Nothing Special   »   [go: up one dir, main page]

JP4415482B2 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
JP4415482B2
JP4415482B2 JP2000335651A JP2000335651A JP4415482B2 JP 4415482 B2 JP4415482 B2 JP 4415482B2 JP 2000335651 A JP2000335651 A JP 2000335651A JP 2000335651 A JP2000335651 A JP 2000335651A JP 4415482 B2 JP4415482 B2 JP 4415482B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
porous support
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000335651A
Other languages
English (en)
Other versions
JP2001345126A (ja
Inventor
隆史 関口
克典 児島
昭二 西原
文彦 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2000335651A priority Critical patent/JP4415482B2/ja
Publication of JP2001345126A publication Critical patent/JP2001345126A/ja
Application granted granted Critical
Publication of JP4415482B2 publication Critical patent/JP4415482B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光電変換素子に関する。更に詳細には、本発明は電解液の液漏れが起き難い改良された構造を有する光電変換素子に関する。
【0002】
【従来の技術】
太陽電池はクリーンなエネルギー源として大きく期待されており、すでにpn接合型太陽電池などが実用化されている。一方、光励起状態の化学反応を利用して電気エネルギーを取り出す光化学電池は多くの研究者によって開発されているが、実用化に関して言えば、すでに実績の高いpn接合型太陽電池には遙かに及ばなかった。
【0003】
従来の光化学電池の中で、増感剤と電子受容体からなる酸化還元反応を利用したタイプが知られている。例えば、チオニン色素と鉄(II)イオンを組み合わせた系などがある。また、本多−藤嶋効果の発見以来、金属やその酸化物の光電荷分離を利用した光化学電池も知られている。
【0004】
半導体が金属と接触した場合、金属と半導体の仕事関数の関係によりショットキー接合ができるが、半導体と溶液が接している時も同様な接合ができる。例えば、溶液中にFe2+/Fe3+、Fe(CN)6 4-/Fe(CN)6 3-、I-/I2、Br-/Br2、ハイドロキノン/キノンなどの酸化還元系が含まれている時、n型半導体を溶液に浸けると半導体の表面付近の電子が溶液中の酸化剤へ移動し平衡状態に達する。その結果、半導体の表面付近は正に帯電し電位勾配が生じる。これにともない半導体の伝導帯および価電子帯にも勾配が生じる。
【0005】
酸化還元溶液に浸けた半導体電極の表面に光を照射すると、半導体のバンドギャップ以上のエネルギーを持つ光が吸収され、表面付近で伝導帯に電子を、価電子帯に正孔を生成する。伝導帯に励起された電子は上述した半導体の表面付近に存在する電位勾配により半導体内部へ伝達され、一方、価電子帯に生成された正孔は酸化還元溶液中の還元体から電子を奪う。
【0006】
酸化還元溶液に金属電極を浸して金属電極と半導体間で回路を作ると、正孔に電子を奪われた還元体は溶液中を拡散して金属電極から電子を受け取り、再び還元される。このサイクルを繰り返し、半導体電極は負極として、金属電極は正極としてそれぞれ働き、外部へ電力を供給することができる。したがって、光起電力は酸化還元溶液の酸化還元準位と半導体中のフェルミ準位との差になる。
【0007】
光起電力を大きくするためには、▲1▼酸化還元準位の低い、すなわち酸化力の強い酸化還元溶液を用いること、▲2▼酸化還元準位と半導体中のフェルミ準位との間に大きな差を作り出せる、すなわちバンドギャップの大きい半導体を用いることである。
【0008】
しかしながら、酸化還元溶液の酸化力があまり大きすぎると半導体自身の表面に酸化膜を形成し、光電流は短時間のうちにストップする。また、バンドギャップについては、一般にバンドギャップが3.0eV以下さらには2.0eV以下の半導体は光電変換の際に流れる電流により溶液中に溶解しやすい問題がある。例えば、n-Siは水中の光照射で表面に不活性な酸化物被膜を形成し、n-GaAsやn-CdSは酸化的に溶解する。
【0009】
これらの問題を解決すために、半導体に保護膜を被覆する工夫が試みられており、正孔輸送特性を有するポリピロールやポリアニリン、ポリチオフェンなどのp型導電性高分子を半導体の保護膜に使用する工夫が提案されている。しかしながら耐久性に問題があり、せいぜい数日程度しか安定しなかった。
【0010】
光溶解の問題を解決するために、バンドギャップが3eV以上ある半導体の利用が考えられるが、強度のピークが2.5eV付近にある太陽光を効率よく吸収するには大きすぎる。そのため、太陽光のうち紫外部しか吸収できず、大部分を占める可視域を全く吸収せず、光電変換効率は極めて低くなる。
【0011】
可視光域の有効利用とバンドギャップの大きな半導体の光安定性を両立させるために、半導体のバンドギャップより小さい長波長側の可視光を吸収する増感色素を半導体に担持させた色素増感太陽電池が知られている。従来の半導体を用いた湿式太陽電池と異なるところは、色素に光を照射して電子が励起され、励起電子が色素から半導体へ移動する光電荷分離過程である。
【0012】
色素増感太陽電池は光合成と関連づけてとらえられることが多い。当初、色素としては光合成と同様にクロロフィルが考えられていたが、絶えず新しい葉緑素と交換される自然のクロロフィルと違い、太陽電池に用いる色素では安定性の面で問題があり、また、太陽電池としての光電変換効率も0.5%に満たないものであった。自然界の光合成の過程をそのまま模擬し、太陽電池を構成することは非常に困難である。
【0013】
このように、色素増感太陽電池は、光合成からヒントを得て長波長の可視光を吸収しようというものであるが、実際には電子の伝導機構が複雑になったため、却って損失の増大が問題となった。固体の太陽電池では、光を吸収する層を厚くすれば吸収効率は上げることができる。しかしながら、色素増感太陽電池に関しては、半導体電極に電子を注入できるのは表面上の単分子層のみである。そのため無駄な光の吸収をなくすために、半導体表面上の色素は単分子層とすることが望ましい。
【0014】
しかも励起された色素内の電子が効率的に半導体内に注入されるためには、半導体表面と化学的に結合していることが好ましい。例えば、酸化チタンに関しては、半導体表面と化学的に結合するために、色素にカルボキシル基があることなどが重要である。
【0015】
この点に関して、重要な改善をしたのはFujihiraらのグループである。彼らはローダミンBのカルボキシル基がSnO表面の水酸基とエステル結合することにより,光電流が従来の吸着法の10倍以上になったことを1977年に雑誌Natureに報告している。これは従来のアミド結合よりエステル結合の方が色素内で光のエネルギーを吸収した電子の存在するπ軌道が半導体の表面に近いためとしている。
【0016】
しかしながら、半導体に電子を有効に注入できたとしても伝導帯内にある電子は、色素の基底準位と再結合する可能性や、酸化還元物質と再結合する可能性などがある。このような問題点があったため、電子注入について上記の改善にも関わらず光電変換効率は低いままであった。
【0017】
以上のように、従来の色素増感太陽電池の大きな問題点として、半導体表面に単層で担持された増感色素しか半導体へ電子を注入することができないことである。すなわち、これまで半導体電極によく用いられていた単結晶や多結晶半導体は、表面が平滑で内部に細孔を持たず、増感色素が担持される有効面積は電極面積に等しく、増感色素の担持量が少ない。
【0018】
従って、このような電極を用いた場合、その電極に担持された単分子層の増感色素は最大吸収波長でも入射光の1%以下しか吸収できず、光の利用効率が極めて悪くなる。光捕集力を高めるために増感色素を多層にする試みも提案されているが、概して充分な効果が得られていない。
【0019】
グレッツェル等は、このような問題を解決する手段として、酸化チタン電極を多孔質化し、増感色素を担持させ,内部面積を著しく増大させた(例えば、特許2664196号)。ゾル・ゲル法によりこの酸化チタン多孔質膜を作製し、膜のポロシティーは約50%ほどであり、非常に高い内部表面積を有するナノ多孔性構造が形成されている。たとえば、8μmの膜厚ではラフネスファクター(基板面積に対する多孔質内部の実面積の割合)は約720にも達する。この表面を幾何学的に計算すると、増感色素の濃度は1.2×10−7mol/cmに達し、実に、最大吸収波長で入射光の約98%が吸収されることになる。
【0020】
このグレッツェル・セルとも呼ばれる新しい色素増感太陽電池は、上述の酸化チタンの多孔質化による増感色素の飛躍的な担持量の増大と、太陽光を効率よく吸収しかつ半導体への電子注入速度が著しく速い増感色素の開発した点が大きな特徴である。
【0021】
グレッツェルらは、色素増感太陽電池のためにビス(ビピリジル)Ru(II)錯体を開発した。そのRu錯体は一般式シス−X2ビス(2,2’−ビピリジル−4,4’−ジカルボキシレート)Ru(II)の構造を持つ。XはCl−,CN−,SCN−である。これらについて蛍光、可視光吸収、電気化学的および光酸化還元的挙動について系統的な研究が行われた。これらのうち、シス−(ジイソシアネート)−ビス(2,2’−ビピリジル−4,4’−ジカルボキシレート)Ru(II)は、太陽光吸収剤および色素増感剤として格段に優れた性能を持つことが示された。
【0022】
この色素増感剤の可視光吸収は、金属から配位子への電荷移動遷移である。また、配位子のカルボキシル基は表面のTiイオンに直接配位して、色素増感剤と酸化チタンの間に密接な電子的接触を形成している。この電子的な接触により、色素増感剤から酸化チタンの伝導帯への電子注入が1ピコ秒以下の極めて速い速度で起こり、その逆方向の酸化された色素増感剤による酸化チタンの伝導帯へ注入された電子の再捕獲はマイクロ秒のオーダーで起こるとされている。この速度差が光励起電子の方向性を生み出し、電荷分離が極めて高い効率で行われる理由である。そして、これがpn接合面の電位勾配により電荷分離を行うpn接合太陽電池との違いであり、グレツェル・セルの本質的な特徴である。
【0023】
グレッツェル・セルの構成はフッ素ドープした酸化スズの透明導電膜をコーティングした導電ガラス基板2枚の間に、酸化還元対を含む電解質溶液を封入したサンドイッチ型のセルである。ガラス基板の一方は、透明導電膜上にコロイド状の酸化チタン超微粒子から構成される多孔質膜を積層し、さらに増感色素を吸着させて作用電極としたものである。他方は、透明導電膜上に少量の白金をコーティングして対極としたものである。2枚のガラス基板の間にスペーサを挟み、その間のごくわずかの隙間に毛細管現象を利用して電解質溶液を注入する。電解質溶液は、エチレンカーボネートとアセトニトリルの混合溶媒を使用し、ヨウ化テトラ-n-プロピルアンモニウムとヨウ素を溶質としたもので、I-/I3-の酸化還元対を含む。対極にコーティングされた白金はこの酸化還元対のI3-をI-に陰極還元する触媒作用がある。
【0024】
グレッツェル・セルの動作原理は、基本的に従来の半導体を用いた湿式太陽電池と変わらない。ただし、グレッツェル・セルのような多孔質電極のどの部分においても光電荷分離応答が均一かつ効率的に行われるのは、主に電解質層が液体であるためである。すなわち、色素担持多孔質電極を溶液に浸すだけで溶液が均一に多孔質内に拡散し、理想的な電気化学的界面を形成できるからである。
【0025】
しかし、この電解質層が液層ということは、太陽電池の安定性という観点からは好ましくなく、実際多くの場合、電池を作製しても電解質溶液の液漏れが他の電池構成要素の劣化に先行して起こり、太陽電池の性能を低下させてしまうことが知られている。
【0026】
前者の問題点の解決策として、例えば、電解質層を構成する材料として、導電性高分子(例えば,K. Murakoshi et. al., Chem. Lett., 1997, pp.471-472参照)や、非晶質のホール輸送剤(U.Bach et. al,Nature,395,583(1998)参照)や、固体状のイオン伝導体(特開平7−288142号公報及び特開平8−236165号公報参照)などを使用し、上記の問題点を解決する試みがいくつか知られている。しかしながら、電解質層を固体化した前記方法では、電解質層と電極との接触面積が小さくなり内部抵抗が増加するために、あるいは、固体電解質層自体の電子移動度が低いために、液体からなる電解質層に比べて光電変換効率が減少するという新たな問題点が生じた。
【0027】
また,特開平9−27352号公報及び特開平11−126917号公報には、電解液を架橋構造を有する高分子化合物で保持した形の電解質層を使用することが記載されている。しかし、この発明では、電解液中の酸化還元対は架橋構造を有する高分子化合物内を移動することになるため、電解質層中の酸化還元対の移動度が低下し、半導体層表面の色素と対電極と間での酸化還元対を媒介とした電子授受反応が律速となり変換特性が低下する問題があった。
【0028】
【発明が解決しようとする課題】
従って、本発明の目的は、液漏れせず、かつ優れた光電変換効率を長期に渡り維持することが可能な光電変換素子を提供することである。
【0029】
【課題を解決するための手段】
前記課題は、少なくとも、一方の面上に半導体層が被着された電極と、この電極の前記半導体層と対峙する対電極と、該電極の前記半導体層と対電極との間に配置された電解質層を有する光電変換素子において、前記半導体層を増感色素を担持した半導体から構成し、前記電解質層を、多孔質支持体と、該多孔質支持体内に充満された電解液とから構成し、前記多孔質支持体の平面部に、その上面から下面に貫通する少なくとも1個以上の開口部を配設することにより解決される。
【0030】
本発明者らの研究によれば、孔径数nmから数μmの多孔質な半導体層内に存在する電解液には半導体層の構造に由来した毛管作用による電解液保持効果あるが、半導体層と対電極との間の数μmから数mmの間隙を埋める形で存在する電解液には半導体層内ほどの毛管作用による保持効果が働かないため、この部分の電解液が流出しやすいという知見を得た。すなわち、液漏れせず、かつ優れた光電変換効率を長期に渡り維持することが可能な光電変換素子を得るためには、半導体層内に存在する電解液ではなく、半導体層と対電極との間に存在する電解液の漏れを防ぐことが重要であることを見いだし、前記課題の解決に成功した。
【0031】
また、半導体層と対電極との間に存在する電解液に対してのみ保持効果を発現するように多孔質支持体を設けたことにより、固体電解質層や架橋構造を有する高分子化合物で保持した形の電解質層に比べ、酸化還元対の移動度の低下を抑制することが可能となり、これにより高い光電変換効率を達成することができた。
【0032】
なお、この明細書における「多孔質支持体」とは、電解液を保持できるばかりでなく、電解液中の酸化還元対が通過できる空間を有し、かつ、それ自体が一つの独立した膜状構造体からなるものを意味する。従って、前記のような構造体である多孔質支持体は、光電変換素子を分解した際に一枚の膜として取り出すことができる特徴を有する。
【0033】
【発明の実施の形態】
図1は本発明の光電変換素子の一例の概要断面図である。図示されているように、本発明の光電変換素子1は、透明基板2の一方の表面に形成された透明電極3を有する。この透明電極3の一方の表面には色素を担持した半導体層6が形成されている。更に、この半導体層6に対峙して対電極4が存在する。対電極4は別の透明基板7の一方の表面に形成されている。色素を担持した半導体層6と対電極4との間には、電解液を保持した多孔質支持体8からなる電解質層5が存在する。
【0034】
本発明の光電変換素子1における電解質層5を構成する多孔質支持体8の構造としては、繊維状物質を重ね合わせたもの、格子状の網目構造をもつもの、多孔質支持体面に対しの法線方向に柱状の空隙をもつものなどが好ましい。従って、多孔質支持体としては、例えば、濾過フィルター(メンブランフィルタ)あるいは一次電池や二次電池などに用いられるセパレーター又は不織布などを好適に使用できる。特に、多孔質支持体面に対し法線方向に貫通した空隙をもつ場合、多孔質支持体自体が酸化還元対の移動を阻害する作用が少ないため高い光電変換効率が得られる。
【0035】
本発明の多孔質支持体8として使用される濾過フィルターの材質としては、ガラス繊維、ポリプロピレン、ポリエチレン等のポリオレフィン類、ポリエチレンテレフタレート等のポリエステル類などからなるものが好ましい。
【0036】
本発明の多孔質支持体8として使用されるセパレーター又は不織布の材質としては、ポリプロピレン、ポリエチレン等のポリオレフィン類、ポリエチレンテレフタレート等のポリエステル類、ポリアミド類、ポリフェリレンスルフィド、ビニヨン(塩化ビニルと酢酸ビニルの共重合物)、ポリイミド、ビニロン(アセタール化ポリビニルアルコール)などが好ましい。これらの材質のセパレーター又は不織布を単独でも、あるいは2種以上の材質のセパレーター又は不織布を複合化して使用することもできる。ここで、「複合化した不織布」とは、上記2種類の材料をブレンド後に溶融紡糸/延伸したブレンド延伸型不織布、または上記2種類の材料の一方を芯とし、他方がその周囲を被覆してなる複合繊維(コンジュゲート型繊維)を熱融着してなる芯鞘構造型の不織布である。例えば、芯成分に高融点のポリプロピレンを用い、鞘成分に低融点のポリエチレンを用いた熱融着タイプの不織布がよく知られている。
【0037】
多孔質支持体8の厚みは半導体層6と対電極4との面間隔で規定される。しかし、一般的に、多孔質支持体8の厚みは、1mm以下が好ましい。多孔質支持体8の厚みが1mm超の場合、電解質層5中の酸化還元対の移動距離が長くなり、酸化還元対を媒介とした電子の授受反応が律速となり光電変換効率が低下する。
【0038】
半導体層6と対電極4との空間を無くすことは、多孔質支持体8による保持機構の働かない電解質層5部分を無くすことになり、そのこと自体は液漏れ防止および信頼性向上につながる。しかしながら、半導体層6と対電極4との空間を無くすために、その組立工程おいて両極を互いに強く押しつけ合うことは、半導体層6および対電極4を機械的に破壊し、光電変換効率を低下させる要因となることもある。そのため、半導体層6と対電極4との間には少なくとも1μm以上の間隔を設け、前記半導体層6および対電極4の機械的破壊を防ぐことが好ましい。従って、半導体層6と対電極4との間に設ける多孔質支持体8の厚みとしては1μm以上とすることが好ましい。
【0039】
本発明の半導体層6と対電極4との間の電解質層5を構成するために使用される多孔質支持体8は、半導体層6と対電極4との間に充填される電解液の酸化還元対の移動を妨げないばかりか、これら電解液を液漏れしないように保持しなければならない。従って、本発明の多孔質支持体8は、光電変換素子の形成に必要な電解液の酸化還元対の移動を妨げず、しかも、液漏れを起こさないように電解液を保持するのに必要十分なポロシティー(気孔率)を有しなければならない。
【0040】
このため、本発明の光電変換素子1における電解質層5を構成するための多孔質支持体8としては、ポロシティー(気孔率)が30%〜80%の範囲内である多孔質素材を使用することが好ましい。ポロシティーが30%より小さい多孔質支持体8を用いた場合、多孔質支持体8が酸化還元対の移動を妨げる効果が大きくなり、酸化還元対を媒介とした電子の授受反応が律速となり光電変換効率が低くなる。一方、ポロシティーが80%より大きい多孔質支持体8を用いた場合,孔径が大きくなり、毛管作用による電解液保持能力が低下し、十分な液漏れ抑制効果が得られなくなる。ポロシティー(気孔率)が35%〜70%の範囲内である多孔質素材を使用することが一層好ましい。ポロシティー(気孔率)が40%〜60%の範囲内である多孔質素材を使用することが最も好ましい。
【0041】
2に示されるように、多孔質支持体8の平面部9の上面から下面に貫通する開口部10を配設する。このような貫通開口部10の存在により、この開口部10を介して酸化還元対の移動が更に促進され、一層高い光電変換効率を達成することができる。
【0042】
開口部10は多孔質支持体8の平面部9に少なくとも1個以上配設することができる。開口部10は様々な形状をとることができる。例えば、(A)に示されるような矩形状、又は(B)に示されるような円形又は楕円形であることもできる。別法として、(C)に示されるように、円形又は楕円形の開口部10を複数個配設することもできる。また、(D)に示されるように、複数個の矩形状開口部10を配設することもできる。その他、三角形、その他の多角形など任意の形状の開口部10を多孔質支持体8の平面部9に配設することができる。開口部10は多孔質支持体8の平面部9の周縁部を避けて、内側寄りに配設することが好ましい。開口部10が多孔質支持体8の平面部9の周縁部に掛かるように配設されると、その箇所から液漏れを起こす恐れがあるからである。
【0043】
開口部10の開口面積は多孔質支持体8の平面部9の面積(すなわち、開口部配設前の面積)の40%〜70%の範囲内であることが好ましい。開口部が図2(C)及び(D)のように複数個の開口からなる場合には、これら個々の開口の面積の合計値を開口面積とする。開口面積が40%未満では酸化還元対の移動促進効果が不十分となる。一方、開口面積が70%超の場合、電解液の液漏れを起こす可能性がある。所望の開口面積を決定する場合、使用している多孔質支持体8のポロシティー(気孔率)を考慮することが好ましい。例えば、多孔質支持体8のポロシティーが高い場合、開口面積を少なくし、ポロシティーがい場合、開口面積を大きくすることが好ましい。これにより、液漏れを起こすことなく、酸化還元対の移動が最大となり、最も優れた光電変換効率が得られる。
【0044】
開口部10は、例えば、多孔質支持体8の平面部9の上面から下面に貫通するように機械的に穿孔処理するか又は打ち抜き処理することにより配設することができる。ウエットエッチングなどの化学的処理又はプラズマ放電、レーザ加工などの電気的処理によっても開口部10を配設することもできるが、作業性及び開口部の定形性の点から機械的処理が最も好ましい。
【0045】
透明基板2及び7としては、ガラス又はプラスチックなどを使用できる。プラスチックは可撓性なので、柔軟性を必要とする用途に適する。透明電極3及び対電極4の素材は当業者に周知である。本発明における光電変換素子の対電極としては、光電変換素子の正極として効率よく作用するために、電解質の還元体に電子を与える触媒作用を有する白金やグラファイトなどを対電極の表面に被覆したものが好ましい。
【0046】
本発明の半導体層6は色素を担持させることにより、光電変換効率の高い光電変換素子を得ることができる。本発明の半導体層6に担持させるために使用される色素としては、従来の色素増感性光電変換素子で常用の色素であれば全て使用できる。このような色素は当業者に公知である。このような色素は例えば、RuL2(H2O)2タイプのルテニウム−シス−ジアクア−ビピリジル錯体又はルテニウム−トリス(RuL3)、ルテニウム−ビス(RuL2)、オスニウム−トリス(OsL3)、オスニウム−ビス(OsL2)タイプの遷移金属錯体若しくは、亜鉛−テトラ(4−カルボキシフェニル)ポルフィリン、鉄−ヘキサシアニド錯体、フタロシアニンなどが挙げられる。有機色素としては、9-フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素などが挙げられる。この中でもルテニウム−ビス(RuL2)誘導体が好ましい。
【0047】
半導体層6への増感色素の担持量としては、10−8〜10−6mol/cmの範囲にあればよく、特に0.1〜9.0×10−7mol/cmが好ましい。
【0048】
半導体層6を形成する材料としては、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Crの酸化物、SrTiO、CaTiOのようなペロブスカイト、または、CdS、ZnS、In、PbS、MoS、WS、Sb、Bi、ZnCdS、CuSの硫化物、CdSe、InSe、WSe、HgS、PbSe、CdTeの金属カルコゲナイド、その他GaAs、Si、Se、Cd、Zn、InP、AgBr、PbI、HgI、BiIが好ましい。または、前記半導体から選ばれる少なくとも一種以上を含む複合体、例えば、CdS/TiO、CdS/AgI、AgS/AgI、CdS/ZnO、CdS/HgS、CdS/PbS、ZnO/ZnS、ZnO/ZnSe、CdS/HgS、CdS/CdSe1−x、CdS/Te1−x、CdSe/Te1−x、ZnS/CdSe、ZnSe/CdSe、CdS/ZnS、TiO/Cd、CdS/CdSeCdZn1−yS、CdS/HgS/CdSが好ましい。
【0049】
半導体層6の厚さは0.1〜100μmの範囲の厚さであればよい。半導体層6の厚さが0.1μm未満の場合には、十分な光電変換効果が得られない可能性がある。一方、厚さが100μm超の場合には、可視光および近赤外光に対する透過性が著しく悪化するなどの不都合が生じるので好ましくない。
【0050】
半導体層6が被着される側の電極3は、金属そのものか、またはガラスもしくはプラスチックからなる透明基板上の透明電極を指す。好ましい電極としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、もしくは金属酸化物(インジウム−錫複合酸化物、フッ素をドープした酸化錫等)などが挙げられる。
【0051】
半導体層6が被着される側の電極3は、表面抵抗が低い程よい。好ましい表面抵抗の範囲ととしては50Ω/□以下であり、より好ましくは30Ω/□以下である。下限に特に制限はないが、通常0.1Ω/□である。
【0052】
半導体層6が被着される側の電極3は、透過率が高い程よい。好ましい透過率としては50%以上であり、より好ましくは80%である。この時の透明電極の膜厚は0.1〜10μmが好ましい。透明電極を使用する場合、光は半導体層が被着される側の電極から入射させる事が好ましい。
【0053】
対電極4は光電変換素子の正極として働き、通常前述の半導体層6が被着される側の電極3と同義である。
【0054】
半導体層6に光が到達するためには、前述の半導体層6が被着される側の電極3と対電極4の少なくとも一方は実質的に透明でなければならない。本発明の光電変換素子1においては、前述の半導体層6が被着される側の電極3が透明であって太陽光を半導体層6が被着される側の電極から入射させるのが好ましい。この場合、光電変換素子1の対電極4としてはカーボン、金属もしくは導電性酸化物を蒸着したガラス、またはプラスチックが好ましく、カーボンあるいは白金を蒸着したものが特に好ましい。
【0055】
本発明の光電変換素子1における電解質層5を構成する多孔質支持体内には電解液が充満される。電解液は電解質を溶媒に溶解させることにより生成される。このような目的に適する電解質としては、酸化体と還元体からなる一対の酸化還元系構成物質が溶媒中に含まれていれば、特に限定されないが、酸化体と還元体が同一電荷を持つ酸化還元系構成物質が好ましい。この明細書における、酸化還元系構成物質とは、酸化還元反応において、可逆的に酸化体及び還元体の形で存在する一対の物質を意味する。このような酸化還元系構成物質自体は当業者に公知である。本発明で使用できる酸化還元系構成物質は例えば、塩素化合物−塩素、ヨウ素化合物−ヨウ素、臭素化合物−臭素、タリウムイオン(III)−タリウムイオン(I)、水銀イオン(II)−水銀イオン(I)、ルテニウムイオン(III)−ルテニウムイオン(II)、銅イオン(II)−銅イオン(I)、鉄イオン(III)−鉄イオン(II)、バナジウムイオン(III)−バナジウムイオン(II)、マンガン酸イオン−過マンガン酸イオン、フェリシアン化物−フェロシアン化物、キノン−ヒドロキノン、フマル酸−コハク酸などが挙げられる。言うまでもなく、その他の酸化還元系構成物質も使用できる。中でも、ヨウ素化合物−ヨウ素が好ましく、ヨウ素化合物としては、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物、テトラアルキルアンモニウムヨージド、ピリジニウムヨージド等のヨウ化4級アンモニウム塩化合物、ヨウ化ジメチルプロピルイミダゾリウム等のヨウ化ジイミダゾリウム化合物が特に好ましい。
【0056】
電解質を溶解するために使用される溶媒は、酸化還元系構成物質を溶解しイオン伝導性に優れた化合物が好ましい。溶媒としては水性溶媒及び有機溶媒の何れも使用できるが、酸化還元系構成物質をより安定するため、有機溶媒が好ましい。例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネ−ト化合物、酢酸メチル、プロピオン酸メチル、ガンマーブチロラクトン等のエステル化合物、ジエチルエーテル、1,2−ジメトキシエタン、1,3−ジオキソシラン、テトラヒドロフラン、2−メチルーテトラヒドラフラン等のエーテル化合物、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル化合物、スルフォラン、ジジメチルスルフォキシド、ジメチルフォルムアミド等の非プロトン性極性化合物などが挙げられる。これらはそれぞれ単独で用いることもできるし、また、2種類以上を混合して併用することもできる。中でも、エチレンカーボネート、プロピレンカーボネート等のカーボネ−ト化合物、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル化合物が特に好ましい。
【0057】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0058】
参考例1
界面活性剤を含む水とアセチルアセトンとの混合液(容量混合比=20/1)中に酸化チタン粒子(日本アエロジル社製,P25,平均粒径20nm)を濃度約38wt%で分散させてスラリー液を調製した。次に、このスラリー液を厚さ1mmの導電性ガラス基板(旭硝子製,F−SnO,10Ω/sq)上に塗布し、乾燥し、得られた乾燥物を500℃で30分間、空気中で焼成し、基板上に厚さ10μmの多孔質酸化チタン膜を形成した。次に、この多孔質酸化チタン膜を設けた基板とともに、[Ru(4,4’-ジカルボキシル-2,2’-ビピリジン)2-(NCS)2]で表される増感色素溶液中に浸漬し、80℃で還流を行いながら色素吸着処理を行った。
【0059】
前記のようにして得た半導体電極とその対極との間に、電解液および孔径100nmの柱状の空隙のあいた濾過フィルター(ワットマン社製,ポロシティー30%)からなる多孔質支持体を挟み込み光電変換素子を構成した。この場合、対極としては、白金を20nm厚さで蒸着した導電性ガラスを用いた。両電極間の距離、即ち、濾過フィルターの厚みは60μmとした。電解液としては,テトラプロピルアンモニウムヨーダイド(0.46M)とヨウ素(0.6M)を含むエチレンカーボネートとアセトニトリルとの混合液(容量混合比=80/20)を用いた。
【0060】
参考例2
界面活性剤を含む水とアセチルアセトンとの混合液(容量混合比=20/1)中に酸化チタン粒子(日本アエロジル社製,P25,平均粒径20nm)を濃度約38wt%で分散させてスラリー液を調製した。次に、このスラリー液を厚さ1mmの導電性ガラス基板(旭硝子製,F−SnO,10Ω/sq)上に塗布し、乾燥し、得られた乾燥物を500℃で30分間、空気中で焼成し、基板上に厚さ10μmの多孔質酸化チタン膜を形成した。次に,この多孔質酸化チタン膜を設けた基板とともに、[Ru(4,4’-ジカルボキシル-2,2’-ビピリジン)2-(NCS)2]で表される増感色素溶液中に浸漬し、80℃で還流を行いながら色素吸着処理を行った。
【0061】
前記のようにして得た半導体電極とその対極との間に、電解液および繊維状物質(メッシュフィルム)を重ね合わせた多孔質支持体(ポロシティー40%)を挟み込み光電変換素子を構成した。この場合,対極としては,白金を20nm厚さで蒸着した導電性ガラスを用いた。両電極間の距離、即ちメッシュフィルムの厚みは0.1mmとした。電解液としては、テトラプロピルアンモニウムヨーダイド(0.46M)とヨウ素(0.6M)を含むエチレンカーボネートとアセトニトリルとの混合液(容量混合比=80/20)を用いた。
【0062】
実施例3
参考例1で使用された濾過フィルター(ワットマン社製,ポロシティー30%)からなる多孔質支持体の平面部(面積1cm)に、該平面部の上面から下面に貫通する直径1mmの開口部を0.25mm間隔で配設した。開口部の総面積は0.5cmであり、多孔質支持体平面部面積の約50%であった。この開口部が配設された多孔質支持体を使用したこと以外は参考例1と同じ条件で光電変換素子を作製した。なお、開口部の間隔とは、隣接する開口部間の最短距離と定義する。
【0063】
比較例1
界面活性剤を含む水とアセチルアセトンとの混合液(容量混合比=20/1)中に酸化チタン粒子(日本アエロジル社製,P25,平均粒径20nm)を濃度約38wt%で分散させてスラリー液を調製した。次に、このスラリー液を厚さ1mmの導電性ガラス基板(旭硝子製,F−SnO,10Ω/sq)上に塗布し、乾燥し、得られた乾燥物を500℃で30分間、空気中で焼成し、基板上に厚さ10μmの多孔質酸化チタン膜を形成した。次に、この多孔質酸化チタン膜を設けた基板とともに、[Ru(4,4’-ジカルボキシル-2,2’-ビピリジン)2-(NCS)2]で表される増感色素溶液中に浸漬し、80℃で還流を行いながら色素吸着処理を行った。
【0064】
前記のようにして得た半導体電極とその対極との間に電解液を挟み込み光電変換素子を構成した。この場合、対極としては、白金を20nm厚さで蒸着した導電性ガラスを用いた。両電極間の距離は0.1mmとした。これは、光電変換素子の外周部に0.1mm圧のフィルムを挟み込むことで調整した。電解液としては、テトラプロピルアンモニウムヨーダイド(0.46M)とヨウ素(0.6M)を含むエチレンカーボネートとアセトニトリルとの混合液(容量混合比=80/20)を用いた。
【0065】
比較例2
架橋性高分子モノマーとしてヘキサエチレングリコールメタクリル酸エステル(日本油脂化学社製ブレンマーPE350)1gと、酸化還元対を溶解することができる物質としてエチレングリコール1gと、重合開始剤として2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(日本チバガイギー社製ダロキュア1173)20mgを含有した混合溶液にヨウ化リチウム500mgを溶解し、前記混合溶液を半導体電極上に塗布した。半導体電極としては、界面活性剤を含む水とアセチルアセトンとの混合液(容量混合比=20/1)中に酸化チタン粒子(日本アエロジル社製,P25,平均粒径20nm)を濃度約38wt%で分散させてスラリー液を調製した。次に,このスラリー液を厚さ1mmの導電性ガラス基板(旭硝子製,F−SnO,10Ω/sq)上に塗布し、乾燥し、得られた乾燥物を500℃で30分間、空気中で焼成し、基板上に厚さ10μmの多孔質酸化チタン膜を形成し、次に、この多孔質酸化チタン膜を設けた基板とともに、[Ru(4,4’-ジカルボキシル-2,2’-ビピリジン)2-(NCS)2]で表される増感色素溶液中に浸漬し、80℃で還流を行いながら色素吸着処理を行うことにより調製した。前記混合溶液を塗布した半導体電極を減圧下におくことで、多孔質な半導体電極中の気泡を除き混合溶液を浸透を促した後、紫外光照射により重合して架橋構造を有する高分子固体電解質の均一なゲルによる被覆された電極を得た。このようにして得られた電極をヨウ素雰囲気下に30分間曝して高分子化合物中にヨウ素を拡散させた後、対電極を圧着した。対電極としては、白金を20nm厚さで蒸着した導電性ガラスを用いた。
【0066】
比較例3
界面活性剤を含む水とアセチルアセトンとの混合液(容量混合比=20/1)中に酸化チタン粒子(日本アエロジル社製,P25,平均粒径20nm)を濃度約38wt%で分散させてスラリー液を調製した。次に,このスラリー液を厚さ1mmの導電性ガラス基板(旭硝子製,F−SnO,10Ω/sq)上に塗布し、乾燥し、得られた乾燥物を500℃で30分間、空気中で焼成し、基板上に厚さ10μmの多孔質酸化チタン膜を形成した。次に、この多孔質酸化チタン膜を設けた基板とともに、[Ru(4,4’-ジカルボキシル-2,2’-ビピリジン)2-(NCS)2]で表される増感色素溶液中に浸漬し、80℃で還流を行いながら色素吸着処理を行った。
【0067】
前記のようにして得た半導体電極とその対極との間に、電解液および繊維状物質を重ね合わせた多孔質支持体(メッシュフィルム,ポロシティー10%)を挟み込み光電変換素子を構成した。この場合、対極としては、白金を20nm厚さで蒸着した導電性ガラスを用いた。両電極間の距離、即ちメッシュフィルムの厚みは0.1mmとした。電解液としては、テトラプロピルアンモニウムヨーダイド(0.46M)とヨウ素(0.6M)を含むエチレンカーボネートとアセトニトリルとの混合液(容量混合比=80/20)を用いた。
【0068】
上記のようにして作製した各光電変換素子の液漏れの起こり難さ、光電変換効率および長期信頼性を下記の手法により評価した。
【0069】
液漏れの起こり難さに関しては、室温で一週間、電極面の法線方向に沿って電極面に均一に0.5kg/cmの圧力を印加し、その後、液漏れの有無を目視により確認することからなる、電解液保持試験結果を指標として判断した。
【0070】
光電変換効率に関しては、光電変換素子に45mW/cmのキセノンランプ光を照射し光電流−電圧特性を測定し、光電変換効率を求めた。
【0071】
長期信頼性に関しては、JISC8917付属書9記載の耐熱性(高温保存)試験B−1の試験前後の光電変換効率から光電変換効率保持率を求め、これを指標とし判断した。なお、JISC8917付属書9記載の耐熱性(高温保存)試験B−1の方法を下記に示す。
【0072】
耐熱性(高温保存)試験法
耐熱性(高温保存)試験には、C8917結晶系太陽電池モジュールの環境試験方法及び耐久性試験方法附属書9記載の耐熱性(高温保存)試験B−1に準じ行った。下記にその試験方法を記す。
(1) 試験に先立ち、試料の光電変換効率を測定する。
(2) 恒温槽にて、室温より85℃まで加温後,温度85±2℃で、
100±12時間保持する。試験槽内の出力端子は、開放状態に保つ。
(3) 試験後、清浄な布などで表面を清掃した後、室温に24時間以上放置
し、試料の光電変換効率を評価する。
(4) 試験前後の光電変換効率の値から、下記式で定義する光電変換効率
保持率を求めた。
(光電変換効率保持率)={(耐熱性試験前の光電変換効率)―(耐熱性試験後の光電変換効率)}×100/(耐熱性試験前の光電変換効率)
【0073】
参考例1,2、実施例及び比較例1〜3の電解液保持試験結果、光電変換効率および光電変換効率保持率を下記の表1に要約して示す。
【0074】
【表1】
Figure 0004415482
【0075】
前記表1に示された結果から明らかなように、参考例1、2及び実施例3における本発明の光電変換素子は電解液の液漏れが全く無く、電解質層が液体より構成される場合と同等の光電変換特性が得られた。特に、参考例1に示す柱状の空隙のあいた濾過フィルターを多孔質支持体として用いた場合、多孔質支持体が酸化還元対の移動を阻害する作用が少ないため、高い光電変換効率が得られる。更に、参考例1の多孔質支持体の平面に貫通孔を設け、この貫通孔を介して酸化還元対の移動を促進させると、更に一層高い光電変換効率が得られる。一方、比較例1の光電変換素子は、初期特性は高いものの、電解液の液漏れが有り、長期信頼性の面で本発明の光電変換素子よりも劣っている。また、比較例2および比較例3の光電変換素子は、電解液の液漏れの無い点では本発明の光電変換素子に匹敵するが、架橋構造を有する高分子固体電解質の均一なゲルで電極を被覆しているため、あるいは、ポロシティーの小さい多孔質体により電解液を保持しているため、酸化還元対を媒介とした電子の授受反応が律速となり光電変換効率が低くなる。この点で本発明の光電変換素子よりも著しく劣っている。従って、これらの結果から、半導体層と対電極との間に、ポロシティーが30%〜80%の多孔質支持体を設けることで、電解液の液漏れを起こさない、高い光電変換効率および長期信頼性に優れた光電変換素子が得られることが理解できる。更に、多孔質支持体の平面上に所定の面積率の貫通孔を設けることにより、電解液の液漏れを起こすことなく、一層高い光電変換効率および長期信頼性に優れた光電変換素子が得られる。
【0076】
【発明の効果】
以上説明したように、本発明によれば、電解液の液漏れを起こさない、高い光電変換効率および長期信頼性に優れた光電変換素子を得ることができる。
【図面の簡単な説明】
【図1】本発明の光電変換素子の一例の概要断面図である。
【図2】図1に示される光電変換素子で使用される多孔質支持体の一例であって、その平面部に貫通開口部を設けた多孔質支持体の模式的斜視図であり、(A)は矩形状の単一の貫通開口部の配設例、(B)は円形又は楕円形の単一の貫通開口部の配設例、(C)は円形又は楕円形の複数個の貫通開口部の配設例、(D)は矩形状の複数個の貫通開口部の配設例を示す。
【符号の説明】
1 光電変換素子
2 透明基板
3 透明電極
4 対電極
5 電解質層
6 半導体層
7 透明基板
8 多孔質支持体
9 平面部
10 貫通開口部

Claims (7)

  1. 少なくとも、一方の面上に半導体層が被着された電極と、この電極の前記半導体層と対峙する対電極と、該電極の前記半導体層と対電極との間に配置された電解質層を有する光電変換素子において、前記半導体層は増感色素を担持した半導体から構成され、前記電解質層が、多孔質支持体と、該多孔質支持体内に充満された電解液とから構成され、前記多孔質支持体の平面部に、その上面から下面に貫通する少なくとも1個以上の開口部が配設されていることを特徴とする光電変換素子。
  2. 前記多孔質支持体のポロシティーが30%〜80%の範囲内であることを特徴とする請求項1に記載の光電変換素子。
  3. 前記多孔質支持体の厚さが1μm〜1mmの範囲内であることを特徴とする請求項1に記載の光電変換素子。
  4. 前記開口部の開口面積が多孔質支持体の平面部の面積の40%〜70%の範囲内であることを特徴とする請求項1〜3の何れかに記載の光電変換素子。
  5. 前記多孔質支持体が濾過フィルタ、セパレータ又は不織布からなることを特徴とする請求項1〜の何れかに記載の光電変換素子。
  6. 前記濾過フィルタは、ガラス繊維、ポリオレフィン類及びポリエステル類からなる群から選択される素材により形成されていることを特徴とする請求項に記載の光電変換素子。
  7. 前記セパレータ又は不織布は、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリフェリレンスルフィド、ビニヨン(塩化ビニルと酢酸ビニルの共重合物)、ポリイミド、ビニロン(アセタール化ポリビニルアルコール)からなる群から選択される少なくとも1種類の素材により形成されていることを特徴とする請求項に記載の光電変換素子。
JP2000335651A 2000-03-28 2000-11-02 光電変換素子 Expired - Fee Related JP4415482B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335651A JP4415482B2 (ja) 2000-03-28 2000-11-02 光電変換素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000088189 2000-03-28
JP2000-88189 2000-03-28
JP2000335651A JP4415482B2 (ja) 2000-03-28 2000-11-02 光電変換素子

Publications (2)

Publication Number Publication Date
JP2001345126A JP2001345126A (ja) 2001-12-14
JP4415482B2 true JP4415482B2 (ja) 2010-02-17

Family

ID=26588534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335651A Expired - Fee Related JP4415482B2 (ja) 2000-03-28 2000-11-02 光電変換素子

Country Status (1)

Country Link
JP (1) JP4415482B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003103085A1 (ja) * 2002-06-04 2005-10-06 新日本石油株式会社 光電変換素子
JP4493921B2 (ja) * 2003-02-13 2010-06-30 株式会社豊田中央研究所 色素増感型太陽電池
JP2004362793A (ja) * 2003-06-02 2004-12-24 Enplas Corp 色素増感型太陽電池ユニット、色素増感型太陽電池用基板、及び色素増感型太陽電池ユニットの封止構造
JP4636802B2 (ja) * 2004-01-09 2011-02-23 株式会社巴川製紙所 光電変換素子
JP4897226B2 (ja) * 2005-03-02 2012-03-14 シャープ株式会社 色素増感型太陽電池および色素増感型太陽電池モジュール
JP2006331791A (ja) * 2005-05-25 2006-12-07 Bridgestone Corp 色素増感型太陽電池用セパレータ及びその利用
KR100997843B1 (ko) * 2008-08-29 2010-12-01 주식회사 솔켐 전기방사법에 의해 제조된 고분자 전해질을 포함한 염료감응형 태양전지 소자 및 이의 제조방법
JP2011044357A (ja) * 2009-08-21 2011-03-03 Sony Corp 光電池モジュール及び光電池モジュールの製造方法
JP2012243436A (ja) * 2011-05-17 2012-12-10 Sony Corp 光電変換素子およびその製造方法ならびに電子機器
JP2013214373A (ja) * 2012-03-30 2013-10-17 Sekisui Chem Co Ltd 電気モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306685B2 (ja) * 1993-10-26 2002-07-24 日本電信電話株式会社 密閉型光酸素2次電池
JP3346449B2 (ja) * 1996-03-18 2002-11-18 日本電信電話株式会社 光水素化空気二次電池
JPH11329519A (ja) * 1998-04-27 1999-11-30 Minnesota Mining & Mfg Co <3M> 光電池
JPH11339866A (ja) * 1998-05-28 1999-12-10 Sharp Corp 光電変換素子及び色素増感型太陽電池
JP4024942B2 (ja) * 1998-09-16 2007-12-19 株式会社東芝 色素増感型光化学電池
JP2000114563A (ja) * 1998-10-06 2000-04-21 Toshiba Corp 光電変換素子
JP2000285977A (ja) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001102104A (ja) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2000357544A (ja) * 1999-04-16 2000-12-26 Idemitsu Kosan Co Ltd 色素増感型太陽電池

Also Published As

Publication number Publication date
JP2001345126A (ja) 2001-12-14

Similar Documents

Publication Publication Date Title
JP4415448B2 (ja) 光電変換素子
JP4415481B2 (ja) 光電変換素子及びその製造方法
JP4185490B2 (ja) 光電変換素子
JP3336528B2 (ja) 透明再生光電化学電池
US6683361B2 (en) Solar cell and solar cell unit
JP5237664B2 (ja) 光電変換素子
JP4423735B2 (ja) 光電変換素子
JP4415482B2 (ja) 光電変換素子
JP4479108B2 (ja) 光電変換素子
JP4135323B2 (ja) 光電変換素子の製造方法
JP2008027860A (ja) 光電変換素子
JP2005174679A (ja) 光電変換素子モジュール
JP4341197B2 (ja) 光電変換素子及びその製造方法
JP4320869B2 (ja) 光電変換素子の製造方法
JP2003187883A (ja) 光電変換素子
JP4092908B2 (ja) 光電変換素子及びその製造方法
JP2004119082A (ja) 光電変換素子モジュール
JP2005079031A (ja) 光充電可能な二次電池及び電気化学キャパシタ
JP2004119305A (ja) 光電変換素子及びそれを用いた光電変換素子モジュール
JP2009187844A (ja) 光電変換素子の製造方法
JP2009032502A (ja) 光電変換素子
JP2008186632A (ja) 光電変換素子及びその製造方法
JP2002313445A (ja) 光電変換素子
JP2008235103A (ja) 光電変換素子及びその製造方法
JP5181507B2 (ja) 光電変換素子の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4415482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees