Nothing Special   »   [go: up one dir, main page]

WO2015084073A1 - 유기전자장치용 기판의 제조 방법 - Google Patents

유기전자장치용 기판의 제조 방법 Download PDF

Info

Publication number
WO2015084073A1
WO2015084073A1 PCT/KR2014/011830 KR2014011830W WO2015084073A1 WO 2015084073 A1 WO2015084073 A1 WO 2015084073A1 KR 2014011830 W KR2014011830 W KR 2014011830W WO 2015084073 A1 WO2015084073 A1 WO 2015084073A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
organic electronic
electronic device
unit
Prior art date
Application number
PCT/KR2014/011830
Other languages
English (en)
French (fr)
Inventor
최준례
이정형
김지희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480042737.8A priority Critical patent/CN105408949B/zh
Priority to US14/910,230 priority patent/US9691995B2/en
Priority to EP14866998.9A priority patent/EP3016090B1/en
Priority to JP2016531565A priority patent/JP6361994B2/ja
Publication of WO2015084073A1 publication Critical patent/WO2015084073A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to a method for manufacturing a substrate for an organic electronic device, a substrate for an organic electronic device, an organic electronic device, and a use thereof.
  • An organic electronic device includes an organic light emitting device (OLED), an organic solar cell, an organic photoconductor (OPC), or an organic transistor.
  • OLED organic light emitting device
  • OPC organic photoconductor
  • a typical organic light emitting element typically includes a glass substrate, a transparent electrode layer, an organic layer including a light emitting unit, and a reflective electrode layer sequentially.
  • the transparent electrode layer may be formed of a transparent electrode layer, and the reflective electrode layer may be formed of a reflective electrode layer.
  • the transparent electrode layer may be formed as a reflective electrode layer, and the reflective electrode layer may be formed as a transparent electrode layer. Electrons and holes are injected in the electrode layer, respectively, and recombined in the light emitting unit to generate light. The light may be emitted to the substrate side in the bottom light emitting device and to the reflective electrode layer side in the top light emitting device.
  • Patent Document 1 Japanese Patent No. 381758
  • the present application is to provide a method of manufacturing a substrate that can provide an organic electronic device with improved efficiency of the device.
  • the present application is also capable of producing a substrate having excellent surface smoothness and the like and appropriately controlled refractive index, light scattering characteristics, etc. according to the desired effect, thereby forming an organic electronic device having excellent reliability and efficiency.
  • An object of the present invention is to provide a substrate and a method for manufacturing an organic electronic device. It is another object of the present application to provide a substrate, an organic electronic device, and a use thereof manufactured in the above manner.
  • the manufacturing method of the present application can be effectively applied, for example, to the manufacture of a flexible device.
  • An exemplary method for manufacturing a substrate for an organic electronic device may include forming a concave-convex pattern on at least one surface of a substrate layer, for example, a flexible substrate layer such as a polymer substrate layer or a precursor of the substrate layer.
  • the precursor of the substrate layer may be, for example, a mixture of monomers capable of forming the polymer as a polymer substrate layer or a partial polymer thereof.
  • an exemplary method of manufacturing an organic electronic device according to the present application may include forming a concave-convex pattern on at least one surface of a substrate layer, for example, the flexible substrate layer; And forming an organic electronic device on the substrate layer using the substrate layer on which the uneven pattern is formed as a substrate.
  • the uneven pattern formed on the base layer may improve the light extraction efficiency of the device, for example, when the organic electronic device is a device that emits light (ex. OLED).
  • the organic electronic device manufactured by the above method may have a structure as shown in FIG. 1.
  • the uneven pattern formed under the substrate 10 may exhibit a function of scattering light emitted from the organic electronic device 20 through interaction with an external environment such as air. have.
  • Such a function is possible, for example, by controlling the refractive index of the substrate layer, which is the substrate 10. That is, when the refractive index of the substrate 10 is adjusted to be different from that of air, which is an external environment, light may be scattered by the uneven structure.
  • a method of allowing the substrate layer itself to exhibit appropriate haze may be applied.
  • the above-described effects can be achieved by forming additional elements that are the same as or different from the base layer in the formed concave-convex pattern as described below.
  • FIG. 2 is a view showing another example of an organic electronic device manufactured by the method of the present application.
  • a space is formed inside the substrate layer 10, which is, for example, a surface on which the uneven pattern of the base layer or its precursor layer on which the uneven pattern is formed is formed. It can manufacture by the method of forming another base material layer in the.
  • the base material layer formed on the surface on which the uneven pattern of the base material layer is formed may be a base material layer on which the uneven pattern is formed, or a base material layer on which the uneven pattern is not formed.
  • the additionally formed base layer may be formed using the same or different material as the base layer on which the uneven pattern is formed. Even in such a structure, the scattering effect as described above may be exhibited by the space formed inside the base layer.
  • the method for forming the uneven pattern on one surface of the substrate layer in the manufacturing method is not particularly limited.
  • a molding method of pressing the mold onto a suitable plastic substrate layer may be applied.
  • the concave-convex pattern may be formed on a mold having concavo-convex formation on the surface by forming the substrate layer or a layer of a precursor of the substrate layer in contact with the concave-convex shape of the mold.
  • the layer may be formed by coating or the like when the substrate layer or the precursor of the substrate layer is in the form of a solution, and in the form of a film by pressing the upper portion of the substrate while the film is placed on the mold. Can also be formed.
  • the molding method is applied or the substrate layer coated on the mold may be a plastic substrate layer itself applied to the substrate, or a precursor capable of forming the substrate layer.
  • a coating liquid capable of forming a polymer is coated on a mold, and cured in that state to form a polymer, thereby forming a base layer having an uneven pattern formed on one surface thereof.
  • the concave-convex pattern may be formed by pressing the mold on the surface of the precursor to form a polymer, and polymerizing the precursor.
  • the shape of the uneven pattern formed in the above manner is not particularly limited, and an appropriate shape may be selected in consideration of the desired haze or the like.
  • the concave-convex pattern may have a spherical shape, a hemispherical shape, an ellipsoid shape, or an amorphous shape, and the average size is in the range of 1 nm to 100 ⁇ m.
  • the average size may be, for example, the length or diameter of each concave portion or the groove portion, or the like, when the concave-convex pattern is observed from the top.
  • the volume of the space in the substrate 10 formed by the uneven pattern may be about 30% to 91% based on the total volume of the substrate. May be, but is not limited thereto.
  • polyamic acid As a precursor of the polymer that can be applied above, polyamic acid may be exemplified.
  • the polyamic acid can form a polyimide through an imidization reaction or the like.
  • imidization reaction is carried out in a state in which a mold capable of forming an uneven pattern is brought into contact with the polyamic acid layer, an uneven pattern is formed on one surface thereof.
  • the base layer which exists can be manufactured.
  • the type of substrate layer or precursor thereof that can be applied in the present application is not limited thereto.
  • the substrate layer or precursor thereof that can be applied in the manufacturing method is not particularly limited as long as it is a material known in the art to be used in the implementation of a flexible device, and as such a material, polyether ether ketone (PEEK), COP ( cycloolefin polymer (PI), polyimide (PI), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, poly (ethylene terephthatle) (PET), poly (ether sulfide) (PES) or polysulfone (PS)
  • PEEK polyether ether ketone
  • COP cycloolefin polymer
  • PI polyimide
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • acrylic resin poly (ethylene terephthatle)
  • PET poly (ether sulfide)
  • PS polysulfone
  • Illustrative precursors capable of forming are, but are not limited thereto.
  • the substrate layer or a precursor thereof may include a condensation unit of an tetracarboxylic dianhydride and a diamine compound or an imidization unit thereof.
  • the polyimide can be produced by usually condensing a tetracarboxylic dianhydride and a diamine compound to produce a polyamic acid and then imidating the amic acid.
  • the base layer forming the uneven pattern may be a condensation unit (ie, a polyamic acid unit) of the dianhydride and a diamine compound or an imidization unit (ie, a polyimide). Mid unit).
  • the kind and ratio of the dianhydride or diamine compound which can be applied above are not particularly limited.
  • an appropriate kind may be selected as the dianhydride or diamine compound in consideration of the desired refractive index and the haze from various kinds described later.
  • the ratio therebetween may also be selected in the range in which the polyimide can be formed.
  • the use of such materials and the application of such methods of such materials have a variety of advantages, for example, the application of the material to the desired haze with or without minimal application of light scattering particles in the substrate. Can be generated. Accordingly, by using the material and applying the method, it is possible to maintain excellent smoothness on the surface on which the organic electronic device is formed, so that the organic electronic device formed thereon can exhibit excellent performance. In addition, in the case of the above-mentioned material, it is possible to freely adjust the refractive index as needed, it can express the haze by itself can be effectively applied to various applications.
  • the base layer may be a condensation unit of the first tetracarboxylic dianhydride and the first diamine compound or an imidization unit thereof, or a condensation unit of the first tetracarboxylic dianhydride and the second diamine compound or an imidization unit thereof. And may include a second unit.
  • the first unit and the second unit are not necessarily included in the base layer at the same time, if necessary, one unit having appropriate physical properties may be included in the base layer.
  • the base layer may be formed by selecting only a unit showing a high refractive index from the units described below.
  • the first and second units may be included in one polymer or may be included in a separate polymer and exist in the base layer. That is, the base layer may include one polymer including the first unit and the second unit, or may include a polymer including the first unit and a polymer including the second unit. In addition, each of the first and second units may be a chain included in a predetermined polymer, or may itself be a polymer.
  • the first and second units may have different physical properties for controlling at least one of haze and refractive index.
  • the first and second units may have different refractive indices.
  • the term refractive index in this application is a refractive index measured for light of 550 nm wavelength unless otherwise specified.
  • the absolute value of the difference between the refractive indices of the first and second units may be 0.01 or more.
  • the absolute value of the refractive index difference may be about 0.02 or more, about 0.03 or more, about 0.04 or more, about 0.05 or more, or about 0.06 or more.
  • the absolute value of the difference in refractive index may be about 0.2 or less, about 0.15 or less, about 0.1 or less, or about 0.08 or less.
  • the method of adjusting the refractive indices of the first and second units as described above is not particularly limited, and for example, a component constituting each unit may be selected and adjusted.
  • the dianhydride and the diamine compound forming the unit may be selected from among aromatic, aliphatic or alicyclic dianhydrides or diamine compounds, respectively, of the aromatic series known to impart high refractive index.
  • relatively high refractive index units can be formed.
  • the first and second units may have different polarities.
  • one or both of the first and second units may comprise one or more polar functional groups.
  • the absolute value of the difference between the number of moles of the polar functional group included in the first unit and the number of moles of the polar functional group included in the second unit may be 2 or more.
  • the absolute value of the difference of the number of moles may be 10 or less, 8 or less, 6 or less or 4 or less in another example.
  • the polar functional group may be substituted with the above dianhydride or diamine compound.
  • the type of polar functional group that can be applied is not particularly limited, but is a haloalkyl group, a cyano group, a nitro group, a hydroxy group, an alkoxy group, a cyanate group or substituted with a halogen atom such as fluorine or chlorine, or a halogen such as fluorine or chlorine.
  • a thiocyanate group etc. are mentioned, A halogen atom or a haloalkyl group can be used from a viewpoint of application convenience.
  • the haloalkyl group or alkoxy group may be a C1-20, C1-16, C1-12, C1-8 or C1-4 haloalkyl group or alkoxy group.
  • the dianhydrides or diamine compounds substituted with such polar functional groups are variously known or can be synthesized in a conventional manner.
  • the haze of the polyimide substrate layer may be uniformly adjusted by using a difference in refractive index or polarity of the first and second units.
  • Mixtures of heterogeneous polyimides having such refractive indices or polarities can form opaque emulsions, and the opacity of such emulsions is believed to be transferred to the film. Therefore, the haze of the polyimide film can be adjusted by adjusting the refractive index or the polarity difference of the components forming the emulsion.
  • the refractive index of the entire film can be easily adjusted by adjusting the ratio of the unit having the high refractive index in the above process.
  • the ratio of the first and second units in the substrate layer is not particularly limited and may be adjusted in consideration of a desired refractive index, haze, and the like.
  • the base layer is about 3 parts by weight to 100 parts by weight, 3 parts by weight to 80 parts by weight, 3 parts by weight to 60 parts by weight, 3 parts by weight to 40 parts by weight, and 3 parts by weight based on 100 parts by weight of the second unit.
  • Part to 20 parts by weight or 3 to 15 parts by weight of the first unit may be included, but is not limited thereto.
  • dianhydride or diamine compound which forms the polyimide containing said 1st and 2nd units as mentioned above, and the method of forming the said unit using the same are not restrict
  • various dianhydrides or diamine compounds capable of synthesizing polyimides are known, and an appropriate kind may be selected and used in consideration of the desired refractive index or polarity among these known components.
  • aliphatic, cycloaliphatic or aromatic tetracarboxylic dianhydride that can be used as the dianhydride
  • butanetetracarboxylic dianhydride pentanetetracarboxylic dianhydride, hexanetetracarboxylic dianhydride, cyclopentane Tetracarboxylic dianhydride, bicyclopentane tetracarboxylic dianhydride, cyclopropanetetracarboxylic dianhydride, methylcyclohexanetetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenonetetracarb Acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 4,4'-sulfonyldiphthalic dihydride, 3,3 ', 4,4'-biphenyltetracarboxylic Acid dianhydride, 1,2,5,6-na
  • the substrate layer as described above may be a light transmissive film.
  • the term translucent film may refer to a film having a transmittance of 50% or more, 60% or more, 70% or more, or 80% or more, for example, light in any one of the visible regions or light in the entire visible region. .
  • Haze of the base layer may be adjusted as needed, for example, it may be adjusted in the range of about 3% to 90%.
  • the term haze in the present application may be a range measured according to ASTM D1003 using a device such as Haze Meter HM-150.
  • the other lower limit of the haze may be, for example, about 5% or 10%.
  • another upper limit of haze may be, for example, about 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, or 30%.
  • the haze as described above can be achieved by adjusting the shape, size, or ratio of the uneven pattern when the uneven pattern is formed on the base layer. It can also achieve by having a haze also in the base material layer itself.
  • the base layer may contain no scattering particles or may contain a minimum amount of the desired haze.
  • the term scattering particles may refer to particles having a refractive index different from that of the surrounding matrix and having an average particle diameter such that the incident light can be scattered according to the wavelength of the incident light.
  • the base layer of the present application includes the above-mentioned scattering particles in about 10% by weight, 8% by weight, 6% by weight, 4% by weight, 2% by weight or 1% by weight or less of the total weight of the substrate layer It may not contain substantially.
  • the substrate layer may have a coefficient of thermal expansion (CTE) in the range of about 5 ppm / ° C to 70 ppm / ° C. This range may be advantageous for preventing defects such as interlayer peeling that may occur in a structure in which an organic material layer and an inorganic material layer are mixed.
  • CTE coefficient of thermal expansion
  • the substrate layer may have a glass transition temperature of about 200 ° C. or more.
  • the glass transition temperature may be the glass transition temperature of the substrate layer itself, or may be the glass transition temperature of the substrate layer on which the buffer layer described later is formed. This range may be suitable for high temperature processes for deposition or patterning in the manufacture of organic electronic devices.
  • the glass transition temperature may be at least about 210 ° C, at least about 220 ° C, at least about 230 ° C, at least about 240 ° C, or at least about 250 ° C.
  • the upper limit of the glass transition temperature is not particularly limited, and may be, for example, about 400 ° C, 350 ° C, or about 300 ° C.
  • the substrate layer may have a surface roughness (RMS) within a range of about 0.1 nm to 5 nm.
  • the surface roughness is the surface roughness of the surface on which the uneven pattern is not formed.
  • Such surface roughness may be with respect to the surface of the substrate layer itself, or may be with respect to the surface of the buffer layer of the substrate layer on which the buffer layer described later is formed.
  • Such a range of surface roughness may be advantageous for improving the performance of the layer formed thereon.
  • a layer having more excellent moisture barrier property or the like can be formed.
  • the surface roughness may, in other examples, be about 4 nm or less, about 3 nm or less, about 2.5 nm or less, or about 2 nm or less.
  • the substrate layer may have a refractive index of at least about 1.4, at least about 1.5, at least about 1.6, at least about 1.7, at least about 1.75 or at least about 1.8.
  • the range of the refractive index of the substrate layer may be advantageous to increase the light efficiency of the device.
  • the upper limit of the refractive index of the substrate layer is not particularly limited, and may be, for example, about 2.0.
  • the high refractive index of the base layer may be adjusted by selecting a unit constituting the film, or, if necessary, by combining an appropriate amount of a component having a high refractive index.
  • the thickness of the base layer is not particularly limited and may be selected in an appropriate range in consideration of desired performance, for example, flexibility, light extraction efficiency or barrier properties.
  • the thickness of the substrate layer may be in the range of about 10 ⁇ m to about 50 ⁇ m or in the range of about 20 ⁇ m to about 30 ⁇ m.
  • the substrate layer may be immediately applied to a method of manufacturing an organic electronic device without additional treatment, and if necessary, further treatment may be performed. It can then be applied to an organic electronic device as a substrate.
  • corrugated pattern was formed in one surface is mentioned.
  • the second base material layer may be the same material as or different material from the base material layer on which the uneven pattern is formed.
  • FIG. 4 is a diagram schematically showing the formation of the second base material layer 42 on the base material layer 41 having the uneven pattern formed as described above.
  • corrugated pattern is not formed in the 2nd base material layer 42, if necessary, the uneven
  • Another additional step may be a step of filling another material in the recess formed in the uneven pattern.
  • it may be required to make the recesses as shown in FIG. 1 formed by the uneven pattern or the refractive index of the base layer different from the space inside the base layer 10 as shown in FIG. 2. Accordingly, a step of filling a separate material into the recess may be performed. However, the filling step may be omitted if air is present in the recess, or if the recess is present in a vacuum state so that the desired haze or the like is expressed without filling any other material.
  • the material that can be filled in the recess may be a high refractive index material having a high refractive index or a low refractive material having a low refractive index.
  • examples of the high refractive material include SiON, TiO 2 , SiO 2 , Al 2 O 3 , Ta 2 O 3 , Ti 3 O 3 , TiO 2 , TiO, ZrO 2 , Nb 2 O 3 , CeO 2 or ZnS.
  • a polymer material such as an epoxy resin may be exemplified, but is not limited thereto.
  • any material may be used in the process as long as it exhibits a high refractive index or a low refractive index and has a refractive index different from that of the base layer.
  • the method of filling the material is not particularly limited, and for example, a wet coating, a chemical vapor deposition process, a sputtering process, or an atomic layer deposition (ALD) process may be applied.
  • a wet coating a chemical vapor deposition process, a sputtering process, or an atomic layer deposition (ALD) process may be applied.
  • ALD atomic layer deposition
  • the step of forming a high refractive layer formed on the base layer may also be exemplified.
  • the high refractive layer may be formed on the uneven pattern of the base layer on which the uneven pattern is formed, or may be formed on a surface on which the uneven pattern is not formed.
  • the term high refractive index layer may mean a layer having a refractive index of 1.7 or more, 1.8 or more, 1.85 or more or 1.9 or more for a wavelength of 550 nm.
  • An upper limit of the refractive index of the high refractive layer may be, for example, about 2.0.
  • the high refractive layer may include, for example, high refractive particles together with a binder.
  • a high refractive layer can be formed using a composition obtained by mixing high refractive particles with a binder.
  • the binder may be a known material without particular limitation.
  • As the binder for example, various organic binders, inorganic binders or organic-inorganic binders known in the art can be used.
  • the organic binder, the inorganic binder, or the organic / inorganic binder having excellent heat resistance and chemical resistance may be selected and used in consideration of excellent resistance to a high temperature process, a photo process or an etching process performed during the life of the device or the fabrication process.
  • the binder may, for example, have a refractive index of at least about 1.4, at least about 1.45, at least about 1.5, at least about 1.6, at least about 1.65, or at least about 1.7.
  • the upper limit of the refractive index of the binder may be selected in a range capable of satisfying the refractive index of the high refractive layer in consideration of the refractive index of the particles to be blended together.
  • binder examples include polyimide, polyamic acid, caldo resin having a fluorene ring, urethane, epoxide, polyester or acrylate-based thermal or photocurable monomeric, oligomeric or Polymeric organic materials, inorganic materials such as silicon oxide, silicon nitride, silicon oxynitride, epoxy resins or polysiloxanes, or organic-inorganic composite materials may be exemplified.
  • the high refractive layer may further include high refractive particles.
  • high refractive particles may mean, for example, particles having a refractive index of 1.8 or more, 2.0 or more, 2.2 or more, 2.5 or more, 2.6 or more, or 2.7 or more.
  • the upper limit of the refractive index of the high refractive particles may be selected in a range capable of satisfying the refractive index of the high refractive layer, for example, in consideration of the refractive index of the binder and the like blended together.
  • the high refractive particles may be, for example, about 1 nm to 100 nm, 10 nm to 90 nm, 10 nm to 80 nm, 10 nm to 70 nm, 10 nm to 60 nm, 10 nm to 50 nm or about 10 nm to 45 nm. It may have an average particle diameter of.
  • the high refractive particles for example, alumina, aluminosilicate, titanium oxide or zirconium oxide and the like can be exemplified.
  • rutile titanium oxide can be used, for example, as particles having a refractive index of 2.5 or more.
  • Titanium oxide of the rutile type has a high refractive index compared to other particles, and therefore can be adjusted to the desired refractive index in a relatively small proportion.
  • the ratio of the high refractive particles in the high refractive layer is not particularly limited, and may be adjusted within a range in which the refractive index of the high refractive layer described above can be secured.
  • An inorganic layer may exist on the base layer, and in some cases, the inorganic layer may serve as the high refractive layer described above.
  • the term inorganic layer may be a layer containing 50% or more or 60% of inorganic material by weight.
  • the inorganic layer may include only an inorganic material or may include other components such as an organic material if the inorganic material is included in the above range.
  • the inorganic layer may be, for example, a barrier layer.
  • the term barrier layer may be a layer capable of blocking, inhibiting or mitigating the penetration of external factors that may adversely affect the performance of devices such as organic layers such as moisture or moisture.
  • the barrier layer may be a layer having a water vapor transmission rate (WVTR) of 10 ⁇ 4 g / m 2 / day or less.
  • WVTR water vapor transmission rate
  • WVTR water vapor transmission rate
  • the barrier layer can be formed using a material known to be able to mitigate, prevent or inhibit the penetration of external factors such as moisture and oxygen.
  • materials include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni; TiO, TiO 2 , Ti 3 O 3, Al 2 O 3 , MgO, SiO, SiO 2 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Y2O 3 , ZrO 2 , Nb 2 O 3 and CeO 2 and Metal oxides such as; Metal nitrides such as SiN; Metal oxynitrides such as SiON; Or metal fluorides such as MgF 2 , LiF, AlF 3, and CaF 2 , or other materials known as absorbent materials having an absorption rate of 1% or more, or moisture-proof materials having an absorption coefficient of 0.1% or less.
  • the inorganic layer may, for example, have a low degree of crystallinity or may be substantially amorphous.
  • the method of forming an inorganic layer formed as described below to be an oxide layer such as a metal oxide, a method of repeatedly forming a thin layer a plurality of times, and different materials of adjacent sub-layers in the plurality of times of repeated formation are different.
  • the inorganic layer satisfying the above-mentioned crystallinity can be formed by adopting any one of a method of controlling and a material of the respective sublayers different from each other, and each sublayer being an oxide layer such as a metal oxide. Can be.
  • the inorganic layer may be appropriate as small as possible the difference in refractive index with the base layer. Such a case can contribute to the formation of a substrate having particularly excellent light extraction efficiency.
  • the absolute value of the difference in refractive index between the inorganic layer and the base layer may be about 1 or less, about 0.7 or less, about 0.5 or less, or about 0.3 or less. Therefore, when the base layer has a high refractive index as described above, the inorganic material layer should have a refractive index equivalent to that of the same.
  • the refractive index of the inorganic layer may be about 1.5 or more, about 1.6 or more, about 1.7 or more, or about 1.75 or more.
  • the range of the refractive index of the substrate layer may be advantageous to increase the light efficiency of the device.
  • the upper limit of the refractive index of the inorganic layer is not particularly limited, and may be, for example, about 2.0.
  • the thickness of the inorganic layer may be determined according to the effect according to the intended use, and the range is not particularly limited, but in one example, about 10 nm to 100 nm, 10 nm to 90 nm, 10 nm to 80 nm, 10 nm to It may be in the range of 70 nm, 10 nm to 60 nm, 10 nm to 50 nm or 20 nm to 50 nm.
  • the inorganic layer may be a single layer or a multilayer structure, but may be required to have a multilayer structure to satisfy the crystallinity as described above.
  • the multilayer structure may include a structure in which the same type or different types of inorganic layers are stacked. Forming the inorganic layer in a multi-layered structure has the above-described interfacial adhesion and may contribute to forming the inorganic layer having the above-mentioned crystallinity. In addition, forming the inorganic layer in a multilayer structure may contribute to the formation of the inorganic layer having the aforementioned refractive index.
  • the inorganic layer may include a laminated structure of at least a first sublayer and a second sublayer.
  • the thicknesses of the first and second sublayers may be adjusted in consideration of interfacial adhesion, crystallinity, barrier property, or refractive index required for the inorganic layer.
  • the thicknesses of the first and second sublayers can all be adjusted in the range of 7 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, or 2 nm or less.
  • the lower limit of the thickness of the sublayer is not particularly limited.
  • the lower limit of the thickness of the sub layer may be set in an appropriate range in consideration of the desired thickness and the like, and may be adjusted in a range of about 0.1 nm or more, for example.
  • the thicknesses of all the sublayers included in the inorganic layer of the multilayer structure may be adjusted within the above range.
  • the inorganic layer may not include sublayers whose thickness exceeds 10 nm, 9 nm, 8 nm, 7 nm, 6 nm or 5 nm.
  • the number of sublayers included in the inorganic layer is not particularly limited. The above may be determined according to the thickness of the sub layer and the thickness of the desired inorganic layer.
  • the inorganic layer may include 2 to 50 sublayers.
  • the sub layer may include 4 or more, 6 or more, 8 or more, or 10 or more.
  • the sub-layer may include 45 or less, 40 or less, 35 or less, 30 or less, 25 or less, 20 or less, or 15 or less.
  • each sublayer may be the first or second sublayer, and may also include a third sublayer or more.
  • the sublayer may be formed of various materials, but may be formed of oxides, nitrides, or oxynitrides of various metals or nonmetals in terms of contributing to interfacial adhesion, crystallinity, barrier properties, refractive index, and the like.
  • the first and second sublayers may be oxide layers, nitride layers or oxynitride layers. If necessary, all the sub layers included in the inorganic layer may be formed of the oxide.
  • the kind of oxide that can be used in this case is not particularly limited, and may be appropriately selected from oxides capable of forming the above-mentioned barrier layer.
  • Sublayers in contact with each other among the sublayers may be formed of different materials to contribute to interfacial adhesion, crystallinity, barrier property, refractive index, and the like.
  • the first and second sublayers may be formed of different materials, for example different oxides, nitrides or oxynitrides.
  • the inorganic layer includes a third sublayer, a fourth sublayer or more sublayers as described above, it may be advantageous that the sublayers which are also in contact with each other are formed of different materials, for example, different oxides.
  • the first sublayer may have a first refractive index
  • the second sublayer may have a second refractive index different from the first refractive index.
  • the absolute value of the difference between the first refractive index and the second refractive index may be, for example, 0.1 or more.
  • the absolute value may be 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more or 0.6 or more.
  • the absolute value may be in a range of 2 or less, 1.8 or less, 1.6 or less, 1.4 or less, or 1.2 or less in another example.
  • each of the first and second refractive indices is not particularly limited as long as the range of the refractive indices is secured.
  • the refractive index of the first sublayer is in the range of 1.4 to 1.9
  • the refractive index of the second sublayer is 2.0 to May be in the range of 2.6.
  • the first and second sub-layers as described above may be metal oxide layers, respectively.
  • suitable materials for the first sublayer include Al 2 O 3 and the like, and suitable materials for the second sublayer include TiO 2 , but the final laminated structure has the aforementioned refractive indices, respectively. If it can have a barrier property, a variety of other materials can be applied in addition.
  • the inorganic material layer or each sublayer can be formed through a known method, but it is advantageous to form the ALD (Atomic Layer Deposition) method from the viewpoint of securing interfacial adhesion.
  • the ALD method includes, for example, alternately depositing a precursor such as an organic metal and a precursor such as water on a surface to be deposited, and in this process, monolayers of the precursors are alternately formed to react with each other to form an inorganic layer. This can be formed.
  • the layer formed by the ALD method has a predetermined functional group, for example, the above-described hydroxyl group, in the substrate layer, the functional group may react with the functional group in the formation process, thereby securing the desired interfacial adhesion.
  • the term ALD layer may mean an inorganic layer formed by the ALD method.
  • a method of forming an inorganic layer or a sub layer may include sputtering, pulsed laser deposition, electron beam evaporation, thermal evaporation, or laser molecular L-MBE.
  • Chemical Vapor Deposition (PVD) or Metal Organic Chemical Vapor Deposition (MOCVD), Hybrid Vapor Phase Epitaxy (HVPE), Initiated Chemical Vapor Deposition (iCVD) or Plasma Enhanced Chemical Vapor Deposition (PECVD) Vapor Deposition may be exemplified. If necessary, the performance of the inorganic layer may be maximized by selecting an appropriate method according to the material used among the above methods.
  • the substrate of the present application may include additional layers.
  • the substrate of the present application may further include a buffer layer between the inorganic layer and the base layer in order to achieve the interface adhesion between the inorganic layer and the base layer.
  • the manufacturing method may also include forming a buffer layer on the substrate layer.
  • the buffer layer is not an essential configuration, for example, the buffer layer may not be required if the interface adhesion is achieved.
  • the substrate of the present application may also include an electrode layer present on the inorganic layer or the substrate layer as an additional layer. Therefore, the manufacturing method may further include forming an electrode layer on the base layer or the inorganic layer.
  • the electrode layer a hole injectable or electron injecting electrode layer commonly used in organic electronic devices may be used.
  • the electrode layer may be a transparent electrode layer or a reflective electrode layer.
  • the hole injection electrode layer may be formed using a material having a relatively high work function, for example, and may be formed using a transparent or reflective material if necessary.
  • the hole injection electrode layer may comprise a metal, alloy, electrically conductive compound, or a mixture of two or more thereof, having a work function of about 4.0 eV or more.
  • Such materials include metals such as gold, CuI, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), Zinc Tin Oxide (ZTO), zinc oxide doped with aluminum or indium, magnesium indium oxide, nickel tungsten oxide, Oxide materials such as ZnO, SnO 2 or In 2 O 3 , metal nitrides such as gallium nitride, metal serenides such as zinc serenides, metal sulfides such as zinc sulfides, and the like.
  • the transparent hole injection electrode layer can also be formed using a laminate of a metal thin film such as Au, Ag or Cu, and a high refractive transparent material such as ZnS, TiO 2 or ITO.
  • the hole injection electrode layer may be formed by any means such as vapor deposition, sputtering, chemical vapor deposition, or electrochemical means.
  • the electrode layer formed as needed may be patterned through a process using known photolithography, shadow mask, or the like.
  • the electron injection electrode layer may be formed using, for example, a material having a relatively small work function.
  • a material having a relatively small work function For example, an appropriate transparent or reflective material may be used among materials used for forming the hole injection electrode layer. It may be formed by, but is not limited thereto.
  • the electron injection electrode layer can also be formed using, for example, a vapor deposition method or a sputtering method, and can be appropriately patterned if necessary.
  • the thickness of the electrode layer may be formed to have a thickness of, for example, about 90 nm to 200 nm, 90 nm to 180 nm, or about 90 nm to 150 nm.
  • the present application also relates to a substrate for an organic electronic device manufactured in the above manner.
  • the matters relating to the substrate may be the same as those described in the method for manufacturing the substrate.
  • the substrate is manufactured by the above method, and may be a polymer base layer having an uneven pattern formed on at least one surface thereof.
  • the substrate may have a second polymer base layer formed on a surface on which the uneven pattern of the polymer base layer is formed, and a space may be formed therein by the uneven pattern.
  • Such a structure may be, for example, a structure as shown in FIG. 2.
  • the matters described above may be applied to the material of the polymer base layer, the concave portion of the uneven pattern, the material that may be filled in the internal space, or the like, which may additionally exist on the base layer.
  • the present application also relates to a method for manufacturing an organic electronic device.
  • the method of manufacturing the organic electronic device may include manufacturing the organic electronic device by using the prepared substrate layer as a substrate, following the manufacturing method of the substrate.
  • the present application also relates to an organic electronic device manufactured as described above.
  • the method of manufacturing the organic electronic device using the substrate layer described above is not particularly limited, and a known method may be applied.
  • the organic electronic device may include a substrate layer which is the substrate for the organic electronic device described above and an element region present on the substrate.
  • the device region may include a first electrode layer, an organic material layer, a second electrode layer, and the like.
  • the organic electronic device may be manufactured by forming the electrode layer, the organic material layer, or the like in a known manner on a substrate layer manufactured in the above-mentioned manner. Can be.
  • the electrode layer may serve as the first electrode layer.
  • the exemplary organic electronic device may include the base layer, the first electrode layer, the organic material layer, the second electrode layer, the second inorganic material layer, and a cover film sequentially present in an upward direction.
  • Each of the layers may be directly stacked without another layer between adjacent layers, or may be stacked via another layer.
  • the term upward direction means a direction from the first electrode layer to the second electrode layer unless otherwise specified
  • the term downward direction refers to a direction from the second electrode layer toward the first electrode layer unless otherwise specified. it means.
  • a region including all elements (except the first electrode layer) existing under the first electrode layer in the structure will be referred to as a substrate region, and the first electrode layer and the second electrode layer and between The region containing all the elements present is called an element region, and the region containing all elements (except the second electrode layer) present on top of the second electrode layer is called an upper region.
  • the substrate region may include other layers in addition to the above-mentioned base layer.
  • a layer that may additionally be present in the substrate region a carrier substrate, a barrier film or an adhesive layer may be exemplified.
  • a barrier film can be exemplified.
  • a substrate layer having a relatively low barrier property is applied as compared to a rigid structure in which a substrate having excellent barrier property is used, such as a glass substrate.
  • an additional barrier film is used, for example, to supplement the barrier property. May be present at the bottom of
  • the barrier film may be any one capable of ensuring appropriate barrier properties and light transmittance when necessary.
  • the barrier film may be attached to the base layer by, for example, an adhesive layer.
  • the barrier film may be attached to, for example, a surface opposite to a surface on which the device region of the substrate layer is formed.
  • the term adhesive layer is a term encompassing not only a material commonly referred to as an adhesive but also a layer formed by using a material referred to as an adhesive or a material referred to as an adhesive.
  • the material for forming the adhesive layer is not particularly limited, and for example, a known point / adhesive material such as an acrylic polymer, a silicone polymer, a rubber polymer, an ethylene polymer such as EVA (Ethylene vinyl acetate) polymer or a polyisobutylene (PIB) may be used. Can be used.
  • moisture barrier material may be blended in the adhesive layer.
  • the adhesive layer in which the moisture barrier material is blended herein may be referred to as a barrier adhesive layer.
  • moisture barrier material may be used as a generic term for a component capable of absorbing or removing moisture or moisture introduced from the outside through a physical or chemical reaction.
  • the specific kind of the moisture barrier material that can be blended into the adhesive layer is not particularly limited, and examples thereof include one kind or a mixture of two or more kinds of metal oxides, organometallic oxides, metal salts, or phosphorus pentoxide (P 2 O 5 ). .
  • the metal oxide may include lithium oxide (Li 2 O), sodium oxide (Na 2 O), barium oxide (BaO), calcium oxide (CaO), magnesium oxide (MgO), and the like.
  • Examples include lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), calcium sulfate (CaSO 4 ), magnesium sulfate (MgSO 4 ), cobalt sulfate (CoSO 4 ), gallium sulfate (Ga 2 (SO 4 ) 3 ), sulfates such as titanium sulfate (Ti (SO 4 ) 2 ) or nickel sulfate (NiSO 4 ), etc., calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), strontium chloride (SrCl 2 ), yttrium chloride (YCl 3 ) , Copper chloride (CuCl 2 ), cesium fluoride (CsF), tantalum flu
  • Appropriate scattering particles may be blended in the adhesive layer, whereby the adhesive layer itself may exhibit a suitable haze. Light extraction efficiency can be improved when the adhesive layer exhibits haze.
  • the kind of scattering particles that can be blended into the adhesive layer is not particularly limited, and an appropriate kind may be selected and used from the scattering particles included in the scattering layer in consideration of the refractive index of the resin forming the adhesive layer.
  • a carrier substrate that may be temporarily or permanently attached to the bottom of the substrate layer.
  • a rigid substrate such as a glass substrate may be applied to the carrier substrate.
  • the substrate region may be formed in various structures.
  • the substrate region may be a form in which the base layer 10 of the form shown in FIG. 1 or 2 is present alone, or in the form of the high refractive or inorganic layer mentioned above in the downward direction and shown in FIG. 1 or 2.
  • the organic material layer exists between the first and second electrode layers.
  • the organic material layer may include at least one or two light emitting units. In such a structure, light generated in the light emitting unit may be emitted to the transparent electrode layer through a process of being reflected by the reflective electrode layer.
  • an intermediate electrode layer or a charge generating layer may be further present between the plurality of light emitting units for proper light emission. Therefore, the light emitting units may have a structure divided by an intermediate electrode layer or a charge generating layer (CGL) having charge generation characteristics.
  • CGL charge generating layer
  • the material constituting the light emitting unit is not particularly limited. Fluorescent or phosphorescent organic materials having various emission center wavelengths are known in the art, and an appropriate kind can be selected from these known materials to form the light emitting unit. Examples of the material of the light emitting unit include tris (4-methyl-8-quinolinolate) aluminum (III) (tris (4-methyl-8-quinolinolate) aluminum (III)) (Alg3), 4-MAlq3, Gaq3 and the like.
  • the light emitting unit includes the material as a host and further includes perylene, distyrylbiphenyl, DPT, quinacridone, rubrene, BTX, ABTX, DCJTB and the like. It may have a host-dopant system including a as a dopant.
  • the light emitting unit can also be formed by appropriately adopting a kind exhibiting light emission characteristics among the electron-accepting organic compound or electron donating organic compound described later.
  • the organic material layer may be formed in various structures further including various other functional layers known in the art, as long as the light emitting unit includes a light emitting unit.
  • the layer that may be included in the organic material layer include an electron injection layer, a hole blocking layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like.
  • the electron injection layer or the electron transport layer can be formed using, for example, an electron accepting organic compound.
  • an electron accepting organic compound any compound known without particular limitation may be used.
  • organic compounds include polycyclic compounds such as p-terphenyl or quaterphenyl or derivatives thereof, naphthalene, tetratracene, pyrene, coronene, and coronene.
  • Polycyclic hydrocarbon compounds or derivatives thereof such as chrysene, anthracene, diphenylanthracene, naphthacene or phenanthrene, phenanthroline, vasophenanthrol Heterocyclic compounds or derivatives thereof, such as lean (bathophenanthroline), phenanthridine, acridine (acridine), quinoline (quinoline), quinoxaline or phenazine (phenazine) and the like.
  • fluoroceine perylene, phthaloperylene, naphthaloperylene, naphthaloperylene, perynone, phthaloperinone, naphtharoferinone, diphenylbutadiene ( diphenylbutadiene, tetraphenylbutadiene, oxadiazole, ardazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene , Oxine, aminoquinoline, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyrane, thiopyrane, polymethine, mero Cyanine (merocyanine), quinacridone or rubrene, or derivatives thereof, JP-A-1988-295695, JP-A-1996-22557, JP-A-1996-81472, Japanese Patent Laid-Open Publication No.
  • Fluorescent brighteners such as a benzooxazole compound, a benzothiazole compound or a benzoimidazole compound; 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, distyrylbenzene, 1,4- Bis (2-ethylstyryl) benzyl, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene or 1,4-bis (2- Distyrylbenzene compounds such as methylstyryl) -2-ethylbenzene and the like; 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1-naphthyl) vinyl
  • the electron injection layer may be formed using, for example, a material such as LiF or CsF.
  • the hole blocking layer is a layer capable of preventing the injected holes from entering the electron injecting electrode layer through the light emitting unit and improving the life and efficiency of the device. If necessary, a light blocking unit and an electron It can be formed in an appropriate part between the granular electrode layers.
  • the hole injection layer or hole transport layer may comprise, for example, an electron donating organic compound.
  • the electron donating organic compound include N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4, 4'-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ', N'-tetra-p-tolyl-4,4'-diamino ratio Phenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N , N, N ', N'-tetraphenyl-4,4'-diaminodiphenylether
  • the hole injection layer or the hole transport layer may be formed by dispersing an organic compound in a polymer or using a polymer derived from the organic compound.
  • hole transportable nonconjugated polymers such as? Conjugated polymers, poly (N-vinylcarbazole), or? Conjugated polymers of polysilane, such as polyparaphenylene vinylene and derivatives thereof, may also be used.
  • the hole injection layer is formed by using electrically conductive polymers such as metal phthalocyanine such as copper phthalocyanine, non-metal phthalocyanine, carbon film and polyaniline, or by reacting the aryl amine compound with Lewis acid as an oxidizing agent. You may.
  • electrically conductive polymers such as metal phthalocyanine such as copper phthalocyanine, non-metal phthalocyanine, carbon film and polyaniline, or by reacting the aryl amine compound with Lewis acid as an oxidizing agent. You may.
  • the specific structure of the organic material layer is not particularly limited.
  • various materials for forming a hole or electron injection electrode layer and an organic material layer for example, a light emitting unit, an electron injection or transport layer, a hole injection or transport layer, and a method of forming the same are known. All of these methods can be applied.
  • the upper region of the organic electronic device may include an inorganic layer and a cover film sequentially formed in an upward direction.
  • the inorganic layer included in the upper region may be referred to as a second inorganic layer
  • the inorganic layer included in the substrate may be referred to as a first inorganic layer.
  • the second inorganic material layer is present in order to block, suppress or mitigate the penetration of the foreign material to ensure durability, and the specific material and formation method may be similar to those mentioned in the item of the first inorganic material layer.
  • the second inorganic material layer does not need to be formed to have a high refractive index like the first inorganic material layer.
  • the cover film present on the upper portion of the second inorganic material layer may be a structure that protects the organic electronic device.
  • a known barrier film, a metal sheet, a conductive film, or the like may be a laminate structure of two or more of the above.
  • the cover film may be attached to the top of the second inorganic material layer through an adhesive layer, for example, the barrier adhesive layer described above.
  • the present application also relates to the use of such organic electronic devices, for example organic light emitting devices.
  • the organic light emitting device may be, for example, a backlight of a liquid crystal display (LCD), a light source, a light source such as various sensors, a printer, a copier, a vehicle instrument light source, a signal lamp, an indicator light, a display device, a planar light emitting body, and the like. It can be effectively applied to a light source, a display, a decoration or various lights.
  • the present application relates to a lighting device including the organic light emitting device.
  • the organic light emitting device When the organic light emitting device is applied to the lighting device or other uses, other components constituting the device or the like or a method of constituting the device are not particularly limited, and are known in the art as long as the organic light emitting device is used. Any material or method can be employed.
  • the present application can provide a method of manufacturing a substrate that can provide an organic electronic device having improved device efficiency.
  • the present application is also capable of producing a substrate having excellent surface smoothness and the like and appropriately controlled refractive index, light scattering characteristics, etc. according to the desired effect, thereby forming an organic electronic device having excellent reliability and efficiency.
  • a method of manufacturing a substrate and an organic electronic device can be provided.
  • the present application may also provide a substrate, an organic electronic device, and a use thereof manufactured in the above manner.
  • the manufacturing method of the present application can be effectively applied, for example, to the manufacture of a flexible device.
  • 1 and 2 are schematic diagrams of exemplary organic electronic devices.
  • FIG 3 is a diagram schematically illustrating a process of forming an uneven pattern on the base layer.
  • FIG. 4 is a diagram illustrating a process of manufacturing a substrate layer.
  • the substrate A was about 5%, and the light transmittance was about 85%.
  • First polyamic acid solution (refractive index: about 1.56) prepared by condensation reaction of BPDA (3,3 ', 4,4'-Biphenyltetracarboxylic dianhydride) and TFMB (2,2'-Bis (trifluoromethyl) benzidine) and FDA (2
  • a second polyamic acid solution (refractive index: about 1.541) prepared by condensation of, 2'-Bis- (3,4-Dicarboxyphenyl) hexafluoropropane dianhydride) and TFMB (2,2'-Bis (trifluoromethyl) benzidine)
  • a polyimide substrate (B) was manufactured in the same manner as in Preparation Example 1, except that the film-forming composition prepared by mixing in a ratio of 5:95 (first polyamic acid: second polyamic acid) was used as a standard.
  • the haze of the synthesized substrate (B) was evaluated according to ASTM D1003 using Haze Meter HM-150, which was about 5.12%
  • First polyamic acid solution (refractive index: about 1.56) prepared by condensation reaction of BPDA (3,3 ', 4,4'-Biphenyltetracarboxylic dianhydride) and TFMB (2,2'-Bis (trifluoromethyl) benzidine) and FDA (2
  • a second polyamic acid solution (refractive index: about 1.541) prepared by condensation of, 2'-Bis- (3,4-Dicarboxyphenyl) hexafluoropropane dianhydride) and TFMB (2,2'-Bis (trifluoromethyl) benzidine)
  • a polyimide substrate (C) was manufactured in the same manner as in Preparation Example 1, except that the film-forming composition prepared by mixing at a ratio of 10:90 (first polyamic acid: second polyamic acid) was used.
  • the synthesized substrate (C) was about 16.44%, and the light transmitt
  • First polyamic acid solution (refractive index: about 1.625) prepared by condensation reaction of BPDA (3,3 ', 4,4'-Biphenyltetracarboxylic dianhydride) and PDA (p-phenylene diamine) and BPDA (3,3', 4,
  • a second polyamic acid solution (refractive index: about 1.56) prepared by condensation of 4'-Biphenyltetracarboxylic dianhydride) and TFMB (2,2'-Bis (trifluoromethyl) benzidine) in a ratio of 10:90 based on the weight of solids
  • first Polyamic acid prepared by mixing with a second polyamic acid
  • a film-forming composition prepared by mixing a high refractive filler (rutile TiO 2 , refractive index: about 2.8) having a particle size in the range of no scattering property
  • a polyimide substrate (D) was produced in the same manner as in Example 1. The haze was evaluated according to ASTM D1003
  • An organic electronic device was formed on the polyimide substrate A prepared in Preparation Example 1, to prepare a device of the type shown in FIG. 2.
  • the organic electronic device was manufactured by encapsulating with. The measured quantum efficiency of the manufactured organic electronic device was about 35.4%.
  • a barrier layer was formed on the polyimide substrate (B).
  • the barrier layer is composed of a layer of Al 2 O 3 having a refractive index of about 1.6 to 1.8 when deposited alone by ALD (Atomic Layer Deposition) method and a TiO 2 having a refractive index of about 2.0 to 2.4 when deposited alone.
  • the layers were alternately deposited to form a final refractive index of about 1.8.
  • a layer of Al 2 O 3 was formed by alternating adsorption of a layer of trimethylaluminium and a water (H 2 O) layer as a precursor at a temperature of about 200 ° C.
  • the layer of TiO 2 was also known as ALD.
  • ALD atomic layer deposition
  • the layer of TiO 2 was also known as ALD.
  • the thicknesses of the layers of Al 2 O 3 and the layers of TiO 2 were in the range of about 2 nm to 5 nm, respectively, to finally form a barrier layer having a thickness of about 40 nm.
  • a hole injectable transparent electrode layer, a hole transport layer, a first light emitting unit, an n-type organic semiconductor layer, a p-type organic semiconductor layer, and a light emission wavelength using a known material on the barrier layer are in the range of about 380 to 500 nm.
  • the second light emitting unit, the hole block layer, the electron transport layer, the electron injection layer, and the electron injection reflective electrode layer in the range of about 500 to 700 nm are sequentially formed to form an element region, and the element region is encapsulated with an appropriate encapsulation material.
  • the organic electronic device was manufactured. The measured quantum efficiency of the manufactured organic electronic device was about 41.6%.
  • An organic electronic device was formed in the same manner as in Example 1, except that the substrate C prepared in Preparation Example 3 was applied.
  • the measured quantum efficiency of the manufactured organic electronic device was about 41.6%.
  • An organic electronic device was formed in the same manner as in Example 1, except that the substrate D prepared in Preparation Example 4 was applied.
  • the measured quantum efficiency of the organic electronic device was about 42%.
  • An organic electronic device was formed in the same manner as in Example 1, except that a polyimide substrate having no uneven pattern formed by coating the same film forming composition as used in Preparation Example 1 to a thickness of about 20 ⁇ m was used. .
  • the measured quantum efficiency of the manufactured organic electronic device was about 31.9%.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

본 출원은 기판의 제조 방법, 유기전자장치의 제조 방법, 기판, 유기전자장치 및 그 용도에 관한 것이다. 본 출원은, 소자의 효율이 개선된 유기전자장치를 제공할 수 있는 기판의 제조 방법을 제공할 수 있다. 본 출원은 또한, 표면 평활도 등이 우수하고, 목적하는 효과에 따라 굴절률이나 광 산란 특성 등이 적절하게 제어된 기판을 제조할 수 있고, 이에 따라 신뢰성과 효율이 우수한 유기전자장치를 형성할 수 있는 기판과 유기전자장치의 제조 방법을 제공할 수 있다. 본 출원은 또한 상기와 같은 방식으로 제조된 기판, 유기전자장치 및 그 용도를 제공할 수 있다. 본 출원의 제조 방법은, 예를 들면, 플렉서블 소자의 제조에 효과적으로 적용될 수 있다.

Description

유기전자장치용 기판의 제조 방법
본 출원은, 유기전자장치용 기판의 제조 방법, 유기전자장치용 기판, 유기전자장치 및 그 용도에 관한 것이다.
유기전자장치(OED; Organic Electronic Device)에는 유기발광소자(OLED, Organic Light Emitting Device), 유기태양전지, 유기 감광체(OPC) 또는 유기 트랜지스터 등이 포함된다. 예를 들어, 전형적인 유기발광소자는, 통상적으로 유리 기판, 투명 전극층, 발광 유닛을 포함하는 유기층 및 반사 전극층을 순차로 포함한다.
소위 하부 발광형 소자(bottom emitting device)로 호칭되는 구조에서는, 상기 투명 전극층이 투명 전극층으로 형성되고, 반사 전극층이 반사 전극층으로 형성될 수 있다. 또한, 소위 상부 발광형 소자(top emitting device)로 호칭되는 구조에서는 투명 전극층이 반사 전극층으로 형성되고, 반사 전극층이 투명 전극층으로 형성되기도 한다. 상기 전극층에서 전자(electron)와 정공(hole)이 각각 주입되고, 발광 유닛에서 재결합(recombination)되어 광이 생성된다. 광은 하부 발광형 소자에서는 기판측으로 상부 발광형 소자에서는 반사 전극층측으로 방출될 수 있다.
유기층에서 발광된 광 중에서 각 층의 계면에 임계각 이상으로 입사되는 광은 전반사(total internal reflection) 현상 등에 의해 출사되지 못하고 트랩(trap)되어, 매우 소량의 광만이 방출된다. 따라서, 예를 들어, 특허문헌 1 등에서 개시된 바와 같이, 광추출 효율을 높이고자 하는 시도가 이루어 지고 있다. 그렇지만, 현재까지 알려져 있는 광추출 기술은 대부분 유리 기판과 같은 강성 기판의 사용을 전제로 한 것이어서 유리 기판과는 성질이 다른 플렉서블 기판을 사용한 소자에 대하여는 유효하게 적용되지 않는다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) 일본등록특허 제3861758호
본 출원은, 소자의 효율이 개선된 유기전자장치를 제공할 수 있는 기판의 제조 방법을 제공하는 것을 하나의 목적으로 한다. 본 출원은 또한, 표면 평활도 등이 우수하고, 목적하는 효과에 따라 굴절률이나 광 산란 특성 등이 적절하게 제어된 기판을 제조할 수 있고, 이에 따라 신뢰성과 효율이 우수한 유기전자장치를 형성할 수 있는 기판과 유기전자장치의 제조 방법을 제공하는 것을 목적으로 한다. 본 출원은 또한 상기와 같은 방식으로 제조된 기판, 유기전자장치 및 그 용도를 제공하는 것을 또 다른 목적으로 한다. 본 출원의 제조 방법은, 예를 들면, 플렉서블 소자의 제조에 효과적으로 적용될 수 있다.
예시적인 유기전자장치용 기판의 제조 방법은, 기재층, 예를 들면, 고분자 기재층과 같은 플렉서블 기재층 또는 그 기재층의 전구체의 층의 적어도 일면에 요철 패턴을 형성하는 단계를 포함할 수 있다. 상기에서 기재층의 전구체는, 예를 들면, 고분자 기재층을 형성할 수 있도록 조성된 것으로서 상기 고분자를 형성할 수 있는 단량체의 혼합물이거나, 혹은 그 부분 중합물 등일 수 있다. 또한, 본 출원의 예시적인 유기전자장치의 제조 방법은, 기재층, 예를 들면, 상기 플렉서블 기재층의 적어도 일면에 요철 패턴을 형성하는 단계; 및 요철 패턴이 형성된 기재층을 기판으로 하여 상기 기재층상에 유기전자소자를 형성하는 단계를 포함할 수 있다.
기재층에 형성된 요철 패턴은, 예를 들면, 상기 유기전자장치가 광을 발출하는 장치(ex. OLED)인 경우에 상기 장치의 광추출 효율을 개선할 수 있다.
예를 들면, 상기 방법으로 제조된 유기전자장치는 도 1과 같은 구조를 가질 수 있다. 도 1과 같은 구조에서 기판(10)의 하부에 형성된 상기 요철 패턴은, 공기와 같은 외부 환경과의 상호 작용을 통해 유기전자소자(20)로부터 방출되는 광을 산란(scattering)시키는 기능을 나타낼 수 있다. 이러한 기능은, 예를 들면, 상기 기판(10)인 기재층의 굴절률의 제어를 통해 가능하다. 즉, 상기 기판(10)의 굴절률을 외부 환경인 공기와 다르도록 조절하면, 상기 요철 구조에 의해 광을 산란시키는 효과를 나타낼 수 있다. 다른 방법으로 후술하는 바와 같이 기재층 자체가 적절한 헤이즈를 나타내도록 하는 방법을 적용할 수도 있다. 또한, 후술하는 바와 같이 상기 형성된 요철 패턴 내에 기재층과 동일하거나 다른 추가적인 요소를 형성함으로써도 상기 기술된 효과를 달성할 수 있다.
도 2는, 본 출원의 방법에 의해 제조된 유기전자장치의 다른 예시를 보여주는 도면이다. 도 2의 경우, 기재층(10)의 내부에 공간이 형성되어 있고, 이는, 예를 들면, 상기 적어도 일면에 요철 패턴이 형성되어 있는 기재층 또는 그 전구체의 층의 요철 패턴이 형성되어 있는 면에 다른 기재층을 형성하는 방식으로 제조할 수 있다. 상기에서 기재층의 요철 패턴이 형성되어 있는 면에 형성되는 기재층은 역시 요철 패턴이 형성되어 있는 기재층이거나, 혹은 요철 패턴이 형성되어 있지 않은 기재층일 수 있다. 이러한 추가 형성되는 기재층은 상기 요철 패턴이 형성되는 기재층과 동일하거나 상이한 소재를 사용하여 형성할 수 있다. 이러한 구조에서도 기재층의 내부에 형성되어 있는 공간에 의해 상기와 같은 산란 효과가 발휘될 수 있다.
상기 제조 방법에서 기재층의 일면에 요철 패턴을 형성하는 방법은 특별히 제한되지 않는다. 예를 들면, 적절한 플라스틱 기재층상에 몰드를 가압하는 몰딩 방식을 적용할 수 있다. 다른 방식으로는, 표면에 요철이 형성되어 있는 몰드상에 상기 기재층 또는 그 기재층의 전구체의 층을 상기 몰드의 요철 형상에 접하도록 형성하는 단계를 통해서도 상기 요철 패턴을 형성할 수 있다. 상기 층은 상기 기재층 또는 그 기재층의 전구체가 용액 형태인 경우에 코팅 방식 등으로 형성할 수도 있고, 필름형태인 경우에 상기 필름을 상기 몰드상에 위치시킨 상태에서 그 상부를 가압하는 방식으로도 형성할 수 있다. 도 3은, 상기 방식에 대한 예시적인 도면으로 요철 패턴이 형성된 몰드(30)상에 기재층(10) 또는 그 전구체(10)를 형성한 상태를 보여주는 도면이다. 상기에서 몰딩 방식이 적용되거나, 몰드상에 코팅되는 기재층은, 기판으로 적용되는 플라스틱 기재층 자체이거나, 그 기재층을 형성할 수 있는 전구체일 수 있다. 예를 들어, 고분자를 형성할 수 있는 코팅액을 몰드상에 코팅하고, 그 상태에서 경화시켜 고분자를 형성함으로써 일면에 요철 패턴이 형성되어 있는 기재층을 형성할 수 있다. 또한, 고분자를 형성할 수 있는 전구체의 층을 형성한 상태에서 그 표면에 몰드를 가압하고, 상기 전구체를 고분자화함으로써도 요철 패턴이 형성될 수 있다.
상기와 같은 방식으로 형성되는 요철 패턴의 형태는 특별히 제한되지 않고, 목적하는 헤이즈 등을 고려하여 적정한 형태 등이 선택될 수 있다.
예를 들면, 상기 요철 패턴의 형태는, 구형, 반구형, 타원체형 또는 무정형 등의 형상일 수 있으며, 평균 크기는 1nm 내지 100㎛의 범위 내에 있다. 상기 평균 크기는, 예를 들면, 요철 패턴을 상부에서 관찰하는 경우에 각 오목부 또는 홈부의 길이 또는 직경 등이거나 높이 또는 깊이 등일 수 있다.
또한, 예를 들어, 도 2와 같은 형태의 기판(10)을 형성하는 경우에 상기 요철 패턴에 의해 형성된 기판(10) 내의 공간의 부피는, 기판의 전체 부피를 기준으로 30% 내지 91% 정도일 수 있으나, 이에 제한되는 것은 아니다.
상기에서 적용될 수 있는 고분자의 전구체로는, 폴리아믹산(polyamic acid)이 예시될 수 있다. 폴리아믹산은, 이미드화 반응 등을 통해 폴리이미드를 형성할 수 있는데, 폴리아믹산 상태의 층에 요철 패턴을 형성할 수 있는 몰드를 접촉시킨 상태로 이미드화 반응을 진행하면 일면에 요철 패턴이 형성되어 있는 기재층을 제조할 수 있다. 그렇지만, 본 출원에서 적용될 수 있는 기재층 또는 그 전구체의 종류가 상기에 제한되는 것은 아니다.
상기 제조 방법에서 적용될 수 있는 기재층 또는 그 전구체로는, 업계에서 통상 플렉서블 소자의 구현에 사용될 수 있는 것으로 알려져 있는 소재라면 특별히 제한되지 않으며, 이러한 소재로는, PEEK(polyether ether ketone), COP(cycloolefin polymer), PI(polyimide), PEN(Polyethylene naphthalate), PC(polycarbonate), 아크릴 수지, PET(poly(ethylene terephthatle)), PES(poly(ether sulfide)) 또는 PS(polysulfone) 등이나, 상기 수지를 형성할 수 잇는 전구체를 예시할 수 있지만, 이에 제한되는 것은 아니다. 상기에서 전구체로는, 상기 고분자를 형성할 수 있는 단량체의 혼합물이나, 혹은 그 단량체의 부분 중합물 등이 예시될 수 있다.
하나의 예시에서 유기전자장치에 적용되는 기재층인 폴리이미드 또는 폴리아믹산인 경우에 상기 기재층 또는 그 전구체는, 테트라카복실산 이무수물 및 디아민 화합물의 축합 단위 또는 그 이미드화 단위를 포함할 수 있다. 폴리이미드는, 통상 테트라카복실산 이무수물 및 디아민 화합물을 축합 반응시켜서 폴리아믹산을 제조한 후에 그 아믹산을 이미드화 반응시켜 제조할 수 있다. 따라서, 기재층으로 폴리이미드 또는 폴리아믹산을 사용하고자 하는 경우에 상기 요철 패턴을 형성하는 기재층이 상기 이무수물과 디아민 화합물의 축합 단위(즉, 폴리아믹산 단위) 또는 그 이미드화 단위(즉, 폴리이미드 단위)를 포함할 수 있다.
상기에서 적용될 수 있는 이무수물이나 디아민 화합물의 종류 및 그 비율은 특별히 제한되지 않는다. 예를 들면, 상기 이무수물이나, 디아민 화합물로는, 후술하는 다양한 종류 중에서 목적하는 굴절률이나 헤이즈를 고려하여 적정한 종류가 선택될 수 있다. 또한, 그들간의 비율 역시 폴리이미드의 형성이 가능한 범위로 선택될 수 있다.
상기와 같은 소재의 사용 및 그러한 소재의 상기 방식의 적용은 다양한 이점을 가지며, 예를 들어, 상기 소재를 적용할 경우에 기판 내에 광산란성의 입자를 최소한으로 적용하거나, 혹은 적용하지 않고서도 목적하는 헤이즈를 발생시킬 수 있다. 이에 따라 상기 소재의 사용과 상기 방법의 적용에 의해 유기전자소자가 형성되는 면에 우수한 평활도를 유지할 수 있어서, 그 상부에 형성되는 유기전자소자가 우수한 성능을 나타내도록 할 수 있다. 또한, 상기 언급한 소재의 경우, 필요에 따라 자유롭게 굴절률의 조절이 가능하고, 자체적으로도 헤이즈를 발현시킬 수 있어서 다양한 용도에 효과적으로 적용될 수 있다.
예를 들면, 폴리이미드 또는 폴리아믹산 기재층을 형성하는 상기 축합 단위 또는 그의 이미드화 단위를 적어도 2종으로 하여, 기재층에 포함시킴으로써 전술한 헤이즈 및 굴절률 중 하나 이상을 조절할 수 있다. 이러한 경우에 상기 기재층은 제 1 테트라카복실산 이무수물 및 제 1 디아민 화합물의 축합 단위 또는 그 이미드화 단위인 제 1 단위와 제 2 테트라카복실산 이무수물 및 제 2 디아민 화합물의 축합 단위 또는 그 이미드화 단위인 제 2 단위를 포함할 수 있다.
물론 상기 제 1 단위 및 제 2 단위가 반드시 동시에 기재층에 포함되어야 하는 것은 아니며, 필요하다면, 적절한 물성을 가지는 1종의 단위가 기재층에 포함될 수도 있다. 예를 들면, 고굴절률의 발현이 요구되는 경우 후술하는 단위 중에서 고굴절률을 나타내는 단위만을 선택하여 상기 기재층을 형성할 수도 있다.
상기 제 1 및 제 2 단위는 하나의 고분자 내에 포함되어 있거나, 별도의 고분자에 포함되어 기재층 내에 존재할 수 있다. 즉, 상기 기재층을 상기 제 1 단위와 제 2 단위를 포함하는 하나의 중합체를 포함하거나, 혹은 상기 제 1 단위를 포함하는 중합체와 상기 제 2 단위를 포함하는 중합체를 포함할 수 있다. 또한, 상기 제 1 및 제 2 단위는 각각 소정 고분자 내에 포함되는 사슬이거나, 혹은 그 자체가 고분자일 수 있다.
헤이즈 및 굴절률 중 하나 이상의 조절을 위해 상기 제 1 및 제 2 단위는 서로 상이한 물성을 가질 수 있다. 예를 들면, 상기 제 1 및 제 2 단위는 서로 상이한 굴절률을 가지는 것일 수 있다. 본 출원에서 용어 굴절률은 특별히 달리 규정하지 않는 한, 550 nm 파장의 광에 대하여 측정한 굴절률이다. 예를 들면, 상기 제 1 및 제 2 단위의 각각의 굴절률의 차이의 절대값은 0.01 이상일 수 있다. 다른 예시에서 상기 굴절률 차이의 절대값은 약 0.02 이상, 약 0.03 이상, 약 0.04 이상, 약 0.05 이상 또는 약 0.06 이상일 수 있다. 상기 굴절률의 차이의 절대값은 약 0.2 이하, 약 0.15 이하, 약 0.1 이하 또는 약 0.08 이하일 수 있다. 제 1 및 제 2 단위의 굴절률을 상기와 같이 조절하는 방식은 특별히 제한되는 것은 아니며, 예를 들면 각 단위를 구성하는 성분을 선택하여 조절할 수 있다. 예를 들어 후술하는 바와 같이 상기 단위를 형성하는 이무수물과 디아민 화합물은 각각 방향족, 지방족 또는 지환족 이무수물 또는 디아민 화합물 중에서 선택될 수 있는데, 상기 중에서 통상 높은 굴절률을 부여하는 것으로 알려져 있는 방향족 계열의 화합물을 선택하면, 상대적으로 높은 굴절률의 단위를 형성할 수 있다.
다른 예시에서 상기 제 1 및 제 2 단위는 서로 상이한 극성(polarity)을 가지는 것일 수 있다. 예를 들면, 상기 제 1 및 제 2 단위 중 어느 하나 또는 두 개 모두는 하나 이상의 극성 관능기를 포함할 수 있다. 이러한 경우에 제 1 단위에 포함되는 극성 관능기의 몰수와 제 2 단위에 포함되는 극성 관능기의 몰수의 차이의 절대값이 2 이상일 수 있다. 상기 몰수의 차이의 절대값은 다른 예시에서 10 이하, 8 이하, 6 이하 또는 4 이하일 수 있다. 상기 극성 관능기는, 전술한 이무수물 또는 디아민 화합물에 치환되어 있을 수 있다. 적용될 수 있는 극성 관능기의 종류는 특별히 제한되는 것은 아니지만, 불소 또는 염소와 같은 할로겐 원자, 불소 또는 염소와 같은 할로겐으로 치환되어 있는 할로알킬기, 시아노기, 니트로기, 히드록시기, 알콕시기, 시아네이트기 또는 티오시아네이트기 등을 들 수 있고, 적용의 편의 측면에서는 할로겐 원자 또는 할로알킬기를 사용할 수 있다. 상기에서 할로알킬기 또는 알콕시기는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 할로알킬기 또는 알콕시기일 수 있다. 상기와 같은 극성 관능기로 치환되어 있는 이무수물 또는 디아민 화합물은 다양하게 공지되어 있거나 통상의 방식으로 합성할 수 있다.
상기와 같이 제 1 및 제 2 단위의 굴절율 또는 극성의 차이를 이용하여 폴리이미드 기재층의 헤이즈를 균일하게 조절할 수 있다. 상기와 같은 굴절율 또는 극성 차이를 갖는 이종의 폴리이미드의 혼합물은, 불투명한 에멀젼을 형성할 수 있고, 이러한 에멀젼의 불투명도는 필름에 전사되는 것으로 여겨진다. 따라서, 에멀젼을 형성하는 성분의 굴절율 또는 극성 차이를 조절함으로써 폴리이미드 필름의 헤이즈를 조절할 수 있다. 또한, 상기 과정에서 굴절률이 높은 단위의 비율을 조절함으로써 전체적인 필름의 굴절률도 쉽게 조절할 수 있다. 이와 같이 종전 산란성 입자를 사용하여 헤이즈를 부여하는 방법이 아닌 고분자의 단위 자체를 통해 헤이즈를 부여함으로써 균일한 헤이즈와 함께 고분자의 표면 평활도도 우수하게 유지할 수 있는 이점이 있다.
기재층 내에서 상기 제 1 및 제 2 단위의 비율을 특별히 제한되지 않고, 목적하는 굴절률, 헤이즈 등을 고려하여 조절될 수 있다. 예를 들면, 기재층은 상기 제 2 단위 100 중량부 대비 약 3 중량부 내지 100 중량부, 3 중량부 내지 80 중량부, 3 중량부 내지 60 중량부, 3 중량부 내지 40 중량부, 3 중량부 내지 20 중량부 또는 3 중량부 내지 15 중량부의 상기 제 1 단위를 포함할 수 있지만, 이에 제한되는 것은 아니다.
상기와 같은 제 1 및 제 2 단위를 포함하는 폴리이미드를 형성하는 이무수물이나 디아민 화합물의 종류 및 그를 사용하여 상기 단위를 형성하는 방식은 특별히 제한되지 않는다. 폴리이미드 관련 분야에서는 폴리이미드를 합성할 수 있는 다양한 이무수물 또는 디아민 화합물이 알려져 있고, 이러한 공지의 성분 중에서 목적하는 굴절률 내지는 극성을 고려하여 적정한 종류가 선택되어 사용될 수 있다.
예를 들어, 상기 이무수물로서 사용될 수 있는 지방족, 지환족 또는 방향족 테트라카복실산 이무수물로는, 부탄테트라카르복실산 이무수물, 펜탄테트라카르복실산 이무수물, 헥산테트라카르복실산 이무수물, 시클로펜탄테트라카르복실산 이무수물, 바이시클로펜탄테트라카르복실산 이무수물, 시클로프로판테트라카르복실산 이무수물, 메틸시클로헥산테트라카르복실산 이무수물, 3,3',4,4'-벤조페논테트라카르복실산 이무수물, 3,4,9,10-페릴렌테트라카르복실산 이무수물, 4,4'-술포닐디프탈릭 다이언하이드라이드, 3,3',4,4'-바이페닐테트라카르복실산 이무수물, 1,2,5,6-나프탈렌테트라카르복실산 이무수물, 2,3,6,7-나프탈렌테트라카르복실산 이무수물, 1,4,5,8-나프탈렌테트라카르복실산 이무수물, 2,3,5,6,-피리딘테트라카르복실산 이무수물, m-터페닐-3,3',4,4'-테트라카르복실산 이무수물, p-터페닐-3,3',4,4'-테트라카르복실산 이무수물, 4,4'-옥시디프탈릭다이언하이드라이드, 1,1,1,3,3,3-헥사플루오로-2,2-비스[(2,3 또는 3,4-디카르복시페녹시)페닐프로판 다이언하이드라이드, 2,2-비스[4-(2,3- 또는 3,4-디카르복시페녹시)페닐]프로판 다이언하이드라이드, 또는 1,1,1,3,3,3-헥사플루오로-2,2-비스[4-(2,3- 또는 4-디카르복시페녹시)페닐]프로판 다이언하이드라이드 등이 예시될 수 있고, 상기 디아민 화합물로서 사용될 수 있는 방향족, 지방족 또는 지환족 디아민 화합물로는, p-페닐렌다이아민(PDA), m-페닐렌다이아민(m-PDA), 2,4,6-트리메틸-1,3-페닐렌다이아민, 2,3,5,6-테트라메틸-1,4-페닐렌다이아민, 4,4'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 4,4'-디아미노디페닐설피드, 4,4'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 3,3'-디아미노디페닐메탄, 4,4'-메틸렌-비스(2-메틸아닐린), 4,4'-메틸렌-비스(2,6-디메틸아닐린), 4,4'-메틸렌-비스(2,6-디에틸아닐린), 4,4'-메틸렌-비스(2-이소프로필-6-메틸아닐린), 4,4'-메틸렌-비스(2,6-디이소프로필아닐린), 4,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 벤지딘, o-톨리딘, m-톨리딘, 3,3',5,5'-테트라메틸벤지딘, 2,2'-비스(트리플루오로메틸)벤지딘, 1,4-비스(4-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,3-비스(3-아미노페녹시)벤젠, 비스[4-(4-아미노페녹시)페닐]술폰, 비스[4-(3-아미노페녹시)페닐]술폰, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 2,2-비스[4-(3-아미노페녹시)페닐]프로판, 2,2-비스[4-(4-아미노페녹시)-페닐]프로판(6HMDA), 2,2'-비스(트리플루오로메틸)-벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFMB), 3,3'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(3,3'-TFDB), 4,4'-비스(3-아미노페녹시)디페닐설폰(DBSDA), 비스(3-아미노페닐)설폰(3DDS), 비스(4-아미노페닐)설폰(4DDS), 1,3-비스(3-아미노페녹시)벤젠(APB-133), 1,4-비스(4-아미노페녹시)벤젠(APB-134), 2,2'-비스[3(3-아미노페녹시)페닐]헥사플루오로프로판(3-BDAF), 2,2'-비스[4(4-아미노페녹시)페닐]헥사플루오로프로판(4-BDAF), 2,2'-비스(3-아미노페닐)헥사플루오로프로판(3,3'-6F), 2,2'-비스(4-아미노페닐)헥사플루오로프로판(4,4'-6F) 또는 4,4'-옥시디아닐린(4,4'-oxydianiline, ODA) 등의 방향족 다이아민; 또는 1,6-헥산다이아민, 1,4-시클로헥산다이아민, 1,3-시클로헥산다이아민, 1,4-비스(아미노메틸)시클로헥산, 1,3-비스(아미노메틸)시클로헥산, 4,4'-디아미노디시클로헥실메탄, 4,4'-디아미노-3,3'-디메틸디시클로헥실메탄, 4,4'-디아미노-3,3'-디메틸디시클로헥실메탄, 1,2-비스-(2-아미노에톡시)에탄, 비스(3-아미노프로필)에테르, 1,4-비스(3-아미노프로필)피페라진, 3,9-비스(3-아미노프로필)-2,4,8,10-테트라옥사스피로[5.5]-운데칸, 또는 1,3-비스(3-아미노프로필)테트라메틸디실록산 등의 지방족 다이아민 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 기재층은 투광성 필름일 수 있다. 본 명세서에서 용어 투광성 필름은, 예를 들면, 가시광 영역 중 어느 하나의 광 또는 전체 가시광 영역의 광에 대한 투과율이 50% 이상, 60% 이상, 70% 이상 또는 80% 이상인 필름을 의미할 수 있다.
상기 기재층의 헤이즈는 필요에 따라 조절될 수 있으며, 예를 들면, 약 3% 내지 90%의 범위 내에서 조절될 수 있다. 본 출원에서 용어 헤이즈는, Haze Meter HM-150 등의 기기를 사용하여 ASTM D1003에 따라서 측정한 범위일 수 있다. 상기에서 헤이즈의 다른 하한은, 예를 들면, 5% 또는 10% 정도일 수 있다. 또한, 헤이즈의 다른 상한은, 예를 들면, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% 또는 30% 정도일 수 있다. 상기와 같은 헤이즈는, 기재층에 요철 패턴을 형성할 때에 그 요철 패턴의 형태나 크기 또는 비율을 조절하여 달성할 수 있으며, 또한 이러한 방식과 함께 기재층의 고분자의 단위를 전술한 방식으로 선택하여, 기재층 자체적으로도 헤이즈를 가지도록 하여 달성할 수도 있다. 이러한 방식을 적용하면, 기재층은 산란성 입자를 포함시키지 않거나, 최소량으로 포함시키면서도 목적하는 헤이즈가 달성되도록 할 수 있다. 본 출원에서 용어 산란성 입자는 주변 매트릭스와는 상이한 굴절률을 가지고, 또한 입사광의 파장에 따라서 상기 입사광을 산란시킬 수 있을 정도의 평균 입경을 가지는 입자를 의미할 수 있다. 본 출원의 기재층은 상기와 같은 산란성 입자를 기재층 전체 중량 대비 약 10중량% 이하, 8 중량% 이하, 6 중량% 이하, 4 중량% 이하, 2 중량% 이하 또는 1 중량% 이하로 포함하거나, 실질적으로 포함하지 않을 수 있다.
기재층은 열팽창계수(CTE)가 약 5 ppm/℃ 내지 70ppm/℃의 범위 내에 있을 수 있다. 이러한 범위는 유기물층과 무기물층이 혼재되어 있는 구조에서 발생할 수 있는 층간 박리 등의 결함의 방지에 유리할 수 있다.
기재층은 유리전이온도가 약 200℃ 이상일 수 있다. 이러한 유리전이온도는 기재층 자체의 유리전이온도이거나, 후술하는 버퍼층이 형성되어 있는 기재층의 유리전이온도일 수 있다. 이러한 범위는 유기전자장치의 제조 과정에서의 증착 또는 패턴을 위한 고온 공정에서 적합할 수 있다. 유리전이온도는, 다른 예시에서 약 210℃ 이상, 약 220℃ 이상, 약 230℃ 이상, 약 240℃ 이상 또는 약 250℃ 이상일 수 있다. 유리전이온도의 상한은 특별히 제한되는 것은 아니며, 예를 들면, 400℃, 350℃ 또는 300℃ 정도일 수 있다.
기재층은 표면 거칠기(RMS, Root Mean Square)가 약 0.1 nm 내지 5 nm의 범위 내로 조절될 수 있다. 상기에서 표면 거칠기는 요철 패턴이 형성되지 않은 면의 표면 거칠기이다. 이러한 표면 거칠기는 기재층 자체의 표면에 대한 것이거나, 후술하는 버퍼층이 형성되어 있는 기재층의 상기 버퍼층의 표면에 대한 것일 수 있다. 이러한 표면 거칠기의 범위는 상부에 형성되는 층의 성능의 개선에 유리할 수 있다. 예를 들어, 배리어성을 가지는 무기물층 등을 상기 기재층에 형성하는 경우에 상기 범위의 표면 거칠기를 가지는 표면에 상기 무기물층을 형성하면, 보다 탁월한 수분 차단성 등을 가지는 층을 형성할 수 있다. 표면 거칠기는, 다른 예시에서 약 4 nm 이하, 약 3 nm 이하, 약 2.5 nm 이하 또는 약 2 nm 이하일 수 있다.
기재층은, 굴절률이 약 1.4 이상, 약 1.5 이상, 약 1.6 이상, 약 1.7 이상, 약 1.75 이상 또는 약 1.8 이상일 수 있다. 유기발광장치에서 기재층의 상기 굴절률의 범위는 장치의 광효율을 높이는 것에 유리할 수 있다. 기재층의 굴절률의 상한은 특별히 제한되는 것은 아니며, 예를 들면, 약 2.0 정도일 수 있다. 이러한 기재층의 높은 굴절률은 전술한 바와 같이 상기 필름을 구성하는 단위의 선택을 통해 조절하거나, 필요한 경우에 높은 굴절률을 가지는 성분을 적정량 배합하여 달성할 수 있다.
기재층의 두께는 특별히 제한되지 않으며, 목적하는 성능, 예를 들면, 가요성이나 광추출 효율 또는 배리어성을 고려하여 적정 범위에서 선택될 수 있다. 예를 들면, 기재층의 두께는 약 10 ㎛ 내지 약 50 ㎛의 범위 내 또는 약 20 ㎛ 내지 약 30 ㎛의 범위 내일 수 있다.
본 출원의 기판의 제조 방법에서는 상기와 같이 기재층의 일면에 요철 패턴을 형성시킨 후에 추가적인 처리 없이 그 기재층을 곧 유기전자장치의 제조 방법에 적용할 수 있고, 필요하다면, 추가적인 처리를 수행한 후에 그를 기판으로서 유기전자장치에 적용할 수 있다.
상기에서 추가적인 처리로는, 일면에 요철 패턴이 형성된 기재층의 일면에 다른 기재층(이하, 제 2 기재층)을 형성하는 처리를 들 수 있다. 제 2 기재층은, 상기 요철 패턴이 형성된 기재층과 동일한 소재이거나, 상이한 소재일 수 있다.
도 4는 상기와 같이 요철 패턴이 형성된 기재층(41)에 제 2 기재층(42)을 형성하는 것을 모식적으로 나타낸 도면이다. 도 4에서는 제 2 기재층(42)에는 요철 패턴이 형성되어 있지 않은 경우이지만, 필요하다면, 상기 제 2 기재층(42)에도 요철 패턴을 형성할 수 있고, 이러한 요철 패턴은 예를 들면, 요철 패턴이 형성된 기재층(41)과 접촉하는 기재층(42)의 면에 형성할 수도 있다.
다른 추가적인 단계로는, 요철 패턴에 형성된 오목부에 다른 물질을 충전하는 단계를 들 수 있다. 본 출원의 경우, 요철 패턴에 의해 형성되는 도 1에 나타난 바와 같은 오목부 또는 도 2에 나타난 바와 같은 기재층(10) 내부의 공간과 기재층의 굴절률이 다르도록 하는 것이 요구될 수 있고, 이에 따라 상기 오목부에 별도의 물질을 충전하는 단계를 수행할 수 있다. 다만, 오목부에 공기가 존재하거나, 오목부가 진공 상태로 존재하여 별도의 다른 물질을 충전하지 않고도 목적하는 헤이즈 등이 발현된다면, 상기 충전 단계는 생략될 수 있다.
오목부에 충전될 수 있는 물질로는 높은 굴절률의 고굴절 물질이나, 낮은 굴절률의 저굴절 물질이 예시될 수 있다.
이 때 고굴절 물질로는, SiON, TiO2, SiO2, Al2O3, Ta2O3, Ti3O3, TiO2, TiO, ZrO2, Nb2O3, CeO2 또는 ZnS 등이 예시될 수 있고, 저굴절 물질로는, 에폭시 수지 등과 같은 고분자 물질 등을 예시할 수 있으나, 이에 제한되는 것은 아니다. 상기 언급된 물질 외에도 높은 굴절률 또는 낮은 굴절률을 나타내어 상기 기재층과는 다른 굴절률을 가지는 것이라면 어떠한 물질도 상기 공정에서 사용될 수 있다.
상기 물질을 충전하는 방식은 특별히 제한되지 않으며, 예를 들면, 습식 코팅, 화학기상증착 공정, 스퍼터링 공정 또는 ALD(atomic layer deposition) 공정 등의 방식이 적용될 수 있다.
추가적인 단계로는, 기재층상에 형성된 고굴절층을 형성하는 단계도 예시될 수 있다. 상기 고굴절층은, 요철 패턴이 형성된 기재층의 요철 패턴상에 형성되거나, 혹은 요철 패턴이 형성되지 않은 면에 형성될 수도 있다. 본 명세서에서 용어 고굴절층은 550 nm의 파장에 대한 굴절률이 1.7 이상, 1.8 이상, 1.85 이상 또는 1.9 이상인 층을 의미할 수 있다. 상기 고굴절층의 굴절률의 상한은 예를 들면 약 2.0 정도일 수 있다. 상기 기술한 바와 같은 기재층의 상부에 상기와 같은 고굴절층을 형성함으로써, 목적하는 성능, 예를 들면, 광추출 효율을 개선할 수 있다.
고굴절층은, 예를 들면, 바인더와 함께 고굴절 입자를 포함할 수 있다. 예를 들면, 고굴절 입자를 바인더와 혼합한 조성물을 사용하여 고굴절층을 형성할 수 있다. 상기에서 바인더로는 특별한 제한 없이 공지의 소재가 사용될 수 있다. 바인더로는, 예를 들면, 이 분야에서 공지된 다양한 유기 바인더, 무기 바인더 또는 유무기 바인더를 사용할 수 있다. 소자의 수명이나 제작 과정에서 수행하는 고온 공정, 포토 공정이나 식각 공정에 대한 저항성이 우수하다는 점을 고려하여 내열성과 내화학성이 우수한 유기 바인더, 무기 바인더 또는 유무기 바인더를 선택하여 사용할 수 있다. 바인더는, 예를 들면, 약 1.4 이상, 약 1.45 이상, 약 1.5 이상, 약 1.6 이상, 약 1.65 이상 또는 약 1.7 이상의 굴절률을 가질 수 있다. 바인더의 굴절률의 상한은, 함께 배합되는 입자의 굴절률 등을 고려하여 상기 고굴절층의 굴절률을 만족시킬 수 있는 범위에서 선택될 수 있다. 바인더로는, 예를 들면, 폴리이미드, 폴리아믹산, 플루오렌 고리를 가지는 카도계 수지(caldo resin), 우레탄, 에폭시드, 폴리에스테르 또는 아크릴레이트 계열의 열 또는 광경화성의 단량체성, 올리고머성 또는 고분자성 유기 재료나 산화 규소, 질화 규소(silicon nitride), 옥시질화 규소(silicon oxynitride), 에폭시 수지 또는 폴리실록산 등의 무기 재료 또는 유무기 복합 재료 등이 예시될 수 있다.
고굴절층은, 고굴절 입자를 추가로 포함할 수 있다. 본 출원에서 용어 「고굴절 입자」는, 예를 들면, 굴절률이 1.8 이상, 2.0 이상, 2.2 이상, 2.5 이상, 2.6 이상 또는 2.7 이상인 입자를 의미할 수 있다. 고굴절 입자의 굴절률의 상한은, 예를 들면, 함께 배합되는 바인더 등의 굴절률 등을 고려하여 상기 고굴절층의 굴절률을 만족시킬 수 있는 범위에서 선택될 수 있다. 고굴절 입자는, 예를 들면, 1 nm 내지 100 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm, 10 nm 내지 70 nm, 10 nm 내지 60 nm, 10 nm 내지 50 nm 또는 10 nm 내지 45 nm 정도의 평균 입경을 가질 수 있다. 고굴절 입자로는, 예를 들면, 알루미나, 알루미노 실리케이트, 산화 티탄 또는 산화 지르코늄 등이 예시될 수 있다. 고굴절 입자로는, 예를 들면, 굴절률이 2.5 이상인 입자로서, 루틸형 산화 티탄을 사용할 수 있다. 루틸형의 산화 티탄은 여타의 입자에 비하여 높은 굴절률을 가지고, 따라서 상대적으로 적은 비율로도 목적하는 굴절률로의 조절이 가능할 수 있다. 고굴절층 내에서의 고굴절 입자의 비율은, 특별히 제한되지 않으며, 전술한 고굴절층의 굴절률이 확보될 수 있는 범위 내에서 조절될 수 있다.
기재층상에는 무기물층이 존재할 수 있고, 경우에 따라서는 상기 무기물층이 전술한 고굴절층으로 작용할 수 있다. 본 명세서에서 용어 무기물층은, 중량을 기준으로 무기물을 50% 이상 또는 60% 포함하는 층일 수 있다. 무기물층은, 무기물만을 포함하거나, 상기 범위 내로 무기물을 포함한다면 유기물과 같은 다른 성분을 포함할 수도 있다.
무기물층은, 예를 들면, 배리어층일 수 있다. 본 명세서에서 용어 배리어층은, 수분 또는 습기와 같이 유기물층 등의 소자의 성능에 나쁜 영향을 줄 수 있는 외부 인자의 침투를 차단, 억제 또는 완화할 수 있는 층일 수 있다. 예를 들어, 배리어층은, WVTR(water vapor transmission rate, WVTR)이 10-4 g/m2/day 이하인 층일 수 있다. 본 명세서에서 WVTR은, 40℃ 및 90% 상대 습도 조건에서 측정기(예를 들면, PERMATRAN-W3/31, MOCON, Inc.)를 사용하여 측정될 수치일 수 있다.
배리어층은 수분 및 산소 등의 외부 인자의 침투를 완화, 방지 또는 억제할 수 있는 것으로 알려진 소재를 사용하여 형성할 수 있다. 이러한 소재로는, In, Sn, Pb, Au, Cu, Ag, Al, Ti 및 Ni 등의 금속; TiO, TiO2, Ti3O3, Al2O3, MgO, SiO, SiO2, GeO, NiO, CaO, BaO, Fe2O3, Y2O3, ZrO2, Nb2O3 및, CeO2및 등의 금속 산화물; SiN 등의 금속 질화물; SiON 등의 금속 산질화물; 또는 MgF2, LiF, AlF3 및 CaF2 등의 금속 불화물 등이나 기타 흡수율 1% 이상인 흡수성 재료나 흡수 계수 0.1% 이하인 방습성 재료 등으로 알려진 재료들이 포함될 수 있다.
무기물층은, 예를 들면, 낮은 결정화도를 가지거나 실질적으로 비결정성일 수 있다. 무기물층을 일반적인 증착 방식으로 형성하는 경우에 재료의 속성상 결정화가 진행될 가능성이 높고, 이에 따라 상기 기재된 결정화도를 만족시키는 것은 용이하지 않다. 그렇지만, 후술하는 바와 같이 형성되는 무기물층을 금속 산화물과 같은 산화물층으로 하는 방식, 얇은 두께의 층을 복수회 반복 형성시키는 방식, 상기 복수회 반복 형성 시에 인접하는 각 서브층의 재료를 다르도록 제어하는 방식 및 상기 각 서브층의 재료를 서로 다르게 하되, 각 서브층이 모두 금속 산화물과 같은 산화물층이 되도록 하는 방식 중 어느 하나의 방식을 채용함으로써 상기 언급한 결정화도를 만족시키는 무기물층을 형성할 수 있다.
무기물층은 기재층과의 굴절률의 차이가 가능한 작은 것이 적절할 수 있다. 이러한 경우는 특히 광추출 효율이 우수한 기판을 형성하는 것에 기여할 수 있다. 예를 들면, 무기물층과 기재층과의 굴절률의 차이의 절대값은, 약 1 이하, 약 0.7 이하, 약 0.5 이하 또는 약 0.3 이하일 수 있다. 따라서, 기재층이 전술한 바와 같은 높은 굴절률을 가지는 경우에는 무기물층에도 그와 동등한 수준의 굴절률이 확보되어야 한다. 예를 들면, 무기물층의 굴절률은, 약 1.5 이상, 약 1.6 이상, 약 1.7 이상 또는 약 1.75 이상일 수 있다. 본 출원의 기판이 적용되는 유기전자장치가 유기발광장치인 경우, 기재층의 상기 굴절률의 범위는 장치의 광효율을 높이는 것에 유리할 수 있다. 무기물층의 굴절률의 상한은 특별히 제한되는 것은 아니며, 예를 들면, 약 2.0 정도일 수 있다.
무기물층의 두께는 목적 용도에 따른 효과에 따라 결정될 수 있고, 그 범위는 특별히 제한되지 않으나, 하나의 예시에서 약 10 nm 내지 100 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm, 10 nm 내지 70 nm, 10 nm 내지 60 nm, 10 nm 내지 50 nm 또는 20 nm 내지 50 nm의 범위 내일 수 있다.
무기물층은 단층 또는 다층 구조일 수 있지만, 전술한 바와 같은 결정화도를 만족시키기 위해 다층 구조인 것이 요구될 수 있다. 다층 구조는, 동종 또는 이종의 무기물층이 적층된 구조를 포함할 수 있다. 무기물층을 다층 구조로 형성하는 것은 전술한 계면 밀착성을 가지고, 상기 언급한 결정화도를 가지는 무기물층을 형성하는 것에 기여할 수 있다. 또한, 다층 구조로 무기물층을 형성하는 것은 전술한 굴절률을 가지는 무기물층의 형성에도 기여할 수 있다.
다층 구조인 경우에 무기물층은, 적어도 제 1 서브층과 제 2 서브층의 적층 구조를 포함할 수 있다. 무기물층에 요구되는 계면 밀착성, 결정화도, 배리어성 내지는 굴절률 등을 고려하여 제 1 및 제 2 서브층의 두께가 조절될 수 있다. 예를 들면, 제 1 및 제 2 서브층의 두께는 모두 7 nm 이하, 6 nm 이하, 5 nm 이하, 4 nm 이하, 3 nm 이하 또는 2 nm 이하의 범위에서 조절될 수 있다. 서브층의 두께의 하한은 특별히 제한되지 않는다. 상기 서브층은 그 두께가 얇을수록 계면 밀착성, 결정화도, 배리어성 및 굴절률 조절 등에 대한 기여도가 증가하지만, 상기 서브층의 두께가 얇아지면, 목적 두께에 도달하기 위하여 필요한 공정수가 증가할 수 있다. 따라서, 상기 서브층 두께의 하한은 목적하는 두께 등을 고려하여 적정 범위로 설정할 수 있고, 예를 들면, 약 0.1 nm 이상의 범위에서 조절될 수 있다.
계면 밀착성, 결정화도, 배리어성 및 굴절률 등을 고려하여, 다층 구조의 무기물층에 포함되는 모든 서브층의 두께는 상기 범위 내에서 조절될 수 있다. 이러한 경우에 무기물층은 두께가 10 nm, 9 nm, 8 nm, 7 nm, 6 nm 또는 5 nm를 초과하는 서브층은 포함하지 않을 수 있다.
무기물층 내에 포함되는 서브층의 수는 특별히 제한되지 않는다. 상기는 서브층의 두께와 목적하는 무기물층의 두께에 따라 결정될 수 있다. 하나의 예시에서 상기 무기물층은, 2개 내지 50개의 서브층을 포함할 수 있다. 상기 범위에서 서브층은 4개 이상, 6개 이상, 8개 이상 또는 10개 이상 포함될 수 있다. 또한, 상기 범위 내에서 서브층은 45개 이하, 40개 이하, 35개 이하, 30개 이하, 25개 이하, 20개 이하 또는 15개 이하로 포함될 수 있다. 무기물층이 3개 이상의 서브층을 포함하는 경우에 각 서브층은 모두 상기 제 1 또는 제 2 서브층일 수 있고, 그 외에 제 3 서브층 또는 그 이상의 서브층도 포함할 수 있다.
서브층은 다양한 재료로 형성할 수 있으나, 계면 밀착성, 결정화도, 배리어성 및 굴절률 등에 기여하는 측면에서 다양한 금속 또는 비금속의 산화물, 질화물 또는 산질화물 등으로 형성할 수 있다. 따라서, 상기 제 1 및 제 2 서브층은 산화물층, 질화물층 또는 산질화물층일 수 있다. 필요하다면, 무기물층에 포함되는 모든 서브층은 상기 산화물로 형성될 수 있다. 이러한 경우에 사용할 수 있는 산화물의 종류는 특별히 제한되지 않고, 상기 언급한 배리어층의 형성이 가능한 산화물 중 적정하게 선택될 수 있다. 서브층 중에서 서로 접촉하고 있는 서브층들은 각기 다른 재료로 형성되는 것이 계면 밀착성, 결정화도, 배리어성 및 굴절률 등에 기여할 수 있다. 따라서, 상기 제 1 및 제 2 서브층이 서로 접촉하고 있다면, 상기는 서로 다른 재료, 예를 들면, 서로 다른 산화물, 질화물 또는 산질화물로 형성될 수 있다. 무기물층이 상기한 바와 같이 제 3 서브층, 제 4 서브층 또는 그 이상의 서브층을 포함하는 경우에도 역시 서로 접촉하고 있는 서브층은 다른 재료, 예를 들면 다른 산화물로 형성되는 것이 유리할 수 있다.
제 1 서브층은 제 1 굴절률을 가지고, 제 2 서브층은 상기 제 1 굴절률과는 다른 제 2 굴절률을 가질 수 있다. 이러한 층을 적층하면, 전술한 효과를 확보하면서도 무기물층의 굴절률을 상기 언급한 범위로 조절하는 것에 유리할 수 있다. 제 1 굴절률과 제 2 굴절률의 차이의 절대값은, 예를 들면, 0.1 이상일 수 있다. 상기 절대값은 다른 예시에서 0.2 이상, 0.3 이상, 0.4 이상, 0.5 이상 또는 0.6 이상일 수 있다. 또한, 상기 절대값은 다른 예시에서 2 이하, 1.8 이하, 1.6 이하, 1.4 이하 또는 1.2 이하의 범위 내에 있을 수 있다. 제 1 및 제 2 굴절률 각각의 범위는 상기 굴절률의 범위가 확보된다면 특별히 제한되지 않으나, 예를 들면 제 1 서브층의 굴절률은, 1.4 내지 1.9의 범위 내이고, 제 2 서브층의 굴절률은 2.0 내지 2.6의 범위 내일 수 있다. 상기와 같은 제 1 및 제 2 서브층은, 각각 금속 산화물층일 수 있다. 예를 들어, 상기 제 1 서브층의 적합한 소재로는, Al2O3 등이 있고, 제 2 서브층에 적합한 소재로는 TiO2 등이 있지만, 각각 전술한 굴절률을 가지면서, 최종적인 적층 구조가 배리어성을 가질 수 있다면, 이 외에도 다양한 소재가 적용될 수 있다.
무기물층 또는 각 서브층은, 공지의 방식을 통해 형성할 수 있으나, 계면 밀착성의 확보 등의 관점에서 ALD(Atomic Layer Deposition) 방식으로 형성하는 것이 유리하다. ALD 방식은, 예를 들면, 유기금속과 같은 전구체와 물과 같은 전구체를 번갈아 피착 표면상에 증착시키는 과정을 포함하고, 이 과정에서 상기 전구체들의 단층(monolayer)이 번갈아 형성되면서 상호 반응하여 무기물층이 형성될 수 있다. 이러한 ALD 방식에 의해 형성되는 층은, 기재층에 소정 관능기, 예를 들면, 전술한 히드록시기 등이 존재할 경우에 그 관능기와 형성 과정에서 반응할 수 있고, 이에 따라 목적하는 계면 밀착성이 확보될 수 있다. 본 명세서에서 특별히 달리 규정하지 않는 한, 용어 ALD층은 ALD 방식으로 형성된 무기물층을 의미할 수 있다.
ALD 방식 외에 적용될 수 있는 무기물층 또는 서브층의 형성 방식으로는, 스퍼터링(sputtering), PLD(Pulsed Laser Deposition), 전자빔 증착(Electron beam evaporation), 열증착(thermal evaporation) 또는 L-MBE(Laser Molecular Beam Epitaxy) 등과 같은 PVD(physical Vapor Deposition) 또는 MOCVD(Metal Organic Chemical Vapor Deposition), HVPE(Hydride Vapor Phase Epitaxy), iCVD(initiated chemical vapor deposition) 또는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 등의 CVD(Chemical Vapor Deposition) 등의 방식이 예시될 수 있다. 필요한 경우에 상기 방식 중에서 사용 소재에 따라 적절한 방식을 선택함으로써 무기물층의 성능을 극대화할 수 있다.
본 출원의 기판은, 추가적인 층을 포함할 수 있다. 예를 들면, 본 출원의 기판은 전술한 무기물층과 기재층간의 계면 밀착성의 달성을 위해서 무기물층과 기재층의 사이에 버퍼층을 추가로 포함할 수 있다. 따라서, 상기 제조 방법은 기재층상에 버퍼층을 형성하는 단계를 또한 포함할 수 있다. 예를 들어, 요철 패턴이 형성되어 있는 기재층에 버퍼층과 무기물층을 순차 형성하면 전술한 바와 같은 구조가 구현될 수 있다. 다만, 버퍼층은 필수적인 구성은 아니며, 예를 들어, 계면 밀착성이 달성된다면 상기 버퍼층은 요구되지 않을 수 있다.
본 출원의 기판은 또한 추가적인 층으로서, 상기 무기물층상 또는 기재층상에 존재하는 전극층을 포함할 수 있다. 따라서, 상기 제조 방법은, 기재층상 또는 무기물층상에 전극층을 형성하는 단계를 추가로 포함할 수 있다.
전극층으로는, 유기전자장치에서 통상 사용되는 정공 주입성 또는 전자 주입성 전극층이 사용될 수 있다. 상기 전극층은 투명 전극층이거나, 반사 전극층일 수 있다.
정공 주입성인 전극층은, 예를 들면, 상대적으로 높은 일 함수(work function)를 가지는 재료를 사용하여 형성할 수 있고, 필요한 경우에 투명 또는 반사 재료를 사용하여 형성할 수 있다. 예를 들면, 정공 주입성 전극층은, 일 함수가 약 4.0 eV 이상인 금속, 합금, 전기 전도성 화합물 또는 상기 중 2종 이상의 혼합물을 포함할 수 있다. 이러한 재료로는, 금 등의 금속, CuI, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZTO(Zinc Tin Oxide), 알루미늄 또는 인듐이 도핑된 아연 옥사이드, 마그네슘 인듐 옥사이드, 니켈 텅스텐 옥사이드, ZnO, SnO2 또는 In2O3 등의 산화물 재료나, 갈륨 니트라이드와 같은 금속 니트라이드, 아연 세레나이드 등과 같은 금속 세레나이드, 아연 설파이드와 같은 금속 설파이드 등이 예시될 수 있다. 투명한 정공 주입성 전극층은, 또한, Au, Ag 또는 Cu 등의 금속 박막과 ZnS, TiO2 또는 ITO 등과 같은 고굴절의 투명 물질의 적층체 등을 사용하여서도 형성할 수 있다.
정공 주입성 전극층은, 증착, 스퍼터링, 화학 증착 또는 전기화학적 수단 등의 임의의 수단으로 형성될 수 있다. 또한, 필요에 따라서 형성된 전극층은 공지된 포토리소그래피나 새도우 마스크 등을 사용한 공정을 통하여 패턴화될 수도 있다.
전자 주입성 전극층은, 예를 들면, 상대적으로 작은 일 함수를 가지는 재료를 사용하여 형성할 수 있으며, 예를 들면, 상기 정공 주입성 전극층의 형성을 위해 사용되는 소재 중에서 적절한 투명 또는 반사 소재를 사용하여 형성할 수 있으나, 이에 제한되는 것은 아니다. 전자 주입성 전극층도, 예를 들면, 증착법 또는 스퍼터링법 등을 사용하여 형성할 수 있으며, 필요한 경우에 적절히 패터닝될 수 있다.
전극층의 두께는, 예를 들면, 약 90 nm 내지 200 nm, 90 nm 내지 180 nm 또는 약 90 nm 내지 150 nm 정도의 두께를 가지도록 형성될 수 있다.
본 출원은 또한 상기와 같은 방식으로 제조된 유기전자소자용 기판에 대한 것이다. 상기 기판에 대한 사항은 이미 기술한 기판의 제조 방법에서 언급되었던 사항이 동일하게 적용될 수 있다.
즉, 상기 기판은, 전술한 방법으로 제조된 것으로서, 적어도 일면에 요철 패턴이 형성되어 있는 고분자 기재층일 수 있다. 또한, 상기 기판은, 상기 고분자 기재층의 요철 패턴이 형성되어 있는 면에 제 2 고분자 기재층이 형성되어 있고, 상기 요철 패턴에 의해 내부에 공간이 형성되어 있을 수 있다. 이러한 구조는, 예를 들면, 도 2에 나타난 바와 같은 구조일 수 있다.
상기 고분자 기재층의 소재, 상기 요철 패턴의 오목부, 내부 공간 등에 충전될 수 있는 물질이나 기재층상에 추가적으로 존재할 수 있는 층 등에 대한 사항은 상기 기술한 사항이 적용될 수 있다.
본 출원은 또한 유기전자장치의 제조 방법에 대한 것이다. 상기 유기전자장치의 제조 방법은, 상기 기판의 제조 방법에 이어서, 상기 제조된 기재층을 기판으로 하여 유기전자장치를 제조하는 단계를 포함할 수 있다. 본 출원은 또한 이와 같이 제조된 유기전자장치에 대한 것이다. 전술한 기재층을 사용하여 유기전자장치를 제조하는 방식은 특별히 제한되지 않고, 공지의 방식을 적용할 수 있다. 예를 들면, 상기 유기전자장치는, 전술한 유기전자장치용 기판인 기재층과 상기 기판상에 존재하는 소자 영역을 포함할 수 있다. 상기 소자 영역은, 제 1 전극층, 유기물층 및 제 2 전극층 등을 포함할 수 있는데, 상기 유기전자장치는, 언급된 방식으로 제조된 기재층상에 공지의 방식으로 상기 전극층, 유기물층 등을 형성하여 제조할 수 있다. 또한, 유기전자장치용 기판에 전술한 전극층이 이미 형성되어 있는 경우에는 그 전극층이 상기 제 1 전극층으로 작용할 수 있다.
예시적인 유기전자장치는, 상부 방향으로 순차 존재하는 상기 기재층, 제 1 전극층, 유기물층, 제 2 전극층, 제 2 무기물층 및 커버 필름을 포함할 수 있다. 상기 각 층들은 인접하는 층과의 사이에 다른 층이 존재하지 않은 상태로 직접 적층되어 있거나, 혹은 다른 층을 매개로 적층되어 있을 수 있다.
본 명세서에서 용어 상부 방향은 특별히 달리 규정하지 않는 한, 제 1 전극층에서 제 2 전극층을 향한 방향을 의미하고, 용어 하부 방향은 특별히 달리 규정하지 않는 한, 제 2 전극층에서 제 1 전극층을 향한 방향을 의미한다.
이하 명세서에서는 설명의 편의를 위하여 상기 구조에서 제 1 전극층의 하부에 존재하는 모든 요소(제 1 전극층은 제외)를 포함하는 영역을 기판 영역으로 호칭하고, 제 1 전극층과 제 2 전극층 및 그 사이에 존재하는 모든 요소를 포함하는 영역을 소자 영역으로 호칭하며, 제 2 전극층의 상부에 존재하는 모든 요소(제 2 전극층은 제외)를 포함하는 영역을 상부 영역으로 호칭한다.
기판 영역은, 상기 언급한 기재층 등에 추가로 다른 층을 포함할 수 있다. 기판 영역에 추가적으로 존재할 수 있는 층으로는, 캐리어 기판, 배리어 필름 또는 접착층 등이 예시될 수 있다
기판 영역에 포함될 수 있는 다른 층으로는, 배리어 필름이 예시될 수 있다. 유리 기판 등과 같이 재료 속성상 배리어성이 우수한 기판이 사용되는 리지드 구조에 비하여 플렉서블 구조에서는 배리어성이 상대적으로 낮은 기재층이 적용되고, 이에 따라서 배리어성의 보완을 위해 추가적인 배리어 필름이 예를 들면 기재층의 하부에 존재할 수 있다. 배리어 필름으로는 특별한 제한 없이 적절한 배리어성과 필요한 경우에 투광성이 확보될 수 있는 것을 사용할 수 있다.
배리어 필름은 예를 들면, 접착층에 의해 기재층에 부착되어 있을 수 있다. 이 때 배리어 필름은, 예를 들어, 기재층의 상기 소자 영역이 형성되어 있는 면과는 반대면에 부착될 수 있다. 본 명세서에서 용어 접착층은, 통상적으로 접착제로 호칭되고 있는 물질은 물론 소위 점착제로 호칭되는 소재 또는 점접착제로 호칭되는 소재 등을 사용하여 형성된 층도 포괄하는 용어이다. 상기 접착층을 형성하는 소재는 특별히 제한되지 않고, 예를 들면, 아크릴 폴리머, 실리콘 폴리머, 고무계 폴리머, EVA(Ethylene vinyl acetate) 폴리머 또는 PIB(polyisobutylene) 등과 같은 올레핀 폴리머 등과 같은 공지의 점/접착 소재를 사용하여 형성할 수 있다.
접착층에는 적절한 수분 차단 소재가 배합될 수 있다. 이하, 본 명세서에서 수분 차단 소재가 배합된 접착층은 차단성 접착층으로 호칭될 수 있다. 본 명세서에서 용어 「수분 차단 소재」는 물리적 또는 화학적 반응 등을 통해, 외부로부터 유입되는 수분 또는 습기 등을 흡착 또는 제거할 수 있는 성분을 총칭하는 의미로 사용될 수 있다. 접착층에 배합될 수 있는 수분 차단 소재의 구체적인 종류는 특별히 제한되지 않으며, 예를 들면, 금속 산화물, 유기금속산화물, 금속염 또는 오산화인(P2O5) 등의 일종 또는 이종 이상의 혼합물을 들 수 있다. 상기에서 금속 산화물의 구체적인 예로는, 산화리튬(Li2O), 산화나트륨(Na2O), 산화바륨(BaO), 산화칼슘(CaO) 또는 산화마그네슘(MgO) 등을 들 수 있고, 금속염의 예로는, 황산리튬(Li2SO4), 황산나트륨(Na2SO4), 황산칼슘(CaSO4), 황산마그네슘(MgSO4), 황산코발트(CoSO4), 황산갈륨(Ga2(SO4)3), 황산티탄(Ti(SO4)2) 또는 황산니켈(NiSO4) 등과 같은 황산염, 염화칼슘(CaCl2), 염화마그네슘(MgCl2), 염화스트론튬(SrCl2), 염화이트륨(YCl3), 염화구리(CuCl2), 불화세슘(CsF), 불화탄탈륨(TaF5), 불화니오븀(NbF5), 브롬화리튬(LiBr), 브롬화칼슘(CaBr2), 브롬화세슘(CeBr3), 브롬화셀레늄(SeBr4), 브롬화바나듐(VBr3), 브롬화마그네슘(MgBr2), 요오드화바륨(BaI2) 또는 요오드화마그네슘(MgI2) 등과 같은 금속할로겐화물; 또는 과염소산바륨(Ba(ClO4)2) 또는 과염소산마그네슘(Mg(ClO4)2) 등과 같은 금속염소산염 등을 들 수 있으나, 이에 제한되는 것은 아니다.
접착층에는 적절산 산란 입자가 배합되어 있을 수 있고, 이에 따라 접착층 자체가 적절한 헤이즈를 나타낼 수도 있다. 접착층이 헤이즈를 나타내게 할 경우에 광 추출 효율이 개선될 수 있다. 접착층에 배합될 수 있는 산란 입자의 종류는 특별히 제한되지 않으며, 접착층을 형성하는 수지의 굴절률을 고려하여 상기 산란층에 포함되는 산란 입자 중에서 적절한 종류가 선택되어 사용될 수 있다.
기판 영역에 존재할 수 있는 다른 층으로는 또한 상기 기재층의 하부에 일시적 또는 영구적으로 부착되어 있을 수 있는 캐리어 기판이 예시될 수 있다. 통상 캐리어 기판으로는 유리 기판과 같은 강성 기판이 적용될 수 있다.
기판 영역은, 다양한 구조로 형성될 수 있다. 예를 들면, 기판 영역은, 도 1 또는 2에 나타나 있는 형태의 기재층(10)이 단독으로 존재하는 형태이거나, 하부 방향으로 상기 언급한 고굴절층 또는 무기물층과 도 1 또는 2에 나타나 있는 형태의 기재층(10)이 순차 형성된 구조, 상기 고굴절층 또는 무기물층과 기재층의 사이에 전술한 버퍼층이 형성되어 있는 구조, 상기 기재층의 하부에 캐리어 필름 또는 배리어 필름이 필요하다면 접착제층에 의해 부착되어 있는 구조 등을 가질 수 있다.
제 1 및 제 2 전극층의 사이에는 유기물층이 존재한다. 상기 유기물층은 적어도 1개 또는 2개 이상의 발광 유닛을 포함할 수 있다. 이와 같은 구조에서 발광 유닛에서 발생한 광은 반사 전극층에 의해 반사되는 과정 등을 거쳐서 투명 전극층측으로 방출될 수 있다.
발광 유닛이 2개 이상 존재하는 경우에는 적절한 발광을 위하여 상기 복수의 발광 유닛의 사이에 중간 전극층 또는 전하발생층이 추가로 존재할 수 있다. 따라서 발광 유닛들은 전하 발생 특성을 가지는 중간 전극층이나 전하 발생층(CGL; Charge Generating Layer) 등에 의해 분할되어 있는 구조를 가질 수도 있다.
발광 유닛을 구성하는 재료는 특별히 제한되지 않는다. 업계에서는 다양한 발광 중심 파장을 가지는 형광 또는 인광 유기 재료가 공지되어 있으며, 이러한 공지의 재료 중에서 적절한 종류를 선택하여 상기 발광 유닛을 형성할 수 있다. 발광 유닛의 재료로는, 트리스(4-메틸-8-퀴놀리놀레이트)알루미늄(III)(tris(4-methyl-8-quinolinolate)aluminum(III))(Alg3), 4-MAlq3 또는 Gaq3 등의 Alq 계열의 재료, C-545T(C26H26N2O2S), DSA-아민, TBSA, BTP, PAP-NPA, 스피로-FPA, Ph3Si(PhTDAOXD), PPCP(1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene) 등과 같은 시클로페나디엔(cyclopenadiene) 유도체, DPVBi(4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl), 디스티릴 벤젠 또는 그 유도체 또는 DCJTB(4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7,-tetramethyljulolidyl-9-enyl)-4H-pyran), DDP, AAAP, NPAMLI, ; 또는 Firpic, m-Firpic, N-Firpic, bon2Ir(acac), (C6)2Ir(acac), bt2Ir(acac), dp2Ir(acac), bzq2Ir(acac), bo2Ir(acac), F2Ir(bpy), F2Ir(acac), op2Ir(acac), ppy2Ir(acac), tpy2Ir(acac), FIrppy(fac-tris[2-(4,5'-difluorophenyl)pyridine-C'2,N] iridium(III)) 또는 Btp2Ir(acac)(bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylactonate)) 등과 같은 인광 재료 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 발광 유닛은, 상기 재료를 호스트(host)로 포함하고, 또한 페릴렌(perylene), 디스티릴비페닐(distyrylbiphenyl), DPT, 퀴나크리돈(quinacridone), 루브렌(rubrene), BTX, ABTX 또는 DCJTB 등을 도펀트로 포함하는 호스트-도펀트 시스템(Host-Dopant system)을 가질 수도 있다.
발광 유닛은 또한 후술하는 전자 수용성 유기 화합물 또는 전자 공여성 유기 화합물 중에서 발광 특성을 나타내는 종류를 적절히 채용하여 형성할 수도 있다.
유기물층은, 발광 유닛을 포함하는 한, 이 분야에 공지된 다른 다양한 기능성층을 추가로 포함하는 다양한 구조로 형성될 수 있다. 유기물층에 포함될 수 있는 층으로는, 전자 주입층, 정공 저지층, 전자 수송층, 정공 수송층 및 정공 주입층 등이 예시될 수 있다.
전자 주입층 또는 전자 수송층은, 예를 들면, 전자 수용성 유기 화합물(electron accepting organic compound)을 사용하여 형성할 수 있다. 상기에서 전자 수용성 유기 화합물로는, 특별한 제한 없이 공지된 임의의 화합물이 사용될 수 있다. 이러한 유기 화합물로는, p-테르페닐(p-terphenyl) 또는 쿠아테르페닐(quaterphenyl) 등과 같은 다환 화합물 또는 그 유도체, 나프탈렌(naphthalene), 테트라센(tetracene), 피렌(pyrene), 코로넨(coronene), 크리센(chrysene), 안트라센(anthracene), 디페닐안트라센(diphenylanthracene), 나프타센(naphthacene) 또는 페난트렌(phenanthrene) 등과 같은 다환 탄화수소 화합물 또는 그 유도체, 페난트롤린(phenanthroline), 바소페난트롤린(bathophenanthroline), 페난트리딘(phenanthridine), 아크리딘(acridine), 퀴놀린(quinoline), 키노사린(quinoxaline) 또는 페나진(phenazine) 등의 복소환화합물 또는 그 유도체 등이 예시될 수 있다. 또한, 플루오르세인(fluoroceine), 페리렌(perylene), 프타로페리렌(phthaloperylene), 나프타로페리렌(naphthaloperylene), 페리논(perynone), 프타로페리논, 나프타로페리논, 디페닐부타디엔(diphenylbutadiene), 테트라페닐부타디엔(tetraphenylbutadiene), 옥사디아졸(oxadiazole), 아르다진(aldazine), 비스벤조옥사조린(bisbenzoxazoline), 비스스티릴(bisstyryl), 피라진(pyrazine), 사이크로펜타디엔(cyclopentadiene), 옥신(oxine), 아미노퀴놀린(aminoquinoline), 이민(imine), 디페닐에틸렌, 비닐안트라센, 디아미노카르바졸(diaminocarbazole), 피란(pyrane), 티오피란(thiopyrane), 폴리메틴(polymethine), 메로시아닌(merocyanine), 퀴나크리돈(quinacridone) 또는 루부렌(rubrene) 등이나 그 유도체, 일본특허공개 제1988-295695호, 일본특허공개 제1996-22557호, 일본특허공개 제1996-81472호, 일본특허공개 제1993-009470호 또는 일본특허공개 제1993-017764호 등의 공보에서 개시하는 금속 킬레이트 착체 화합물, 예를 들면, 금속 킬레이트화 옥사노이드화합물인 트리스(8-퀴놀리노라토)알루미늄[tris(8-quinolinolato)aluminium], 비스(8-퀴놀리노라토)마그네슘, 비스[벤조(에프)-8-퀴놀뤼노라토]아연{bis[benzo(f)-8-quinolinolato]zinc}, 비스(2-메틸-8-퀴놀리노라토)알루미늄, 트리스(8-퀴놀리노라토)인디엄[tris(8-quinolinolato)indium], 트리스(5-메틸-8-퀴놀리노라토)알루미늄, 8-퀴놀리노라토리튬, 트리스(5-클로로-8-퀴놀리노라토)갈륨, 비스(5-클로로-8-퀴놀리노라토)칼슘 등의 8-퀴놀리노라토 또는 그 유도체를 배립자로 하나 이상 가지는 금속 착체, 일본특허공개 제1993-202011호, 일본특허공개 제1995-179394호, 일본특허공개 제1995-278124호 또는 일본특허공개 제1995-228579호 등의 공보에 개시된 옥사디아졸(oxadiazole) 화합물, 일본특허공개 제1995-157473호 공보 등에 개시된 트리아진(triazine) 화합물, 일본특허공개 제1994-203963호 공보 등에 개시된 스틸벤(stilbene) 유도체나, 디스티릴아릴렌(distyrylarylene) 유도체, 일본특허공개 제1994-132080호 또는 일본특허공개 제1994-88072호 공보 등에 개시된 스티릴 유도체, 일본특허공개 제1994-100857호나 일본특허공개 제1994-207170호 공보 등에 개시된 디올레핀 유도체; 벤조옥사졸(benzooxazole) 화합물, 벤조티아졸(benzothiazole) 화합물 또는 벤조이미다졸(benzoimidazole) 화합물 등의 형광 증백제; 1,4-비스(2-메틸스티릴)벤젠, 1,4-비스(3-메틸스티릴)벤젠, 1,4-비스(4-메틸스티릴)벤젠, 디스티릴벤젠, 1,4-비스(2-에틸스티릴)벤질, 1,4-비스(3-에틸스티릴)벤젠, 1,4-비스(2-메틸스티릴)-2-메틸벤젠 또는 1,4-비스(2-메틸스티릴)-2-에틸벤젠 등과 같은 디스티릴벤젠(distyrylbenzene) 화합물; 2,5-비스(4-메틸스티릴)피라진, 2,5-비스(4-에틸스티릴)피라진, 2,5-비스[2-(1-나프틸)비닐]피라진, 2,5-비스(4-메톡시스티릴)피라진, 2,5-비스[2-(4-비페닐)비닐]피라진 또는 2,5-비스[2-(1-피레닐)비닐]피라진 등의 디스티릴피라진(distyrylpyrazine) 화합물, 1,4-페닐렌디메틸리딘, 4,4'-페닐렌디메틸리딘, 2,5-크실렌디메틸리딘, 2,6-나프틸렌디메틸리딘, 1,4-비페닐렌디메틸리딘, 1,4-파라-테레페닐렌디메텔리딘, 9,10-안트라센디일디메틸리딘(9,10-anthracenediyldimethylidine) 또는 4,4'-(2,2-디-티-부틸페닐비닐)비페닐, 4,4 -(2,2-디페닐비닐)비페닐 등과 같은 디메틸리딘(dimethylidine) 화합물 또는 그 유도체, 일본특허공개 제1994-49079호 또는 일본특허공개 제1994-293778호 공보 등에 개시된 실라나민(silanamine) 유도체, 일본특허공개 제1994-279322호 또는 일본특허공개 제1994-279323호 공보 등에 개시된 다관능 스티릴 화합물, 일본특허공개 제1994-107648호 또는 일본특허공개 제1994-092947호 공보 등에 개시되어 있는 옥사디아졸 유도체, 일본특허공개 제1994-206865호 공보 등에 개시된 안트라센 화합물, 일본특허공개 제1994-145146호 공보 등에 개시된 옥시네이트(oxynate) 유도체, 일본특허공개 제1992-96990호 공보 등에 개시된 테트라페닐부타디엔 화합물, 일본특허공개 제1991-296595호 공보 등에 개시된 유기 삼관능 화합물, 일본특허공개 제1990-191694호 공보 등에 개시된 쿠마린(coumarin)유도체, 일본특허공개 제1990-196885호 공보 등에 개시된 페리렌(perylene) 유도체, 일본특허공개 제1990-255789호 공보 등에 개시된 나프탈렌 유도체, 일본특허공개 제1990-289676호나 일본특허공개 제1990-88689호 공보 등에 개시된 프탈로페리논(phthaloperynone) 유도체 또는 일본특허공개 제1990-250292호 공보 등에 개시된 스티릴아민 유도체 등도 저굴절층에 포함되는 전자 수용성 유기 화합물로서 사용될 수 있다. 또한, 상기에서 전자 주입층은, 예를 들면, LiF 또는 CsF 등과 같은 재료를 사용하여 형성할 수도 있다.
정공 저지층은, 주입된 정공이 발광 유닛을 지나 전자 주입성 전극층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 공지의 재료를 사용하여 발광 유닛과 전자 주입성 전극층의 사이에 적절한 부분에 형성될 수 있다.
정공 주입층 또는 정공 수송층은, 예를 들면, 전자 공여성 유기 화합물(electron donating organic compound)을 포함할 수 있다. 전자 공여성 유기 화합물로는, N,N',N'-테트라페닐-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐, 2,2-비스(4-디-p-톨릴아미노페닐)프로판, N,N,N',N'-테트라-p-톨릴-4,4'-디아미노비페닐, 비스(4-디-p-톨릴아미노페닐)페닐메탄, N,N'-디페닐-N,N'-디(4-메톡시페닐)-4,4'-디아미노비페닐, N,N,N',N'-테트라페닐-4,4'-디아미노디페닐에테르, 4,4'-비스(디페닐아미노)쿠아드리페닐[4,4'-bis(diphenylamino)quadriphenyl], 4-N,N-디페닐아미노-(2-디페닐비닐)벤젠, 3-메톡시-4'-N,N-디페닐아미노스틸벤젠, N-페닐카르바졸, 1,1-비스(4-디-p-트리아미노페닐)시크로헥산, 1,1-비스(4-디-p-트리아미노페닐)-4-페닐시크로헥산, 비스(4-디메틸아미노-2-메틸페닐)페닐메탄, N,N,N-트리(p-톨릴)아민, 4-(디-p-톨릴아미노)-4'-[4-(디-p-톨릴아미노)스티릴]스틸벤, N,N,N',N'-테트라페닐-4,4'-디아미노비페닐 N-페닐카르바졸, 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]p-테르페닐, 4,4'-비스[N-(2-나프틸)-N-페닐아미노]비페닐, 4,4'-비스[N-(3-아세나프테닐)-N-페닐아미노]비페닐, 1,5-비스[N-(1-나프틸)-N-페닐아미노]나프탈렌, 4,4'-비스[N-(9-안트릴)-N-페닐아미노]비페닐페닐아미노]비페닐, 4,4'-비스[N-(1-안트릴)-N-페닐아미노]-p-테르페닐, 4,4'-비스[N-(2-페난트릴)-N-페닐아미노]비페닐, 4,4'-비스[N-(8-플루오란테닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-피레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-페릴레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(1-코로네닐)-N-페닐아미노]비페닐(4,4'-bis[N-(1-coronenyl)-N-phenylamino]biphenyl), 2,6-비스(디-p-톨릴아미노)나프탈렌, 2,6-비스[디-(1-나프틸)아미노]나프탈렌, 2,6-비스[N-(1-나프틸)-N-(2-나프틸)아미노]나프탈렌, 4,4'-비스[N,N-디(2-나프틸)아미노]테르페닐, 4,4'-비스{N-페닐-N-[4-(1-나프틸)페닐]아미노}비페닐, 4,4'-비스[N-페닐-N-(2-피레닐)아미노]비페닐, 2,6-비스[N,N-디-(2-나프틸)아미노]플루오렌 또는 4,4'-비스(N,N-디-p-톨릴아미노)테르페닐, 및 비스(N-1-나프틸)(N-2-나프틸)아민 등과 같은 아릴 아민 화합물이 대표적으로 예시될 수 있으나, 이에 제한되는 것은 아니다.
정공 주입층이나 정공 수송층은, 유기화합물을 고분자 중에 분산시키거나, 상기 유기 화합물로부터 유래한 고분자를 사용하여 형성할 수도 있다. 또한, 폴리파라페닐렌비닐렌 및 그 유도체 등과 같이 소위 π 공역 고분자(π conjugated polymers), 폴리(N-비닐카르바졸) 등의 정공 수송성 비공역 고분자 또는 폴리실란의 σ 공역 고분자 등도 사용될 수 있다.
정공 주입층은, 구리프탈로시아닌과 같은 금속 프탈로시아닌이나 비금속 프탈로시아닌, 카본막 및 폴리아닐린 등의 전기적으로 전도성인 고분자 들을 사용하여 형성하거나, 상기 아릴 아민 화합물을 산화제로 하여 루이스산(Lewis acid)과 반응시켜서 형성할 수도 있다.
유기물층의 구체적인 구조는 특별히 제한되지 않는다. 이 분야에서는 정공 또는 전자 주입 전극층과 유기물층, 예를 들면, 발광 유닛, 전자 주입 또는 수송층, 정공 주입 또는 수송층을 형성하기 위한 다양한 소재 및 그 형성 방법이 공지되어 있으며, 상기 유기전자장치의 제조에는 상기와 같은 방식이 모두 적용될 수 있다.
유기전자장치의 상부 영역은 상부 방향으로 순차 형성된 무기물층과 커버 필름을 포함할 수 있다. 상기 유기전자장치용 기판에서의 무기물층과 구분하기 위하여 상기 상부 영역에 포함되는 무기물층은 이하 제 2 무기물층으로 호칭하고, 기판에 포함되는 무기물층은 제 1 무기물층으로 호칭할 수 있다.
제 2 무기물층은, 외부 물질의 침투를 차단, 억제 또는 완화하여 내구성을 확보하기 위하여 존재하고, 구체적인 소재 및 형성 방식은 상기 제 1 무기물층의 항목에서 언급한 것과 유사할 수 있다. 다만, 광이 기판 영역측으로 방출되도록 설계되는 경우에 제 2 무기물층은 제 1 무기물층과 같이 높은 굴절률을 가지도록 형성될 필요는 없다.
제 2 무기물층의 상부에 존재하는 커버 필름은, 유기전자장치를 보호하는 구조로서, 예를 들면, 공지의 배리어 필름, 금속 시트 또는 전도성 필름 등이거나, 상기 중 2종 이상의 적층 구조일 수 있다. 상부 영역에서 커버 필름은, 접착층, 예를 들면, 전술한 차단성 접착층을 통하여 제 2 무기물층의 상부에 부착되어 있을 수 있다.
본 출원은 또한 상기 유기전자장치, 예를 들면, 유기발광장치의 용도에 관한 것이다. 상기 유기발광장치는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다. 하나의 예시에서 본 출원은, 상기 유기발광소자를 포함하는 조명 장치에 관한 것이다. 상기 조명 장치 또는 기타 다른 용도에 상기 유기발광소자가 적용될 경우에, 상기 장치 등을 구성하는 다른 부품이나 그 장치의 구성 방법은 특별히 제한되지 않고, 상기 유기발광소자가 사용되는 한, 해당 분야에 공지되어 있는 임의의 재료나 방식이 모두 채용될 수 있다.
본 출원은, 소자의 효율이 개선된 유기전자장치를 제공할 수 있는 기판의 제조 방법을 제공할 수 있다. 본 출원은 또한, 표면 평활도 등이 우수하고, 목적하는 효과에 따라 굴절률이나 광 산란 특성 등이 적절하게 제어된 기판을 제조할 수 있고, 이에 따라 신뢰성과 효율이 우수한 유기전자장치를 형성할 수 있는 기판과 유기전자장치의 제조 방법을 제공할 수 있다. 본 출원은 또한 상기와 같은 방식으로 제조된 기판, 유기전자장치 및 그 용도를 제공할 수 있다. 본 출원의 제조 방법은, 예를 들면, 플렉서블 소자의 제조에 효과적으로 적용될 수 있다.
도 1 및 2는 예시적인 유기전자장치의 모식도이다.
도 3은 기재층에 요철 패턴을 형성하는 과정을 모식적으로 보여주는 도면이다.
도 4는 기재층을 제조하는 과정을 예시적으로 보여주는 도면이다.
부호의 설명
10: 기재층, 기판 또는 기재층의 전구체
20: 유기전자소자
30: 몰드
41, 42: 기재층
이하, 본 출원에 따른 실시예를 통하여 본 출원을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
제조예 1. 폴리이미드 기판(A)의 제조
반응기 내에서 BPDA(3,3',4,4'-Biphenyltetracarboxylic dianhydride) 및 PDA(p-phenylene diamine)를 축합 반응시켜 폴리아믹산 용액(필름 형성용 조성물, 굴절률: 약 1.625)을 합성하였다. 이어서, 상기 합성된 폴리아믹산 용액을 도 3에 나타난 바와 같이 표면에 요철 패턴이 형성된 몰드(30)상에 이미드화 반응 후에 약 10 ㎛ 정도의 두께의 층이 형성되도록 코팅하였다. 그 후, 오븐에서 약 2℃/min의 속도로 가열한 후 80℃에서 15분, 150℃에서 30분, 220℃에서 30분 및 350℃에서 1시간 동안 유지하여 이미드화 반응시켜 제 1 폴리이미드층을 형성하였다. 이어서 상기와 동일한 방식으로 형성된 제 2 폴리이미드층을 서로의 요철 패턴이 대향하도록 라미네이트하여 기판(A)을 제조하였다. 상기 기판(A)에 대하여 Haze Meter HM-150을 사용하여 ASTM D1003에 준하여 헤이즈를 평가한 결과 약 5%였으며, 광투과율은 약 85%였다.
제조예 2. 폴리이미드 기판(B)의 제조
BPDA(3,3',4,4'-Biphenyltetracarboxylic dianhydride) 및 TFMB(2,2'-Bis(trifluoromethyl)benzidine)를 축합 반응시켜 제조된 제 1 폴리아믹산 용액(굴절률: 약 1.56) 및 FDA(2,2'-Bis-(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride) 및 TFMB(2,2'-Bis(trifluoromethyl)benzidine)를 축합 반응하여 제조된 제 2 폴리아믹산 용액(굴절률: 약 1.541)을 고형분 중량 기준으로 5:95의 비율(제 1 폴리아믹산:제 2 폴리아믹산)로 혼합하여 제조한 필름 형성용 조성물을 사용한 것을 제외하고는 제조예 1과 동일하게 폴리이미드 기판(B)를 제조하였다. 합성된 기판(B)에 대하여 Haze Meter HM-150을 사용하여 ASTM D1003에 준하여 헤이즈를 평가한 결과 약 5.12%였으며, 광투과율은 약 86.4%였다.
제조예 3. 폴리이미드 기판(C)의 제조
BPDA(3,3',4,4'-Biphenyltetracarboxylic dianhydride) 및 TFMB(2,2'-Bis(trifluoromethyl)benzidine)를 축합 반응시켜 제조된 제 1 폴리아믹산 용액(굴절률: 약 1.56) 및 FDA(2,2'-Bis-(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride) 및 TFMB(2,2'-Bis(trifluoromethyl)benzidine)를 축합 반응하여 제조된 제 2 폴리아믹산 용액(굴절률: 약 1.541)을 고형분 중량 기준으로 10:90의 비율(제 1 폴리아믹산:제 2 폴리아믹산)로 혼합하여 제조한 필름 형성용 조성물을 사용한 것을 제외하고는 제조예 1과 동일하게 폴리이미드 기판(C)를 제조하였다. 합성된 기판(C)에 대하여 Haze Meter HM-150을 사용하여 ASTM D1003에 준하여 헤이즈를 평가한 결과 약 16.44%였으며, 광투과율은 약 83.5%였다.
제조예 4. 폴리이미드 기판(D)의 제조
BPDA(3,3',4,4'-Biphenyltetracarboxylic dianhydride) 및 PDA(p-phenylene diamine)를 축합 반응시켜 제조된 제 1 폴리아믹산 용액(굴절률: 약 1.625) 및 BPDA(3,3',4,4'-Biphenyltetracarboxylic dianhydride) 및 TFMB(2,2'-Bis(trifluoromethyl)benzidine)를 축합 반응하여 제조된 제 2 폴리아믹산 용액(굴절률: 약 1.56)을 고형분 중량 기준으로 10:90의 비율(제 1 폴리아믹산:제 2 폴리아믹산)로 혼합하고, 추가로 산란성이 없는 범위의 입경을 가지는 고굴절 필러(rutile TiO2, 굴절률: 약 2.8)를 배합하여 제조된 필름 형성용 조성물을 사용한 것을 제외하고는 제조예 1과 동일하게 폴리이미드 기판(D)를 제조하였다. 합성된 기판(D)에 대하여 Haze Meter HM-150을 사용하여 ASTM D1003에 준하여 헤이즈를 평가한 결과 약 9%였으며, 광투과율은 약 81%였고, 굴절률은 약 1.8 정도였다.
실시예 1.
제조예 1에서 제조된 폴리이미드 기판(A)상에 유기전자소자를 형성하여 도 2에 나타난 형태의 장치를 제조하였다. 기판(A)상에 공지의 소재를 사용하여 정공 주입성 투명 전극층, 정공 수송층, 발광 파장이 약 380 내지 500 nm의 범위 내에 있는 제 1 발광 유닛, n형 유기반도체층, p형 유기반도체층, 발광 파장이 약 500 내지 700 nm의 범위 내에 있는 제 2 발광 유닛, 정공블록층, 전자 수송층, 전자 주입층 및 전자 주입성 반사 전극층을 순차 형성하여 소자 영역을 형성하고, 상기 소자 영역을 적절한 봉지 소재로 봉지하여 유기전자장치를 제조하였다. 제조된 유기전자장치에 대하여 공지의 방식으로 양자 효율을 측정한 결과 약 35.4% 정도였다.
실시예 2.
제조예 2에서 제조된 기판(B)상에 유기전자소자를 형성하였다. 우선 상기 폴리이미드 기판(B)상에 배리어층을 형성하였다. 배리어층은, ALD(Atomic Layer Deposition) 방식으로 단독 증착 시에 굴절률이 약 1.6 내지 1.8 정도의 범위 내인 Al2O3의 층과 단독 증착 시에 굴절률이 약 2.0 내지 2.4 정도의 범위 내인 TiO2의 층을 교대로 번갈아 증착하여 최종적으로 굴절률이 약 1.8 정도가 되도록 형성하였다. Al2O3의 층은 공지의 ALD 방식에 따라서 약 200℃의 온도에서 전구체로서 트리메틸알루미륨의 층과 물(H2O)층을 번갈아 흡착시켜 형성하였으며, TiO2의 층은 역시 공지된 ALD 방식에 따라 약 200℃의 온도에서 전구체로서 TiCl4의 층과 물(H2O)층을 번갈아 흡착시켜 형성하였다. 형성 시에 각 Al2O3의 층 및 TiO2의 층의 두께는 각각 약 2 nm 내지 5 nm의 범위 내가 되도록 하여 최종적으로 약 40 nm 정도의 두께의 배리어층을 형성하였다. 이어서 배리어층상에 공지의 소재를 사용하여 정공 주입성 투명 전극층, 정공 수송층, 발광 파장이 약 380 내지 500 nm의 범위 내에 있는 제 1 발광 유닛, n형 유기반도체층, p형 유기반도체층, 발광 파장이 약 500 내지 700 nm의 범위 내에 있는 제 2 발광 유닛, 정공블록층, 전자 수송층, 전자 주입층 및 전자 주입성 반사 전극층을 순차 형성하여 소자 영역을 형성하고, 상기 소자 영역을 적절한 봉지 소재로 봉지하여 유기전자장치를 제조하였다. 제조된 유기전자장치에 대하여 공지의 방식으로 양자 효율을 측정한 결과 약 41.6% 정도였다.
실시예 3.
제조예 3에서 제조된 기판(C)을 적용한 것을 제외하고는 실시예 1과 동일하게 유기전자소자를 형성하였다. 제조된 유기전자장치에 대하여 공지의 방식으로 양자 효율을 측정한 결과 약 41.6% 정도였다.
실시예 4.
제조예 4에서 제조된 기판(D)을 적용한 것을 제외하고는 실시예 1과 동일하게 유기전자소자를 형성하였다. 제조된 유기전자장치에 대하여 공지의 방식으로 양자 효율을 측정한 결과 약 42% 정도였다.
비교예 1.
제조예 1에서 사용한 것과 동일한 필름형성용 조성물을 약 20 ㎛ 정도의 두께로 코팅하여 제조된 요철 패턴이 형성되지 않은 폴리이미드 기판을 사용한 것을 제외하고는 실시예 1과 동일하게 유기전자소자를 형성하였다. 제조된 유기전자장치에 대하여 공지의 방식으로 양자 효율을 측정한 결과 약 31.9% 정도였다.

Claims (20)

  1. 고분자 기재층 또는 상기 기재층의 전구체의 층의 적어도 일면에 요철 패턴을 형성하는 단계를 포함하는 유기전자장치용 기판의 제조 방법.
  2. 제 1 항에 있어서, 요철 패턴을 형성하는 단계는, 표면에 요철이 형성되어 있는 몰드상에 고분자 기재층 또는 그 전구체의 층을 상기 몰드의 요철 형상에 접하도록 형성하는 단계를 포함하는 유기전자장치용 기판의 제조 방법.
  3. 제 1 항에 있어서, 요철 패턴이 형성되어 있는 기재층 또는 그 전구체의 층의 상기 요철 패턴이 형성되어 있는 면에 제 2 기재층을 형성하는 단계를 추가로 포함하는 유기전자장치용 기판의 제조 방법.
  4. 제 3 항에 있어서, 요철 패턴이 형성되어 있는 기재층의 상기 요철 패턴에 대향하는 제 2 기재층의 면에는 요철 패턴이 형성되어 있는 유기전자장치용 기판의 제조 방법.
  5. 제 1 항에 있어서, 고분자 기재층 또는 그 전구체는 550 nm 파장의 광에 대한 굴절률이 1.4 이상인 유기전자장치용 기판의 제조 방법.
  6. 제 1 항에 있어서, 헤이즈가 3% 내지 90%의 범위 내에 있는 유기전자장치용 기판의 제조 방법.
  7. 제 1 항에 있어서, 요철 패턴의 오목부에 기재층과는 굴절률이 다른 물질을 충전하는 단계를 추가로 수행하는 유기전자장치용 기판의 제조 방법.
  8. 제 7 항에 있어서, 기재층과 굴절률이 다른 물질은 SiON, TiO2, SiO2, Al2O3, Ta2O3, Ti3O3, TiO2, TiO, ZrO2, Nb2O3, CeO2, ZnS 또는 에폭시 수지인 유기전자장치용 기판의 제조 방법.
  9. 제 1 항에 있어서, 고분자 기재층 또는 그 전구체의 층은, 테트라카복실산 이무수물 및 디아민 화합물의 축합 단위 또는 그 이미드화 단위를 포함하는 유기전자장치용 기판의 제조 방법.
  10. 제 1 항에 있어서, 고분자 기재층 또는 그 전구체의 층은, 제 1 테트라카복실산 이무수물 및 제 1 디아민 화합물의 축합 단위 또는 그 이미드화 단위인 제 1 단위와 제 2 테트라카복실산 이무수물 및 제 2 디아민 화합물의 축합 단위 또는 그 이미드화 단위인 제 2 단위를 포함하는 공중합체를 포함하는 유기전자장치용 기판의 제조 방법.
  11. 제 1 항에 있어서, 고분자 기재층 또는 그 전구체의 층은, 제 1 테트라카복실산 이무수물 및 제 1 디아민 화합물의 축합 단위 또는 그 이미드화 단위인 제 1 단위를 포함하는 제 1 중합체와 제 2 테트라카복실산 이무수물 및 제 2 디아민 화합물의 축합 단위 또는 그 이미드화 단위인 제 2 단위를 포함하는 제 2 중합체를 포함하는 유기전자장치용 기판의 제조 방법.
  12. 제 10 항 또는 제 11 항에 있어서, 제 1 단위의 굴절률과 제 2 단위의 굴절률의 차이의 절대값이 0.01 이상인 유기전자장치용 기판의 제조 방법.
  13. 제 10 항 또는 제 11 항에 있어서, 제 1 단위에 포함되는 극성 관능기의 몰수와 제 2 단위에 포함되는 극성 관능기의 몰수의 차이의 절대값이 2 이상인 유기전자장치용 기판의 제조 방법.
  14. 적어도 일면에 요철 패턴이 형성되어 있는 고분자 기재층인 유기전자장치용 기판.
  15. 제 14 항에 있어서, 고분자 기재층의 요철 패턴이 형성되어 있는 면에 제 2 고분자 기재층이 형성되어 있고, 상기 요철 패턴에 의해 내부에 공간이 형성되어 있는 유기전자장치용 기판.
  16. 고분자 기재층의 적어도 일면에 요철 패턴을 형성하는 단계; 및 상기 요철패턴이 형성된 기재층을 기판으로 하여 상기 기재층상에 유기전자소자를 형성하는 단계를 포함하는 유기전자장치의 제조 방법.
  17. 일면에 요철 패턴이 형성되어 있는 고분자 기재층인 유기전자장치용 기판; 상기 기재층의 요철 패턴이 형성되어 있지 않은 면에 형성되어 있는 소자 영역을 포함하는 유기전자장치.
  18. 제 17 항에 있어서, 유기전자장치용 기판은, 고분자 기재층의 요철 패턴이 형성되어 있는 면에 제 2 고분자 기재층을 추가로 포함하고, 상기 요철 패턴에 의해 내부에 공간이 형성되어 있는 유기전자장치.
  19. 제 17 항의 유기전자소자를 포함하는 디스플레이용 광원.
  20. 제 17 항의 유기전자소자를 포함하는 조명 기기.
PCT/KR2014/011830 2013-12-04 2014-12-04 유기전자장치용 기판의 제조 방법 WO2015084073A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480042737.8A CN105408949B (zh) 2013-12-04 2014-12-04 用于有机电子器件的基板的制造方法
US14/910,230 US9691995B2 (en) 2013-12-04 2014-12-04 Method of manufacturing substrate for organic electronic device
EP14866998.9A EP3016090B1 (en) 2013-12-04 2014-12-04 Method for manufacturing an organic electronic device
JP2016531565A JP6361994B2 (ja) 2013-12-04 2014-12-04 有機電子装置用基板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130150083 2013-12-04
KR10-2013-0150083 2013-12-04
KR1020140172954A KR101642603B1 (ko) 2013-12-04 2014-12-04 유기전자장치용 기판의 제조 방법
KR10-2014-0172954 2014-12-04

Publications (1)

Publication Number Publication Date
WO2015084073A1 true WO2015084073A1 (ko) 2015-06-11

Family

ID=53503643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011830 WO2015084073A1 (ko) 2013-12-04 2014-12-04 유기전자장치용 기판의 제조 방법

Country Status (7)

Country Link
US (1) US9691995B2 (ko)
EP (1) EP3016090B1 (ko)
JP (1) JP6361994B2 (ko)
KR (1) KR101642603B1 (ko)
CN (1) CN105408949B (ko)
TW (1) TWI584511B (ko)
WO (1) WO2015084073A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206945A (zh) * 2016-09-08 2016-12-07 京东方科技集团股份有限公司 一种柔性基板及其制备方法、柔性显示装置
US9691995B2 (en) 2013-12-04 2017-06-27 Lg Chem, Ltd. Method of manufacturing substrate for organic electronic device
EP3506362A1 (en) * 2017-12-29 2019-07-03 LG Display Co., Ltd. Display apparatus
US11374184B2 (en) 2016-09-08 2022-06-28 Boe Technology Group Co., Ltd. Flexible substrate and fabrication method thereof, and flexible display apparatus
TWI777309B (zh) * 2019-12-10 2022-09-11 南韓商Lg顯示器股份有限公司 顯示裝置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927984B1 (en) * 2012-11-30 2019-08-07 LG Chem, Ltd. Substrate for organic electronic element
WO2015098401A1 (ja) * 2013-12-27 2015-07-02 Jx日鉱日石エネルギー株式会社 発光素子
WO2019045376A1 (ko) * 2017-09-04 2019-03-07 주식회사 엘지화학 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
CN108365094A (zh) * 2018-02-07 2018-08-03 深圳市华星光电技术有限公司 柔性基板及其制备方法
US10743413B2 (en) 2018-02-07 2020-08-11 Shenzhen China Star Optoelectronics Technology Co., Ltd. Flexible substrate and method for manufacturing same
CN109449290B (zh) * 2018-09-29 2023-05-19 广州国显科技有限公司 柔性基板及其制作方法、阵列基板、显示面板和显示装置
CN109188587B (zh) * 2018-10-30 2021-01-22 京东方科技集团股份有限公司 一种彩色滤光片制作方法、彩色滤光片及显示设备
CN110676296B (zh) * 2019-09-30 2021-11-23 武汉天马微电子有限公司 显示面板及显示装置
KR20210074494A (ko) * 2019-12-12 2021-06-22 엘지디스플레이 주식회사 폴리이미드 기판 및 디스플레이 장치
KR20240022027A (ko) * 2022-08-10 2024-02-20 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH0288689A (ja) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp 電界発光素子
JPH02191694A (ja) 1989-01-20 1990-07-27 Idemitsu Kosan Co Ltd 薄膜有機el素子
JPH02196885A (ja) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd 有機電界発光素子
JPH02250292A (ja) 1989-03-23 1990-10-08 Ricoh Co Ltd 電界発光素子
JPH02255789A (ja) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JPH02289676A (ja) 1989-01-13 1990-11-29 Ricoh Co Ltd 電界発光素子
JPH03296595A (ja) 1990-04-13 1991-12-27 Kao Corp 有機薄膜エレクトロルミネッセンス素子
JPH0496990A (ja) 1990-08-10 1992-03-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH059470A (ja) 1991-02-06 1993-01-19 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH0517764A (ja) 1991-02-06 1993-01-26 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH05202011A (ja) 1992-01-27 1993-08-10 Toshiba Corp オキサジアゾール誘導体
JPH0649079A (ja) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法並びに該シラナミン誘導体を用いたel素子
JPH0688072A (ja) 1992-09-07 1994-03-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0692947A (ja) 1992-07-27 1994-04-05 Ricoh Co Ltd オキサジアゾール誘導体ならびにその製造法
JPH06100857A (ja) 1992-09-21 1994-04-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JPH06132080A (ja) 1992-10-19 1994-05-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06145146A (ja) 1992-11-06 1994-05-24 Chisso Corp オキシネイト誘導体
JPH06203963A (ja) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06206865A (ja) 1992-10-14 1994-07-26 Chisso Corp 新規アントラセン化合物と該化合物を用いる電界発光素子
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06279323A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 新規スチリル化合物,その製造法およびそれからなる有機エレクトロルミネッセンス素子
JPH06279322A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 4官能スチリル化合物およびその製造法
JPH06293778A (ja) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法
JPH07157473A (ja) 1993-12-06 1995-06-20 Chisso Corp トリアジン誘導体、その製造法及びそれを用いた電界発光素子
JPH07179394A (ja) 1993-12-21 1995-07-18 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07228579A (ja) 1993-12-21 1995-08-29 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07278124A (ja) 1993-12-24 1995-10-24 Ricoh Co Ltd オキサジアゾール誘導体およびその製造方法
JPH0822557A (ja) 1994-05-24 1996-01-23 Texas Instr Inc <Ti> ユーザへビデオ画像を表示する装置及び方法
JPH0881472A (ja) 1994-09-12 1996-03-26 Motorola Inc 発光装置に使用するための有機金属錯体
JP3861758B2 (ja) 2002-07-05 2006-12-20 株式会社豊田自動織機 照明装置及び表示装置
JP2011173335A (ja) * 2010-02-24 2011-09-08 Fujifilm Corp 微細凹凸構造体及びその製造方法
KR101114352B1 (ko) * 2010-10-07 2012-02-13 주식회사 엘지화학 유기전자소자용 기판 및 그 제조방법
KR20120024510A (ko) * 2010-09-06 2012-03-14 주식회사 엘지화학 유기전자소자용 기판 및 이를 포함하는 유기전자소자
JP2013077410A (ja) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd 有機エレクトロルミネッサンス発光装置およびその製造方法
WO2013141673A1 (ko) * 2012-03-23 2013-09-26 주식회사 엘지화학 유기전자소자용 기판의 제조방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608609B2 (ja) 1999-03-11 2005-01-12 日立化成工業株式会社 転写フィルム及び拡散反射板の製造方法
JP4831385B2 (ja) * 2001-05-11 2011-12-07 日立化成工業株式会社 フッ素含有ポリイミド共重合体、前駆体、光部品、光部品の屈折率の制御方法
JP4640897B2 (ja) * 2001-05-23 2011-03-02 株式会社エンプラス 拡散部材組立体、面光源装置及び画像表示装置
JP2007335253A (ja) 2006-06-15 2007-12-27 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
JP5251508B2 (ja) 2006-07-27 2013-07-31 宇部興産株式会社 耐熱性フィルム金属箔積層体、およびその製造方法
WO2008139370A1 (en) * 2007-05-10 2008-11-20 Koninklijke Philips Electronics N.V. Method for the manufacturing of an optoelectronic device
WO2009028456A1 (ja) * 2007-08-27 2009-03-05 Panasonic Electric Works Co., Ltd. 有機el発光素子
JP2010040211A (ja) * 2008-07-31 2010-02-18 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子、その製造方法、照明装置、面状光源、および表示装置
CN102333811B (zh) * 2009-03-04 2013-07-17 三井化学株式会社 聚酰胺酸及聚酰亚胺、它们的制造方法、组合物及用途
KR101660315B1 (ko) * 2010-02-11 2016-09-28 삼성전자 주식회사 고분자 및 이를 포함하는 조성물과 필름
JP2012107178A (ja) 2010-03-31 2012-06-07 Sekisui Chem Co Ltd ポリイミド樹脂組成物
JP2012000811A (ja) 2010-06-15 2012-01-05 Daicel Corp 積層フィルム及びその製造方法並びに電子デバイス
KR101922603B1 (ko) * 2011-03-04 2018-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 조명 장치, 기판, 기판의 제작 방법
JP2013076026A (ja) 2011-09-30 2013-04-25 Sekisui Chem Co Ltd ポリイミド樹脂組成物
KR101495526B1 (ko) * 2011-12-29 2015-02-26 삼성메디슨 주식회사 탄성 영상 제공 방법 및 탄성 영상 제공 장치
JP2013191314A (ja) * 2012-03-12 2013-09-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP6118525B2 (ja) * 2012-09-03 2017-04-19 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2014051050A1 (ja) * 2012-09-27 2014-04-03 三菱瓦斯化学株式会社 ポリイミド樹脂組成物
JP6028974B2 (ja) * 2012-11-14 2016-11-24 三星電子株式会社Samsung Electronics Co.,Ltd. ナノコンポジット、ナノコンポジットの製造方法、及び面発光素子
KR101493601B1 (ko) * 2013-07-17 2015-02-13 쌩-고벵 글래스 프랑스 발광 디바이스용 적층체 및 그의 제조 방법
CN105408030A (zh) * 2013-07-26 2016-03-16 吉坤日矿日石能源株式会社 具有凹凸结构的基板的制造方法
WO2015084073A1 (ko) 2013-12-04 2015-06-11 주식회사 엘지화학 유기전자장치용 기판의 제조 방법

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH0288689A (ja) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp 電界発光素子
JPH02289676A (ja) 1989-01-13 1990-11-29 Ricoh Co Ltd 電界発光素子
JPH02191694A (ja) 1989-01-20 1990-07-27 Idemitsu Kosan Co Ltd 薄膜有機el素子
JPH02196885A (ja) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd 有機電界発光素子
JPH02250292A (ja) 1989-03-23 1990-10-08 Ricoh Co Ltd 電界発光素子
JPH02255789A (ja) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JPH03296595A (ja) 1990-04-13 1991-12-27 Kao Corp 有機薄膜エレクトロルミネッセンス素子
JPH0496990A (ja) 1990-08-10 1992-03-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH059470A (ja) 1991-02-06 1993-01-19 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH0517764A (ja) 1991-02-06 1993-01-26 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH05202011A (ja) 1992-01-27 1993-08-10 Toshiba Corp オキサジアゾール誘導体
JPH0649079A (ja) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法並びに該シラナミン誘導体を用いたel素子
JPH0692947A (ja) 1992-07-27 1994-04-05 Ricoh Co Ltd オキサジアゾール誘導体ならびにその製造法
JPH0688072A (ja) 1992-09-07 1994-03-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06100857A (ja) 1992-09-21 1994-04-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JPH06206865A (ja) 1992-10-14 1994-07-26 Chisso Corp 新規アントラセン化合物と該化合物を用いる電界発光素子
JPH06132080A (ja) 1992-10-19 1994-05-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06145146A (ja) 1992-11-06 1994-05-24 Chisso Corp オキシネイト誘導体
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06203963A (ja) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06279323A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 新規スチリル化合物,その製造法およびそれからなる有機エレクトロルミネッセンス素子
JPH06279322A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 4官能スチリル化合物およびその製造法
JPH06293778A (ja) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法
JPH07157473A (ja) 1993-12-06 1995-06-20 Chisso Corp トリアジン誘導体、その製造法及びそれを用いた電界発光素子
JPH07179394A (ja) 1993-12-21 1995-07-18 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07228579A (ja) 1993-12-21 1995-08-29 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07278124A (ja) 1993-12-24 1995-10-24 Ricoh Co Ltd オキサジアゾール誘導体およびその製造方法
JPH0822557A (ja) 1994-05-24 1996-01-23 Texas Instr Inc <Ti> ユーザへビデオ画像を表示する装置及び方法
JPH0881472A (ja) 1994-09-12 1996-03-26 Motorola Inc 発光装置に使用するための有機金属錯体
JP3861758B2 (ja) 2002-07-05 2006-12-20 株式会社豊田自動織機 照明装置及び表示装置
JP2011173335A (ja) * 2010-02-24 2011-09-08 Fujifilm Corp 微細凹凸構造体及びその製造方法
KR20120024510A (ko) * 2010-09-06 2012-03-14 주식회사 엘지화학 유기전자소자용 기판 및 이를 포함하는 유기전자소자
KR101114352B1 (ko) * 2010-10-07 2012-02-13 주식회사 엘지화학 유기전자소자용 기판 및 그 제조방법
JP2013077410A (ja) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd 有機エレクトロルミネッサンス発光装置およびその製造方法
WO2013141673A1 (ko) * 2012-03-23 2013-09-26 주식회사 엘지화학 유기전자소자용 기판의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3016090A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9691995B2 (en) 2013-12-04 2017-06-27 Lg Chem, Ltd. Method of manufacturing substrate for organic electronic device
CN106206945A (zh) * 2016-09-08 2016-12-07 京东方科技集团股份有限公司 一种柔性基板及其制备方法、柔性显示装置
US10749125B2 (en) 2016-09-08 2020-08-18 Boe Technology Group Co., Ltd. Flexible substrate and fabrication method thereof, and flexible display apparatus
US11374184B2 (en) 2016-09-08 2022-06-28 Boe Technology Group Co., Ltd. Flexible substrate and fabrication method thereof, and flexible display apparatus
US11665956B2 (en) 2016-09-08 2023-05-30 Boe Technology Group Co., Ltd. Flexible substrate and fabrication method thereof, and flexible display apparatus
US12029105B2 (en) 2016-09-08 2024-07-02 Boe Technology Group Co., Ltd. Flexible substrate and fabrication method thereof, and flexible display apparatus
EP3506362A1 (en) * 2017-12-29 2019-07-03 LG Display Co., Ltd. Display apparatus
US11631700B2 (en) 2017-12-29 2023-04-18 Lg Display Co., Ltd. Flexible display apparatus with porous substrate
TWI777309B (zh) * 2019-12-10 2022-09-11 南韓商Lg顯示器股份有限公司 顯示裝置
US11556150B2 (en) 2019-12-10 2023-01-17 Lg Display Co., Ltd. Display device
US11822392B2 (en) 2019-12-10 2023-11-21 Lg Display Co., Ltd. Display device

Also Published As

Publication number Publication date
EP3016090A4 (en) 2017-03-15
JP6361994B2 (ja) 2018-07-25
US20160204365A1 (en) 2016-07-14
EP3016090B1 (en) 2021-01-27
TW201535824A (zh) 2015-09-16
JP2016527562A (ja) 2016-09-08
EP3016090A1 (en) 2016-05-04
KR20150065164A (ko) 2015-06-12
US9691995B2 (en) 2017-06-27
CN105408949A (zh) 2016-03-16
TWI584511B (zh) 2017-05-21
CN105408949B (zh) 2019-08-02
KR101642603B1 (ko) 2016-07-25

Similar Documents

Publication Publication Date Title
WO2015084073A1 (ko) 유기전자장치용 기판의 제조 방법
EP3016087B1 (en) Substrate for organic electronic device
WO2015047037A1 (ko) 유기전자소자용 기판 및 이의 제조방법
WO2015047036A1 (ko) 유기전자소자용 기판 및 이의 제조방법
WO2013147572A1 (ko) 유기전자소자용 기판
WO2013147571A1 (ko) 유기전자소자용 기판
WO2015047053A1 (ko) 유기전자장치의 제조 방법
WO2015047044A1 (ko) 유기전자장치의 제조 방법
KR101788923B1 (ko) 플라스틱 기판
WO2015047055A1 (ko) 유기전자소자용 기판
WO2013147570A1 (ko) 유기전자소자용 기판
WO2014021644A1 (ko) 유기전자소자용 기판
KR20160081388A (ko) 유기전자장치
KR20170050900A (ko) 유기전자장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042737.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014866998

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016531565

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14910230

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE