Nothing Special   »   [go: up one dir, main page]

CN106332522A - High-heat-conductivity graphite film - Google Patents

High-heat-conductivity graphite film Download PDF

Info

Publication number
CN106332522A
CN106332522A CN201610705884.XA CN201610705884A CN106332522A CN 106332522 A CN106332522 A CN 106332522A CN 201610705884 A CN201610705884 A CN 201610705884A CN 106332522 A CN106332522 A CN 106332522A
Authority
CN
China
Prior art keywords
graphite
film
heat
parts
pet film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610705884.XA
Other languages
Chinese (zh)
Inventor
金闯
梁豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidike New Materials Jiangsu Co Ltd
Original Assignee
Sidike New Materials Jiangsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidike New Materials Jiangsu Co Ltd filed Critical Sidike New Materials Jiangsu Co Ltd
Priority to CN201610705884.XA priority Critical patent/CN106332522A/en
Publication of CN106332522A publication Critical patent/CN106332522A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/156Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is calendered and immediately laminated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/12Ceramic
    • C09J2400/123Ceramic in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/005Presence of polyester in the release coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

The invention discloses a high-heat-conductivity graphite film which is attached between a heat dissipation piece and a heating component. The high-heat-conductivity graphite film comprises a light stripping type PET film and a heavy stripping type PET film, wherein a first heat conduction adhesive layer, a graphite layer and a second heat conduction adhesive layer are arranged between the light stripping type PET film and the heavy stripping type PET film in sequence; the graphite layer is obtained by the following technological method which comprises the following steps: 1, heating a polyimide thin film from room temperature to 250 DEG C, preserving the heat, then heating to 400 DEG C, and cooling to the room temperature; and 2, coating the upper and lower surfaces of the polyimide thin film obtained in the step 1 with a layer of graphite modifier to obtain a treated polyimide thin film, wherein the viscosity of the graphite modifier is 30,000 to 48,000 CP. The high-heat-conductivity graphite film avoids local overheat of an adhesive tape, realizes the uniformity of the heat conduction performance of the adhesive tape, and improves the stability and the reliability of the heat dissipation performance of a product.

Description

High conduction graphite film
Technical field
The present invention relates to a kind of high conduction graphite film, belong to double faced adhesive chip technology field.
Background technology
Along with modern microelectronic technology high-speed develops, electronic equipment (such as notebook computer, mobile phone, panel computer etc.) is day by day Becoming ultra-thin, light, this structure makes electronic equipment internal power density significantly improve, and in operation, produced heat is difficult to Discharge, be prone to accumulate rapidly and form high temperature.On the other hand, high temperature can reduce the performance of electronic equipment, reliability and use longevity Life.Therefore, Current electronic industry is for proposing the highest requirement as the heat sink material of heat control system core component, urgently Need a kind of high-efficiency heat conduction, light material to transfer heat away from rapidly, ensure that electronic equipment is properly functioning.
In prior art, Kapton is mostly used for flexible PCB, although has and uses polyimide film sintered obtaining Obtain graphite heat radiation fin, thus be covered on thermal source, but be constrained to the good and the bad of the product quality and performances of Kapton not Together, have influence on the performance of heat radiation two-sided pad pasting heat dispersion, there is techniques below problem: dispel the heat uneven, adhesive tape easily occurs Hot-spot, the heat dispersion that improve product is unstable, reliability performance is poor, is unfavorable for product quality management control, affects product Competitiveness.
Summary of the invention
It is an object of the present invention to provide a kind of high conduction graphite film, this high conduction graphite film is the most equal Improve heat conductivility, it is to avoid adhesive tape hot-spot, it is achieved that while the uniformity of adhesive tape heat conductivility, improve product Heat dispersion stability, reliability, greatly reduce the cost of product.
For reaching above-mentioned purpose, the technical solution used in the present invention is: a kind of high conduction graphite film, described high conductive graphite Film fits between radiating piece and heat generating components, and described high conduction graphite film includes light strippable PET film and weight strippable PET Film, is disposed with the first heat-conducting glue adhesion coating, graphite linings and second between this light strippable PET film and weight strippable PET film and leads Hot glue adhesion coating;Described graphite linings is obtained by following process, and this process comprises the following steps:
Step one, Kapton is risen to 250 DEG C from room temperature, after rising to 400 DEG C after insulation, be down to room temperature;
Step 2, it is coated with one layer of graphite modified dose of acquisition on the upper and lower surface of the Kapton through step one and processes After Kapton, the viscosity of described graphite modified dose is 30000 ~ 48000CP;
Described graphite modified dose is made up of the component of following weight portion: benzophenone tetracarboxylic dianhydride 23 parts, pyromellitic acid anhydride 12 parts, MDA 26.5 parts, dimethylformamide 34 parts, ethylene glycol 2.2 parts, polydimethylsiloxane 2 parts;
Step 3, will process after Kapton be warming up to 800 DEG C, be warming up to 1200 DEG C after insulation, after insulation cool down, Thus obtain the carbonized film of pre-burned;
Step 4, employing calender roll the carbonized film of the pre-burned of described step 4;
Step 5, it is warming up to 2400 DEG C, after insulation, is warming up to 2900 DEG C again, cool down after insulation, thus obtain the main graphite fired Film;
Step 6, the graphite film that then master of step 5 gained fires carry out rolling thus obtain described graphite linings.
In technique scheme, further improved plan is as follows:
In such scheme, described step 4 acquisition graphite film is carried out calendering process.
Owing to technique scheme is used, the present invention compared with prior art has following advantages and an effect:
High conduction graphite film of the present invention, the polyamides that in its structure, graphite linings is coated with a layer graphite modified dose by upper and lower surface is sub- Amine film preparation forms, and improves at heat conductivility both vertically and horizontally, it is to avoid adhesive tape hot-spot, it is achieved that glue Uniformity with heat conductivility;Secondly, its be positioned at graphite modified dose of Kapton surface by benzophenone tetracarboxylic dianhydride, Pyromellitic acid anhydride, MDA, dimethylformamide, ethylene glycol, polydimethylsiloxane form, and are coated on poly- On imide membrane, the pin hole being filled with in heating process, improve degree of crystallinity simultaneously, also overcome that thermal contraction is excessive to be caused Uneven, improve graphite linings biaxial tension performance;Again, Kapton surface has graphite modified dose, improves double Graphite linings and heat-conducting glue adhesion coating heat conductivility in mask, and use calender to roll the carbonized film of described pre-burned, it is to avoid Volume contraction in fold and graphitization sintering process, improves compactness and degree of crystallinity, further increases in vertical direction Heat conductivility with horizontal direction.
Accompanying drawing explanation
Accompanying drawing 1 is high heat conduction graphite film structure schematic diagram of the present invention;
Accompanying drawing 2 is high conduction graphite film application schematic diagram of the present invention;
Accompanying drawing 3 is the partial structurtes schematic diagram of accompanying drawing 1.
In the figures above: 1, radiating piece;2, heat generating components;3, light strippable PET film;4, weight strippable PET film;5, first Heat-conducting glue adhesion coating;6, graphite linings;7, the second heat-conducting glue adhesion coating.
Detailed description of the invention
Below in conjunction with embodiment, the invention will be further described:
Embodiment: a kind of high conduction graphite film, described high conduction graphite film fits between radiating piece 1 and heat generating components 2, described High conduction graphite film includes light strippable PET film 3 and weight strippable PET film 4, this light strippable PET film 3 and weight strippable PET The first heat-conducting glue adhesion coating 5, graphite linings 6 and the second heat-conducting glue adhesion coating 7 it is disposed with between film 4;Described graphite linings 6 is by following Process obtains, and this process comprises the following steps:
Step one, Kapton is risen to 250 DEG C with 4 ~ 6 degree/min speed from room temperature, keep 0.9 ~ 1.1 hour, then With 2.5 ~ 3.5 degree/min, rise to 400 DEG C, after keeping 1 hour, be down to room temperature;
Step 2, it is coated with one layer of graphite modified dose of acquisition on the upper and lower surface of the Kapton through step one and processes After Kapton, described graphite modified dose is made up of the component of following weight portion, as shown in table 1:
Table 1
Embodiment
Benzophenone tetracarboxylic dianhydride 23
Pyromellitic acid anhydride 12
MDA 26.5
Dimethylformamide 34
Ethylene glycol 2.2
Polydimethylsiloxane 2
Note: the viscosity of graphite modified dose of embodiment is 32000CP;
Step 3, rise to 800 DEG C with the speed of 4 ~ 6 degree/min, keep 0.9 ~ 1.1 hour;Again with the speed liter of 9 ~ 11 degree/min To 1200 DEG C, cool down after preserving 0.9 ~ 1.1 hour, thus obtain the carbonized film of pre-burned;
Step 4, employing calender roll the carbonized film of the pre-burned of described step 4;
Step 5, rise to 2400 DEG C with the speed of 19 ~ 21 degree/min, keep 0.9 ~ 1.1 hour, then the speed with 19 ~ 21 degree/min Degree rises to 2900 DEG C, cools down after keeping 1.8 ~ 2.2 hours, thus obtains the main graphite film fired;
Step 6, the graphite film that then master of step 5 gained fires carry out rolling thus obtain described graphite linings (6).
Described step 6 acquisition graphite linings is carried out calendering process.
The grammes per square metre of above-mentioned light strippable PET film 1 peeling force is 5 ~ 10g/m2, described heavy strippable PET film 2 peeling force gram It is heavily 50 ~ 100g/m2
When using above-mentioned high conduction graphite film, in its structure, graphite linings is coated with one layer graphite modified dose by upper and lower surface Kapton be prepared from, improve at heat conductivility both vertically and horizontally, it is to avoid adhesive tape hot-spot, Achieve the uniformity of adhesive tape heat conductivility;Secondly, it is positioned at graphite modified dose of Kapton surface by benzophenone Tetracarboxylic dianhydride, pyromellitic acid anhydride, MDA, dimethylformamide, ethylene glycol, polydimethylsiloxane group Become, be coated on Kapton, the pin hole being filled with in heating process, improve degree of crystallinity simultaneously, also overcome heat receipts Contract excessive cause uneven, improve graphite linings biaxial tension performance;Again, Kapton surface has graphite modified Agent, improves graphite linings and heat-conducting glue adhesion coating heat conductivility in two-sided pad pasting, and uses calender to roll the carbon of described pre-burned Change film, it is to avoid the volume contraction in fold and graphitization sintering process, improve compactness and degree of crystallinity, further increase At heat conductivility both vertically and horizontally.
Above-described embodiment, only for technology design and the feature of the explanation present invention, its object is to allow person skilled in the art Scholar will appreciate that present disclosure and implements according to this, can not limit the scope of the invention with this.All according to the present invention The equivalence that spirit is made changes or modifies, and all should contain within protection scope of the present invention.

Claims (2)

1. a high conduction graphite film, described high conduction graphite film fits between radiating piece (1) and heat generating components (2), described High conduction graphite film includes light strippable PET film (3) and weight strippable PET film (4), this light strippable PET film (3) and heavily peeling off The first heat-conducting glue adhesion coating (5), graphite linings (6) and the second heat-conducting glue adhesion coating (7) it is disposed with between type PET film (4);Its feature It is: described graphite linings (6) is obtained by following process, and this process comprises the following steps:
Step one, Kapton is risen to 250 DEG C from room temperature, after rising to 400 DEG C after insulation, be down to room temperature;
Step 2, it is coated with one layer of graphite modified dose of acquisition on the upper and lower surface of the Kapton through step one and processes After Kapton, the viscosity of described graphite modified dose is 30000 ~ 48000CP;
Described graphite modified dose is made up of the component of following weight portion: benzophenone tetracarboxylic dianhydride 23 parts, pyromellitic acid anhydride 12 parts, MDA 26.5 parts, dimethylformamide 34 parts, ethylene glycol 2.2 parts, polydimethylsiloxane 2 parts;
Step 3, will process after Kapton be warming up to 800 DEG C, be warming up to 1200 DEG C after insulation, after insulation cool down, Thus obtain the carbonized film of pre-burned;
Step 4, employing calender roll the carbonized film of the pre-burned of described step 4;
Step 5, it is warming up to 2400 DEG C, after insulation, is warming up to 2900 DEG C again, cool down after insulation, thus obtain the main graphite fired Film;
Step 6, the graphite film that then master of step 5 gained fires carry out rolling thus obtain described graphite linings (6).
Heat conduction graphite patch the most according to claim 1, it is characterised in that: described step 4 is obtained graphite linings (6) and enters Row calendering process.
CN201610705884.XA 2014-01-26 2014-01-26 High-heat-conductivity graphite film Pending CN106332522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610705884.XA CN106332522A (en) 2014-01-26 2014-01-26 High-heat-conductivity graphite film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610705884.XA CN106332522A (en) 2014-01-26 2014-01-26 High-heat-conductivity graphite film
CN201410037378.9A CN103763892B (en) 2014-01-26 2014-01-26 Heat conduction graphite patch for microelectronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410037378.9A Division CN103763892B (en) 2014-01-26 2014-01-26 Heat conduction graphite patch for microelectronic device

Publications (1)

Publication Number Publication Date
CN106332522A true CN106332522A (en) 2017-01-11

Family

ID=50531025

Family Applications (21)

Application Number Title Priority Date Filing Date
CN201610696475.8A Pending CN106318251A (en) 2014-01-26 2014-01-26 Manufacture method of thermal transfer film
CN201610705947.1A Active CN106304783B (en) 2014-01-26 2014-01-26 Thermal conductivity both-sided adhesive graphite flake
CN201610777909.7A Pending CN106366971A (en) 2014-01-26 2014-01-26 High-heat-conductivity double-sided adhesive tape
CN201610704135.5A Pending CN106281087A (en) 2014-01-26 2014-01-26 Heat-conducting double-sided adhesive tape
CN201610787557.3A Pending CN106520003A (en) 2014-01-26 2014-01-26 Thermal conductive graphite tape used for laptops
CN201610705884.XA Pending CN106332522A (en) 2014-01-26 2014-01-26 High-heat-conductivity graphite film
CN201610700227.6A Pending CN106413340A (en) 2014-01-26 2014-01-26 Heat conducting adhesive film for electronic product
CN201610777925.6A Active CN106427180B (en) 2014-01-26 2014-01-26 Preparation method for the two-sided pad pasting of soaking
CN201410037378.9A Active CN103763892B (en) 2014-01-26 2014-01-26 Heat conduction graphite patch for microelectronic device
CN201610787504.1A Pending CN106520002A (en) 2014-01-26 2014-01-26 Heat-conducting pressure-sensitive double-sided tape
CN201610787521.5A Pending CN106535560A (en) 2014-01-26 2014-01-26 Manufacturing process for heat-conducting graphite paste films for flat computers
CN201610794749.7A Pending CN106398570A (en) 2014-01-26 2014-01-26 High-compactness graphite soaking adhesive tape
CN201610799197.9A Pending CN106381083A (en) 2014-01-26 2014-01-26 Isothermal pressure-sensitive adhesive tape used for intelligent mobile phones
CN201610777537.8A Pending CN106398567A (en) 2014-01-26 2014-01-26 Pressure sensitive adhesive tape for notebook computer
CN201610777340.4A Pending CN106398566A (en) 2014-01-26 2014-01-26 Double-face pad pasting with heat radiation
CN201610696479.6A Pending CN106332521A (en) 2014-01-26 2014-01-26 Manufacturing method for double-sided adhesive graphite flake
CN201610696474.3A Pending CN106318250A (en) 2014-01-26 2014-01-26 Preparation process of thermal double-sided adhesive tape
CN201610777339.1A Pending CN106349964A (en) 2014-01-26 2014-01-26 Process for preparing heat-conduction double-sided adhesive tape
CN201610696862.1A Active CN106304780B (en) 2014-01-26 2014-01-26 Manufacturing process for high thermal conductivity graphite film
CN201610778259.8A Pending CN106634658A (en) 2014-01-26 2014-01-26 Manufacturing process for heat-conducting adhesive tape used for laptop
CN201610777536.3A Pending CN106349965A (en) 2014-01-26 2014-01-26 preparing method of heat-conducting adhesive tape for consumer electronic product

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CN201610696475.8A Pending CN106318251A (en) 2014-01-26 2014-01-26 Manufacture method of thermal transfer film
CN201610705947.1A Active CN106304783B (en) 2014-01-26 2014-01-26 Thermal conductivity both-sided adhesive graphite flake
CN201610777909.7A Pending CN106366971A (en) 2014-01-26 2014-01-26 High-heat-conductivity double-sided adhesive tape
CN201610704135.5A Pending CN106281087A (en) 2014-01-26 2014-01-26 Heat-conducting double-sided adhesive tape
CN201610787557.3A Pending CN106520003A (en) 2014-01-26 2014-01-26 Thermal conductive graphite tape used for laptops

Family Applications After (15)

Application Number Title Priority Date Filing Date
CN201610700227.6A Pending CN106413340A (en) 2014-01-26 2014-01-26 Heat conducting adhesive film for electronic product
CN201610777925.6A Active CN106427180B (en) 2014-01-26 2014-01-26 Preparation method for the two-sided pad pasting of soaking
CN201410037378.9A Active CN103763892B (en) 2014-01-26 2014-01-26 Heat conduction graphite patch for microelectronic device
CN201610787504.1A Pending CN106520002A (en) 2014-01-26 2014-01-26 Heat-conducting pressure-sensitive double-sided tape
CN201610787521.5A Pending CN106535560A (en) 2014-01-26 2014-01-26 Manufacturing process for heat-conducting graphite paste films for flat computers
CN201610794749.7A Pending CN106398570A (en) 2014-01-26 2014-01-26 High-compactness graphite soaking adhesive tape
CN201610799197.9A Pending CN106381083A (en) 2014-01-26 2014-01-26 Isothermal pressure-sensitive adhesive tape used for intelligent mobile phones
CN201610777537.8A Pending CN106398567A (en) 2014-01-26 2014-01-26 Pressure sensitive adhesive tape for notebook computer
CN201610777340.4A Pending CN106398566A (en) 2014-01-26 2014-01-26 Double-face pad pasting with heat radiation
CN201610696479.6A Pending CN106332521A (en) 2014-01-26 2014-01-26 Manufacturing method for double-sided adhesive graphite flake
CN201610696474.3A Pending CN106318250A (en) 2014-01-26 2014-01-26 Preparation process of thermal double-sided adhesive tape
CN201610777339.1A Pending CN106349964A (en) 2014-01-26 2014-01-26 Process for preparing heat-conduction double-sided adhesive tape
CN201610696862.1A Active CN106304780B (en) 2014-01-26 2014-01-26 Manufacturing process for high thermal conductivity graphite film
CN201610778259.8A Pending CN106634658A (en) 2014-01-26 2014-01-26 Manufacturing process for heat-conducting adhesive tape used for laptop
CN201610777536.3A Pending CN106349965A (en) 2014-01-26 2014-01-26 preparing method of heat-conducting adhesive tape for consumer electronic product

Country Status (1)

Country Link
CN (21) CN106318251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107473212A (en) * 2017-07-11 2017-12-15 广东思泉新材料股份有限公司 A kind of synthetic method of synthetic graphite and native graphite mixing coiled material
CN110092374A (en) * 2019-05-28 2019-08-06 宇冠芯龙(武汉)科技有限公司 A kind of preparation method and graphite film material of electrographite film
CN113853093A (en) * 2020-06-28 2021-12-28 昆山威斯泰电子技术有限公司 High-heat-conductivity soft cushion and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231865A (en) * 2016-07-29 2016-12-14 芜湖迈特电子科技有限公司 A kind of Novel heat-conducting graphite flake and manufacture method thereof
CN107266076A (en) * 2017-07-12 2017-10-20 合肥东恒锐电子科技有限公司 A kind of manufacturing process of the heat conduction pad pasting of mobile phone
CN107551392A (en) * 2017-08-29 2018-01-09 成都三乙医疗科技有限公司 A kind of thermal conducting piece for thermotherapy
CN107889341A (en) * 2017-11-01 2018-04-06 镇江博昊科技有限公司 A kind of unmanned plane circuit control panel and its manufacture method with the high guided membrane of electrographite
CN108249433B (en) * 2018-03-21 2023-04-07 无锡汉成新材料科技有限公司 Blowing device and production method of graphite film
CN108455580A (en) * 2018-04-04 2018-08-28 苏州天煜新材料科技有限公司 A kind of graphene film weblike material and preparation method thereof
CN109280501A (en) * 2018-08-22 2019-01-29 江苏博之高新材料科技有限公司 A kind of smart phone soaking pressure sensitive adhesive tape
CN109819629A (en) * 2019-01-16 2019-05-28 苏州世沃电子科技有限公司 A kind of fire-retardant crack resistance type graphite heat radiation fin and preparation method thereof
CN109554130A (en) * 2019-01-31 2019-04-02 常德力元新材料有限责任公司 A kind of graphite glue band and preparation method thereof
CN113444499B (en) * 2021-06-25 2022-03-11 深圳市三科斯电子材料有限公司 Double-sided adhesive high-thermal-conductivity synthetic graphite flake and preparation method thereof
CN113880595B (en) * 2021-11-16 2023-03-28 江西鸿美新能源科技有限公司 Graphite film with high heat conductivity in vertical direction and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045119A (en) * 2012-12-28 2013-04-17 苏州斯迪克新材料科技股份有限公司 Heat-dissipating double-sided adhesive tape with ultrahigh heat conductivity coefficient
CN103144387A (en) * 2007-05-17 2013-06-12 株式会社钟化 Graphite film and graphite composite film
CN103415467A (en) * 2011-03-28 2013-11-27 株式会社钟化 Process for producing graphite film

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758842B2 (en) * 2003-09-02 2010-07-20 Kaneka Corporation Filmy graphite and process for producing the same
CN2696285Y (en) * 2004-04-27 2005-04-27 天瑞企业股份有限公司 Radiation structure of elatroluminescent display element
JP2008266416A (en) * 2007-04-18 2008-11-06 Ube Ind Ltd Method for producing polyimide film and polyimide film
WO2011007510A1 (en) * 2009-07-13 2011-01-20 パナソニック株式会社 Graphite sheet and heat transfer structure using same
KR101125266B1 (en) * 2010-02-17 2012-03-21 그린스타 주식회사 Heat radiating sheet comprising adhesives with improved heat conductivity
JP5460569B2 (en) * 2010-12-17 2014-04-02 株式会社カネカ Film-like graphite and method for producing the same
CN103045199A (en) * 2011-10-13 2013-04-17 张彪 Process for preparing drilling fluid based on control of dosage of viscosity reducer
CN202322703U (en) * 2011-11-07 2012-07-11 吴志高 Adhesive tape with heat conduction performance
CN202936356U (en) * 2012-11-01 2013-05-15 斯迪克新型材料(江苏)有限公司 Double-sided adhesive for heat dissipation of electronic elements
CN103865417B (en) * 2012-12-18 2016-04-27 苏州斯迪克新材料科技股份有限公司 The manufacturing process of acrylate sealing tape
CN103059761B (en) * 2012-12-28 2014-09-03 斯迪克新型材料(江苏)有限公司 High-heat conductivity coefficient graphite heat-radiation adhesive tape
CN103043657B (en) * 2012-12-28 2014-10-15 苏州斯迪克新材料科技股份有限公司 Graphite radiation fin for adhesive tapes
CN203181498U (en) * 2013-03-25 2013-09-04 深圳市跨越电子有限公司 A graphite film with high thermal conductivity
CN203243663U (en) * 2013-04-24 2013-10-16 常州碳元科技发展有限公司 High heat conductivity graphite film heat-dissipating structure applied to shell of electronic terminal
CN203289811U (en) * 2013-05-27 2013-11-13 苏州沛德导热材料有限公司 A graphite heat conduction and wave absorption device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103144387A (en) * 2007-05-17 2013-06-12 株式会社钟化 Graphite film and graphite composite film
CN103415467A (en) * 2011-03-28 2013-11-27 株式会社钟化 Process for producing graphite film
CN103045119A (en) * 2012-12-28 2013-04-17 苏州斯迪克新材料科技股份有限公司 Heat-dissipating double-sided adhesive tape with ultrahigh heat conductivity coefficient

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李海英,高晓青,张国兵,郭全贵,刘朗: "《聚酰亚胺薄膜层叠热处理过程中的结构演变》", 《太原科技大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107473212A (en) * 2017-07-11 2017-12-15 广东思泉新材料股份有限公司 A kind of synthetic method of synthetic graphite and native graphite mixing coiled material
CN110092374A (en) * 2019-05-28 2019-08-06 宇冠芯龙(武汉)科技有限公司 A kind of preparation method and graphite film material of electrographite film
CN113853093A (en) * 2020-06-28 2021-12-28 昆山威斯泰电子技术有限公司 High-heat-conductivity soft cushion and preparation method thereof

Also Published As

Publication number Publication date
CN106634658A (en) 2017-05-10
CN106304783A (en) 2017-01-04
CN106398570A (en) 2017-02-15
CN106318251A (en) 2017-01-11
CN106427180A (en) 2017-02-22
CN106349965A (en) 2017-01-25
CN106520002A (en) 2017-03-22
CN106332521A (en) 2017-01-11
CN106398566A (en) 2017-02-15
CN106304780B (en) 2019-01-01
CN103763892A (en) 2014-04-30
CN106318250A (en) 2017-01-11
CN106304783B (en) 2019-01-01
CN106427180B (en) 2018-09-18
CN106535560A (en) 2017-03-22
CN106304780A (en) 2017-01-04
CN106381083A (en) 2017-02-08
CN103763892B (en) 2017-01-11
CN106281087A (en) 2017-01-04
CN106349964A (en) 2017-01-25
CN106520003A (en) 2017-03-22
CN106413340A (en) 2017-02-15
CN106398567A (en) 2017-02-15
CN106366971A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
CN103763892B (en) Heat conduction graphite patch for microelectronic device
CN103796493B (en) Heat conduction graphite patch for adhesive tape and preparation method thereof
CN104812205B (en) Stretch-proof radiating graphite paster
CN107043108B (en) Cooling fin manufacturing process for smart phone
CN106118516B (en) Manufacturing process for high compactness heat dissipation pad pasting
CN103756587B (en) The two-sided pad pasting of high reliability
CN104943268A (en) High-tensile strength composite film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111

RJ01 Rejection of invention patent application after publication