Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Eulerian solid-fluid coupling

Published: 05 December 2016 Publication History

Abstract

We present a new method that achieves a two-way coupling between deformable solids and an incompressible fluid where the underlying geometric representation is entirely Eulerian. Using the recently developed Eulerian Solids approach [Levin et al. 2011], we are able to simulate multiple solids undergoing complex, frictional contact while simultaneously interacting with a fluid. The complexity of the scenarios we are able to simulate surpasses those that we have seen from any previous method. Eulerian Solids have previously been integrated using explicit schemes, but we develop an implicit scheme that allows large time steps to be taken. The in-compressibility condition is satisfied in both the solid and the fluid, which has the added benefit of simplifying collision handling.

Supplementary Material

ZIP File (a200-teng.zip)
Supplemental file.

References

[1]
Akinci, N., Cornelis, J., Akinci, G., and Teschner, M. 2013. Coupling elastic solids with smoothed particle hydrodynamics fluids. Comp. Anim. and Virtual Worlds, 195--203.
[2]
Baaijens, F. P. T. 2001. A fictitious domain mortar element method for fluid/structure interaction. International Journal for Numerical Methods in Fluids 35, 7, 743--761.
[3]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3.
[4]
Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. In ACM Trans. Graph., vol. 26, ACM, 100.
[5]
Belytschko, T., Liu, W. K., Moran, B., and Elkhodary, K. 2013. Nonlinear finite elements for continua and structures. John Wiley & Sons.
[6]
Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (July), 154:1--154:11.
[7]
Brackbill, J., and Ruppel, H. 1986. Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. of Comp. Phys. 65, 2, 314--343.
[8]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In ACM Trans. Graph., 594--603.
[9]
Bridson, R. 2008. Fluid Simulation for Computer Graphics. AK Peters.
[10]
Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3 (Aug.), 377--384.
[11]
Chentanez, N., Goktekin, T. G., Feldman, B. E., and O'Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 83--89.
[12]
Clausen, P., Wicke, M., Shewchuk, J. R., and O'Brien, J. F. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph., 17:1--15.
[13]
Fan, Y., Litven, J., Levin, D. I., and Pai, D. K. 2013. Eulerian-on-lagrangian simulation. ACM Trans. Graph.
[14]
Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of SIGGRAPH, 15--22.
[15]
Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3 (July), 973--981.
[16]
Guennebaud, G., Jacob, B., et al., 2010. Eigen v3. http://eigen.tuxfamily.org.
[17]
He, X., Liu, N., Wang, G., Zhang, F., Li, S., Shao, S., and Wang, H. 2012. Staggered meshless solid-fluid coupling. ACM Trans. Graph. 31, 6 (Nov.), 149:1--149:12.
[18]
Heo, N., and Ko, H.-S. 2010. Detail-preserving fully-eulerian interface tracking framework. ACM Trans. Graph. 29, 6 (Dec.).
[19]
Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH Fluids in Computer Graphics. In Eurographics State of the Art Reports.
[20]
Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. In ACM Trans. Graph., vol. 26.
[21]
Jiang, C., Schroeder, C., Selle, A., Teran, J., and Stomakhin, A. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (July), 51:1--51:10.
[22]
Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., and Selle, A. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH Courses.
[23]
Kamrin, K., Rycroft, C. H., and Nave, J.-C. 2012. Reference map technique for finite-strain elasticity and fluid-solid interaction. Journal of the Mechanics and Physics of Solids 60, 11 (Nov.), 1952--1969.
[24]
Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3 (July), 50:1--50:10.
[25]
Kim, T., and Delaney, J. 2013. Subspace fluid re-simulation. ACM Trans. Graph. 32, 4 (July), 62:1--62:9.
[26]
Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (July), 820--825.
[27]
Lenaerts, T., Adams, B., and Dutré, P. 2008. Porous flow in particle-based fluid simulations. In ACM Trans. Graph., vol. 27, 49:1--49:8.
[28]
Lentine, M., Cong, M., Patkar, S., and Fedkiw, R. 2012. Simulating free surface flow with very large time steps. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 107--116.
[29]
Levin, D. I., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. In ACM Trans. Graph., vol. 30.
[30]
Liu, B., Mason, G., Hodgson, J., Tong, Y., and Desbrun, M. 2015. Model-reduced variational fluid simulation. ACM Trans. Graph. 34, 6 (Oct.), 244:1--244:12.
[31]
Macklin, M., and Müller, M. 2013. Position based fluids. ACM Trans. Graph. 32, 4, 104.
[32]
Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014. Unified particle physics for real-time applications. ACM Trans. Graph. 33, 4 (July), 153:1--153:12.
[33]
McAdams, A., Selle, A., Ward, K., Sifakis, E., and Teran, J. 2009. Detail preserving continuum simulation of straight hair. ACM Trans. Graph. 28, 3, 62:1--62:6.
[34]
McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (July), 37:1--37:12.
[35]
Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3 (July), 38:1--38:8.
[36]
Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. ACM Trans. Graph. 30, 4 (July), 92:1--92:10.
[37]
Peskin, C. S. 1972. The immersed boundary method. Acta Numerica 11 (1), 479--517.
[38]
Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 3.
[39]
Robinson-Mosher, A., English, R. E., and Fedkiw, R. 2009. Accurate tangential velocities for solid fluid coupling. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 227--236.
[40]
Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable maccormack method. J. Sci. Comput. 35, 2-3 (June), 350--371.
[41]
Sifakis, E., Marino, S., and Teran, J. 2008. Globally coupled collision handling using volume preserving impulses. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 147--153.
[42]
Sin, F. S., Schroeder, D., and Barbic, J. 2013. Vega: Nonlinear fem deformable object simulator. Computer Graphics Forum 32, 1, 36--48.
[43]
Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1, 69--82.
[44]
Souli, M., and Benson, D. J. 2013. Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation. John Wiley & Sons.
[45]
Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH, 121--128.
[46]
Stomakhin, A., Howes, R., Schroeder, C., and Teran, J. M. 2012. Energetically consistent invertible elasticity. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 25--32.
[47]
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Transactions on Graphics (TOG) 32, 4, 102.
[48]
Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 4 (July), 138:1--138:11.
[49]
Takahashi, T., Ueki, H., Kunimatsu, A., and Fujii, H. 2002. The simulation of fluid-rigid body interaction. In ACM SIGGRAPH Abstracts and Applications, 266--266.
[50]
Valkov, B., Rycroft, C. H., and Kamrin, K. 2015. Eulerian method for multiphase interactions of soft solid bodies in fluids. Journal of Applied Mechanics 82, 4.
[51]
Wang, H., O'Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Transactions on Graphics 29, 6, 156:1--156:10.
[52]
Wick, T. 2013. Coupling of fully eulerian and arbitrary lagrangian-eulerian methods for fluid-structure interaction computations. Computational Mechanics 52, 5, 1113--1124.
[53]
Zhang, X., Bridson, R., and Greif, C. 2015. Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans. Graph. 34, 4, 52:1--52:8.
[54]
Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24 (July), 965--972.
[55]
Zhu, B., Lu, W., Cong, M., Kim, B., and Fedkiw, R. 2013. A new grid structure for domain extension. ACM Trans. Graph. 32, 4, 63:1--63:12.

Cited By

View all
  • (2024)MPMNet: A Data-Driven MPM Framework for Dynamic Fluid-Solid InteractionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327215630:8(4694-4708)Online publication date: 1-Aug-2024
  • (2024)An efficient phase-field framework for contact dynamics between deformable solids in fluid flowComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2024.117348432(117348)Online publication date: Dec-2024
  • (2024)Eulerian framework for contact between solids represented as phase fieldsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2023.116497418(116497)Online publication date: Jan-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 6
November 2016
1045 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2980179
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 December 2016
Published in TOG Volume 35, Issue 6

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)65
  • Downloads (Last 6 weeks)5
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)MPMNet: A Data-Driven MPM Framework for Dynamic Fluid-Solid InteractionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327215630:8(4694-4708)Online publication date: 1-Aug-2024
  • (2024)An efficient phase-field framework for contact dynamics between deformable solids in fluid flowComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2024.117348432(117348)Online publication date: Dec-2024
  • (2024)Eulerian framework for contact between solids represented as phase fieldsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2023.116497418(116497)Online publication date: Jan-2024
  • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-yOnline publication date: 27-Apr-2024
  • (2023)High-Order Moment-Encoded Kinetic Simulation of Turbulent FlowsACM Transactions on Graphics10.1145/361834142:6(1-13)Online publication date: 5-Dec-2023
  • (2023)Real-time Height-field Simulation of Sand and Water MixturesSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618159(1-10)Online publication date: 10-Dec-2023
  • (2023)A Unified Analysis of Penalty-Based Collision EnergiesProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069346:3(1-19)Online publication date: 24-Aug-2023
  • (2023)A Generalized Constitutive Model for Versatile MPM Simulation and Inverse Learning with Differentiable PhysicsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069256:3(1-20)Online publication date: 24-Aug-2023
  • (2023)Fluid-Solid Coupling in Kinetic Two-Phase Flow SimulationACM Transactions on Graphics10.1145/359213842:4(1-14)Online publication date: 26-Jul-2023
  • (2023)A Contact Proxy Splitting Method for Lagrangian Solid-Fluid CouplingACM Transactions on Graphics10.1145/359211542:4(1-14)Online publication date: 26-Jul-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media