JP2002363668A - Conductor for bending resistant cable and production method therefor - Google Patents
Conductor for bending resistant cable and production method thereforInfo
- Publication number
- JP2002363668A JP2002363668A JP2001172469A JP2001172469A JP2002363668A JP 2002363668 A JP2002363668 A JP 2002363668A JP 2001172469 A JP2001172469 A JP 2001172469A JP 2001172469 A JP2001172469 A JP 2001172469A JP 2002363668 A JP2002363668 A JP 2002363668A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- wire
- copper alloy
- purity
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐屈曲ケーブル用
導体及びその製造方法に係り、特に、ロボットケーブル
やプローブケーブル等の耐屈曲ケーブルに用いられる導
体及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor for a flexible cable and a method for manufacturing the same, and more particularly to a conductor used for a flexible cable such as a robot cable and a probe cable and a method for manufacturing the same.
【0002】[0002]
【従来の技術】電子機器用の耐屈曲ケーブル、例えばロ
ボットケーブルやプローブケーブル等に用いられる導体
の材料としては、高強度で高導電性の銅合金が一般的に
使用されている。2. Description of the Related Art A copper alloy having high strength and high conductivity is generally used as a material of a conductor used in a flexible cable for electronic equipment, for example, a robot cable or a probe cable.
【0003】現在、量産レベルで製造されている銅合金
線としては、連続鋳造・圧延が可能で、経済性に優れた
Cu−Sn合金線が挙げられ、電子機器用の耐屈曲ケー
ブルの導体材料として多用されている。また、その他の
銅合金線も、製品コストおよび銅合金線の各種特性に応
じて、様々な分野に適用されている。At present, as a copper alloy wire manufactured at a mass production level, there is a Cu—Sn alloy wire which can be continuously cast and rolled and is excellent in economy, and is used as a conductor material of a bending-resistant cable for electronic equipment. It has been heavily used. Further, other copper alloy wires are also applied to various fields according to the product cost and various characteristics of the copper alloy wire.
【0004】近年の電子機器の小型化・軽量化に伴っ
て、これらに使用される電線の導体にも細径化が強く求
められており、φ0.03mm以下の導体が要求される
ようになってきており、また、今後においても、細径化
のニーズは、更に高まると考えられる。[0004] With the recent miniaturization and weight reduction of electronic equipment, the conductors of the electric wires used for these are also strongly required to be reduced in diameter, and conductors of φ0.03 mm or less are required. It is believed that the need for diameter reduction will further increase in the future.
【0005】前述したCu−Sn合金線は、ベース金属
であるタフピッチ銅にSnを添加してなる銅合金で構成
されている。タフピッチ銅は、酸素を約0.03mas
s%の濃度で含有しているため、Cu−Sn合金線の母
材中に、スズ酸化物(直径3μm程度)が分散する形で
存在する。このCu−Sn合金線を、φ0.03mm以
下、例えばφ0.016mmのサイズの超極細線に伸線
しようとする場合、スズ酸化物が原因で断線が多発する
という不具合が生じてしまう。[0005] The above-mentioned Cu-Sn alloy wire is formed of a copper alloy obtained by adding Sn to tough pitch copper as a base metal. Tough pitch copper is about 0.03mass oxygen
Since it is contained at a concentration of s%, tin oxide (about 3 μm in diameter) is dispersed in the base material of the Cu—Sn alloy wire. In the case where this Cu-Sn alloy wire is to be drawn into an ultra-fine wire having a size of φ0.03 mm or less, for example, φ0.016 mm, a problem occurs in that disconnection frequently occurs due to tin oxide.
【0006】この不具合に対処する方法として、銅合金
の母材として無酸素銅を用い、無酸素銅にSnを添加す
ることでスズ酸化物の生成を極力抑制する方法が採用さ
れている。To cope with this problem, a method has been adopted in which oxygen-free copper is used as a base material of a copper alloy, and the formation of tin oxide is minimized by adding Sn to the oxygen-free copper.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、Cu−
Sn合金線を製造するための連続鋳造設備(例えばSC
R連続鋳造圧延設備)は、大規模な設備であるため、大
気中において連続鋳造・圧延を行っており、スズ酸化物
の生成を完全に抑制することは困難である。また、連続
鋳造工程や圧延工程において、設備構成部材(例えば、
炉壁・鋳型壁に使用する耐火材など)がCu−Sn合金
線に異物として混入するおそれがある。これらの原因に
より、Cu−Sn合金線を超極細線に伸線する際の極細
伸線性が低下する。However, Cu-
Continuous casting equipment (for example, SC) for producing Sn alloy wire
Since the R continuous casting and rolling equipment is a large-scale equipment, continuous casting and rolling are performed in the atmosphere, and it is difficult to completely suppress the formation of tin oxide. In the continuous casting process and the rolling process, equipment components (for example,
There is a possibility that refractory materials used for the furnace wall and the mold wall) may be mixed as foreign matter into the Cu-Sn alloy wire. Due to these causes, the ultrafine wire drawing when the Cu—Sn alloy wire is drawn into an ultrafine wire is reduced.
【0008】一方、Cu−Sn合金線の製造中に、線材
内に鋳造欠陥(ブローホール)が生じるおそれがある。
内部にブローホールを有する線材に圧延加工を施して圧
延線材を形成すると、ブローホールが圧延線材表面の傷
となるおそれがある。ここで、線材の表面に近い部分に
形成されたブローホールは、圧延される際に破れ、表面
欠陥となってしまう。また、線材の中央部近傍に形成さ
たブローホールは、圧延によって全てのブローホールが
完全に潰されてしまい、欠陥が消滅する場合もあるが、
ブローホールが完全に潰されない場合には、後工程であ
る高温での熱処理時や、エナメルなどの絶縁体を被覆す
る際の高温雰囲気での塗装又は押出し時に、欠陥内部に
残留するガスが体積膨張して破裂することで表面欠陥が
生じるおそれがある。伸線工程における中間熱処理時
に、このようなブローホールによる表面欠陥が生じた場
合、後工程の極細伸線工程において断線原因となるた
め、線材内にブローホールが生じないようにCu−Sn
合金線を鋳造する必要がある。On the other hand, during the production of the Cu—Sn alloy wire, casting defects (blow holes) may be generated in the wire.
When rolling is performed on a wire having a blowhole therein to form a rolled wire, the blowhole may damage the surface of the rolled wire. Here, the blowhole formed in a portion close to the surface of the wire is broken during rolling, resulting in a surface defect. Also, the blowholes formed near the center of the wire rod, all the blowholes are completely crushed by rolling, and defects may disappear,
If the blowhole is not completely crushed, the gas remaining inside the defect will expand in volume during heat treatment at a high temperature, which is a subsequent process, or during coating or extrusion in a high temperature atmosphere when coating an insulator such as enamel. Rupture may cause surface defects. If surface defects caused by such blowholes occur during the intermediate heat treatment in the wire drawing process, they may cause wire breakage in the subsequent ultrafine wire drawing process, so that Cu-Sn is formed so that blowholes do not occur in the wire.
It is necessary to cast an alloy wire.
【0009】以上の事情を考慮して創案された本発明の
目的は、引張強さ、伸び、及び導電率が良好で、かつ、
極細伸線性が良好な耐屈曲ケーブル用導体及びその製造
方法を提供することにある。An object of the present invention, which has been made in view of the above circumstances, is that tensile strength, elongation, and electrical conductivity are good, and
An object of the present invention is to provide a conductor for a flexible cable having excellent ultrafine wire drawing properties and a method for producing the same.
【0010】[0010]
【課題を解決するための手段】上記目的を達成すべく本
発明に係る耐屈曲ケーブル用導体は、銅合金の線材で構
成され、耐屈曲性が要求されるケーブルに用いられる導
体において、純度99.99wt%以上の無酸素銅に、
純度99.99wt%以上のInを0.05〜0.70
mass%、純度99.9wt%以上のPを0.000
1〜0.003mass%の濃度範囲で含有させてなる
銅合金を線材に形成したものである。In order to achieve the above object, a conductor for a flexible cable according to the present invention is made of a copper alloy wire, and has a purity of 99% in a conductor used for a cable which is required to be flexible. More than 99% by weight of oxygen-free copper
0.05 to 0.70 of In with a purity of 99.99 wt% or more
mass%, P having a purity of 99.9 wt% or more is 0.000%.
A copper alloy formed in a concentration range of 1 to 0.003 mass% is formed on a wire.
【0011】以上の構成によれば、銅合金を構成する母
材の純度、添加物の純度、及び銅合金中における添加物
の濃度を規定することで、所望の引張強さ、伸び、及び
導電率を有する導体を得ることができる。According to the above arrangement, the desired tensile strength, elongation, and conductivity can be obtained by defining the purity of the base material constituting the copper alloy, the purity of the additive, and the concentration of the additive in the copper alloy. A conductor having a ratio can be obtained.
【0012】一方、本発明に係る耐屈曲ケーブル用導体
の製造方法は、高純度の黒鉛るつぼを用い、純度99.
99wt%以上の無酸素銅を0.1Pa以下の低圧雰囲
気下で溶解した後、雰囲気を不活性ガスで置換し、その
後、無酸素銅溶湯に純度99.99wt%以上のIn及
び純度99.9wt%以上のPを添加し、In及びPの
濃度がそれぞれ0.05〜0.70mass%、0.0
001〜0.003mass%の銅合金溶湯を形成し、
その銅合金溶湯を用いて銅合金線材を形成し、その銅合
金線材に冷間伸線加工を施すものである。On the other hand, the method for manufacturing a conductor for a flexible cable according to the present invention uses a high-purity graphite crucible and has a purity of 99.
After dissolving 99 wt% or more of oxygen-free copper in a low-pressure atmosphere of 0.1 Pa or less, the atmosphere is replaced with an inert gas, and then the oxygen-free copper molten metal has an purity of 99.99 wt% or more of In and a purity of 99.9 wt%. % Or more of P, and the concentrations of In and P are 0.05 to 0.70 mass% and 0.0%, respectively.
001-0.003 mass% copper alloy melt is formed,
A copper alloy wire is formed using the molten copper alloy, and the copper alloy wire is subjected to cold drawing.
【0013】以上の方法によれば、銅合金中に合金元素
の酸化物及び微小な介在物の混入のおそれがない高品質
の導体を得ることができ、その結果、所望の引張強さ、
伸び、及び導電率を有し、かつ、極細伸線性も良好な導
体となる。According to the above method, it is possible to obtain a high-quality conductor which is free from mixing of oxides of alloy elements and minute inclusions in the copper alloy.
The conductor has elongation and conductivity, and also has excellent fine wire drawability.
【0014】[0014]
【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.
【0015】本発明者らは、Inの添加による導電率の
減少量(純銅の電気比抵抗への寄与)が、Snの添加に
よる導電率の減少量と比較して約1/3であることか
ら、母材である銅にInとSnをそれぞれ同量づつ添加
した場合、略同じ強度でありながら、Cu−In合金線
の方が、従来最も使用されているCu−Sn合金線より
も導電率が良好となるということ(特公昭62−102
88号公報など参照)、及びInと共にPを含有させる
ことで、銅合金を鋳造形成した場合における鋳造材中の
鋳造欠陥(ブローホール)の発生を抑制することができ
るということに着目した。The present inventors have found that the amount of decrease in conductivity due to the addition of In (contribution to the electrical resistivity of pure copper) is about 1/3 of the amount of decrease in conductivity due to the addition of Sn. Therefore, when the same amounts of In and Sn are added to copper as the base material, the Cu-In alloy wire is more conductive than the Cu-Sn alloy wire most conventionally used, while having approximately the same strength. That the rate is good (Japanese Patent Publication No. 62-102)
No. 88 and the like), and by including P together with In, attention has been paid to the fact that the occurrence of casting defects (blow holes) in a cast material when a copper alloy is formed by casting can be suppressed.
【0016】本実施の形態に係る耐屈曲ケーブル用導体
は、純度99.99wt%以上の無酸素銅に、純度9
9.99wt%以上のInを0.05〜0.70mas
s%、純度99.9wt%以上のPを0.0001〜
0.003mass%の濃度範囲で含有させてなる銅合
金を、外径が0.01〜0.05mmの線材に形成して
なるものであり、引張強さが784MPa(80kgf
/mm2)以上、好ましくは800MPa以上、伸びが
0.5%以上、好ましくは2.0%以上、導電率が75
%IACS以上という機械的特性を有している。The conductor for a flexible cable according to this embodiment is obtained by adding oxygen-free copper having a purity of 99.99 wt% or more to a purity of 99.99 wt% or more.
0.05 to 0.70 mass of In of 9.99 wt% or more
s%, P having a purity of 99.9 wt% or more is 0.0001-
A copper alloy containing 0.003 mass% in a concentration range is formed into a wire having an outer diameter of 0.01 to 0.05 mm, and has a tensile strength of 784 MPa (80 kgf).
/ Mm 2 ) or more, preferably 800 MPa or more, elongation of 0.5% or more, preferably 2.0% or more, and conductivity of 75% or more.
It has mechanical properties of not less than% IACS.
【0017】線材の外径は、導体の細径化という観点か
ら0.05mm以下が好ましく、また、所望の引張強さ
を確保するという観点から0.01mm以上が好まし
い。The outer diameter of the wire is preferably 0.05 mm or less from the viewpoint of reducing the diameter of the conductor, and is preferably 0.01 mm or more from the viewpoint of securing a desired tensile strength.
【0018】線材中に形成される微小介在物の大きさ
は、3μm(0.003mm)未満に制御することが好
ましい。The size of the fine inclusions formed in the wire is preferably controlled to less than 3 μm (0.003 mm).
【0019】線材の外周に、Sn−Pbはんだ、Ag、
Sn、Ni、又は鉛フリーはんだのメッキ被膜を形成す
ることが好ましい。これによって、導体の耐食性やはん
だ付性が良好となる。On the outer periphery of the wire, Sn-Pb solder, Ag,
It is preferable to form a plating film of Sn, Ni, or lead-free solder. This improves the corrosion resistance and solderability of the conductor.
【0020】次に、本実施の形態の作用を説明する。Next, the operation of the present embodiment will be described.
【0021】本実施の形態においては、母材の銅とし
て、純度99.99wt%以上の無酸素銅を用いてい
る。これによって、原料段階での介在物(極細伸線時に
おける断線の原因)の混入を防止することができるよう
になり、また、銅合金の溶解製造および鋳造中、合金元
素の酸化物(介在物)の生成源を低減することができ
る。また、無酸素銅に添加するIn,Pとして純度9
9.99wt%以上のIn及び純度99.9wt%のP
を用いることで、銅合金の溶解・鋳造中、原料段階での
介在物の混入を防止し、合金元素の酸化物(介在物)の
生成源を低減することができる。In the present embodiment, oxygen-free copper having a purity of 99.99 wt% or more is used as the base copper. This makes it possible to prevent inclusion of inclusions (a cause of disconnection at the time of extra fine wire drawing) at the raw material stage, and also to prevent oxides (inclusions) of alloy elements during melting production and casting of the copper alloy. ) Can be reduced. Further, the purity of In and P added to oxygen-free copper is 9%.
9.99 wt% or more of In and P having a purity of 99.9 wt%
By using, the inclusion of inclusions at the raw material stage during melting and casting of the copper alloy can be prevented, and the generation source of oxides (inclusions) of alloy elements can be reduced.
【0022】Inの濃度を0.05〜0.70mass
%と制御することで、所望の引張強さ、伸び、及び導電
率を得ることができる。濃度が0.05mass%未満
では、所望の引張強さ及び伸びが得ることが困難とな
り、また、濃度が0.70mass%を超えると、導電
率の低下が著しくなる。ここで、より好ましいInの濃
度は、0.15〜0.40mass%である。The concentration of In is 0.05 to 0.70 mass.
By controlling the percentage, desired tensile strength, elongation, and electrical conductivity can be obtained. If the concentration is less than 0.05 mass%, it becomes difficult to obtain the desired tensile strength and elongation, and if the concentration exceeds 0.70 mass%, the electrical conductivity is significantly reduced. Here, a more preferable concentration of In is 0.15 to 0.40 mass%.
【0023】Pの濃度を、0.0001〜0.003m
ass%と制御することで、鋳造材中の鋳造欠陥(ブロ
ーホール)の発生を抑制することができる。濃度が0.
0001mass%未満では、鋳造材中のブローホール
の低減効果を期待することができず、また、濃度が0.
003mass%を超えると、Pの固溶による導電率の
低下が著しくなる。The concentration of P is 0.0001 to 0.003 m
By controlling ass%, it is possible to suppress the occurrence of casting defects (blow holes) in the cast material. The concentration is 0.
If it is less than 0001 mass%, the effect of reducing blowholes in the cast material cannot be expected, and the concentration is less than 0.1%.
If it exceeds 003 mass%, the decrease in conductivity due to solid solution of P becomes remarkable.
【0024】線材中に含まれる微小介在物の大きさを3
μm(0.003mm)未満に制御することで、φ0.
01mmレベルの極細伸線加工が可能となる。一般に、
線径の1/3のサイズの異物が線材中に存在すると、そ
の異物により伸線加工中に断線が生じると言われている
ことから、本実施の形態においては、前述したように各
原料(金属元素)の純度及び濃度を制御することで、線
材中の微小介在物の大きさを3μm未満に制御し、φ
0.0lmmレベルの極細伸線加工を可能にしている。The size of the fine inclusions contained in the wire is 3
μm (0.003 mm) to control φ0.
Ultra-fine wire drawing at the level of 01 mm is possible. In general,
It is said that if a foreign matter having a size of 1 / of the wire diameter is present in the wire, the foreign matter is likely to cause disconnection during the wire drawing process. Therefore, in the present embodiment, each material ( By controlling the purity and concentration of the metal element, the size of the fine inclusions in the wire is controlled to less than 3 μm, and φ
It enables ultra-fine wire drawing on the order of 0.0 lmm.
【0025】以上より、本実施の形態に係る導体におい
ては、784MPa以上(80kgf/mm2)、好ま
しくは800MPa以上の引張強さを得ることができ
る。これによって、十分な破断荷重が得られ、かつ、十
分な屈曲寿命を得ることができる。また、本実施の形態
に係る導体においては、0.5%以上、好ましくは2.
0%以上の伸びを得ることができる。これによって、耐
屈曲ケーブルの導体として使用した場合に、導体に曲げ
歪が負荷されても破断することがなく、十分な屈曲寿命
が得られる。さらに、本実施の形態に係る導体において
は、75%IACS以上の導電率を得ることができる。
これによって、通電の際のジュール熱により伝送ロスが
増大するおそれはなく、信号線として要求される特性を
十分に満足することができる。As described above, in the conductor according to the present embodiment, a tensile strength of 784 MPa or more (80 kgf / mm 2 ), preferably 800 MPa or more can be obtained. Thereby, a sufficient breaking load can be obtained, and a sufficient bending life can be obtained. Further, in the conductor according to the present embodiment, 0.5% or more, preferably 2.
Elongation of 0% or more can be obtained. Accordingly, when the conductor is used as a conductor of a flex-resistant cable, the conductor does not break even when a bending strain is applied to the conductor, and a sufficient flex life can be obtained. Furthermore, in the conductor according to the present embodiment, a conductivity of 75% IACS or more can be obtained.
Thus, there is no possibility that transmission loss increases due to Joule heat at the time of energization, and the characteristics required for the signal line can be sufficiently satisfied.
【0026】また、本実施の形態においては、耐屈曲ケ
ーブル用導体について説明を行ったが、本発明に係る導
体を複数本撚り合わせて(同心撚り又は集合撚り等)撚
線としてもよいことは言うまでもない。また、本発明に
係る導体及びその導体を用いた撚線を内部導体とし、そ
の内部導体の外周にシース等を設けることで、各種のケ
ーブルとしてもよいことは言うまでもない。Also, in the present embodiment, the description has been given of the conductor for the flexible cable. However, it is not limited that a plurality of conductors according to the present invention may be twisted (concentric twisting or collective twisting) into a stranded wire. Needless to say. It is needless to say that the conductor according to the present invention and a stranded wire using the conductor are used as an internal conductor, and a sheath or the like is provided on the outer periphery of the internal conductor, so that various cables may be used.
【0027】次に、本発明に係る耐屈曲ケーブル用導体
の製造方法について説明する。Next, a method of manufacturing the conductor for a flexible cable according to the present invention will be described.
【0028】真空溶解可能な小型の連続鋳造機の真空チ
ャンバー内に、高純度の黒鉛るつぼを配置すると共に、
真空チャンバー内の雰囲気を0.1Pa以下の低圧雰囲
気(ほぼ真空雰囲気)に調整する。A high-purity graphite crucible is placed in a vacuum chamber of a small continuous casting machine capable of vacuum melting,
The atmosphere in the vacuum chamber is adjusted to a low-pressure atmosphere of 0.1 Pa or less (almost a vacuum atmosphere).
【0029】次に、低圧雰囲気下の黒鉛るつぼ内で、純
度99.99wt%以上の無酸素銅を溶解し、そのまま
の状態で一定時間保持する。その後、真空チャンバー内
に不活性ガス(例えば、アルゴンガスや窒素ガス)を注
入し、真空チャンバー内の雰囲気を不活性ガス雰囲気に
置換する。Next, oxygen-free copper having a purity of 99.99 wt% or more is dissolved in a graphite crucible under a low-pressure atmosphere, and is maintained for a certain period of time. After that, an inert gas (eg, argon gas or nitrogen gas) is injected into the vacuum chamber, and the atmosphere in the vacuum chamber is replaced with an inert gas atmosphere.
【0030】次に、不活性ガス雰囲気下の黒鉛るつぼ内
の無酸素銅溶湯に、純度99.99wt%以上のIn及
び純度99.9wt%以上のPを添加して溶解を行い、
In及びPの濃度がそれぞれ0.05〜0.70mas
s%、0.0001〜0.003mass%の銅合金溶
湯を形成する。Next, In with a purity of 99.99 wt% or more and P with a purity of 99.9 wt% or more are added to the oxygen-free copper melt in the graphite crucible under an inert gas atmosphere, and melting is performed.
The concentration of In and P is 0.05 to 0.70mas, respectively.
s%, 0.0001 to 0.003 mass% of a copper alloy melt.
【0031】次に、この銅合金溶湯を用いて荒引き線
(銅合金線材)を形成し、この荒引き線に冷間伸線加工
を施して、外径が0.01〜0.05mm、引張強さが
784MPa(80kgf/mm2)以上、伸びが0.
5%以上、導電率が75%IACS以上の導体を作製す
る。この時、荒引き線に第1冷間伸線加工を施して所望
の径に伸線した後、この伸線材に、必要に応じて少なく
とも1回の焼鈍処理及び冷間伸線加工を施し、導体を形
成するようにしてもよい。Next, a rough drawn wire (copper alloy wire) is formed by using the molten copper alloy, and the rough drawn wire is subjected to cold drawing to have an outer diameter of 0.01 to 0.05 mm. Tensile strength is 784 MPa (80 kgf / mm 2 ) or more, and elongation is 0.
A conductor having a conductivity of 5% or more and a conductivity of 75% IACS or more is produced. At this time, after performing the first cold drawing on the rough drawn wire and drawing to a desired diameter, the drawn material is subjected to at least one annealing treatment and cold drawing as needed. A conductor may be formed.
【0032】溶解に用いる黒鉛るつぼの純度としては、
黒鉛濃度が99.99wt%以上、より好ましくは9
9.999wt%以上であることが好ましい。The purity of the graphite crucible used for melting is as follows:
Graphite concentration of 99.99 wt% or more, more preferably 9
It is preferably at least 9.999 wt%.
【0033】本実施の形態に係る製造方法においては、
無酸素銅及び銅合金を溶解製造する際に、高純度の黒鉛
るつぼを用いることで、溶解時にるつぼから無酸素銅溶
湯又は銅合金溶湯中に異物が混入するのを防止すること
ができる。In the manufacturing method according to the present embodiment,
By using a high-purity graphite crucible when melting and manufacturing oxygen-free copper and a copper alloy, it is possible to prevent foreign substances from being mixed into the oxygen-free copper melt or the copper alloy melt from the crucible during melting.
【0034】また、無酸素銅を溶解製造する際に、0.
1Pa以下の低圧雰囲気下で溶解を行うことで、無酸素
銅中に含まれている(内在している)気泡を、無酸素銅
溶湯中から排出・排除することができる。その結果、鋳
造材中におけるブローホールの発生を更に低減すること
ができる。Further, when dissolving and producing oxygen-free copper, 0.1%
By dissolving in a low-pressure atmosphere of 1 Pa or less, bubbles contained in (oxygen) in oxygen-free copper can be discharged and eliminated from the molten oxygen-free copper. As a result, the occurrence of blowholes in the cast material can be further reduced.
【0035】さらに、銅合金を溶解製造する際に、不活
性ガス雰囲気下で溶解を行うことで、銅合金中に合金元
素の酸化物(介在物)が生成するのを抑制することがで
きる。Further, when the copper alloy is produced by melting, the melting is performed in an inert gas atmosphere, whereby the generation of oxides (inclusions) of alloy elements in the copper alloy can be suppressed.
【0036】また、例えばφ8mmの荒引き線をφ0.
03mmの超極細線に伸線する際、1回の伸線加工で所
望の径を得ようとすると、減面率(99.9986%)
が非常に大きくなってしまい、加工限界に達して断線が
生じるおそれがある。そこで、本実施の形態に係る製造
方法においては、荒引き線に伸線加工を施して導体を形
成する際、伸線加工を複数回に分けて行うことで、1回
当たりの伸線加工の減面率を小さくすることができ、伸
線加工中に断線が生じるのを防ぐことができる。Further, for example, a rough drawing line of φ8 mm is drawn with φ0.
When trying to obtain a desired diameter by a single drawing process when drawing into an ultra-fine wire of 03 mm, the area reduction rate (99.9986%)
Becomes extremely large, and may reach the processing limit to cause disconnection. Therefore, in the manufacturing method according to the present embodiment, when the conductor is formed by performing the wire drawing process on the rough drawn wire, the wire drawing process is performed in a plurality of times, so that the wire drawing process per one time is performed. The reduction in area can be reduced, and the occurrence of disconnection during wire drawing can be prevented.
【0037】[0037]
【実施例】<試験1>真空溶解可能な小型の連続鋳造機
の真空チャンバー内に、黒鉛純度が99.999wt%
の黒鉛るつぼを配置すると共に、真空チャンバー内の雰
囲気を0.001Paのほぼ真空雰囲気に調整する。EXAMPLE <Test 1> Graphite purity was 99.999 wt% in a vacuum chamber of a small continuous casting machine capable of vacuum melting.
And the atmosphere in the vacuum chamber is adjusted to approximately a vacuum atmosphere of 0.001 Pa.
【0038】次に、真空雰囲気下の黒鉛るつぼ内で、純
度99.9999wt%の無酸素銅を溶解して無酸素銅
溶湯を製造し、そのままの状態で5分間保持する。その
後、真空チャンバー内に高純度アルゴンガスを注入し、
真空チャンバー内の雰囲気をArガス雰囲気に置換す
る。Next, in a graphite crucible under a vacuum atmosphere, oxygen-free copper having a purity of 99.9999 wt% is dissolved to produce a molten oxygen-free copper, and the molten state is maintained for 5 minutes. After that, high-purity argon gas is injected into the vacuum chamber,
The atmosphere in the vacuum chamber is replaced with an Ar gas atmosphere.
【0039】Arガス雰囲気下の黒鉛るつぼ内の無酸素
銅溶湯に、純度99.99wt%のIn及び純度99.
9wt%のPを添加して溶解を行い、In、P、及び酸
素の濃度がそれぞれ異なる8種類の銅合金溶湯を形成
し、それらの銅合金溶湯を用いてφ8mmの荒引き線を
作製する(試験片1〜3(実施例)および試験片4〜8
(比較例))。In the oxygen-free copper melt in the graphite crucible under an Ar gas atmosphere, In with purity of 99.99 wt% and purity of 99.99 wt% were added.
Melting is performed by adding 9 wt% of P to form eight types of copper alloy melts having different concentrations of In, P, and oxygen, respectively, and using the copper alloy melts, a rough drawing wire of φ8 mm is produced ( Test pieces 1 to 3 (Example) and test pieces 4 to 8
(Comparative example)).
【0040】<試験2>SCR連続鋳造圧延装置の溶解
炉内で、酸素濃度が約0.03mass%のタフピッチ
銅を溶解してタフピッチ銅溶湯を製造する。その後、タ
フピッチ銅溶湯に、純度99.99wt%のIn及び純
度99.9wt%のPを添加して溶解を行い、In、
P、及び酸素の濃度がそれぞれ異なる2種類の銅合金溶
湯を形成し、それらの銅合金溶湯を用いてφ8mmの荒
引き線を作製する(試験片9,10(比較例))。<Test 2> In a melting furnace of an SCR continuous casting and rolling apparatus, tough pitch copper having an oxygen concentration of about 0.03 mass% is melted to produce a tough pitch copper melt. Thereafter, to the tough pitch copper molten metal, In with a purity of 99.99 wt% and P with a purity of 99.9 wt% were added and dissolved, and In,
Two types of copper alloy melts having different concentrations of P and oxygen are formed, and a rough drawn wire having a diameter of 8 mm is manufactured using the copper alloy melts (test pieces 9 and 10 (comparative examples)).
【0041】<試験3>SCR連続鋳造圧延装置の溶解
炉内で、酸素濃度が約0.001mass%のタフピッ
チ銅を溶解してタフピッチ銅溶湯を製造する。その後、
タフピッチ銅溶湯に、純度99.99wt%のIn及び
純度99.9wt%のPを添加して溶解を行い、In、
P、及び酸素の濃度がそれぞれ異なる2種類の銅合金溶
湯を形成し、それらの銅合金溶湯を用いてφ8mmの荒
引き線を作製する(試験片11,12(比較例))。<Test 3> In a melting furnace of an SCR continuous casting and rolling machine, tough pitch copper having an oxygen concentration of about 0.001 mass% is melted to produce a tough pitch copper melt. afterwards,
To the tough pitch copper melt, 99.99 wt% of pure In and 99.9 wt% of P are added and dissolved, and In,
Two types of copper alloy melts having different concentrations of P and oxygen are formed, and a rough drawn wire having a diameter of 8 mm is manufactured using the copper alloy melts (test pieces 11 and 12 (comparative examples)).
【0042】試験片1〜12の成分濃度及び製造に用い
た鋳造設備を表1に示す。Table 1 shows the component concentrations of the test pieces 1 to 12 and the casting equipment used for the production.
【0043】[0043]
【表1】 [Table 1]
【0044】次に、各試験片1〜12の縦断面の組織観
察を光学顕微鏡を用いて行い、組織中における合金元素
の酸化物(介在物)及び鋳造欠陥(ブローホール)の有
無を観察した。また、各試験片1〜12に第1冷間伸線
加工を施してφ0.9mmに伸線した後、その伸線材に
再結晶のための焼鈍処理を施し、その焼鈍処理後の伸線
材に第2冷間伸線加工を施してφ0.016mmの超極
細線材を作製する。この時、100km以上の長さに亘
って断線を生じることなく伸線可能であるかどうかで、
極細伸線性の評価を行った。これらの観察結果及び評価
結果を表2に示す。Next, the structure of the longitudinal section of each of the test pieces 1 to 12 was observed using an optical microscope, and the presence or absence of alloy element oxides (inclusions) and casting defects (blow holes) in the structure was observed. . Further, after performing the first cold drawing on each of the test pieces 1 to 12 and drawing to φ0.9 mm, the drawn material is subjected to an annealing treatment for recrystallization, and the drawn material after the annealing treatment is applied to the drawn material. The second cold drawing is performed to produce an ultra-fine wire having a diameter of 0.016 mm. At this time, whether the wire can be drawn without breaking the wire over a length of 100 km or more,
The ultrafine wire drawing was evaluated. Table 2 shows these observation results and evaluation results.
【0045】また、各試験片1〜12の、引張強さ(M
Pa(kgf/mm2))、伸び(%)、及び導電率
(%IACS)の測定を行った。これらの測定結果を表
3に示す。Further, the tensile strength (M
Pa (kgf / mm 2 )), elongation (%), and conductivity (% IACS) were measured. Table 3 shows the measurement results.
【0046】[0046]
【表2】 [Table 2]
【0047】[0047]
【表3】 [Table 3]
【0048】表2,表3に示すように、小型連続鋳造機
を用いて作製した試験片1〜8は、無酸素銅を真空溶解
した後、Arガス雰囲気下で銅合金の溶解製造を行って
いるため、合金組織中に合金元素の酸化物は観察されな
かった。これに対して、SCR連続鋳造圧延装置を用い
て作製した試験片9〜12は、無酸素銅と比較して酸素
濃度の高いタフピッチ銅を大気中で溶解した後、同じく
大気中で銅合金の溶解製造を行っているため、合金組織
中に合金元素の酸化物が観察された。具体的には、試験
片9,10においては、粒径が約4μmのIn−Cu−
O系化合物の粒子が多数と、粒径が約8μmのSiC粒
子が観察された。また、試験片11,12においては、
粒径が約8μmのSiC粒子が観察された。As shown in Tables 2 and 3, the test pieces 1 to 8 produced by using the small continuous caster were prepared by melting oxygen-free copper in a vacuum and then dissolving and manufacturing a copper alloy in an Ar gas atmosphere. Therefore, no oxide of the alloy element was observed in the alloy structure. On the other hand, the test pieces 9 to 12 produced by using the SCR continuous casting and rolling apparatus were prepared by dissolving tough pitch copper having a higher oxygen concentration in the atmosphere as compared with oxygen-free copper in the atmosphere, and then similarly using the copper alloy in the atmosphere. Oxide of alloy element was observed in the alloy structure due to melting production. Specifically, in the test pieces 9 and 10, In-Cu-
Many O-based compound particles and SiC particles having a particle size of about 8 μm were observed. In the test pieces 11 and 12,
SiC particles having a particle size of about 8 μm were observed.
【0049】また、試験片1〜4,8,9,11は、P
濃度が規定範囲(0.0001〜0.003mass
%)内であるため、合金組織中にブローホールは観察さ
れなかった。これに対して、試験片5〜7,10,12
は、P濃度が規定範囲外であるため、合金組織中にブロ
ーホールが観察された。The test pieces 1 to 4, 8, 9, and 11 are P
The concentration is within a specified range (0.0001 to 0.003 mass)
%), No blowholes were observed in the alloy structure. In contrast, test pieces 5 to 7, 10, 12
Since the P concentration was out of the specified range, blowholes were observed in the alloy structure.
【0050】これらの結果、試験片1〜4,8は、合金
組織中に、合金元素の酸化物及びブローホールのどちら
も観察されなかったことから、極細伸線性が良好であっ
た。これに対して、試験片5〜7,9〜12は、合金組
織中に、合金元素の酸化物又はブローホールのいずれか
一方が観察されたことから、極細伸線性が良好でなく、
断線回数に多少の差はあるものの伸線中に断線が生じ
た。ここで、試験片5〜7においては、断線部の破断面
に合金元素の酸化物は観察されなかったことから、断線
はブローホールによるものとわかる。また、試験片9〜
12の内、特に試験片9,11においては、断線部の破
断面にブローホールは観察されなかったことから、断線
は合金元素の酸化物によるものとわかる。As a result, the test pieces 1 to 4 and 8 exhibited good fine wire drawability because neither the oxide of the alloy element nor the blowhole was observed in the alloy structure. On the other hand, the test pieces 5 to 7, and 9 to 12 did not have good fine wire drawability because either the oxide of the alloy element or the blowhole was observed in the alloy structure.
Although there was a slight difference in the number of disconnections, disconnection occurred during drawing. Here, in Test pieces 5 to 7, no oxide of the alloying element was observed on the fractured surface of the broken portion, indicating that the disconnection was due to blow holes. In addition, test pieces 9 to
In No. 12, especially in the test pieces 9 and 11, no blowhole was observed in the fracture surface of the disconnection part, so it can be understood that the disconnection was caused by the oxide of the alloy element.
【0051】次に、試験片1〜3,5〜7,9〜12
は、In濃度が規定範囲(0.05〜0.70mass
%)内であるため、所望の引張強さ、伸び、及び導電率
が得られた。これに対して、試験片4,8は、In濃度
が規定範囲外であるため、所望の引張強さ又は導電率が
得られなかった。具体的には、試験片4においては、I
n濃度が0.03mass%と規定範囲よりも低いた
め、引張強さが665MPa(67.8kgf/m
m2)と低かった。また、試験片8においては、In濃
度が0.90mass%と規定範囲よりも高いため、導
電率が71.0%IACSと低かった。Next, test pieces 1-3, 5-7, 9-12
Means that the In concentration is within a specified range (0.05 to 0.70 mass).
%), The desired tensile strength, elongation, and conductivity were obtained. On the other hand, in the test pieces 4 and 8, the desired tensile strength or electrical conductivity could not be obtained because the In concentration was outside the specified range. Specifically, in test piece 4, I
Since the n concentration is 0.03 mass%, which is lower than the specified range, the tensile strength is 665 MPa (67.8 kgf / m
m 2 ). In the test piece 8, since the In concentration was higher than the specified range of 0.90 mass%, the conductivity was as low as 71.0% IACS.
【0052】以上より、銅合金のIn濃度、P濃度、及
び酸素濃度が規定範囲内であり、かつ、小型連続鋳造機
を用いて作製した試験片1〜3のみが、鋳造欠陥がな
く、かつ、合金元素の酸化物及びるつぼ材(炉材)等の
介在物が鋳造材に混入することがなく、高品質の鋳造材
を得ることができ、その結果、784MPa(80kg
f/mm2)以上の引張強さ、0.5%以上の伸び、及
び75%IACS以上の導電率が得られ、かつ、極細伸
線性も良好となる。As described above, only the test pieces 1 to 3 produced by using the small-sized continuous casting machine had the In concentration, the P concentration and the oxygen concentration of the copper alloy within the specified ranges, and had no casting defects. In addition, oxides of alloy elements and inclusions such as crucible materials (furnace materials) do not mix with the cast material, and a high-quality cast material can be obtained. As a result, 784 MPa (80 kg)
f / mm 2 ) or more, an elongation of 0.5% or more, and a conductivity of 75% IACS or more are obtained, and the fine wire drawability is also good.
【0053】以上、本発明の実施の形態は、上述した実
施の形態に限定されるものではなく、他にも種々のもの
が想定されることは言うまでもない。As described above, the embodiments of the present invention are not limited to the above-described embodiments, and it is needless to say that various other embodiments are also conceivable.
【0054】[0054]
【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。 (1) 銅合金を構成する母材の純度、添加物の純度、
及び銅合金中における添加物の濃度を規定することで、
所望の引張強さ、伸び、及び導電率を有する導体を得る
ことができる。 (2) (1)の導体を、真空雰囲気下及び不活性ガス
雰囲気下で溶解製造することで、銅合金中に合金元素の
酸化物及び微小な介在物の混入のおそれがない高品質の
導体を得ることができ、極細伸線性が良好な導体とな
る。In summary, according to the present invention, the following excellent effects are exhibited. (1) The purity of the base material that constitutes the copper alloy, the purity of the additive,
And by specifying the concentration of additives in the copper alloy,
A conductor having the desired tensile strength, elongation, and conductivity can be obtained. (2) A high-quality conductor that is free from the risk of inclusion of oxides of alloy elements and minute inclusions in a copper alloy by melting and manufacturing the conductor of (1) under a vacuum atmosphere and an inert gas atmosphere. Can be obtained, and the conductor has an excellent fine wire drawing property.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 5/08 H01B 5/08 7/04 7/04 13/00 501 13/00 501D // C22F 1/00 625 C22F 1/00 625 630 630A 661 661A 685 685Z 686 686 (72)発明者 松井 量 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 Fターム(参考) 5G301 AA08 AA11 AA30 AB02 AB05 AB20 AD01 5G307 BA03 BB02 BC02 BC05 BC06 BC09 CA04 CB01 5G311 AB04 AD03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 5/08 H01B 5/08 7/04 7/04 13/00 501 13/00 501D // C22F 1 / 00 625 C22F 1/00 625 630 630A 661 661A 685 685Z 686 686 (72) Inventor Akira Matsui 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture AA11 AA30 AB02 AB05 AB20 AD01 5G307 BA03 BB02 BC02 BC05 BC06 BC09 CA04 CB01 5G311 AB04 AD03
Claims (8)
求されるケーブルに用いられる導体において、純度9
9.99wt%以上の無酸素銅に、純度99.99wt
%以上のInを0.05〜0.70mass%、純度9
9.9wt%以上のPを0.0001〜0.003ma
ss%の濃度範囲で含有させてなる銅合金を線材に形成
したことを特徴とする耐屈曲ケーブル用導体。1. A conductor which is made of a copper alloy wire and is used for a cable which is required to have bending resistance.
Oxygen-free copper of 9.99 wt% or more, purity 99.99 wt
% Of In 0.05-0.70 mass%, purity 9
P of 9.9 wt% or more is 0.0001 to 0.003 ma
A conductor for a bending-resistant cable, wherein a copper alloy containing ss% in a concentration range is formed in a wire.
さを3μm未満に形成した請求項1記載の耐屈曲ケーブ
ル用導体。2. The flexible cable conductor according to claim 1, wherein the size of the fine inclusions contained in the wire is less than 3 μm.
引張強さが784MPa以上、伸びが0.5%以上、導
電率が75%IACS以上である請求項1又は2記載の
耐屈曲ケーブル用導体。3. The wire has an outer diameter of 0.01 to 0.05 mm,
The flexible cable conductor according to claim 1 or 2, wherein the conductor has a tensile strength of 784 MPa or more, an elongation of 0.5% or more, and a conductivity of 75% IACS or more.
g、Sn、Ni、又は鉛フリーはんだのメッキ被膜を形
成した請求項1から3いずれかに記載の耐屈曲ケーブル
用導体。4. An Sn-Pb solder, A
The flexible cable conductor according to any one of claims 1 to 3, wherein a plated coating of g, Sn, Ni, or lead-free solder is formed.
ケーブル用導体を、複数本撚り合わせて形成したことを
特徴とする撚線。5. A stranded wire formed by twisting a plurality of flex-resistant cable conductors according to any one of claims 1 to 4.
ケーブル用導体又は撚線を導体年、その導体の外周に絶
縁層を設けたことを特徴とするケーブル。6. A cable comprising a conductor for a flexible cable or a stranded wire according to claim 1, and an insulating layer provided on the outer periphery of the conductor.
99wt%以上の無酸素銅を0.1Pa以下の低圧雰囲
気下で溶解した後、雰囲気を不活性ガスで置換し、その
後、無酸素銅溶湯に純度99.99wt%以上のIn及
び純度99.9wt%以上のPを添加し、In及びPの
濃度がそれぞれ0.05〜0.70mass%、0.0
001〜0.003mass%の銅合金溶湯を形成し、
その銅合金溶湯を用いて銅合金線材を形成し、その銅合
金線材に冷間伸線加工を施すことを特徴とする耐屈曲ケ
ーブル用導体の製造方法。7. A highly pure graphite crucible having a purity of 99.
After dissolving 99% by weight or more of oxygen-free copper in a low-pressure atmosphere of 0.1 Pa or less, the atmosphere is replaced with an inert gas, and then In and 99.9 wt. % Or more of P, and the concentrations of In and P are 0.05 to 0.70 mass% and 0.0%, respectively.
001-0.003 mass% copper alloy melt is formed,
A method for manufacturing a conductor for a flex-resistant cable, comprising forming a copper alloy wire using the molten copper alloy and subjecting the copper alloy wire to cold drawing.
後、必要に応じて焼鈍処理および冷間伸線加工を適宜繰
り返す請求項7記載の耐屈曲ケーブル用導体の製造方
法。8. The method for producing a conductor for a flex-resistant cable according to claim 7, wherein after the copper alloy wire is subjected to cold drawing, annealing and cold drawing are repeated as necessary.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001172469A JP3775244B2 (en) | 2001-06-07 | 2001-06-07 | Conductor for bending-resistant cable and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001172469A JP3775244B2 (en) | 2001-06-07 | 2001-06-07 | Conductor for bending-resistant cable and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002363668A true JP2002363668A (en) | 2002-12-18 |
JP3775244B2 JP3775244B2 (en) | 2006-05-17 |
Family
ID=19014085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001172469A Expired - Fee Related JP3775244B2 (en) | 2001-06-07 | 2001-06-07 | Conductor for bending-resistant cable and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3775244B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115423A (en) * | 2006-11-02 | 2008-05-22 | Hitachi Cable Ltd | Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor |
CN100445403C (en) * | 2005-06-10 | 2008-12-24 | 日立电线株式会社 | Soft copper alloy and soft copper alloy wire or board |
CN102543275A (en) * | 2010-10-20 | 2012-07-04 | 日立电线株式会社 | Audio/video cable |
DE112011100481T5 (en) | 2010-02-08 | 2012-12-27 | Hitachi Cable, Ltd. | Soft copper alloy brazing material, soft copper alloy braided wire, soft copper alloy braided foil, soft copper alloy braided wire, and a cable using same, coaxial cable and mixed wire |
US8779294B2 (en) | 2010-10-20 | 2014-07-15 | Hitachi Metals, Ltd. | Flexible flat cable with dilute copper alloy containing titanium and sulfur |
US9734937B2 (en) | 2011-03-17 | 2017-08-15 | Hitachi Metals, Ltd. | Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these |
US9809872B2 (en) | 2009-04-17 | 2017-11-07 | Hitachi Metals, Ltd. | Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire |
JP2021114432A (en) * | 2020-01-21 | 2021-08-05 | 日立金属株式会社 | Twisted pair cable and multicore cable |
JP7574633B2 (en) | 2020-02-06 | 2024-10-29 | 株式会社プロテリアル | Copper alloy wire, plated wire, electric wire, and cable |
-
2001
- 2001-06-07 JP JP2001172469A patent/JP3775244B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100445403C (en) * | 2005-06-10 | 2008-12-24 | 日立电线株式会社 | Soft copper alloy and soft copper alloy wire or board |
JP2008115423A (en) * | 2006-11-02 | 2008-05-22 | Hitachi Cable Ltd | Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor |
US9809872B2 (en) | 2009-04-17 | 2017-11-07 | Hitachi Metals, Ltd. | Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire |
US10030287B2 (en) | 2010-02-08 | 2018-07-24 | Hitachi Metals, Ltd. | Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same |
DE112011100481T5 (en) | 2010-02-08 | 2012-12-27 | Hitachi Cable, Ltd. | Soft copper alloy brazing material, soft copper alloy braided wire, soft copper alloy braided foil, soft copper alloy braided wire, and a cable using same, coaxial cable and mixed wire |
US8779294B2 (en) | 2010-10-20 | 2014-07-15 | Hitachi Metals, Ltd. | Flexible flat cable with dilute copper alloy containing titanium and sulfur |
US8835766B2 (en) | 2010-10-20 | 2014-09-16 | Hitachi Metals, Ltd. | Audio/video cable |
US9293231B2 (en) | 2010-10-20 | 2016-03-22 | Hitachi Metals, Ltd. | Audio/Video cable |
CN102543275A (en) * | 2010-10-20 | 2012-07-04 | 日立电线株式会社 | Audio/video cable |
US9734937B2 (en) | 2011-03-17 | 2017-08-15 | Hitachi Metals, Ltd. | Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these |
JP2021114432A (en) * | 2020-01-21 | 2021-08-05 | 日立金属株式会社 | Twisted pair cable and multicore cable |
JP7334629B2 (en) | 2020-01-21 | 2023-08-29 | 株式会社プロテリアル | Twisted pair cable and multicore cable |
JP7574633B2 (en) | 2020-02-06 | 2024-10-29 | 株式会社プロテリアル | Copper alloy wire, plated wire, electric wire, and cable |
Also Published As
Publication number | Publication date |
---|---|
JP3775244B2 (en) | 2006-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3948203B2 (en) | Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire | |
JP3941304B2 (en) | Super fine copper alloy wire, method for producing the same, and electric wire using the same | |
JP5802722B2 (en) | Aluminum wire for automobile | |
JP4311277B2 (en) | Manufacturing method of extra fine copper alloy wire | |
JP4143086B2 (en) | Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof | |
JP2001148205A (en) | Material for ultra thin copper alloy wire and its method of manufacturing | |
KR20170041164A (en) | Copper alloy wire, stranded copper alloy wire, coated electric wire, and terminal-equipped electric wire | |
JP5040140B2 (en) | Cu-Ni-Si-Zn-based copper alloy | |
JPWO2010082671A1 (en) | Aluminum alloy wire | |
JPH05311283A (en) | Cu alloy extra fine wire excellent in wire drawability and repeated bendability | |
JP2011168892A (en) | Dilute copper alloy wire, plating wire, and twisted wire | |
JP3775244B2 (en) | Conductor for bending-resistant cable and method for manufacturing the same | |
JPH11293365A (en) | Super-fine conductor for winding, and its manufacture | |
JP5376396B2 (en) | Wire conductor for wire harness | |
JP2001234309A (en) | Method for producing extra-fine copper alloy stranded wire | |
JP4973437B2 (en) | Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method | |
JPH0790430A (en) | Copper wire for extra fine wire and its production | |
JP5510879B2 (en) | Wire conductor and wire | |
JP2006307307A (en) | Wiring cable for moving part in robot | |
JP4501922B2 (en) | Cu-Ag alloy wire for coaxial cable | |
JP2006176833A (en) | Aluminum alloy for conduction, and aluminum alloy wire for conduction and method for producing the same | |
JP5896185B2 (en) | Conductor for electric wire | |
JP6853872B2 (en) | Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this | |
JP2010095777A (en) | Copper alloy conductor, trolley wire and cable using the same and method for manufacturing the copper alloy conductor | |
JP2005336579A (en) | Vibration fatigue resistant copper stranded wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3775244 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090303 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140303 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |