Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase Transition

Published: 03 January 2024 Publication History

Abstract

Recent years have witnessed the rapid deployment of numerous physics-based modeling and simulation algorithms and techniques for fluids, solids, and their delicate coupling in computer animation. However, it still remains a challenging problem to model the complex elastic-viscoplastic behaviors during fluid–solid phase transitions and facilitate their seamless interactions inside the same framework. In this article, we propose a practical method capable of simulating granular flows, viscoplastic liquids, elastic-plastic solids, rigid bodies, and interacting with each other, to support novel phenomena all heavily involving realistic phase transitions, including dissolution, melting, cooling, expansion, shrinking, and so on. At the physics level, we propose to combine and morph von Mises with Drucker–Prager and Cam–Clay yield models to establish a unified phase-field-driven EVP model, capable of describing the behaviors of granular, elastic, plastic, viscous materials, liquid, non-Newtonian fluids, and their smooth evolution. At the numerical level, we derive the discretization form of Cahn–Hilliard and Allen–Cahn equations with the material point method to effectively track the phase-field evolution, so as to avoid explicit handling of the boundary conditions at the interface. At the application level, we design a novel heuristic strategy to control specialized behaviors via user-defined schemes, including chemical potential, density curve, and so on. We exhibit a set of numerous experimental results consisting of challenging scenarios to validate the effectiveness and versatility of the new unified approach. This flexible and highly stable framework, founded upon the unified treatment and seamless coupling among various phases, and effective numerical discretization, has its unique advantage in animation creation toward novel phenomena heavily involving phase transitions with artistic creativity and guidance.

References

[1]
Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018. MLS pressure boundaries for divergence-free and viscous SPH fluids. Comput. Graph. 76 (2018), 37–46. DOI:
[2]
Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3 (Jul.2007), 16–es. DOI:
[3]
Jan Bender and Dan Koschier. 2017. Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Vis. Comput. Graph. 23, 3 (2017), 1193–1206. DOI:
[4]
James M. Bialek. 1998. Nonlinear continuum mechanics for finite element analysis. Nucl. Fusion 38 (1998), 776–776.
[5]
John W. Cahn and John E. Hilliard. 1958. Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 2 (1958), 258–267.
[6]
Pierre J. Carreau. 1972. Rheological equations from molecular network theories. Trans. Soc. Rheol. 16, 1 (1972), 99–127.
[7]
Xiao-Song Chen, Chen-Feng Li, Geng-Chen Cao, Yun-Tao Jiang, and Shi-Min Hu. 2020. A moving least square reproducing kernel particle method for unified multiphase continuum simulation. ACM Trans. Graph. 39, 6, Article 176 (Nov.2020), 15 pages. DOI:
[8]
Mengyuan Ding, Xuchen Han, Stephanie Wang, Theodore F. Gast, and Joseph M. Teran. 2019. A thermomechanical material point method for baking and cooking. ACM Trans. Graph. 38, 6, Article 192 (Nov.2019), 14 pages. DOI:
[9]
Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly rubber: An implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans. Graph. 38, 4, Article 118 (Jul.2019), 13 pages. DOI:
[10]
Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and Chenfanfu Jiang. 2020. IQ-MPM: An interface quadrature material point method for non-sticky strongly two-way coupled nonlinear solids and fluids. ACM Trans. Graph. 39, 4, Article 51 (Jul.2020), 16 pages. DOI:
[11]
Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Trans. Graph. 37, 4, Article 51 (Jul.2018), 16 pages. DOI:
[12]
Yun (Raymond) Fei, Qi Guo, Rundong Wu, Li Huang, and Ming Gao. 2021. Revisiting integration in the material point method: A scheme for easier separation and less dissipation. ACM Trans. Graph. 40, 4, Article 109 (Jul.2021), 16 pages. DOI:
[13]
Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial particle-in-cell method. ACM Trans. Graph. 36, 6, Article 222 (Nov.2017), 12 pages. DOI:
[14]
Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. 37, 4, Article 149 (Jul.2018), 11 pages. DOI:
[15]
Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018b. GPU optimization of material point methods. ACM Trans. Graph. 37, 6, Article 254 (Dec.2018), 12 pages. DOI:
[16]
Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3 (Aug.2004), 463–468. DOI:
[17]
Xuchen Han, Theodore F. Gast, Qi Guo, Stephanie Wang, Chenfanfu Jiang, and Joseph Teran. 2019. A hybrid material point method for frictional contact with diverse materials. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article 17 (Jul.2019), 24 pages. DOI:
[18]
Winslow H. Herschel and Ronald Bulkley. 1926. Konsistenzmessungen von gummi-benzollösungen. Koll.-Zeitschr. 39, 4 (1926), 291–300.
[19]
Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37, 4, Article 150 (Jul.2018), 14 pages. DOI:
[20]
Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. 36, 4, Article 152 (Jul.2017), 14 pages. DOI:
[21]
Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4, Article 51 (Jul.2015), 10 pages. DOI:
[22]
Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu Jiang, and Joseph Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 35, 4, Article 103 (Jul.2016), 12 pages. DOI:
[23]
Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational stokes: A unified pressure-viscosity solver for accurate viscous liquids. ACM Trans. Graph. 36, 4, Article 101 (Jul.2017), 11 pages. DOI:
[24]
Dong Li, Chaoyu Quan, and Tao Tang. 2022b. Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation. Math. Comp. 91, 334 (2022), 785–809.
[25]
Wei Li, Yihui Ma, Xiaopei Liu, and Mathieu Desbrun. 2022a. Efficient kinetic simulation of two-phase flows. ACM Trans. Graph. 41, 4, Article 114 (Jul.2022), 17 pages. DOI:
[26]
Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidelberger, and Markus Gross. 2004. Interaction of fluids with deformable solids. Comput. Anim. Virt. Worlds 15, 3-4 (2004), 159–171.
[27]
Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden, Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: An open-source data structure and toolkit for high-resolution volumes. In ACM SIGGRAPH 2013 Courses (SIGGRAPH ’13). Association for Computing Machinery, New York, NY, USA, Article 19, 1 pages. DOI:
[28]
Kentaro Nagasawa, Takayuki Suzuki, Ryohei Seto, Masato Okada, and Yonghao Yue. 2019. Mixing sauces: A viscosity blending model for shear thinning fluids. ACM Trans. Graph. 38, 4, Article 95 (Jul.2019), 17 pages. DOI:
[29]
James G. Oldroyd. 1950. On the formulation of rheological equations of state. Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Sci. 200, 1063 (1950), 523–541.
[30]
Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, and Pirouz Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ’15). Association for Computing Machinery, New York, NY, 157–163. DOI:
[31]
Bo Ren, Chenfeng Li, Xiao Yan, Ming C. Lin, Javier Bonet, and Shi-Min Hu. 2014. Multiple-fluid SPH simulation using a mixture model. ACM Trans. Graph. 33, 5, Article 171 (Sep.2014), 11 pages. DOI:
[32]
Bo Ren, Ben Xu, and Chenfeng Li. 2021. Unified particle system for multiple-fluid flow and porous material. ACM Trans. Graph. 40, 4, Article 118 (Jul.2021), 14 pages. DOI:
[33]
K. H. Roscoe and John B. Burland. 1968. On the Generalized Stress-Strain Behavior of Wet Clays. Cambridge University Press, Cambridge. 535–609 pages.
[34]
Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 6, Article 205 (Nov.2014), 12 pages. DOI:
[35]
Juan C. Simo and Thomas J. R. Hughes. 2006. Computational Inelasticity. Vol. 7. Springer Science & Business Media, New York.
[36]
Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean flesh simulation. ACM Trans. Graph. 37, 2, Article 12 (Mar.2018), 15 pages. DOI:
[37]
Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. 2007. A unified particle model for fluid-solid interactions. Comput. Animat. Virt. Worlds 18, 1 (2007), 69–82. DOI:
[38]
Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4, Article 102 (Jul.2013), 10 pages. DOI:
[39]
Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33, 4, Article 138 (Jul.2014), 11 pages. DOI:
[40]
Haozhe Su, Tao Xue, Chengguizi Han, Chenfanfu Jiang, and Mridul Aanjaneya. 2021. A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change. ACM Trans. Graph. 40, 4, Article 119 (Jul.2021), 18 pages. DOI:
[41]
Deborah Sulsky, Zhen Chen, and Howard L. Schreyer. 1993. A particle method for history-dependent materials. Computer Methods Appl. Mech. Eng. 118 (1993), 179–196.
[42]
Yuchen Sun, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. 2021. A material point method for nonlinearly magnetized materials. ACM Trans. Graph. 40, 6, Article 205 (Dec.2021), 13 pages. DOI:
[43]
Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. 36, 4, Article 105 (Jul.2017), 11 pages. DOI:
[44]
Demetri Terzopoulos and Kurt Fleischer. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph. 22, 4 (Jun.1988), 269–278. DOI:
[45]
Stephanie Wang, Mengyuan Ding, Theodore F. Gast, Leyi Zhu, Steven Gagniere, Chenfanfu Jiang, and Joseph M. Teran. 2019. Simulation and visualization of ductile fracture with the material point method. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article 18 (jul2019), 20 pages. DOI:
[46]
Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A massively parallel and scalable multi-GPU material point method. ACM Trans. Graph. 39, 4, Article 30 (Jul.2020), 15 pages. DOI:
[47]
Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A physically consistent implicit viscosity solver for SPH fluids. Comput. Graph. Forum 37, 2 (2018), 145–155. DOI:
[48]
Joshuah Wolper, Yunuo Chen, Minchen Li, Yu Fang, Ziyin Qu, Jiecong Lu, Meggie Cheng, and Chenfanfu Jiang. 2020. AnisoMPM: Animating anisotropic damage mechanics. ACM Trans. Graph. 39, 4, Article 37 (Jul.2020), 16 pages. DOI:
[49]
Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, and Chenfanfu Jiang. 2019. CD-MPM: Continuum damage material point methods for dynamic fracture animation. ACM Trans. Graph. 38, 4, Article 119 (Jul.2019), 15 pages. DOI:
[50]
Tao Xue, Haozhe Su, Chengguizi Han, Chenfanfu Jiang, and Mridul Aanjaneya. 2020. A novel discretization and numerical solver for non-fourier diffusion. ACM Trans. Graph. 39, 6, Article 178 (Nov.2020), 14 pages. DOI:
[51]
Xiao Yan, Yun-Tao Jiang, Chen-Feng Li, Ralph R. Martin, and Shi-Min Hu. 2016. Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35, 4, Article 79 (Jul.2016), 11 pages. DOI:
[52]
Xiao Yan, Chen-Feng Li, Xiao-Song Chen, and Shi-Min Hu. 2018. MPM simulation of interacting fluids and solids. Comput. Graph. Forum 37, 8 (2018), 183–193. DOI:
[53]
Tao Yang, Jian Chang, Ming C. Lin, Ralph R. Martin, Jian J. Zhang, and Shi-Min Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graph. 36, 6, Article 224 (Nov.2017), 13 pages. DOI:
[54]
Tao Yang, Jian Chang, Bo Ren, Ming C. Lin, Jian Jun Zhang, and Shi-Min Hu. 2015. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graph. 34, 6, Article 201 (Oct.2015), 11 pages. DOI:
[55]
Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Trans. Graph. 34, 5, Article 160 (Nov.2015), 20 pages. DOI:
[56]
Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chantharayukhonthorn, Ken Kamrin, and Eitan Grinspun. 2018. Hybrid grains: Adaptive coupling of discrete and continuum simulations of granular media. ACM Trans. Graph. 37, 6, Article 283 (Dec.2018), 19 pages. DOI:
[57]
Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015. Codimensional non-newtonian fluids. ACM Trans. Graph. 34, 4, Article 115 (Jul.2015), 9 pages. DOI:

Cited By

View all
  • (2024)A multi‐species material point method with a mixture modelComputer Animation and Virtual Worlds10.1002/cav.223935:3Online publication date: 17-May-2024

Index Terms

  1. A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase Transition

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 43, Issue 2
    April 2024
    199 pages
    EISSN:1557-7368
    DOI:10.1145/3613549
    • Editor:
    • Carol O'Sullivan
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 January 2024
    Online AM: 20 December 2023
    Accepted: 07 December 2023
    Revised: 28 September 2023
    Received: 30 November 2022
    Published in TOG Volume 43, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Physics-based animation
    2. material point method
    3. phase-field method

    Qualifiers

    • Research-article

    Funding Sources

    • National Natural Science Foundation of China NSFC
    • Shanghai Science and Technology Commission SSTC

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)712
    • Downloads (Last 6 weeks)57
    Reflects downloads up to 03 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A multi‐species material point method with a mixture modelComputer Animation and Virtual Worlds10.1002/cav.223935:3Online publication date: 17-May-2024

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media