Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

A Hybrid Material Point Method for Frictional Contact with Diverse Materials

Published: 26 July 2019 Publication History

Abstract

We present a new hybrid Lagrangian Material Point Method for simulating elastic objects like hair, rubber, and soft tissues that utilizes a Lagrangian mesh for internal force computation and an Eulerian mesh for self collision as well as coupling with external materials. While recent Material Point Method (MPM) techniques allow for natural simulation of hyperelastic materials represented with Lagrangian meshes, they utilize an updated Lagrangian discretization where the Eulerian grid degrees of freedom are used to take variations of the potential energy. This often coarsens the degrees of freedom of the Lagrangian mesh and can lead to artifacts. We develop a hybrid approach that retains Lagrangian degrees of freedom while still allowing for natural coupling with other materials simulated with traditional MPM, e.g. sand, snow, etc. Furthermore, while recent MPM advances allow for resolution of frictional contact with codimensional simulation of hyperelasticity, they do not generalize to the case of volumetric materials. We show that our hybrid approach resolves these issues. We demonstrate the efficacy of our technique with examples that involve elastic soft tissues coupled with kinematic skeletons, extreme deformation, and coupling with multiple elastoplastic materials. Our approach also naturally allows for two-way rigid body coupling.

Supplementary Material

han (han.zip)
Supplemental movie, appendix, image and software files for, A Hybrid Material Point Method for Frictional Contact with Diverse Materials

References

[1]
T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. 2013. Nonlinear finite elements for continua and structures. John Wiley and sons.
[2]
Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete viscous threads. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 116.
[3]
Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. ACM transactions on graphics (TOG) 27, 3 (2008), 63.
[4]
F. Bertails, B. Audoly, M. Cani, B. Querleux, F. Leroy, and J. Lévêque. 2006. Super-helices for Predicting the Dynamics of Natural Hair. ACM Trans Graph 25, 3 (2006), 1180--1187.
[5]
J. Bonet and R. Wood. 2008. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press.
[6]
J. Brackbill and H. Ruppel. 1986. FLIP: A method for adaptively zoned, Particle-In-Cell calculations of fluid flows in two dimensions. J Comp Phys 65 (1986), 314--343.
[7]
R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM Trans Graph 21, 3 (2002), 594--603.
[8]
G. Daviet and F. Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (2016), 102:1--102:13.
[9]
Y. Fan, J. Litven, D. Levin, and D. Pai. 2013. Eulerian-on-lagrangian Simulation. ACM Trans Graph 32, 3 (2013), 22:1--22:9.
[10]
Y. Fan, J. Litven, and D. Pai. 2014. Active Volumetric Musculoskeletal Systems. ACM Trans Graph 33, 4 (2014), 152:1--152:9.
[11]
Y. Fang, Y. Hu, S. Hu, and C. Jiang. 2018. A temporally adaptive material point method with regional time stepping. In Computer Graph Forum, Vol. 37. Wiley Online Library, 195--204.
[12]
Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Trans Graph 37, 4 (2018), 51:1--51:16.
[13]
C. Fu, Q. Guo, T. Gast, C.Jiang, and J. Teran. 2017. A Polynomial Particle-in-cell Method. ACM Trans Graph 36, 6 (Nov. 2017), 222:1--222:12.
[14]
M. Gao, A. Pradhana, X. Han, Q. Guo, G. Kot, E. Sifakis, and C.Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Trans Graph 37, 4 (2018), 149:1--149:11.
[15]
M. Gao, A. Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017), 223:1--223:12.
[16]
M. Gao, X. Wang, Kui K.Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018b. GPU optimization of material point methods. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). ACM, New York, NY, USA, Article 254, 12 pages.
[17]
J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack propagation in snow. Nature Com 9, 1 (2018), 3047.
[18]
A. Golas, R. Narain, and M. Lin. 2014. Continuum modeling of crowd turbulence. Phys Rev E 90 (2014), 042816. Issue 4.
[19]
J. E. Guilkey and J. A. Weiss. 2003. Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method. Int J Numer Meth Eng 57, 9 (2003), 1323--1338.
[20]
Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans Graph 37, 4 (2018), 147.
[21]
C. Hammerquist and J. Nairn. 2017. A new method for material point method particle updates that reduces noise and enhances stability. Comp Meth App Mech Eng 318 (2017), 724 -- 738.
[22]
F. Harlow. 1964. The particle-in-cell method for numerical solution of problems in fluid dynamics. Meth Comp Phys 3 (1964), 319--343.
[23]
Jan Hegemann, Chenfanfu Jiang, Craig Schroeder, and Joseph M. Teran. 2013. A Level Set Method for Ductile Fracture. In Proc ACM SIGGRAPH/Eurograp Symp Comp Anim. 193--201.
[24]
Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans Graph 37, 4 (2018), 150:1--150:14.
[25]
P. Huang, X. Zhang, S. Ma, and X. Huang. 2011. Contact algorithms for the material point method in impact and penetration simulation. Int J Num Meth Eng 85, 4 (2011), 498--517.
[26]
G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131--140.
[27]
C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017), 152.
[28]
C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1--51:10.
[29]
Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The Material Point Method for Simulating Continuum Materials. In ACM SIGGRAPH 2016 Course. 24:1--24:52.
[30]
G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation. ACM Trans Graph 35, 4 (2016), 103:1--103:12.
[31]
D. Levin, J. Litven, G.Jones, S. Sueda, and D. Pai. 2011. Eulerian Solid Simulation with Contact. ACM Trans Graph 30, 4 (2011), 36:1--36:10.
[32]
D. Li, S. Sueda, D. Neog, and D. Pai. 2013. Thin Skin Elastodynamics. ACM Trans Graph 32, 4 (2013), 49:1--49:10.
[33]
A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail Preserving Continuum Simulation of Straight Hair. ACM Trans Graph 28, 3 (2009), 62:1--62:6.
[34]
M. Müller, N. Chentanez, T. Kim, and M. Macklin. 2015. Air Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4 (2015), 133:1--133:9.
[35]
R. Narain, A. Golas, S. Curtis, and M. Lin. 2009. Aggregate Dynamics for Dense Crowd Simulation. ACM Trans Graph 28, 5 (2009), 122:1--122:8.
[36]
D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157--163.
[37]
E. Sifakis and J. Barbic. 2012. FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses (SIGGRAPH '12). ACM, New York, NY, USA, 20:1--20:50.
[38]
E. Sifakis, S. Marino, and J. Teran. 2008. Globally Coupled Collision Handling Using Volume Preserving Impulses. In Proc 2008 ACM SIGGRAPH/Eurographics Symp Comp Anim. 147--153.
[39]
E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw. 2007. Hybrid simulation of deformable solids. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 81--90.
[40]
A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent invertible elasticity. In Proc Symp Comp Anim. 25--32.
[41]
A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10.
[42]
A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1--138:11.
[43]
D. Sulsky, Z. Chen, and H. Schreyer. 1994. A particle method for history-dependent materials. Comp Meth App Mech Eng 118, 1 (1994), 179--196.
[44]
A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4 (2017).
[45]
Y. Teng, D. Levin, and T. Kim. 2016. Eulerian Solid-fluid Coupling. ACM Trans Graph 35, 6 (2016), 200:1--200:8.
[46]
K. Wu and C. Yuksel. 2016. Real-time Hair Mesh Simulation. In ACM SIGGRAPH Symp Int 3D Graph Games. ACM.
[47]
Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20.
[48]
Y. Yue, B. Smith, P. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. 2018. Hybrid grains: adaptive coupling of discrete and continuum simulations of granular media. ACM Trans Graph 37, 6 (2018), 283:1--283:19.
[49]
F. Zhu, J. Zhao, S. Li, Y. Tang, and G. Wang. 2017. Dynamically enriched MPM for invertible elasticity. In Comp Graph Forum, Vol. 36. Wiley Online Library, 381--392.

Cited By

View all
  • (2024)More Than Killmonger Locs: A Style Guide for Black Hair (in Computer Graphics)ACM SIGGRAPH 2024 Courses10.1145/3664475.3664535(1-251)Online publication date: 27-Jul-2024
  • (2024)Eulerian-Lagrangian Fluid Simulation on Particle Flow MapsACM Transactions on Graphics10.1145/365818043:4(1-20)Online publication date: 19-Jul-2024
  • (2024)Real-time Physically Guided Hair InterpolationACM Transactions on Graphics10.1145/365817643:4(1-11)Online publication date: 19-Jul-2024
  • Show More Cited By

Index Terms

  1. A Hybrid Material Point Method for Frictional Contact with Diverse Materials

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Computer Graphics and Interactive Techniques
    Proceedings of the ACM on Computer Graphics and Interactive Techniques  Volume 2, Issue 2
    July 2019
    239 pages
    EISSN:2577-6193
    DOI:10.1145/3352480
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 July 2019
    Published in PACMCGIT Volume 2, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Collision
    2. Elasticity
    3. Hair
    4. Hybrid
    5. MPM

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)371
    • Downloads (Last 6 weeks)48
    Reflects downloads up to 03 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)More Than Killmonger Locs: A Style Guide for Black Hair (in Computer Graphics)ACM SIGGRAPH 2024 Courses10.1145/3664475.3664535(1-251)Online publication date: 27-Jul-2024
    • (2024)Eulerian-Lagrangian Fluid Simulation on Particle Flow MapsACM Transactions on Graphics10.1145/365818043:4(1-20)Online publication date: 19-Jul-2024
    • (2024)Real-time Physically Guided Hair InterpolationACM Transactions on Graphics10.1145/365817643:4(1-11)Online publication date: 19-Jul-2024
    • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
    • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
    • (2023)DiffFR: Differentiable SPH-Based Fluid-Rigid Coupling for Rigid Body ControlACM Transactions on Graphics10.1145/361831842:6(1-17)Online publication date: 5-Dec-2023
    • (2023)Towards RealtimeProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069376:3(1-18)Online publication date: 24-Aug-2023
    • (2023)A Linear and Angular Momentum Conserving Hybrid Particle/Grid Iteration for Volumetric Elastic ContactProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069246:3(1-25)Online publication date: 24-Aug-2023
    • (2023)Lifted CurlsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069206:3(1-19)Online publication date: 24-Aug-2023
    • (2023)Sag-Free Initialization for Strand-Based Hybrid Hair SimulationACM Transactions on Graphics10.1145/359214342:4(1-14)Online publication date: 26-Jul-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media