Nothing Special   »   [go: up one dir, main page]

JPS6289520A - Manufacture of terminal lead wire for electronic equipment - Google Patents

Manufacture of terminal lead wire for electronic equipment

Info

Publication number
JPS6289520A
JPS6289520A JP23045985A JP23045985A JPS6289520A JP S6289520 A JPS6289520 A JP S6289520A JP 23045985 A JP23045985 A JP 23045985A JP 23045985 A JP23045985 A JP 23045985A JP S6289520 A JPS6289520 A JP S6289520A
Authority
JP
Japan
Prior art keywords
wire
bending strength
lead wire
terminal lead
wire drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23045985A
Other languages
Japanese (ja)
Inventor
Sajiro Shimizu
清水 佐次郎
Sakiya Nishiura
西浦 蒼生也
Yoshiaki Ijiri
井尻 義明
Masanori Kato
正憲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Tatsuta Electric Wire and Cable Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP23045985A priority Critical patent/JPS6289520A/en
Publication of JPS6289520A publication Critical patent/JPS6289520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Details Of Resistors (AREA)

Abstract

PURPOSE:To obtain a lead wire excellent in bending strength, mechanical strength, electric conductivity, etc., by cold wire drawing a rough drawn wire of copper alloy, after annealing perfectly, by performing the cold wire drawing with specific reduction in area. CONSTITUTION:The rough drawn wire of copper alloy is manufactured, annealed after continuous wire drawing, then performed the cold wire drawing by dies with the reduction in area of 2-30%. In this way, the terminal lead wire for the electronic equipment excellent in mechanical properties for a compression molding of its one end and annealing received on the manufacturing processes for those element parts is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は抵抗器、コンデンサー、シリコン又はゲルマニ
ウム半導体素子などに使用される端子リード線がそれら
の素子部品の製造工程中に受けるリード線の片端圧縮成
型加工および熱処理に対しても、すぐれた機械特性を保
持する電子機器部品用端子リード線の製造方法に関する
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to a terminal lead wire used for resistors, capacitors, silicon or germanium semiconductor devices, etc., which is exposed to one end of the lead wire during the manufacturing process of those device components. The present invention relates to a method for manufacturing a terminal lead wire for electronic device parts that maintains excellent mechanical properties even when subjected to compression molding and heat treatment.

(従来技術) 電子機器部品の端子リード線には純銅線、耐熱性銅合金
線が多用されている。これらのリード線は部品の端子リ
ード線として使用するため、リード線の片端を圧縮成型
加工(以下、ヘッダー加工という)し、一定長さで切断
される高速自動化装置にかけられて大量生産される。
(Prior Art) Pure copper wire and heat-resistant copper alloy wire are often used for terminal lead wires of electronic device parts. These lead wires are used as terminal lead wires for components, so one end of the lead wire is compression molded (hereinafter referred to as header processing) and then cut into a fixed length using high-speed automated equipment for mass production.

従って、線材が硬いとヘッダー加工が困難となり、成型
加工部にクラックを生じ大量生産工程に支障を起す。そ
のため線材は半硬質に調質される。
Therefore, if the wire is hard, it becomes difficult to process the header, and cracks occur in the molded part, causing problems in the mass production process. Therefore, the wire is tempered to be semi-hard.

又、電子機器部品の製造工程中素子部品にリード線を取
付ける際、又は取付後において種々妊熱処理と不可避的
な曲げ応力を受けるのでリード線は軟化され、曲げられ
る。
Further, during the manufacturing process of electronic device parts, when the lead wires are attached to the element parts, or after being attached, the lead wires are subjected to various prenatal heat treatments and unavoidable bending stress, so that the lead wires are softened and bent.

例えば、抵抗器、コンデンサーに使用されるリード線は
ろう接、モールド、塗装、安定化処理などの製造工程で
約250℃程度の熱処理を受ける。
For example, lead wires used in resistors and capacitors undergo heat treatment at about 250°C during manufacturing processes such as brazing, molding, painting, and stabilization.

又、半導体素子にあっては素子部品と端子リード線のろ
う接に3°00〜400℃、約10分間の熱処理が施さ
れた後、該ろう接部は合成樹脂材でモールドされる。
Further, in the case of semiconductor devices, the soldered joints between the device parts and the terminal lead wires are heat treated at 3°00 to 400° C. for about 10 minutes, and then the soldered portions are molded with a synthetic resin material.

特に、リード線が純銅である場合、高い導電率と熱伝導
性を有するが、200℃前後の熱処理で再結晶化し、軟
化されて曲げ強さが低下するため、次工程への素子部品
の移動中又は、銅線上にメッキする次のバレルメッキ工
程でリード線が曲げられる。そのため高温の熱処理を受
ける場合、純銅線は使用されない。
In particular, when the lead wire is made of pure copper, it has high electrical conductivity and thermal conductivity, but heat treatment at around 200°C recrystallizes and softens the bending strength, reducing the bending strength, making it difficult to move the element parts to the next process. The lead wire is bent during the next barrel plating process, which involves plating inside or onto the copper wire. Therefore, pure copper wire is not used when undergoing high temperature heat treatment.

これらの電子機器部品の製造は自動化による大量生産方
式が採用されているので、端子リード線が軟化して曲げ
られると、人手で曲がりを選別したり、矯正することは
最早許されず自動化に支障をきたすと共に、素子部品を
プリント基板に実装する場合、トラブルを惹起する。
Automated mass production methods are used to manufacture these electronic device parts, so if the terminal lead wire becomes soft and bent, it is no longer acceptable to manually sort out or correct the bend, which will interfere with automation. This also causes trouble when mounting element parts on a printed circuit board.

このため、高温の熱処理を受けるリード線には、例えば
Cu−Ag、 Cu−5nなどの耐熱性銅合金線が使用
されている。該合金線は冷間伸線加工をした後、連続軟
化又はバッチ軟化を施して線材の硬さを調質しているが
、高温熱処理後の曲げ強さの信頼性はまだ解消されてい
ないため、自動化対応に使用するには問題が残されてい
る。
For this reason, heat-resistant copper alloy wires such as Cu-Ag and Cu-5n are used as lead wires that undergo high-temperature heat treatment. After cold wire drawing, the alloy wire is subjected to continuous softening or batch softening to improve the hardness of the wire, but the reliability of the bending strength after high-temperature heat treatment has not yet been resolved. However, there are still problems in using it for automation.

(発明が解決しようとする問題点) 本発明者らは、電子機器部品の自動生産方式に適合する
リード線はどのような特性を具備すれば問題点が解消さ
れるかを種々検討した結果、次の特性を解決すればよい
ことを見出した。すなわち1 、(1)ヘッダー加工性が良好であること(2)工程熱
処理(400°C×10分)に対して耐熱性があること (3) 95%以上の導電性があり、放熱に対する熱伝
導性がよいこと (4)曲げ応力に対する耐曲げ性が強いことこれらの要
求特性において(2)と(3)については、耐熱高導電
性銅合金であることが好ましく、その合金組成はCuを
基材としてこれに八g+sn+IIl+Pb、Bi、C
r、Co、Ni+Fe、Zy、Se、Te、Iff、B
、Ti、Pなどの元素の一種または二種以上をCuに対
して0.02〜0.2wt%の範囲に添加した銅合金が
選択される。
(Problems to be Solved by the Invention) As a result of various studies conducted by the present inventors as to what kind of characteristics a lead wire should have to solve the problems, We found that the following characteristics should be solved. In other words, (1) the header has good workability, (2) it has heat resistance to process heat treatment (400°C x 10 minutes), and (3) it has electrical conductivity of 95% or more and has good heat dissipation properties. Good conductivity (4) Strong bending resistance against bending stress Regarding these required characteristics (2) and (3), it is preferable to use a heat-resistant and highly conductive copper alloy, and the alloy composition should not contain Cu. As a base material, 8g+sn+IIl+Pb, Bi, C
r, Co, Ni+Fe, Zy, Se, Te, If, B
A copper alloy in which one or more of elements such as , Ti, and P is added in an amount of 0.02 to 0.2 wt% relative to Cu is selected.

(1)と(4)については、線材の硬さを正確に調質す
ることである。
Regarding (1) and (4), the hardness of the wire rod must be accurately tempered.

例えば、0 、8mmφ銅合金線では、熱処理前の曲げ
強さを150〜370g−cmとし、熱処理(400℃
×10分)後の曲げ強さは140〜320g−cmとす
るのが好ましい。
For example, for a 0.8mmφ copper alloy wire, the bending strength before heat treatment is 150 to 370g-cm, and the heat treatment (400℃
The bending strength after 10 minutes is preferably 140 to 320 g-cm.

0 、6mmφ銅合金線では、熱処理前の曲げ強さを8
0〜190g−cllとし、熱処理(400℃×lO分
)後の曲げ強さは75〜165g−cmとするのがよい
0, 6mmφ copper alloy wire has a bending strength of 8 before heat treatment.
The bending strength after heat treatment (400° C. x 10 minutes) is preferably 75 to 165 g-cm.

これらの要求特性の下限以下の値では、素子部品の製造
工程中で線材が曲げられるので自動化生産に支障を起し
、上限以上の値では線材が硬いために、ヘッダー加工性
に問題があり、又、素子部品の端子リード線をプリント
基板に実装し、曲げて固定する際に素子部品のモールド
部が破壊されるので好ましくない。
If the value of these required properties is below the lower limit, the wire will be bent during the manufacturing process of the element parts, causing problems in automated production, and if the value is above the upper limit, the wire will be hard, causing problems in header workability. Furthermore, when the terminal lead wires of the element parts are mounted on the printed circuit board and fixed by bending, the molded part of the element parts may be destroyed, which is not preferable.

(発明を解決するための手段) 本発明は、上記要求特性を満足すべくなされたもので、
銅合金の荒引線を冷間伸線加工し、完全に焼鈍した後滅
面率2〜30%の範囲で冷間伸線加工することを特徴と
する電子機器部品用端子リード線の製造方法である。
(Means for Solving the Invention) The present invention has been made to satisfy the above-mentioned required characteristics.
A method for manufacturing a terminal lead wire for electronic device parts, which comprises cold drawing a copper alloy rough drawn wire, and then cold drawing the wire to a completely annealed surface area ratio in the range of 2 to 30%. be.

上記において減面率を2〜30%とするのは、2%未満
では線材が硬化されないので曲がりやすく、30%を越
えるときは線材が硬くなるために、ヘッダー加工性がわ
るくなり、又素子部品をプリント基板に実装して曲げて
固定する際に、素子部品のモールド部が破壊されるので
好ましくない。適切な減面率は3〜15%である。
The reason why the area reduction rate is set to 2 to 30% in the above is that if it is less than 2%, the wire will not be hardened and will bend easily, and if it exceeds 30%, the wire will become hard and the header workability will be poor, and the element parts This is not preferable because the molded part of the element component will be destroyed when it is mounted on a printed circuit board and fixed by bending. A suitable area reduction is between 3 and 15%.

次に、3種類の耐熱高導電性銅合金線を製造し、本発明
の実施例と比較例および従来例を対比させ、該銅合金線
が熱処理前後の特性においてどのように変化するかを調
べた結果を第1表に示す。
Next, three types of heat-resistant, highly conductive copper alloy wires were manufactured, and the examples of the present invention, comparative examples, and conventional examples were compared to examine how the characteristics of the copper alloy wires changed before and after heat treatment. The results are shown in Table 1.

従来例隘19〜27については、銅合金の8m1IIφ
の荒引線を製造し、常温で連続伸線軟化を行ない曲げ強
さを170〜230g・cmの範囲とする0、8mmφ
の線材に仕上げた。該線材を400℃×10分間熱処理
した後の曲げ強さ、引張強さおよび導電性について特性
調査を行なった結果、曲げ強さは急激に低下し、その値
は100〜110g・cmの範囲となり要求特性に適合
しないことがわかる。
For conventional examples Nos. 19 to 27, copper alloy 8m1IIφ
0.8 mmφ by manufacturing rough drawn wire and continuous drawing softening at room temperature to have a bending strength in the range of 170 to 230 g cm.
Finished with wire rod. After heat-treating the wire at 400°C for 10 minutes, we investigated its bending strength, tensile strength, and conductivity. As a result, the bending strength suddenly decreased, and the value was in the range of 100 to 110 g cm. It can be seen that the required characteristics are not met.

実施例No1〜12、比較例No13〜18については
、銅合金の8mmφの荒引線を製造し、連続伸線を行な
った後400℃、1時間の焼鈍処理を施し、第1表の実
施例および比較例に示す減面率で冷間伸線を行ない0.
8mmφの線材に仕上げた。該線材を400℃×10分
間の熱処理を行なった後の曲げ強さ、引張強さ、導電率
およびヘソグー加工における圧縮成型部のクランクの有
無について特性調査を行った結果、実施例No1〜12
は高温熱処理を施しても適切な曲げ強さ、引張強さおよ
び導電性を有し、いずれも要求特性を満足すべき値が得
られる。
For Examples Nos. 1 to 12 and Comparative Examples Nos. 13 to 18, copper alloy rough drawn wires of 8 mmφ were manufactured, and after continuous wire drawing, annealing treatment was performed at 400° C. for 1 hour. Cold wire drawing was performed with the area reduction ratio shown in the comparative example.
Finished into a wire rod with a diameter of 8 mm. As a result of conducting a characteristic investigation on the bending strength, tensile strength, electrical conductivity, and the presence or absence of a crank in the compression molded part during heso-goo processing after heat-treating the wire at 400°C for 10 minutes, Examples Nos. 1 to 12 were obtained.
has appropriate bending strength, tensile strength, and conductivity even when subjected to high-temperature heat treatment, and all values that satisfy the required properties can be obtained.

比較例No13.15.17の減面率1%の伸線加工に
よる調質では、曲げ強さのイ五/が100〜110g・
clllの範囲であり、要求特性に適合しない。更に比
較例No14.16.18の減面率35%の伸線加工に
よる調質では、曲げ強さの値が330〜350g−Cm
の範囲となり、要求特性に適合しないことがわかる。
When comparative example No. 13.15.17 was heat-treated by wire drawing with an area reduction rate of 1%, the bending strength was 100 to 110 g.
clll range and does not meet the required characteristics. Furthermore, when comparative example No. 14.16.18 was tempered by wire drawing with an area reduction rate of 35%, the bending strength value was 330 to 350 g-Cm.
It can be seen that the required characteristics are not met.

(実施例) 実施例1゜ Cu−0,1%Ag合金の81φの荒引線を製造し、0
 、82mmφまで連続伸線を行った後、400℃、1
時間の焼鈍処理を施し、減面率5%とする0、8mmφ
のダイスを用いて冷間伸線加工を行ない、曲げ強さを1
808−cIIIとする線材に調質した。該線材を40
0℃×10分間の熱処理を施して曲げ強さを測定した結
果、170g−cn+の値を得た。
(Example) Example 1゜A rough drawn wire of 81φ made of Cu-0.1%Ag alloy was manufactured.
, after continuous wire drawing to 82mmφ, 400℃, 1
0.8mmφ with time annealing treatment and area reduction rate of 5%
The bending strength was reduced to 1 by performing cold wire drawing using a die.
It was tempered into a wire rod designated as 808-cIII. 40 pieces of the wire
As a result of heat treatment at 0° C. for 10 minutes and measurement of bending strength, a value of 170 g-cn+ was obtained.

実施例2 Cu−0,05%Sn合金の8mmφの荒引線を製造し
、0.84mn+φまで連続伸線を行った後、400℃
、1時間の焼鈍処理を施し、減面率10%とする0、8
mmφのダイスを用いて冷間伸線加工を行ない、曲げ強
さを215g−cmとする線材に調質した。8亥線材を
400℃×10分間の熱処理を施して曲げ強さを測定し
た結果、203g−Cm0値を得た。
Example 2 A rough drawn wire of 8 mmφ of Cu-0.05% Sn alloy was manufactured, and after continuous wire drawing to 0.84 mm+φ, the wire was heated at 400°C.
, 0,8 which is annealed for 1 hour and has an area reduction rate of 10%.
Cold wire drawing was performed using a mmφ die, and the wire rod was tempered to have a bending strength of 215 g-cm. As a result of heat-treating the 8-wire wire at 400° C. for 10 minutes and measuring its bending strength, a value of 203 g-Cm0 was obtained.

実施例3 Cu−0,13%In合金の8mmφの荒引線を製造し
、0 、89mmφまで連続伸線を行い、更に連続的に
軟化して冷却し、減面率20%とする0、8 mmφの
ダイスを通して冷間伸線加工を行ない、曲げ強さを27
5g−cmとする線材に調質した。該線材を400℃×
10分間の熱処理を施して曲げ強さを測定した結果、2
57g−cmの値を得た。
Example 3 A rough drawn wire of Cu-0.13% In alloy with a diameter of 8 mm was produced, and the wire was continuously drawn to a diameter of 0.89 mm, and then continuously softened and cooled to give an area reduction rate of 20%. Cold wire drawing is performed through a die of mmφ, and the bending strength is increased to 27 mm.
The wire rod was tempered to a thickness of 5 g-cm. The wire rod is heated to 400℃
As a result of measuring the bending strength after heat treatment for 10 minutes, 2
A value of 57 g-cm was obtained.

実施例4 Cu−0,13%In合金の8mmφの荒引線を製造し
、0.633mmφまで連続伸線を行った後、400℃
、1時間の焼鈍処理を施し、減面率10%とする0、6
mmφのダイスを用いて冷間伸線加工を行ない、曲げ強
さを115g−clllとする線材に調質した。該線材
を400℃×10分間の熱処理を施して曲げ強さを測定
した結果、108g−cmの値を得た。
Example 4 A rough drawn wire of Cu-0,13%In alloy with a diameter of 8 mm was manufactured, and after continuous wire drawing to 0.633 mmφ, the wire was heated at 400°C.
, 0,6, which is annealed for 1 hour and has an area reduction rate of 10%.
A cold wire drawing process was performed using a mmφ die, and the wire rod was tempered to have a bending strength of 115 g-clll. The wire rod was subjected to heat treatment at 400° C. for 10 minutes and the bending strength was measured, and as a result, a value of 108 g-cm was obtained.

(発明の効果) 本発明によって製造されるリード線は、高温熱処理に対
する曲げ強さの信頼性がすぐれているのみならず、機械
的強度、導電性、熱伝導性、ヘッダー加工性にもすぐれ
、製造も容易で且つ安価であるため、自動化生産方式の
採用されているシリコン、又はゲルマニウム半導体、抵
抗器、コンデンサー、スイッチ、コネクター、コイル部
品などの電子機器部品の端子リード線として顕著な効果
を奏するものである。
(Effects of the Invention) The lead wire manufactured by the present invention not only has excellent reliability in bending strength against high-temperature heat treatment, but also has excellent mechanical strength, electrical conductivity, thermal conductivity, and header processability. Because it is easy and inexpensive to manufacture, it is extremely effective as terminal lead wires for electronic device parts such as silicon or germanium semiconductors, resistors, capacitors, switches, connectors, and coil parts that use automated production methods. It is something.

代理人 弁理士 水 口 孝 − 手続補正書(自発) 昭和60年11月7日Agent: Patent Attorney Takashi Mizuguchi - Procedural amendment (voluntary) November 7, 1985

Claims (1)

【特許請求の範囲】[Claims] 銅合金線材を完全に焼鈍したのち、減面率2〜30%の
範囲で冷間伸線加工することを特徴とする電子機器部品
用端子リード線の製造方法。
A method for manufacturing a terminal lead wire for electronic device parts, which comprises completely annealing a copper alloy wire and then cold drawing the wire at an area reduction of 2 to 30%.
JP23045985A 1985-10-15 1985-10-15 Manufacture of terminal lead wire for electronic equipment Pending JPS6289520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23045985A JPS6289520A (en) 1985-10-15 1985-10-15 Manufacture of terminal lead wire for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23045985A JPS6289520A (en) 1985-10-15 1985-10-15 Manufacture of terminal lead wire for electronic equipment

Publications (1)

Publication Number Publication Date
JPS6289520A true JPS6289520A (en) 1987-04-24

Family

ID=16908185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23045985A Pending JPS6289520A (en) 1985-10-15 1985-10-15 Manufacture of terminal lead wire for electronic equipment

Country Status (1)

Country Link
JP (1) JPS6289520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101818U (en) * 1990-02-05 1991-10-23
JP2008115423A (en) * 2006-11-02 2008-05-22 Hitachi Cable Ltd Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939726A (en) * 1972-08-29 1974-04-13
JPS5479120A (en) * 1977-12-07 1979-06-23 Sumitomo Electric Ind Ltd Copper alloy for trolley wire
JPS5644759A (en) * 1979-09-14 1981-04-24 Mitsubishi Metal Corp Manufacture of heat-resisting copper alloy material having high electric conductivity
JPS5684434A (en) * 1979-12-04 1981-07-09 Olin Mathieson Alloy with hot processibility * especially * high stress relieving resistance and method
JPS56134012A (en) * 1980-03-21 1981-10-20 Furukawa Electric Co Ltd:The Manufacture of tough-pitch copper wire
JPS5770244A (en) * 1980-10-15 1982-04-30 Furukawa Electric Co Ltd:The Heat-resistant and anticorrosive copper alloy for electric conduction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939726A (en) * 1972-08-29 1974-04-13
JPS5479120A (en) * 1977-12-07 1979-06-23 Sumitomo Electric Ind Ltd Copper alloy for trolley wire
JPS5644759A (en) * 1979-09-14 1981-04-24 Mitsubishi Metal Corp Manufacture of heat-resisting copper alloy material having high electric conductivity
JPS5684434A (en) * 1979-12-04 1981-07-09 Olin Mathieson Alloy with hot processibility * especially * high stress relieving resistance and method
JPS56134012A (en) * 1980-03-21 1981-10-20 Furukawa Electric Co Ltd:The Manufacture of tough-pitch copper wire
JPS5770244A (en) * 1980-10-15 1982-04-30 Furukawa Electric Co Ltd:The Heat-resistant and anticorrosive copper alloy for electric conduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101818U (en) * 1990-02-05 1991-10-23
JP2008115423A (en) * 2006-11-02 2008-05-22 Hitachi Cable Ltd Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor

Similar Documents

Publication Publication Date Title
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPH0372691B2 (en)
JPH01162737A (en) Copper alloy for electronic parts
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JPS6289520A (en) Manufacture of terminal lead wire for electronic equipment
JPS6220265B2 (en)
JPS6123736A (en) Copper alloy having superior heat resistance, formability and electric conductivity
JPH0459970B2 (en)
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPH0356294B2 (en)
JPS6246618B2 (en)
JPS6152334A (en) Copper alloy having superior heat resistance and electric conductivity
JPS6123738A (en) Copper alloy having superior heat resistance and electric conductivity
JPS6238413B2 (en)
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPS63192835A (en) Lead material for ceramic package
JPH0816255B2 (en) Copper alloy for electronic devices
JPS6123734A (en) Copper alloy having excellent heat resistance and conductivity
JPS5952231B2 (en) Manufacturing method for electronic component lead material with good hedging processability
JPH0644413B2 (en) Copper alloy composite wire for extra fine wire
JPS6220263B2 (en)
JPH0118139B2 (en)
JPH05255779A (en) Production of copper alloy for electrical and electronic equipment
JPH03199357A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JP2683903B2 (en) High strength and high conductivity copper alloy with excellent solder heat resistance