Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Continuum Foam: A Material Point Method for Shear-Dependent Flows

Published: 03 November 2015 Publication History

Abstract

We consider the simulation of dense foams composed of microscopic bubbles, such as shaving cream and whipped cream. We represent foam not as a collection of discrete bubbles, but instead as a continuum. We employ the material point method (MPM) to discretize a hyperelastic constitutive relation augmented with the Herschel-Bulkley model of non-Newtonian viscoplastic flow, which is known to closely approximate foam behavior. Since large shearing flows in foam can produce poor distributions of material points, a typical MPM implementation can produce non-physical internal holes in the continuum. To address these artifacts, we introduce a particle resampling method for MPM. In addition, we introduce an explicit tearing model to prevent regions from shearing into artificially thin, honey-like threads. We evaluate our method's efficacy by simulating a number of dense foams, and we validate our method by comparing to real-world footage of foam.

Supplementary Material

yue (yue.zip)
Supplemental movie, appendix, image and software files for, Continuum Foam: A Material Point Method for Shear-Dependent Flows

References

[1]
B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3, 48:1--48:7.
[2]
R. Ando, N. Thürey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Visual. Comput. Graph. 18, 8, 1202--1214.
[3]
B. Banerjee. 2004. Material point method simulations of fragmenting cylinders. In Proceedings of the 17th ASCE Engineering Mechanics Conference (EM'04).
[4]
A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1--16:8.
[5]
H. Bhattacharya, Y. Gao, and A. Bargteil. 2011. A level-set method for skinning animated particle data. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'11). 17--24.
[6]
E. C. Bingham. 1922. In Fluidity and Plasticity. McGraw-Hill.
[7]
J. U. Brackbill and H. M. Ruppel. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2, 314--343.
[8]
K. A. Brakke. 1992. The surface evolver. Experiment. Math. 1, 2, 141--165.
[9]
O. Busaryev, T. K. Dey, H. Wang, and Z. Ren. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4, 63:1--63:8.
[10]
P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo. 2007. Bubbling and frothing liquids. ACM Trans. Graph. 26, 3, 97:1--97:6.
[11]
S. Cohen-Addad, R. Höhler, and O. Pitois. 2013. Flow in foams and flowing foams. Ann. Rev. Fluid Mechan. 45, 241--267.
[12]
R. L. Cook. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72.
[13]
G.-H. Cottet and P. D. Koumoutsakos. 2000. Vortex Methods: Theory and Practice. Cambridge University Press.
[14]
D. J. Durian, D. A. Weitz, and D. J. Pine. 1990. Dynamics and coarsening in three-dimensional foams. J. Phys. Condens. Matter 2, SA433.
[15]
R. Ďurikovič. 2001. Animation of soap bubble dynamics, cluster formation and collision. Comput. Graph. Forum 20, 3, 67--76.
[16]
M. S. Ebeida, S. A. Mitchell, A. Patney, A. A. Davidson, and J. D. Owens. 2012. A simple algorithm for maximal Poisson-disk sampling in high dimensions. Comput. Graph. Forum 31, 2, 785--794.
[17]
E. Edwards and R. Bridson. 2012. A high-order accurate particle-in-cell method. Int. J. Numer. Math. Engin. 90, 9, 1073--1088.
[18]
D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116.
[19]
P. Garrett. 1993. Recent developments in the understanding of foam generation and stability. Chem. Engin. Sci. 48, 2, 367--392.
[20]
D. Gerszewski, H. Bhattacharya, and A. W. Bargteil. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'09). 133--138.
[21]
T. G. Goktekin, A. W. Bargteil, and J. F. O'Brien. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468.
[22]
S. T. Greenwood and D. H. House. 2004. Better with bubbles: Enhancing the visual realism of simulated fluid. In Proceedings of the Annual ACM SIGGRAPH/Eurograhics Symposium on Computer Animation (SCA'04). 287--296.
[23]
Y. J. Guo and J. A. Nairn. 2006. Three-dimensional dynamic fracture analysis using the material point method. Comput. Model. Engin. Sci. 1, 1, 11--25.
[24]
A. Harder and C. Mangnall. 2013. Bubbles and foam in Partysaurus Rex. In ACM SIGGRAPH Talks (SIGGRAPH'13).
[25]
W. H. Herschel and R. Bulkley. 1926. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Zeitschrift & Zeitschrift füür Polymere 39, 4, 291--300.
[26]
S. E. Hieber and P. Koumousakos. 2005. A Lagrangian particle level set method. J. Comput. Phys. 210, 342--367.
[27]
J.-M. Hong and C.-H. Kim. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920.
[28]
J.-M. Hong, H.-Y. Lee, J.-C. Yoon, and C.-H. Kim. 2008. Bubbles alive. ACM Trans. Graph. 27, 3, 48:1--48:4.
[29]
M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner. 2012. Unified spray, foam and air bubbles for particle-based fluids. The Vis. Comput. 28, 6--8, 669--677.
[30]
G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for roust simulation of large deformation. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'04). 131--140.
[31]
B. Jones, S. Ward, A. Jallepalli, J. Perenia, and A. W. Bargteil. 2014. Deformation embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33, 2, 21:1--21:9.
[32]
R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the 2nd Eurographics /IEEE VGTC Conference on Point-Based Graphics (SPBG'05). 125--133.
[33]
L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3, 51:1--51:8.
[34]
B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3, 98:1--98:10.
[35]
D. Kim, O.-Y. Song, and H.-S. Ko. 2010. A practical simulation of dispersed bubble flow. ACM Trans. Graph. 29, 4, 70:1--70:5.
[36]
S. A. Koehler, H. A. Stone, M. P. Brenner, and J. Eggers. 1998. Dynamics of foam drainage. Phys. Rev. E58, 2097--2106.
[37]
H. Kück, C. Vogelgsang, and G. Greiner. 2002. Simulation and rendering of liquid foams. In Proceedings of the Graphics Interface Conference (GI'02). 81--88.
[38]
F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819.
[39]
F. Losasso, J. O. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Visual. Comput. Graph. 14, 4, 797--804.
[40]
M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'04). 141--151.
[41]
M. Müller, B. Solenthaler, R. Keiser, and M. Gross. 2005. Particle-based fluid-fluid interaction. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). 237--244.
[42]
R. Narain, A. Golas, and M. C. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans. Graph. 29, 6, 173:1--173:9.
[43]
M. Nesme, P. G. Kry, L. Jeřábková, and F. Faure. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1--52:9.
[44]
M. B. Nielsen and O. Østerby. 2013. A two-continua approach to Eulerian simulation of water spray. ACM Trans. Graph. 32, 4, 67:1--67:10.
[45]
J. F. O'Brien, A. W. Bargteil, and J. K. Hodgins. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294.
[46]
G. Ovarlez, K. Krishan, and S. Cohen-Addad. 2010. Investigation o shear banding in threedimensional foams. Europhys. Lett. 91, 6, 68005:1--68005:6.
[47]
S. Patkar, M. Aanjaneya, D. Karpman, and R. Fedkiw. 2013. A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'13). 105--114.
[48]
R. I. Saye and J. A. Sethian. 2013. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Sci. 340, 6133, 720--724.
[49]
H. Schechter and R. Bridson. 2012. Ghost SPH for animating water. ACM Trans. Graph. 31, 4, 61:1--61:8.
[50]
H. L. Schreyer, D. L. Sulsky, and S.-J. Zhou. 2002. Modeling delamination as a strong discontinuity with the material point method. Comput. Methods Appl. Mechan. Engin. 191, 23--24, 2483--2507.
[51]
J. A. Sethian. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press.
[52]
J. C. Simo. 1988. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput. Methods Appl. Mechan. Engin. 66, 2, 199--219.
[53]
J. C. Simo and T. J. R. Hughes. 1998. Computational Inelasticity. Springer.
[54]
B. Solenthaler and R. Pajarola. 2008. Density contrast SPH interfaces. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'08). 211--218.
[55]
B. Solenthaler, J. Schläfli, and R. Pajarola. 2007. A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 1, 69--82.
[56]
M. Steffen, R. M. Kirby, and M. Berzins. 2008. Analysis and reduction of quadratire errors in the material point method (MPM). Int. J. Numer. Math. Engin. 76, 6, 922--948.
[57]
A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4, 102:1--102:9.
[58]
A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33, 4, 138:1--138:11.
[59]
D. Sulsky and L. Schreyer. 2004. MPM simulation of dynamic material failure with a decohesion constitutive model. Euro. J. Mechan. A/Solids 23, 3, 423--445.
[60]
D. Sulsky, S.-J. Zhou, and H. L. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comput. Phys. Comm. 87, 1--2, 236--252.
[61]
D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. Comput. Graph. 22, 4, 269--278.
[62]
N. Thürey, F. Sadlo, S. Schirm, M. Müller-Fischer, and M. Gross. 2007. Real-time simulations of bubbles and foam within a shallow water framework. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). 191--198.
[63]
H. Wang, J. O'Brien, and R. Ramamoorthi. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. 29, 6, 156:1--156:10.
[64]
D. Weaire. 2008. The rheology of foam. Current Opin. Colloid Interface Sci. 13, 3, 171--176.
[65]
D. Weaire and S. Hutzler. 2001. The Physics of Foams. Oxford University Press.
[66]
M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 4, 49:1--49:11.
[67]
C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3, 47:1--47:8.
[68]
J. Yu and G. Turk. 2013. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. 32, 1, 5:1--5:12.
[69]
W. Zheng, J.-H. Yong, and J.-C. Paul. 2006. Simulation of bubbles. In Proceedings of the Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'06). 325--333.
[70]
S. Zhou. 1998. The numerical prediction of material failure based on the material point method. Ph.D. thesis, The University of New Mexico.
[71]
Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965--972.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 5
October 2015
188 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2843519
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 November 2015
Accepted: 01 March 2015
Revised: 01 January 2015
Received: 01 September 2014
Published in TOG Volume 34, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Foam
  2. material point method
  3. particle resampling
  4. shear thickening
  5. shear thinning
  6. tearing
  7. viscoplasticity

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Adobe
  • JSPS Postdoctoral Fellowships for Research Abroad
  • NSERC
  • NVIDIA
  • NSF
  • Autodesk
  • Side Effects
  • Intel
  • The Walt Disney Company
  • The Foundry

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)103
  • Downloads (Last 6 weeks)11
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Material Point Method-Based Simulation Techniques for Medical ApplicationsElectronics10.3390/electronics1307134013:7(1340)Online publication date: 2-Apr-2024
  • (2024)Eulerian-Lagrangian Fluid Simulation on Particle Flow MapsACM Transactions on Graphics10.1145/365818043:4(1-20)Online publication date: 19-Jul-2024
  • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
  • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
  • (2024)NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised ClassificationIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.317930635:1(1025-1039)Online publication date: Jan-2024
  • (2024)SparseVoxNet: 3-D Object Recognition With Sparsely Aggregation of 3-D Dense BlocksIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.317577535:1(532-546)Online publication date: Jan-2024
  • (2024)Fine-Grained Spatial–Temporal Gait Recognition Network Based on Millimeter-Wave Radar Point CloudIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2023.334582962(1-16)Online publication date: 2024
  • (2024)Boosting Point-BERT by Multi-Choice TokensIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2023.328580334:1(438-447)Online publication date: Jan-2024
  • (2024)Improving Physics-Augmented Continuum Neural Radiance Field-Based Geometry-Agnostic System Identification with Lagrangian Particle Optimization2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00523(5470-5480)Online publication date: 16-Jun-2024
  • (2024)PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00420(4389-4398)Online publication date: 16-Jun-2024
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media