjecting the cast material to conform extrusion.
The wire drawing material is provided with a step of heat-treating the wire drawing material to manufacture the heat-treated material.
The copper alloy is
Fe is 0.2% by mass or more and 1.6% by mass or less,
P is 0.05% by mass or more and 0.4% by mass or less,
Containing Sn in an amount of 0.05% by mass or more and 0.7% by mass or less,
The rest consists of Cu and impurities
Fe / P is 4.0 or more by mass ratio ,
The conditions of the heat treatment are
The heat treatment temperature is 400 ° C or higher and 500 ° C or lower.
A method for manufacturing a coated electric wire, which has a holding time of 3 hours or more and 20 hours or less .
銅合金の溶湯を連続鋳造して鋳造材を製造する工程と、
前記鋳造材にコンフォーム押出を施した加工材に、伸線加工を施して線径が0.5mm以下である伸線材を製造する工程と、
前記伸線材に熱処理を施して熱処理材を製造する工程とを備え、
前記銅合金は、
Feを0.2質量%以上1.6質量%以下、
Pを0.05質量%以上0.4質量%以下、
Snを0.05質量%以上0.7質量%以下含有し、
残部がCu及び不純物からなり、
質量比で、Fe/Pが4.0以上であり、
前記熱処理の条件は、
熱処理温度が400℃以上500℃以下であり、
保持時間が3時間以上20時間以下である、銅合金線の製造方法。 It is a manufacturing method of copper alloy wire.
The process of continuously casting molten copper alloy to manufacture cast materials,
A process of manufacturing a wire drawing material having a wire diameter of 0.5 mm or less by wire drawing a processed material obtained by subjecting the cast material to conform extrusion.
The wire drawing material is provided with a step of heat-treating the wire drawing material to manufacture the heat-treated material.
The copper alloy is
Fe is 0.2% by mass or more and 1.6% by mass or less,
P is 0.05% by mass or more and 0.4% by mass or less,
Containing Sn in an amount of 0.05% by mass or more and 0.7% by mass or less,
The rest consists of Cu and impurities
Fe / P is 4.0 or more by mass ratio ,
The conditions of the heat treatment are
The heat treatment temperature is 400 ° C or higher and 500 ° C or lower.
A method for manufacturing a copper alloy wire having a holding time of 3 hours or more and 20 hours or less .
銅合金線を製造する工程と、
前記銅合金線を複数撚り合わせて撚線を製造する工程とを備え、
前記銅合金線を製造する工程は、
銅合金の溶湯を連続鋳造して鋳造材を製造する工程と、
前記鋳造材にコンフォーム押出を施した加工材に、伸線加工を施して線径が0.5mm以下である伸線材を製造する工程と、
前記伸線材に熱処理を施して熱処理材を製造する工程とを備え、
前記銅合金は、
Feを0.2質量%以上1.6質量%以下、
Pを0.05質量%以上0.4質量%以下、
Snを0.05質量%以上0.7質量%以下含有し、
残部がCu及び不純物からなり、
質量比で、Fe/Pが4.0以上であり、
前記熱処理の条件は、
熱処理温度が400℃以上500℃以下であり、
保持時間が3時間以上20時間以下である、銅合金撚線の製造方法。 It is a manufacturing method of copper alloy stranded wire.
The process of manufacturing copper alloy wire and
It is provided with a process of manufacturing a stranded wire by twisting a plurality of the copper alloy wires.
The process of manufacturing the copper alloy wire is
The process of continuously casting molten copper alloy to manufacture cast materials,
A process of manufacturing a wire drawing material having a wire diameter of 0.5 mm or less by wire drawing a processed material obtained by subjecting the cast material to conform extrusion.
The wire drawing material is provided with a step of heat-treating the wire drawing material to manufacture the heat-treated material.
The copper alloy is
Fe is 0.2% by mass or more and 1.6% by mass or less,
P is 0.05% by mass or more and 0.4% by mass or less,
Containing Sn in an amount of 0.05% by mass or more and 0.7% by mass or less,
The rest consists of Cu and impurities
Fe / P is 4.0 or more by mass ratio ,
The conditions of the heat treatment are
The heat treatment temperature is 400 ° C or higher and 500 ° C or lower.
A method for manufacturing a copper alloy stranded wire having a holding time of 3 hours or more and 20 hours or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020200781A JP7054482B2 (en) | 2020-12-03 | 2020-12-03 | Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020200781A JP7054482B2 (en) | 2020-12-03 | 2020-12-03 | Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017130561A Division JP6807027B2 (en) | 2017-07-03 | 2017-07-03 | Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021050417A JP2021050417A (en) | 2021-04-01 |
JP7054482B2 true JP7054482B2 (en) | 2022-04-14 |
Family
ID=75157163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020200781A Active JP7054482B2 (en) | 2020-12-03 | 2020-12-03 | Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7054482B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118043915A (en) * | 2021-09-24 | 2024-05-14 | 昭和电线电缆株式会社 | Insulated wire and method for manufacturing the same, insulated wire with terminal, and method for manufacturing the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007023305A (en) | 2005-07-12 | 2007-02-01 | Mitsubishi Cable Ind Ltd | Conductor element wire for electric wire for automobile, and its manufacturing method |
WO2015159671A1 (en) | 2014-04-14 | 2015-10-22 | 株式会社オートネットワーク技術研究所 | Copper alloy strand, copper alloy twisted wire, and automotive electric wire |
JP2016037652A (en) | 2014-08-08 | 2016-03-22 | 住友電気工業株式会社 | Copper alloy wire, copper alloy twisted wire, covered electric wire and electric wire with terminal |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164834A (en) * | 1984-09-04 | 1986-04-03 | Nippon Mining Co Ltd | Copper alloy having high strength, heat resistance and electric conductivity |
-
2020
- 2020-12-03 JP JP2020200781A patent/JP7054482B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007023305A (en) | 2005-07-12 | 2007-02-01 | Mitsubishi Cable Ind Ltd | Conductor element wire for electric wire for automobile, and its manufacturing method |
WO2015159671A1 (en) | 2014-04-14 | 2015-10-22 | 株式会社オートネットワーク技術研究所 | Copper alloy strand, copper alloy twisted wire, and automotive electric wire |
JP2016037652A (en) | 2014-08-08 | 2016-03-22 | 住友電気工業株式会社 | Copper alloy wire, copper alloy twisted wire, covered electric wire and electric wire with terminal |
Also Published As
Publication number | Publication date |
---|---|
JP2021050417A (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6872175B2 (en) | Copper alloy wire and copper alloy stranded wire | |
JP6807041B2 (en) | Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires | |
JP7054482B2 (en) | Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire | |
JP7503240B2 (en) | Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire | |
WO2018084263A1 (en) | Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire | |
JP6807027B2 (en) | Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires | |
JP6807040B2 (en) | Covered wires, wires with terminals, and copper alloy wires | |
US20210183532A1 (en) | Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire | |
JP6593778B2 (en) | Covered wire, wire with terminal, copper alloy wire, and copper alloy twisted wire | |
JP6840347B2 (en) | Manufacturing method of aluminum alloy wire | |
JP6840348B2 (en) | Manufacturing method of aluminum alloy wire | |
JP7483217B2 (en) | Insulated wires, terminal-attached wires, copper alloy wires, and copper alloy stranded wires | |
JP2021073383A (en) | Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal | |
JP2021073384A (en) | Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201224 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7054482 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |