Nothing Special   »   [go: up one dir, main page]

WO2019135347A1 - 固体電解質材料、および、電池 - Google Patents

固体電解質材料、および、電池 Download PDF

Info

Publication number
WO2019135347A1
WO2019135347A1 PCT/JP2018/046263 JP2018046263W WO2019135347A1 WO 2019135347 A1 WO2019135347 A1 WO 2019135347A1 JP 2018046263 W JP2018046263 W JP 2018046263W WO 2019135347 A1 WO2019135347 A1 WO 2019135347A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
solid electrolyte
electrolyte material
value
range
Prior art date
Application number
PCT/JP2018/046263
Other languages
English (en)
French (fr)
Inventor
哲也 浅野
章裕 酒井
真志 境田
勇祐 西尾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880070620.9A priority Critical patent/CN111279431B/zh
Priority to EP18898525.3A priority patent/EP3736827A4/en
Priority to JP2019563957A priority patent/JPWO2019135347A1/ja
Publication of WO2019135347A1 publication Critical patent/WO2019135347A1/ja
Priority to US16/915,448 priority patent/US11591236B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to solid electrolyte materials and batteries.
  • Patent Document 1 discloses an all-solid-state battery using a sulfide solid electrolyte.
  • Non-Patent Document 1 discloses Li 3 YCl 6 .
  • Non-Patent Document 2 discloses Li 3 YBr 6 .
  • the solid electrolyte material in one aspect of the present disclosure is composed of Li, M and X.
  • the M includes Y, and the X is at least one selected from the group consisting of Cl, Br, and I.
  • the first conversion pattern obtained by converting the X-ray diffraction pattern of the solid electrolyte material so that the horizontal axis is a diffraction angle 2 ⁇ to q has a value of q of 2.109 ⁇ ⁇ 1 or more.
  • the second conversion pattern obtained by converting the X-ray diffraction pattern so that the horizontal axis is a diffraction angle 2 ⁇ to q / q 0 has a value of q / q 0 of 1.28 or more.
  • a peak is included in each of a range of 30 or less and a range in which the value of q / q 0 is 1.51 or more and 1.54 or less, where q 0 is a value in the first conversion pattern. It is the value of the q corresponding to the reference peak.
  • the solid electrolyte material according to an aspect of the present disclosure is composed of Li, M, and X.
  • the M includes Y, and the X is at least one selected from the group consisting of Cl, Br, and I.
  • the first conversion pattern obtained by converting the X-ray diffraction pattern of the solid electrolyte material so that the horizontal axis is a diffraction angle 2 ⁇ to q has a value of q of 2.109 ⁇ ⁇ 1 or more.
  • the second conversion pattern obtained by converting the X-ray diffraction pattern so that the horizontal axis is a diffraction angle 2 ⁇ to q / q 0 has a value of q / q 0 of 1.28 or more.
  • a peak is included in each of a range of 30 or less and a range in which the value of q / q 0 is 1.51 or more and 1.54 or less, where q 0 is a value in the first conversion pattern. It is the value of the q corresponding to the reference peak.
  • I 1 represents the q / of the second conversion pattern
  • I 2 is the above-mentioned of the second conversion patterns.
  • Peak intensity of the second peak which is the highest intensity peak included in the second range where the value of q / q 0 is 0.550 or more and 0.565 or less
  • I 4 is the second conversion pattern It is the peak intensity of the peak at the position where the value of q / q 0 is 1.
  • the solid electrolyte material according to an aspect of the present disclosure is composed of Li, M, and X.
  • the M includes Y, and the X is at least one selected from the group consisting of Cl, Br, and I.
  • the first conversion pattern obtained by converting the X-ray diffraction pattern of the solid electrolyte material so that the horizontal axis is a diffraction angle 2 ⁇ to q has a value of q of 1.76 ⁇ ⁇ 1 or more.
  • the second conversion pattern obtained by converting the X-ray diffraction pattern so that the horizontal axis changes from the diffraction angle 2 ⁇ to q / q 0 ′ has a value of q / q 0 ′ of 1.14 or more
  • a peak is included in each of a range of 1.17 or less and a range in which the value of q / q 0 ′ is 1.625 or more and 1.645 or less, wherein q 0 ′ is the first number.
  • the value of q corresponds to the reference peak in the conversion pattern of Satisfy at least one selected from the group consisting of I 1 / I 6 ⁇ 15%, I 2 / I 6 ⁇ 5%, I 3 / I 6 ⁇ 10%, and I 4 / I 6 ⁇ 5%,
  • I 1 is the first peak that is the highest intensity peak included in the first range in which the value of q / q 0 ′ is 0.494 or more and 0.511 or less in the second conversion pattern
  • I 2 is the highest intensity peak included in the second range in which the value of q / q 0 ′ is 0.538 or more and 0.550 or less in the second conversion pattern.
  • I 3 is the highest intensity included in the third range in which the value of q / q 0 ′ is 0.559 or more and 0.575 or less in the second conversion pattern a peak intensity of the third peak is the peak, I 4, wherein said second conversion path A peak intensity of the fourth peak value is the most intense peaks included in the fourth range is 0.632 or more 0.644 following the q / q 0 'of the over emissions, I 6, the This is the peak intensity of the sixth peak, which is the highest peak within the sixth range in which the q / q 0 ′ value is 1.140 or more and 1.170 or less in the second conversion pattern.
  • a solid electrolyte material having high lithium ion conductivity can be realized.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery in a fourth embodiment.
  • FIG. 2A is a diagram showing a crystal structure of a structure in which Yb of the Li 3 YbCl 6 structure is substituted by Y.
  • FIG. 2B is a view showing a crystal structure of a structure in which Yb of the Li 3 YbCl 6 structure is substituted by Y.
  • FIG. 2C is a view showing an XRD pattern of a structure in which Yb of Li 3 YbCl 6 structure is substituted by Y.
  • FIG. 3A is a view showing a crystal structure of a structure in which Er of Li 3 ErBr 6 structure is substituted by Y.
  • FIG. 3B is a diagram showing an XRD pattern of a structure in which Er is substituted with Y in the Li 3 ErBr 6 structure.
  • FIG. 4 is a schematic view showing a method of evaluating the ion conductivity.
  • FIG. 5 is a graph showing evaluation results of ion conductivity by AC impedance measurement.
  • FIG. 6A is a graph showing an XRD pattern in Example A1-A7.
  • FIG. 6B is a graph showing an XRD pattern in Example A1-A7.
  • FIG. 6C is a graph showing an XRD pattern in Example A1-A7.
  • FIG. 6D is a graph showing an XRD pattern in Example A1-A7.
  • FIG. 7 is a graph showing the initial discharge characteristics.
  • FIG. 8A is a graph showing the XRD patterns in Examples B1-B5.
  • FIG. 8B is a graph showing the XRD patterns in Examples B1-B5.
  • FIG. 8C is a graph showing the XRD patterns in Examples B1-B5.
  • FIG. 8D is a graph showing the XRD patterns in Examples B1-B5.
  • Embodiment 1 The solid electrolyte material in the first embodiment is a material composed of Li, M and X.
  • M includes Y.
  • X is at least one selected from the group consisting of Cl, Br, and I.
  • the first conversion pattern obtained by converting the X-ray diffraction pattern of the solid electrolyte material in Embodiment 1 so that the horizontal axis changes from the diffraction angle 2 ⁇ to q has a value of q of 2.109 ⁇ ⁇ .
  • the second conversion pattern obtained by converting the X-ray diffraction pattern so that the horizontal axis is a diffraction angle 2 ⁇ to q / q 0 has a value of q / q 0 of 1.28 or more.
  • a peak is included in each of a range of 30 or less and a range in which the value of q / q 0 is 1.51 or more and 1.54 or less, where q 0 is a value in the first conversion pattern. It is the value of the q corresponding to the reference peak.
  • the solid electrolyte material in Embodiment 1 satisfies at least one selected from the group consisting of I 2 / I 4 ⁇ 20% and I 3 / I 4 ⁇ 30%.
  • I 2 is the second peak of the second peak, which is the highest peak included in the second range where the value of q / q 0 is 0.511 or more and 0.531 or less in the second conversion pattern. It is a peak intensity.
  • the third peak-to-peak value of the q / q 0 of the second conversion pattern is the most intense peaks included in the third range is 0.565 or more 0.585 or less It is strength.
  • I 4 the value of the q / q 0 in the second conversion pattern is a peak intensity of the peak position is 1.
  • the solid electrolyte material of Embodiment 1 it is possible to realize an all-solid secondary battery not containing sulfur. That is, the solid electrolyte material of Embodiment 1 is not a configuration that generates hydrogen sulfide when exposed to the air (for example, the configuration of Patent Document 1). Therefore, it is possible to realize an all-solid secondary battery excellent in safety without generating hydrogen sulfide.
  • the solid electrolyte material in Embodiment 1 may contain a crystal phase. That is, the solid electrolyte material in Embodiment 1 may contain the first crystal phase.
  • X-ray diffraction is measured by the ⁇ -2 ⁇ method using Cu-K ⁇ rays (wavelengths of 1.5405 ⁇ and 1.5444 ⁇ ) as X-rays, and sufficient intensity can be obtained.
  • the peak of the diffraction angle 2 ⁇ is relatively high within the respective ranges of 15 ° to 18 °, 30 ° to 33 °, 39 ° to 43 °, 47 ° to 51 °, respectively. Is observed. If the measured intensity can not be obtained sufficiently, some of the peaks described above may not be observed.
  • q 4 ⁇ sin ( ⁇ ) / ⁇
  • q 2.109 ⁇ ⁇
  • q / q 0 first peak range range of 0.514 from 0.503
  • the range of q / q 0 0.511 0.531 second peak ranges
  • the diffraction angle of the top of the highest intensity peak within the nth peak range is half width, the peak intensity 2 ⁇ n, ⁇ 2 ⁇ n, when defined as I n, in the first crystal phase, I 2 / I 4 ⁇ 20 %, or, I 3 / I 4 ⁇ 30 % of either or both of relationships Is established.
  • the solid electrolyte material in the first embodiment is selected from the group consisting of ⁇ 1 / ⁇ p1 > 0.5%, ⁇ 2 / ⁇ p2 > 0.5%, and ⁇ 3 / ⁇ p3 > 0.5%. It may satisfy at least one selected.
  • 2 ⁇ p1 is a peak of the first peak that is the highest peak included in the first range in which the value of q / q 0 is 0.503 or more and 0.514 or less in the second conversion pattern. It is the diffraction angle of the apex.
  • Deruta2shita 1 is a half width of the first peak.
  • 2 ⁇ p2 is a diffraction angle of the top of the second peak.
  • Deruta2shita 2 is a half width of the second peak.
  • 2 ⁇ p3 is a diffraction angle of the top of the third peak.
  • Deruta2shita 3 is a half width of the third peak.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • At least one of ⁇ 1 / ⁇ p1 > 1%, ⁇ 2 / ⁇ p2 > 1%, and ⁇ 3 / ⁇ p3 > 1% may be established.
  • the effects described above are exhibited better by setting ⁇ 2 / ⁇ p2 > 2% and ⁇ 3 / ⁇ p3 > 2%.
  • Peak intensity I n, the diffraction angle 2 [Theta] n peaks, to determine the half width Deruta2shita n peaks, except for the background from each peak, may measure the respective characteristic peak directly, fitting a peak with a Gaussian function Then, each characteristic may be determined from the fitting parameters.
  • X may contain Cl.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • the first crystal phase from which the above-mentioned characteristic diffraction pattern is obtained is not limited to a specific crystal structure, but, for example, a Li 3 YbCl 6 (hereinafter also referred to as LYC) structure having a crystal structure belonging to space group Pnma Can be mentioned.
  • LYC Li 3 YbCl 6
  • the detailed atomic arrangement is listed in Inorganic Crystal Structure Database (ICSD) (ICSD No. 50152).
  • the occupied position of the cation other than Y or Li is two or more sites in the crystal structure described above, and the occupied rate thereof is about 0.1 to 0.9.
  • FIG. 2A and FIG. 2B are schematic diagrams of a structure in which Yb of Li 3 YbCl 6 is substituted by Y.
  • Y partially occupies not only the Y position in FIGS. 2A and 2B, but also the octahedral position not occupied by the cation, the Li1 position, and the Li2 position. This becomes clear by performing analysis and simulation of the XRD pattern.
  • FIG. 2C the XRD pattern of Li 3 YCl 6 shown in FIG. 2A and FIG. 2B (Reference Example A1), the XRD pattern in the case where 30% of Y occupies a cation nonoccupied octahedral site (Reference Example A2), The simulation results of the XRD pattern (Reference Example A3) when 30% of Y occupies the Li1 site and the XRD pattern (Reference Example A4) when 30% of Y occupies the Li2 site are shown.
  • the XRD peak intensities in the second peak range and the third peak range are lower than in Reference Example A1, which corresponds to the XRD pattern in the first crystal phase.
  • the main peaks in the first peak range are derived from diffraction from the (020) plane and the (210) plane, and the main peak in the second peak range is from the (101) plane.
  • the main peak in the third peak range is from the diffraction from (111).
  • the structure factor in the diffraction from these crystal planes is largely due to the term derived from the Y scattering factor.
  • the scattering from Cl weakens each other because the scattering from Cl atoms weakens each other.
  • the cause of strong Y scattering is that the equivalent Y site in the LYC structure shown in FIGS.
  • 2A and 2B is only one site (described as Y1 site), and there are no other Y sites that interfere with each other.
  • Y1 site when there is an additional Y site at an octahedral site other than the Y1 site, scattering from Y atoms is also weakened in the above (020), (210), (101) and (111) planes. To reduce its strength.
  • the peaks at which the diffraction intensity decreases differ depending on the location of the additional Y site as shown in Reference Examples A2 to A4. Also, the amount of reduction differs depending on the additional Y site and the occupancy rate of Y in the original Y site.
  • the solid electrolyte material in the first embodiment may have a crystal structure of the Li 3 YbCl 6 structure belonging to the space group Pnma.
  • M may occupy a plurality of equivalent positions, and the occupancy rate of M may be 10% or more at each of the plurality of equivalent positions.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • M may include at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Zr, Nb, Ta, and Sm.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • the solid electrolyte material in the second embodiment is a material composed of Li, M and X.
  • M includes Y.
  • X is at least one selected from the group consisting of Cl, Br, and I.
  • the first conversion pattern obtained by converting the X-ray diffraction pattern of the solid electrolyte material according to the second embodiment so that the horizontal axis is the diffraction angle 2 ⁇ to q has a value of q of 2.109 ⁇ ⁇ .
  • the second conversion pattern obtained by converting the X-ray diffraction pattern so that the horizontal axis is a diffraction angle 2 ⁇ to q / q 0 has a value of q / q 0 of 1.28 or more.
  • a peak is included in each of a range of 30 or less and a range in which the value of q / q 0 is 1.51 or more and 1.54 or less, where q 0 is a value in the first conversion pattern. It is the value of the q corresponding to the reference peak.
  • the solid electrolyte material in Embodiment 2 satisfies at least one selected from the group consisting of I 2 / I 1 ⁇ 100% and I 2 / I 4 ⁇ 30%.
  • I 1 is the first peak that is the highest peak included in the first range of the second conversion pattern in which the value of q / q 0 is 0.503 or more and 0.514 or less. It is a peak intensity.
  • the second of the second peak-to-peak value of the q / q 0 is the most intense peaks included in the second range is 0.550 or more 0.565 or less of the conversion pattern It is strength.
  • I 4 the value of the q / q 0 in the second conversion pattern is a peak intensity of the peak position is 1.
  • an all-solid secondary battery not containing sulfur can be realized. That is, it is possible to realize an all-solid secondary battery excellent in safety without generating hydrogen sulfide.
  • the solid electrolyte material in Embodiment 2 may contain a crystal phase. That is, the solid electrolyte material in Embodiment 2 may include the second crystal phase.
  • X-ray diffraction is measured by the ⁇ -2 ⁇ method using Cu-K ⁇ rays (wavelengths of 1.5405 ⁇ and 1.5444 ⁇ ) as X-rays, and sufficient intensity can be obtained.
  • the peak of the diffraction angle 2 ⁇ is relatively high within the respective ranges of 15 ° to 18 °, 30 ° to 33 °, 39 ° to 43 °, 47 ° to 51 °, respectively. Is observed. If the measured intensity can not be obtained sufficiently, some of the peaks described above may not be observed.
  • q 4 ⁇ sin ( ⁇ ) / ⁇
  • q 2.109 ⁇ ⁇
  • the range of q / q 0 0.503 to 0.514 second peak ranges
  • the relationship of either or both of I 2 / I 1 ⁇ 100% or I 2 / I 4 ⁇ 30% is established.
  • X may contain Cl.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • the second crystal phase from which the above-mentioned characteristic diffraction pattern is obtained is not limited to a specific crystal structure, but, for example, Li 3 ErCl 6 having a crystal structure belonging to space group P- 3 m 1 (hereinafter also referred to as LEC) ) Structure is mentioned.
  • LEC space group P- 3 m 1
  • the detailed atomic arrangement is listed in Inorganic Crystal Structure Database (ICSD) (ICSD No. 50151).
  • the occupied position of the cation other than Y or Li is three or more sites in the above-mentioned crystal structure, and the occupation ratio is considered to be about 0.1 to 0.9.
  • the main peak in the first peak range is derived from diffraction from the (110) plane
  • the main peak in the second peak range is derived from diffraction from the (101) plane .
  • the structure factor in the diffraction from these crystal planes is largely due to the term derived from the Y scattering factor.
  • the scattering from Cl weakens each other because the scattering from Cl atoms weakens each other.
  • the cause of strong Y scattering is that the equivalent Y site in the LEC structure is only 2 sites (described as Y1 site and Y2 site), and there are no other Y sites that interfere with each other.
  • a solid electrolyte material having higher lithium ion conductivity can be realized.
  • the anion is more strongly attracted to Y or M, and Y is dispersed in different octahedral positions, thereby forming a crystal. It is believed that the internal potential is partially unstable and lithium ions are more likely to conduct. Therefore, it is presumed that the lithium ion conductivity is further improved.
  • the solid electrolyte material in the second embodiment may have a crystal structure of the Li 3 ErCl 6 structure that belongs to space group P- 3 ml.
  • M may occupy three or more equivalent positions, and in each of the three or more equivalent positions, the occupancy ratio of M may be 10% or more.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • M may include at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Zr, Nb, Ta, and Sm.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • Embodiment 1 or 2 The description overlapping with the above-described Embodiment 1 or 2 is omitted as appropriate.
  • the solid electrolyte material in the third embodiment is a material composed of Li, M and X.
  • M includes Y.
  • X is one or more elements selected from the group consisting of Cl, Br and I.
  • the first conversion pattern obtained by converting the X-ray diffraction pattern of the solid electrolyte material according to the third embodiment so that the horizontal axis is the diffraction angle 2 ⁇ to q has a value of q of 1.76 ⁇ ⁇ . It includes two peaks in the range of 1 or more and 2.18 ⁇ ⁇ 1 or less. Among the two peaks, the peak with the smaller q value is the reference peak.
  • q 4 ⁇ sin ⁇ / ⁇ , where ⁇ is the wavelength of the X-ray.
  • the second conversion pattern obtained by converting the X-ray diffraction pattern so that the horizontal axis changes from the diffraction angle 2 ⁇ to q / q 0 ′ has a value of q / q 0 ′ of 1.14 or more
  • the peak is included in each of the range of 1.17 or less and the range of the value of q / q 0 ′ of 1.625 or more and 1.645 or less.
  • q 0 ′ is the value of q corresponding to the reference peak in the first conversion pattern.
  • the solid electrolyte material according to Embodiment 3 is a group consisting of I 1 / I 6 ⁇ 15%, I 2 / I 6 ⁇ 5%, I 3 / I 6 ⁇ 10%, and I 4 / I 6 ⁇ 5%. Meet at least one selected from
  • I 1 is the first peak that is the highest intensity peak included in the first range in which the value of q / q 0 ′ is 0.494 or more and 0.511 or less in the second conversion pattern Peak intensity of
  • I 2 is the second peak of the second peak, which is the highest peak included in the second range in which the value of q / q 0 ′ is 0.538 or more and 0.550 or less. It is a peak intensity.
  • I 3 is the third peak that is the highest peak included in the third range in which the value of q / q 0 ′ is 0.559 or more and 0.575 or less in the second conversion pattern. It is a peak intensity.
  • I 4 is the fourth peak that is the highest peak included in the fourth range in which the value of q / q 0 ′ is 0.632 or more and 0.644 or less in the second conversion pattern. It is a peak intensity.
  • I 6 is the sixth peak, which is the highest peak included in the sixth range in which the value of q / q 0 ′ is 1.140 or more and 1.170 or less in the second conversion pattern. It is a peak intensity.
  • an all-solid secondary battery not containing sulfur can be realized. That is, it is possible to realize an all-solid secondary battery excellent in safety without generating hydrogen sulfide.
  • the solid electrolyte material in the third embodiment may contain a crystalline phase. That is, the solid electrolyte material in Embodiment 3 may include the following third crystal phase.
  • X-ray diffraction is measured by the ⁇ -2 ⁇ method using Cu-K ⁇ rays (wavelengths of 1.5405 ⁇ and 1.5444 ⁇ ) as X-rays, and sufficient intensity can be obtained.
  • the diffraction angle 2 ⁇ has one or more peaks in the range of 13 ° to 18 °, and two or more clearly separable peaks in the range of 25 ° to 35 °, 43 ° to 51 °. One or more peaks are observed in the range of ° or less, and two or more peaks are observed in the range of 50 ° to 63 °. If the measured intensity can not be obtained sufficiently, some of the peaks described above may not be observed.
  • the q value of the lower peak of two high intensity peaks in the range of 1 to 2.18 ⁇ -1 is q 0 ', and diffraction is performed with the normalized q / q 0 ' as the horizontal axis
  • the value of q / q 0 ' is respectively 0.49 or more and 0.66 or less, 1.14 or more and 1.17 or less, 1.625 or more and 1.645 or less, 1.88 or more 1 Peaks are observed in the range of not more than 94 and not less than 1.9 and not more than 2.1. If the measured intensity can not be obtained sufficiently, some of the peaks described above may not be observed.
  • the solid electrolyte material according to the third embodiment is I 1 / I 5 ⁇ 20%, I 2 / I 5 ⁇ 10%, I 3 / I 5 ⁇ 20%, and I 4 / I 5 ⁇ 10%. And at least one selected from the group consisting of
  • I 5 is the peak intensity of the peak at the position where the value of q / q 0 ′ is 1 in the second conversion pattern.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • the solid electrolyte material according to the third embodiment has ⁇ 1 / ⁇ p1 > 1%, ⁇ 2 / ⁇ p2 > 1%, ⁇ 3 / ⁇ p3 > 1%, and ⁇ 4 / ⁇ p4 > 1%. And at least one selected from the group consisting of
  • 2 ⁇ p1 is the diffraction angle of the top of the first peak.
  • Deruta2shita 1 is a half width of the first peak.
  • 2 ⁇ p2 is a diffraction angle of the top of the second peak.
  • Deruta2shita 2 is a half width of the second peak.
  • 2 ⁇ p3 is a diffraction angle of the top of the third peak.
  • Deruta2shita 3 is a half width of the third peak.
  • 2 ⁇ p4 is a diffraction angle of the top of the fourth peak.
  • Deruta2shita 4 is a half width of the fourth peak.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • At least one of ⁇ 1 / ⁇ p1 > 1%, ⁇ 2 / ⁇ p2 > 1%, and ⁇ 3 / ⁇ p3 > 1% is satisfied.
  • the effects described above are exhibited better by setting ⁇ 2 / ⁇ p2 > 2% and ⁇ 3 / ⁇ p3 > 2%.
  • Peak intensity I n, the diffraction angle 2 [Theta] n peaks, to determine the half width Deruta2shita n peaks, except for the background from each peak, may measure the respective characteristic peak directly, fitting a peak with a Gaussian function Then, each characteristic may be determined from the fitting parameters.
  • X may contain Br.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • the third crystal phase from which the above-mentioned characteristic diffraction pattern is obtained is not limited to a specific crystal structure, but includes, for example, the crystal structures as follows.
  • One is a structure in which the structure of the anion sublattice is such that the cubic close-packed structure (face-centered cubic lattice) or the cubic close-packed structure (face-centered cubic lattice) is a distorted atomic arrangement. That is, in the anion sublattice, each anion is coordinated to 12 other anions. Of the 12 anions, the interior angle of the triangle formed by the two nearest anions and the anion at the central position is about 60 °. More specifically, it falls within about 60 ° ⁇ 5 °.
  • LEB Li 3 ErBr 6
  • ICSD Inorganic Crystal Structure Database
  • the occupied position of the cation other than Y or Li is two or more sites in the crystal structure described above, and the occupied rate thereof is about 0.1 to 0.9.
  • FIG. 3A is a schematic view of a structure in which Er of Li 3 ErBr 6 is substituted by Y.
  • Y is considered to partially occupy not only the Y position in FIG. 3A but also the octahedral position, the Li1 position, and the Li2 position not occupied by cations. This becomes clear by performing analysis and simulation of the XRD pattern.
  • FIG. 3B the XRD pattern of Li 3 ErBr 6 shown in FIG.
  • the main peak in the first peak range is derived from diffraction from (001), and the main peak in the second peak range is derived from diffraction from the (020) plane, and The main peak in the three-peak range is derived from the diffraction from (110), and the main peak in the fourth peak range is derived from the diffraction from (11-1).
  • the structure factor in the diffraction from these crystal planes is largely due to the term derived from the Y scattering factor.
  • the contribution from Br is small because the scattering from Br atoms weakens each other.
  • the cause of strong Y scattering is that the equivalent Y site in the LEB structure shown in FIG. 3A is only one site (denoted as Y1 site), and there are no other Y sites that interfere with each other.
  • Y1 site the equivalent Y site in the LEB structure shown in FIG. 3A
  • scattering from Y atoms is also weakened in the (001) plane, the (020) plane, the (110) plane and the (11-1) plane described above. The strength is reduced because it will meet.
  • the peaks at which the diffraction intensity decreases differ depending on the location of the additional Y site as shown in Reference Examples B2 to B4. Also, the amount of reduction differs depending on the additional Y site and the occupancy rate of Y in the original Y site.
  • a solid electrolyte material having higher lithium ion conductivity can be realized.
  • the anion is more strongly attracted to Y or M, and the mixing of M and Y makes the potential of Li ion unstable. It is believed that the following This forms a path through which lithium ions diffuse. Also, with the composition in which Li is deficient, unoccupied sites are formed, and lithium ions are easily conducted. Therefore, it is presumed that the lithium ion conductivity is further improved.
  • the solid electrolyte material in the third embodiment may have a crystal structure of the Li 3 ErBr 6 structure belonging to the space group C 2 / m.
  • M may occupy a plurality of equivalent positions, and the occupancy rate of M may be 10% or more at each of the plurality of equivalent positions.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • M may include at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Zr, Nb, Ta, and Sm.
  • a solid electrolyte material having higher lithium ion conductivity can be realized. Furthermore, it is possible to realize a solid electrolyte material that can be manufactured by heat treatment at medium and low temperatures and heat treatment for a short time.
  • the solid electrolyte material in the first to third embodiments may include a heterocrystal phase having a crystal structure different from the first crystal phase, the second crystal phase, and the third crystal phase.
  • the shape of the solid electrolyte material in the first to third embodiments is not particularly limited, and may be, for example, needle-like, spherical, oval-spherical, or the like.
  • the solid electrolyte material in Embodiments 1 to 3 may be particles. After laminating a plurality of particles, they may be formed into pellets or plates by pressure.
  • the median diameter may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the ion conductivity can be further enhanced.
  • a better dispersion state of the solid electrolyte material, the active material, and the like in Embodiments 1 to 3 can be formed.
  • the solid electrolyte material may be smaller than the median diameter of the active material.
  • the phrase “M occupies n or more equivalent positions in a predetermined crystal structure” specifically means “a symmetry of a predetermined crystal structure with respect to a site occupied by M. In the case of performing symmetric operations satisfying the following condition, there are n or more types of sites that do not overlap each other.
  • the symmetry of a given crystal structure may be defined by the space group to which the crystal structure belongs.
  • the expression “a range in which the predetermined value A is the value B to the value C” means “the range in which B ⁇ A ⁇ C”.
  • the solid electrolyte material in the first to third embodiments can be manufactured, for example, by the following method.
  • LiCl and YCl 3 are prepared in a molar ratio of about 3: 1.
  • the blend ratio may be adjusted in advance to offset the change in consideration of the change in composition during the synthesis process.
  • the raw material powders are thoroughly mixed, the raw material powders are mixed, pulverized and reacted using a method of mechanochemical milling. Thereafter, it may be fired in vacuum or in an inert atmosphere.
  • the raw material powders may be well mixed and then fired in vacuum or in an inert atmosphere.
  • the baking conditions may be, for example, baking within a range of 100 ° C. to 550 ° C. for one hour or more. Furthermore, after holding at a predetermined temperature for a time of 48 hours or less, the temperature may be lowered to room temperature for a time of 48 hours or less.
  • composition of the crystal phase in the solid material, the crystal structure, the X-ray diffraction pattern using Cu-K ⁇ as a radiation source, and the position of each peak in the conversion pattern are the adjustment of the raw material ratio and the reaction of the raw material powders It can be determined by adjusting the method and reaction conditions.
  • Embodiment 4 The fourth embodiment will be described below. The description overlapping with any of the first to third embodiments described above is omitted as appropriate.
  • the battery in the fourth embodiment is configured using the solid electrolyte material described in any of the first to third embodiments described above.
  • the battery in the fourth embodiment includes a solid electrolyte material, a positive electrode, a negative electrode, and an electrolyte layer.
  • the electrolyte layer is a layer provided between the positive electrode and the negative electrode.
  • At least one of the positive electrode, the electrolyte layer, and the negative electrode includes the solid electrolyte material according to any one of the first to third embodiments.
  • the charge and discharge characteristics of the battery can be improved.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 in the fourth embodiment.
  • Battery 1000 in the fourth embodiment includes positive electrode 201, negative electrode 203, and electrolyte layer 202.
  • the positive electrode 201 includes positive electrode active material particles 204 and solid electrolyte particles 100.
  • the electrolyte layer 202 is disposed between the positive electrode 201 and the negative electrode 203.
  • the electrolyte layer 202 includes an electrolyte material (eg, a solid electrolyte material).
  • an electrolyte material eg, a solid electrolyte material
  • the negative electrode 203 includes negative electrode active material particles 205 and solid electrolyte particles 100.
  • Solid electrolyte particle 100 is a particle made of the solid electrolyte material according to any of Embodiments 1 to 3 or a particle containing the solid electrolyte material according to any of Embodiments 1 to 3 as a main component.
  • the positive electrode 201 includes a material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • the positive electrode 201 includes, for example, a positive electrode active material (for example, positive electrode active material particles 204).
  • positive electrode active materials include lithium-containing transition metal oxides (eg, Li (NiCoAl) O 2 , LiCoO 2 , etc.), transition metal fluorides, polyanions and fluorinated polyanion materials, and transition metal sulfides, transitions Metal oxyfluorides, transition metal oxysulfides, transition metal oxynitrides, etc. may be used.
  • the median diameter of the positive electrode active material particles 204 may be 0.1 ⁇ m or more and 100 ⁇ m or less. If the median diameter of the positive electrode active material particles 204 is smaller than 0.1 ⁇ m, there is a possibility that the positive electrode active material particles 204 and the halide solid electrolyte material can not form a good dispersed state at the positive electrode. As a result, the charge and discharge characteristics of the battery are degraded. In addition, when the median diameter of the positive electrode active material particles 204 is larger than 100 ⁇ m, lithium diffusion in the positive electrode active material particles 204 becomes slow. For this reason, the operation at high power of the battery may be difficult.
  • the median diameter of the positive electrode active material particles 204 may be larger than the median diameter of the halide solid electrolyte material. Thereby, a good dispersed state of the positive electrode active material particles 204 and the halide solid electrolyte material can be formed.
  • the volume ratio “v: 100 ⁇ v” of the positive electrode active material particles 204 and the halide solid electrolyte material contained in the positive electrode 201 may be 30 ⁇ v ⁇ 95.
  • v ⁇ 30 it may be difficult to secure sufficient energy density of the battery.
  • v> 95 operation at high output may be difficult.
  • the thickness of the positive electrode 201 may be 10 to 500 ⁇ m. When the thickness of the positive electrode 201 is smaller than 10 ⁇ m, it may be difficult to secure sufficient energy density of the battery. When the thickness of the positive electrode 201 is greater than 500 ⁇ m, operation at high output may be difficult.
  • the electrolyte layer 202 is a layer containing an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material. That is, the electrolyte layer 202 may be a solid electrolyte layer.
  • the solid electrolyte layer may contain, as a main component, the solid electrolyte material according to any one of the above-described first to third embodiments. That is, the solid electrolyte layer may contain, for example, 50% or more (50% by weight or more) of the solid electrolyte material in any of the above-described first to third embodiments in a weight ratio to the entire solid electrolyte layer.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer may contain, for example, 70% or more (70% by weight or more) of the solid electrolyte material according to any of the above-described first to third embodiments in a weight ratio to the entire solid electrolyte layer.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer is used when synthesizing the unavoidable impurities or the above-mentioned solid electrolyte material while containing the solid electrolyte material as a main component in any of the above-mentioned first to third embodiments. Starting materials and by-products and decomposition products may be included.
  • the solid electrolyte layer is the solid electrolyte material according to any one of the first to third embodiments, for example, 100% (100% by weight) in weight ratio to the whole of the solid electrolyte layer except impurities unavoidable to be mixed. , May be included.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer may be composed of only the solid electrolyte material in any of Embodiments 1 to 3.
  • the solid electrolyte material different from the solid electrolyte material in Embodiments 1 to 3 may be used.
  • a solid electrolyte material different from the solid electrolyte material in Embodiments 1 to 3 for example, Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , LiI, etc. (X: F, Cl, Br, I) may be used.
  • the solid electrolyte layer may simultaneously contain the solid electrolyte material in any of Embodiments 1 to 3 and a solid electrolyte material different from the solid electrolyte material in Embodiments 1 to 3 described above. At this time, both may be dispersed uniformly.
  • the layer made of the solid electrolyte material in any of the first to third embodiments and the layer made of the solid electrolyte material different from the solid electrolyte material in the above-mentioned first to third embodiments are arranged in order with respect to the lamination direction of the battery. It may be done.
  • the thickness of the solid electrolyte layer may be 1 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the solid electrolyte layer is smaller than 1 ⁇ m, the possibility of short circuit between the positive electrode 201 and the negative electrode 203 is increased.
  • the thickness of the solid electrolyte layer is thicker than 1000 ⁇ m, operation at high output may be difficult.
  • the negative electrode 203 includes a material having a property of inserting and extracting metal ions (eg, lithium ions).
  • the negative electrode 203 includes, for example, a negative electrode active material (for example, negative electrode active material particles 205).
  • the negative electrode active material metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. may be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metal materials include lithium metal, lithium alloy, and the like.
  • carbon materials include natural graphite, coke, graphitized carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, and a tin compound can be suitably used.
  • the negative electrode active material having a low average reaction voltage is used, the effect of the solid electrolyte material in the electrolytic suppression in any one of the first to third embodiments is better exhibited.
  • the median diameter of the negative electrode active material particles 205 may be 0.1 ⁇ m or more and 100 ⁇ m or less. If the median diameter of the negative electrode active material particles 205 is smaller than 0.1 ⁇ m, there is a possibility that the negative electrode active material particles 205 and the solid electrolyte particles 100 can not form a good dispersed state in the negative electrode. This degrades the charge and discharge characteristics of the battery. In addition, when the median diameter of the negative electrode active material particles 205 is larger than 100 ⁇ m, the lithium diffusion in the negative electrode active material particles 205 becomes slow. For this reason, the operation at high power of the battery may be difficult.
  • the median diameter of the negative electrode active material particles 205 may be larger than the median diameter of the solid electrolyte particles 100. Thereby, a favorable dispersed state of the negative electrode active material particles 205 and the halide solid electrolyte material can be formed.
  • the volume ratio “v: 100 ⁇ v” of the negative electrode active material particles 205 to the solid electrolyte particles 100 contained in the negative electrode 203 may be 30 ⁇ v ⁇ 95.
  • v ⁇ 30 it may be difficult to secure sufficient energy density of the battery.
  • v> 95 operation at high output may be difficult.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. If the thickness of the negative electrode is smaller than 10 ⁇ m, it may be difficult to secure sufficient energy density of the battery. In addition, when the thickness of the negative electrode is greater than 500 ⁇ m, operation at high output may be difficult.
  • At least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 contains a sulfide solid electrolyte or an oxide solid electrolyte for the purpose of enhancing ion conductivity or chemical stability / electrochemical stability.
  • a sulfide solid electrolyte Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , etc. may be used.
  • a NASICON-type solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element substitution product, (LaLi) TiO 3 -based perovskite-type solid electrolyte, Li 14 ZnGe 4 O 16 , Li 4 SiO 4 LISICON type solid electrolyte represented by LiGeO 4 and its element substituted body, Garnet type solid electrolyte represented by Li 7 La 3 Zr 2 O 12 and its element substituted body, Li 3 N and its H substituted body, Li 3 PO 4 and its N-substituted, etc. can be used.
  • An organic polymer solid electrolyte may be included in at least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 for the purpose of enhancing the ion conductivity.
  • the organic polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure. By having an ethylene oxide structure, a large amount of lithium salt can be contained, and the ionic conductivity can be further enhanced.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • a lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • At least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 contains a non-aqueous electrolyte solution, a gel electrolyte, and an ionic liquid in order to facilitate lithium ion transfer and improve the output characteristics of the battery. May be
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, fluorine solvents, and the like may be used.
  • cyclic carbonate solvents include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
  • chain carbonate solvents include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and the like.
  • cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and the like.
  • the chain ether solvents include 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
  • cyclic ester solvents examples include ⁇ -butyrolactone and the like.
  • linear ester solvents include methyl acetate and the like.
  • fluorine solvents include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, fluorodimethylene carbonate, and the like.
  • non-aqueous solvent one non-aqueous solvent selected therefrom can be used alone.
  • the non-aqueous electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate and fluorodimethylene carbonate.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • concentration of lithium salt is, for example, in the range of 0.5 to 2 mol / liter.
  • the gel electrolyte one in which a non-aqueous electrolyte is contained in a polymer material can be used.
  • a polymer material polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, a polymer having an ethylene oxide bond, and the like may be used.
  • the cations constituting the ionic liquid are aliphatic chain quaternary salts such as tetraalkylammonium and tetraalkylphosphonium, pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, piperidiniums and the like And nitrogen-containing heterocyclic aromatic cations such as cyclic ammonium, pyridiniums, and imidazoliums.
  • aliphatic chain quaternary salts such as tetraalkylammonium and tetraalkylphosphonium, pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, piperidiniums and the like
  • nitrogen-containing heterocyclic aromatic cations such as cyclic ammonium, pyridiniums, and imidazoliums.
  • Anions constituting the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ , N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) ⁇ , C (SO 2 CF 3 ) 3 ⁇ or the like.
  • the ionic liquid may also contain a lithium salt.
  • a binder may be contained in at least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 for the purpose of improving the adhesion between the particles.
  • the binder is used to improve the binding properties of the material constituting the electrode.
  • the binder polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene buta
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, hexadiene Copolymers of two or more selected materials can be used. Moreover, 2 or more types selected from these may be mixed and it may be used as a binding agent.
  • At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive aid, if necessary.
  • the conductive aid is used to reduce the electrode resistance.
  • Conductive aids include graphites of natural graphite or artificial graphite, carbon blacks such as acetylene black and ketjen black, conductive fibers such as carbon fibers or metal fibers, metal powders such as fluorinated carbon and aluminum, Examples thereof include conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymer compounds such as polyaniline, polypyrrole and polythiophene.
  • cost reduction can be achieved by using a carbon conductive support as the conductive support.
  • the battery in the fourth embodiment can be configured as a battery of various shapes such as coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • Example A1 [Preparation of solid electrolyte material]
  • FIG. 4 is a schematic view showing a method of evaluating lithium ion conductivity.
  • the pressure forming die 300 is composed of an electrically insulating polycarbonate frame 301 and an electron conductive stainless steel punch upper portion 303 and a punch lower portion 302.
  • the ion conductivity was evaluated by the following method using the configuration shown in FIG.
  • the powder of the solid electrolyte material of Example A1 was filled in a pressure forming die 300 in a dry atmosphere with a dew point of ⁇ 30 ° C. or less, uniaxially pressurized at 400 MPa, and a conductivity measurement cell of Example A1 was produced.
  • the ionic conductivity was calculated from the following equation using the resistance value of the electrolyte.
  • (R SE ⁇ S / t) ⁇ 1
  • is the ion conductivity
  • S is the electrolyte area (in FIG. 4, the inner diameter of the frame 301)
  • R SE is the resistance value of the solid electrolyte in the above impedance measurement
  • t is the thickness of the electrolyte (in FIG. Of the solid electrolyte particle 100).
  • the ion conductivity of the solid electrolyte material of Example A1 measured at 22 ° C. was 6.0 ⁇ 10 ⁇ 4 S / cm.
  • FIG. 6A is a graph showing an XRD pattern.
  • FIGS. 6A and 6B were measured by the following method.
  • an X-ray diffraction pattern was measured in a dry environment with a dew point of ⁇ 45 ° C. or less using an X-ray diffractometer (MiniFlex 600 manufactured by RIGAKU Co., Ltd.).
  • X-ray diffractometer MiniFlex 600 manufactured by RIGAKU Co., Ltd.
  • Cu-K ⁇ ray was used for the X-ray source. That is, X-ray diffraction (XRD) was measured by the ⁇ -2 ⁇ method using Cu-K ⁇ rays (wavelengths of 1.5405 ⁇ and 1.5444 ⁇ ) as X-rays.
  • Example A1 In the X-ray diffraction pattern in Example A1, relatively high intensity peaks were observed at 31.34 °, 40.86 °, and 48.68 °.
  • the peak intensity at q 0 is I 4
  • the peak position is 2 ⁇ p 1
  • the peak half width is ⁇ 2 ⁇ 1
  • 2 ⁇ p 1 15 It was .78 degrees
  • (DELTA) 2 (theta) 1 0.36 degrees.
  • the solid electrolyte material of Example A1 for 700 ⁇ m thickness equivalent, 8.5 mg of the above-mentioned mixture and 16.5 mg of Al powder were laminated in this order.
  • the first electrode and the solid electrolyte layer were obtained by pressure-molding this at a pressure of 300 MPa.
  • metal In 200 micrometers in thickness
  • pressure-molding this at a pressure of 80 MPa a laminate composed of the first electrode, the solid electrolyte layer, and the second electrode was produced.
  • FIG. 7 is a graph showing the initial discharge characteristics.
  • Example A1 the secondary battery of Example A1 was disposed in a 25 ° C. thermostat.
  • Constant current charging was performed at a current value at which a rate of 0.05 C (20-hour rate) with respect to the theoretical capacity of the battery was reached, and charging was terminated at a voltage of 3.6 V.
  • the battery was discharged at a current value of 0.05 C rate, and the discharge was finished at a voltage of 1.9 V.
  • the initial discharge capacity of the secondary battery of Example A1 was 743 ⁇ Ah.
  • FIGS. 6A and 6B The X-ray diffraction patterns of Examples A2 to A7 are shown in FIGS. 6A and 6B.
  • q / q 0 is in the range of 0.50 to 0.515,1.28 from 1.30,1.51 1.54, peaks were observed, respectively. These peaks are illustrated in FIG. 6C as Peak1, Peak5, and Peak6.
  • the peak intensity at q 0 is I 4
  • the peak position is 2 ⁇ p1
  • the peak half width is 2.DELTA..theta 1
  • the peak intensity in the range of q / q 0 0.511 from 0.531 (second peak range) I 2
  • the peak half width is 2.DELTA..theta 2
  • q / q 0 0.565 from 0.585 range peak intensity at (third peak range) I 3
  • the peak position 2 [Theta] p3 when the peak half width is 2 ⁇ 3, 2 ⁇ p1, 2 ⁇ p2 , 2 ⁇
  • the values of p 3 are shown in Table 1, and the values of I 2 / I 4 , I 3 / I 4 , ⁇ 1 / ⁇ p 1 , ⁇ 2 / ⁇ p 2
  • the crystallographically equivalent Y site is only one site (referred to as the Y1 site), but it is also possible to increase the Y site to a position where 0.5 of the Y coordinate of Y1 is added, Relatively good fitting results were obtained.
  • the occupancy rates of Y1 site and Y2 site at that time were 83.6% and 21.4%, respectively.
  • the ion conductivity was measured in the same manner as in Example A1 except for the above.
  • the secondary batteries of Examples A2 to A7 were produced in the same manner as in Example A1 except for the above.
  • Example B1 to B5 the raw material powder was weighed so as to have a predetermined composition in a glove box maintained in a dry / low oxygen atmosphere with a dew point of ⁇ 60 ° C. or less and an oxygen value of 5 ppm or less.
  • the compositions of the solid electrolytes prepared in each of Examples B1 to B5 are shown in Table 2 below.
  • Table 2 below.
  • M is a metal element
  • m is a valence of M.
  • LiCl: LiBr: LiI: YCl 3 : YI 3 : SmBr 3 0.651: 1.700: 0.650: 0.450: 0.450: 0 for Example B5 in which the constituent halogen species spans more than one. Weighed and mixed so as to be .100. Thereafter, milling was performed at 600 rpm for 12 hours using a planetary ball mill. In Examples B2 to B4, heat treatment was performed for 5 hours at a predetermined temperature. The respective heat treatment temperatures are described later in Table 3.
  • FIGS. 8A and 8B The X-ray diffraction patterns of Examples B1 to B5 are shown in FIGS. 8A and 8B.
  • the peak intensity in the range of (4th peak range) is I 4
  • the peak position is 2 ⁇ p 4
  • the peak half width is 2 ⁇ 4
  • the crystallographically equivalent Y site is only one site (referred to as Y1 site), but the Y site is set to the same position as the Li2 position (referred to as Y2 site).
  • the ion conductivity was measured in the same manner as in Example A1 except for the above.
  • the secondary batteries of Examples B1 to B5 were produced in the same manner as in Example A1 except for the above.
  • the measured ion conductivity was 8.7 ⁇ 10 ⁇ 6 S / cm.
  • the solid electrolyte material of Comparative Example 1 was used as the solid electrolyte used for the mixture and the solid electrolyte layer.
  • the initial discharge capacity of the secondary battery of Comparative Example 1 was less than 1 ⁇ Ah. That is, in the secondary battery of Comparative Example 1, the charge / discharge operation could not be confirmed.
  • Tables 1 to 5 show each configuration and each evaluation result in the above-described Examples A1 to A7, B1 to B5, and Comparative Example 1.
  • Examples A1 to A7 and B1 to B5 show high ion conductivity of 1 ⁇ 10 -4 S / cm or more at around room temperature, as compared with Comparative Example 1. Furthermore, the temperature and time of the heat treatment required for the synthesis were 500 ° C. or less for 5 hours, or the heat treatment was unnecessary.
  • I 2 / I 4 was as small as 20% or less and I 3 / I 4 was 30% or less. This indicates that, compared to the LYC structure, the position of Y does not exist at only one site, but is a structure that is distributed to two or more different equivalent sites. The same results were obtained in Rietveld analysis in Example A2.
  • any one relationship of ⁇ 1 / ⁇ p1 > 0.5%, ⁇ 2 / ⁇ p2 > 0.5%, ⁇ 3 / ⁇ p3 > 0.5%, or A plurality of relationships were satisfied, and the disorder of the periodicity of atomic positions in the crystal, particularly Y position, was large.
  • the peak width can not be determined so wide that the peak width can not be determined if the peaks are not observed in ⁇ p1 to ⁇ p4 , it is considered that the above relationship is actually satisfied.
  • Examples A1 to A7 and B1 to B5 the charge and discharge operation of the battery was shown at room temperature. On the other hand, in Comparative Example 1, the discharge capacity was hardly obtained, and the battery operation could not be confirmed. Furthermore, since the materials of Examples A1 to A7 and B1 to B5 do not contain sulfur as a constituent element, there is no generation of hydrogen sulfide.
  • the solid electrolyte material does not generate
  • the battery of the present disclosure can be utilized, for example, as an all solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Conductive Materials (AREA)

Abstract

本開示の一態様に係る固体電解質材料は、LiとMとXとからなる。前記Mは、Yを含み、前記Xは、Cl、Br、及びIからなる群より選択される少なくとも1種である。前記固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、前記qの値が2.109Å-1以上2.315Å-1以下である範囲内に、基準ピークを含む。前記X線回折パターンを、横軸が回折角2θからq/qとなるように変換することにより得られる、第2の変換パターンが、前記q/qの値が1.28以上1.30以下である範囲内、及び前記q/qの値が1.51以上1.54以下である範囲内の各々において、ピークを含み、qは、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値である。I/I≦20%、及びI/I≦30%、からなる群から選択される少なくとも1つを満たす。

Description

固体電解質材料、および、電池
 本開示は、固体電解質材料、および、電池に関する。
 特許文献1には、硫化物固体電解質を用いた全固体電池が開示されている。
 非特許文献1には、LiYClが開示されている。
 非特許文献2には、LiYBrが開示されている。
特開2011-129312号公報
Z.Anorg.Allg.Chem.623(1997)、1067-1073. Z.Anorg.Allg.Chem.623(1997)、1352-1356.
 従来技術においては、高いリチウムイオン伝導度を有する固体電解質材料の実現が望まれる。
 本開示の一様態における固体電解質材料は、LiとMとXとからなる。前記Mは、Yを含み、前記Xは、Cl、Br、及びIからなる群より選択される少なくとも1種である。前記固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、前記qの値が2.109Å-1以上2.315Å-1以下である範囲内に、基準ピークを含み、ここで、q=4πsinθ/λであり、λはX線の波長である。前記X線回折パターンを、横軸が回折角2θからq/qとなるように変換することにより得られる、第2の変換パターンが、前記q/qの値が1.28以上1.30以下である範囲内、及び前記q/qの値が1.51以上1.54以下である範囲内の各々において、ピークを含み、ここで、qは、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値である。I/I≦20%、及びI/I≦30%、からなる群から選択される少なくとも1つを満たし、ここで、Iは、前記第2の変換パターンのうち前記q/qの値が0.511以上0.531以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度であり、Iは、前記第2の変換パターンのうち前記q/qの値が0.565以上0.585以下である第三範囲に含まれる最も強度の高いピークである第3ピークのピーク強度であり、Iは、前記第2の変換パターンにおいて前記q/qの値が1である位置のピークのピーク強度である。
 また、本開示の一様態における固体電解質材料は、LiとMとXとからなる。前記Mは、Yを含み、前記Xは、Cl、Br、及びIからなる群より選択される少なくとも1種である。前記固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、前記qの値が2.109Å-1以上2.315Å-1以下である範囲内に、基準ピークを含み、ここで、q=4πsinθ/λであり、λはX線の波長である。前記X線回折パターンを、横軸が回折角2θからq/qとなるように変換することにより得られる、第2の変換パターンが、前記q/qの値が1.28以上1.30以下である範囲内、及び前記q/qの値が1.51以上1.54以下である範囲内の各々において、ピークを含み、ここで、qは、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値である。I/I≦100%、及びI/I≦30%、からなる群から選択される少なくとも1つを満たし、ここで、Iは、前記第2の変換パターンのうち前記q/qの値が0.503以上0.514以下である第一範囲に含まれる最も強度の高いピークである第1ピークのピーク強度であり、Iは、前記第2の変換パターンのうち前記q/qの値が0.550以上0.565以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度であり、Iは、前記第2の変換パターンにおいて前記q/qの値が1である位置のピークのピーク強度である。
 また、本開示の一様態における固体電解質材料は、LiとMとXとからなる。前記Mは、Yを含み、前記Xは、Cl、Br、及びIからなる群より選択される少なくとも1種である。前記固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、前記qの値が1.76Å-1以上2.18Å-1以下である範囲内に、2つのピークを含み、前記2つのピークのうち前記qの値の小さいピークが基準ピークであり、ここで、q=4πsinθ/λであり、λはX線の波長である。前記X線回折パターンを、横軸が回折角2θからq/q’となるように変換することにより得られる、第2の変換パターンが、前記q/q’の値が1.14以上1.17以下である範囲内、及び前記q/q’の値が1.625以上1.645以下である範囲内の各々において、ピークを含み、ここで、q’は、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値である。I/I≦15%、I/I≦5%、I/I≦10%、及びI/I≦5%、からなる群から選択される少なくとも1つを満たし、ここで、Iは、前記第2の変換パターンのうち前記q/q’の値が0.494以上0.511以下である第一範囲に含まれる最も強度の高いピークである第1ピークのピーク強度であり、Iは、前記第2の変換パターンのうち前記q/q’の値が0.538以上0.550以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度であり、Iは、前記第2の変換パターンのうち前記q/q’の値が0.559以上0.575以下である第三範囲に含まれる最も強度の高いピークである第3ピークのピーク強度であり、Iは、前記第2の変換パターンのうち前記q/q’の値が0.632以上0.644以下である第四範囲に含まれる最も強度の高いピークである第4ピークのピーク強度であり、Iは、前記第2の変換パターンのうち前記q/q’の値が1.140以上1.170以下である第六範囲に含まれる最も強度の高いピークである第6ピークのピーク強度である。
 本開示によれば、高いリチウムイオン伝導度を有する固体電解質材料を実現できる。
図1は、実施の形態4における電池の概略構成を示す断面図である。 図2Aは、LiYbCl構造のYbをYに置換した構造の結晶構造を示す図である。 図2Bは、LiYbCl構造のYbをYに置換した構造の結晶構造を示す図である。 図2Cは、LiYbCl構造のYbをYに置換した構造のXRDパターンを示す図である。 図3Aは、LiErBr構造のErをYに置換した構造の結晶構造を示す図である。 図3Bは、LiErBr構造のErをYに置換した構造のXRDパターンを示す図である。 図4は、イオン伝導度の評価方法を示す模式図である。 図5は、ACインピーダンス測定によるイオン伝導度の評価結果を示すグラフである。 図6Aは、実施例A1-A7におけるXRDパターンを示すグラフである。 図6Bは、実施例A1-A7におけるXRDパターンを示すグラフである。 図6Cは、実施例A1-A7におけるXRDパターンを示すグラフである。 図6Dは、実施例A1-A7におけるXRDパターンを示すグラフである。 図7は、初期放電特性を示すグラフである。 図8Aは、実施例B1-B5におけるXRDパターンを示すグラフである。 図8Bは、実施例B1-B5におけるXRDパターンを示すグラフである。 図8Cは、実施例B1-B5おけるXRDパターンを示すグラフである。 図8Dは、実施例B1-B5におけるXRDパターンを示すグラフである。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 実施の形態1における固体電解質材料は、LiとMとXとからなる材料である。
 Mは、Yを含む。
 Xは、Cl、Br、及びIからなる群より選択される少なくとも1種である。
 実施の形態1における固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、前記qの値が2.109Å-1以上2.315Å-1以下である範囲内に、基準ピークを含み、ここで、q=4πsinθ/λであり、λはX線の波長である。前記X線回折パターンを、横軸が回折角2θからq/qとなるように変換することにより得られる、第2の変換パターンが、前記q/qの値が1.28以上1.30以下である範囲内、及び前記q/qの値が1.51以上1.54以下である範囲内の各々において、ピークを含み、ここで、qは、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値である。
 実施の形態1における固体電解質材料は、I/I≦20%、及びI/I≦30%、からなる群から選択される少なくとも1つを満たす。
 ここで、Iは、前記第2の変換パターンのうち前記q/qの値が0.511以上0.531以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度である。
 また、Iは、前記第2の変換パターンのうち前記q/qの値が0.565以上0.585以下である第三範囲に含まれる最も強度の高いピークである第3ピークのピーク強度である。
 また、Iは、前記第2の変換パターンにおいて前記q/qの値が1である位置のピークのピーク強度である。
 以上の構成によれば、高いリチウムイオン伝導度を有する固体電解質材料であるハロゲン化物固体電解質材料を実現できる。
 また、以上の構成によれば、実施の形態1の固体電解質材料を用いることで、充放電特性に優れた全固体二次電池を実現することができる。
 また、実施の形態1の固体電解質材料を用いることで、硫黄を含まない全固体二次電池を実現することができる。すなわち、実施の形態1の固体電解質材料は、大気に曝露された際に硫化水素が発生する構成(例えば、特許文献1の構成)ではない。このため、硫化水素の発生が無く、安全性に優れた全固体二次電池を実現することができる。
 また、以上の構成によれば、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料は、結晶相を含んでもよい。すなわち、実施の形態1における固体電解質材料は、第1結晶相を含んでもよい。
 第1結晶相においては、Cu-Kα線(波長1.5405Å、および、1.5444Å)をX線として用いて、θ―2θ法でX線回折を測定し、十分な強度が得られる場合には、回折角2θの値が、それぞれ、15°以上18°以下、30°以上33°以下、39°以上43°以下、47°以上51°以下のそれぞれの範囲内に比較的強度の高いピークが観測される。測定強度が十分に得られない場合には、上述の一部のピークが観測されなくともよい。
 第1結晶相においては、X線回折図形の横軸として一般的に用いられる2θの値をq=4πsin(θ)/λで定義される散乱ベクトルに変換し、更に、q=2.109Å-1以上2.315Å-1以下の範囲内に存在するピークをqとし、規格化されたq/qを横軸として回折図形を作図した際に、q/qの値が、それぞれ、0.50以上0.515以下、1.28以上1.30以下、1.51以上1.54以下の範囲内に、それぞれピークが観測される。又、そのようなqが存在する。測定強度が十分に得られない場合には、上述の一部のピークが観測されなくともよい。一方、q/q=0.550から0.565の範囲には明瞭なピークは観測されない。この範囲にピークが観測される場合は、後述される実施の形態2における第2結晶相の可能性がある。
 上述のqを用いて、q/q=0.503から0.514の範囲を第一ピーク範囲、q/q=0.511から0.531の範囲を第二ピーク範囲、q/q=0.565から0.585の範囲を第三ピーク範囲、q=qのピークを第四ピークとし、第nピーク範囲内に存在する最も強度の高いピークの頂点の回折角、半値幅、ピーク強度を2θ、Δ2θ、Iと定義すると、第1結晶相においては、I/I≦20%、もしくは、I/I≦30%のいずれかもしくは両方の関係が成立する。なお、上述の範囲内にピークが観測されない場合には、I=0とすればよい。
 なお、実施の形態1における固体電解質材料は、Δθ/θp1>0.5%、Δθ/θp2>0.5%、及びΔθ/θp3>0.5%、からなる群から選択される少なくとも1つを満たしてもよい。
 ここで、2θp1は、前記第2の変換パターンのうち前記q/qの値が0.503以上0.514以下である第一範囲に含まれる最も強度の高いピークである第1ピークの頂点の回折角である。
 また、Δ2θは、前記第1ピークの半値幅である。
 また、2θp2は、前記第2ピークの頂点の回折角である。
 また、Δ2θは、前記第2ピークの半値幅である。
 また、2θp3は、前記第3ピークの頂点の回折角である。
 また、Δ2θは、前記第3ピークの半値幅である。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態1においては、Δθ/θp1>1%、Δθ/θp2>1%、Δθ/θp3>1%のいずれか最低一つの関係が成立してもよい。特に、Δθ/θp2>2%、Δθ/θp3>2%であることで、上述の効果がより良く奏される。
 ピーク強度I、ピークの回折角2θ、ピークの半値幅Δ2θを求めるには、各ピークからバックグラウンドを除き、ピークの各特性を直接測定してもよいし、ピークをガウス関数でフィッティングしたうえで、フィッティングパラメーターより各特性を求めてもよい。
 なお、実施の形態1における固体電解質材料においては、Xは、Clを含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 上述の特徴的な回折図形が得られる第1結晶相は、特定の結晶構造に限定されないが、例えば、空間群Pnmaに属する結晶構造を有するLiYbCl(以下、LYCとも表記される)構造が挙げられる。その詳細な原子配列は、無機結晶構造データベース(ICSD)に掲載されている(ICSD No.50152)。
 更に、Yもしくは、Li以外のカチオンの占有位置が、前述の結晶構造中に、2サイト以上あり、その占有率は、0.1から0.9程度であると考えられる。
 図2Aおよび図2Bは、LiYbClのYbをYに置換した構造の模式図である。
 第1結晶相においては、Yが、図2Aおよび図2B中のY位置のみならず、カチオンが占有していない八面体位置、Li1位置、Li2位置も一部占有すると考えられる。これは、XRDパターンの解析・シミュレーションを行うことで明らかになる。
 図2Cには、図2A、図2Bで示されるLiYClのXRDパターン(参考例A1)、Yの30%がカチオン非占有の八面体位置を占める場合のXRDパターン(参考例A2)、Yの30%がLi1サイトを占める場合のXRDパターン(参考例A3)、Yの30%がLi2サイトを占める場合のXRDパターン(参考例A4)、のシミュレーション結果を示している。
 例えば、参考例A2では第2ピーク範囲、第3ピーク範囲におけるXRDピーク強度が、参考例A1に比べて低下しており、これは、第1結晶相におけるXRDパターンに該当する。
 なお、上記シミュレーションには、RIETAN-FPを使用した(F. Izumi and K. Momma, “Three-dimensional visualization in powder diffraction,” Solid State Phenom., 130, 15-20 (2007).参照)。
 第1結晶相がLYC構造の場合には、第一ピーク範囲におけるメインピークは(020)面及び(210)面からの回折に由来し、第二ピーク範囲におけるメインピークは(101)面からの回折に由来し、第三ピーク範囲におけるメインピークは、(111)からの回折に由来する。これらの結晶面からの回折における構造因子はYの散乱因子に由来する項の寄与が大きい。一方、これらの結晶面の回折においてはClからの散乱は、各Cl原子からの散乱同士が互いに弱めあうため、その寄与は小さい。Yの散乱が強い要因は、図2A及び図2Bに示すLYC構造における等価なYのサイトは1サイトのみ(Y1サイトと記載する)であり、干渉し合う他のYサイトが無い。一方、Y1サイト以外の八面体サイトに追加のYサイトがある場合、上記の(020)面、(210)面、(101)面、(111)面において、Y原子からの散乱も弱めあうことになるため、その強度が低減する。回折強度が低減するピークは、参考例A2からA4に示されるように追加のYサイトの存在位置により異なる。又、その低減量は、追加のYサイトと、元のYサイトにおけるYの占有率により異なる。
 以上のように、実施の形態1における固体電解質材料は、空間群Pnmaに属するLiYbCl構造の結晶構造を有してもよい。
 このとき、当該結晶構造において、Mが複数の等価な位置を占め、複数の等価な位置の各々において、Mの占有率が10%以上であってもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態1における固体電解質材料においては、Mは、Mg、Ca、Sr、Ba、Zn、Zr、Nb、Ta、及びSmからなる群より選択される少なくとも1種を含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
 実施の形態2における固体電解質材料は、LiとMとXとからなる材料である。
 Mは、Yを含む。
 Xは、Cl、Br、及びIからなる群より選択される少なくとも1種である。
 実施の形態2における固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、前記qの値が2.109Å-1以上2.315Å-1以下である範囲内に、基準ピークを含み、ここで、q=4πsinθ/λであり、λはX線の波長である。前記X線回折パターンを、横軸が回折角2θからq/qとなるように変換することにより得られる、第2の変換パターンが、前記q/qの値が1.28以上1.30以下である範囲内、及び前記q/qの値が1.51以上1.54以下である範囲内の各々において、ピークを含み、ここで、qは、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値である。
 実施の形態2における固体電解質材料は、I/I≦100%、及びI/I≦30%、からなる群から選択される少なくとも1つを満たす。
 ここで、Iは、前記第2の変換パターンのうち前記q/qの値が0.503以上0.514以下である第一範囲に含まれる最も強度の高いピークである第1ピークのピーク強度である。
 また、Iは、前記第2の変換パターンのうち前記q/qの値が0.550以上0.565以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度である。
 また、Iは、前記第2の変換パターンにおいて前記q/qの値が1である位置のピークのピーク強度である。
 以上の構成によれば、高いリチウムイオン伝導度を有する固体電解質材料であるハロゲン化物固体電解質材料を実現できる。
 また、以上の構成によれば、実施の形態2の固体電解質材料を用いることで、充放電特性に優れた全固体二次電池を実現することができる。
 また、実施の形態2の固体電解質材料を用いることで、硫黄を含まない全固体二次電池を実現することができる。すなわち、硫化水素の発生が無く、安全性に優れた全固体二次電池を実現することができる。
 また、以上の構成によれば、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態2における固体電解質材料は、結晶相を含んでもよい。すなわち、実施の形態2における固体電解質材料は、第2結晶相を含んでもよい。
 第2結晶相においては、Cu-Kα線(波長1.5405Å、および、1.5444Å)をX線として用いて、θ―2θ法でX線回折を測定し、十分な強度が得られる場合には、回折角2θの値が、それぞれ、15°以上18°以下、30°以上33°以下、39°以上43°以下、47°以上51°以下のそれぞれの範囲内に比較的強度の高いピークが観測される。測定強度が十分に得られない場合には、上述の一部のピークが観測されなくともよい。
 第2結晶相においては、X線回折図形の横軸として一般的に用いられる2θの値をq=4πsin(θ)/λで定義される散乱ベクトルに変換し、更に、q=2.109Å-1から2.315Å-1の範囲内に存在するピークをqとし、規格化されたq/qを横軸として回折図形を作図した際に、q/qの値が、それぞれ、0.50以上0.515以下、1.28以上1.30以下、1.51以上1.54以下の範囲内に、それぞれピークが観測される。又、そのようなqが存在する。測定強度が十分に得られない場合には、上述の一部のピークが観測されなくともよい。一方、q/q=0.515から0.525の範囲またはq/q=0.57から0.59の範囲には明瞭なピークは観測されない。これらの範囲にピークが観測される場合は、第1結晶相の可能性がある。
 第2結晶相においては上述のqを用いて、q/q=0.503から0.514の範囲を第一ピーク範囲、q/q=0.550から0.565の範囲を第二ピーク範囲、q=qのピークを第四ピークとし、第nピーク範囲内に存在する最も強度の高いピークの頂点の回折角、半値幅、ピーク強度を2θ、Δ2θ、Iと定義すると、第2結晶相においては、I/I≦100%、もしくは、I/I≦30%のいずれかもしくは両方の関係が成立する。なお、上述の範囲内にピークが観測されない場合には、I=0とすればよい。
 なお、実施の形態2における固体電解質材料においては、Xは、Clを含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 上述の特徴的な回折図形が得られる第2結晶相は、特定の結晶構造に限定されないが、例えば、空間群P-3m1に属する結晶構造を有するLiErCl(以下、LECとも表記される)構造が挙げられる。その詳細な原子配列は、無機結晶構造データベース(ICSD)に掲載されている(ICSD No.50151)。
 更に、第2結晶相においては、YもしくはLi以外のカチオンの占有位置が、前述の結晶構造中に、3サイト以上あり、その占有率は0.1から0.9程度であると考えられる。
 第2結晶相が上記LEC構造の場合には、第一ピーク範囲におけるメインピークは(110)面からの回折に由来し、第二ピーク範囲におけるメインピークは(101)面からの回折に由来する。これらの結晶面からの回折における構造因子はYの散乱因子に由来する項の寄与が大きい。一方、これらの結晶面の回折においてはClからの散乱は、各Cl原子からの散乱同士が互いに弱めあうため、その寄与は小さい。Yの散乱が強い要因は、LEC構造における等価なYのサイトは2サイトのみ(Y1サイト、Y2サイトと記載する)であり、干渉し合う他のYサイトが無い。一方、Y1、Y2サイト以外の八面体サイトに追加のYサイトがある場合、上記の(101)面、(110)面において、Y原子からの散乱も弱めあうことになるため、その強度が低減する。回折強度が低減するピークは、追加のYサイトの存在位置により異なる。又、その低減量は、追加のYサイトと、元のYサイトにおけるYの占有率により異なる。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。具体的には、第2結晶相のような結晶構造をとることで、アニオンは、YまたはMの周辺に、より強く引き付けられ、かつ、Yが異なる八面体位置に分散されることで、結晶内のポテンシャルが一部不安定になり、リチウムイオンが伝導しやすくなると考えられる。このため、リチウムイオン伝導度がより向上すると推察される。
 以上のように、実施の形態2における固体電解質材料は、空間群P-3m1に属するLiErCl構造の結晶構造を有してもよい。
 このとき、当該結晶構造において、Mが三つ以上の等価な位置を占め、三つ以上の等価な位置の各々において、Mの占有率が10%以上であってもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態2における固体電解質材料においては、Mは、Mg、Ca、Sr、Ba、Zn、Zr、Nb、Ta、及びSmからなる群より選択される少なくとも1種を含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 (実施の形態3)
 以下、実施の形態3が説明される。上述の実施の形態1または2と重複する説明は、適宜、省略される。
 実施の形態3における固体電解質材料は、LiとMとXとからなる材料である。
 Mは、Yを含む。
 Xは、Cl、Br、Iからなる群より選択される1種または2種以上の元素である。
 実施の形態3における固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、前記qの値が1.76Å-1以上2.18Å-1以下である範囲内に、2つのピークを含む。前記2つのピークのうち前記qの値の小さいピークが基準ピークである。
 ここで、q=4πsinθ/λであり、λはX線の波長である。
 前記X線回折パターンを、横軸が回折角2θからq/q’となるように変換することにより得られる、第2の変換パターンが、前記q/q’の値が1.14以上1.17以下である範囲内、及び前記q/q’の値が1.625以上1.645以下である範囲内の各々において、ピークを含む。
 ここで、q’は、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値である。
 実施の形態3における固体電解質材料は、I/I≦15%、I/I≦5%、I/I≦10%、及びI/I≦5%、からなる群から選択される少なくとも1つを満たす。
 ここで、Iは、前記第2の変換パターンのうち前記q/q’の値が0.494以上0.511以下である第一範囲に含まれる最も強度の高いピークである第1ピークのピーク強度である。
 また、Iは、前記第2の変換パターンのうち前記q/q’の値が0.538以上0.550以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度である。
 また、Iは、前記第2の変換パターンのうち前記q/q’の値が0.559以上0.575以下である第三範囲に含まれる最も強度の高いピークである第3ピークのピーク強度である。
 また、Iは、前記第2の変換パターンのうち前記q/q’の値が0.632以上0.644以下である第四範囲に含まれる最も強度の高いピークである第4ピークのピーク強度である。
 また、Iは、前記第2の変換パターンのうち前記q/q’の値が1.140以上1.170以下である第六範囲に含まれる最も強度の高いピークである第6ピークのピーク強度である。
 以上の構成によれば、高いリチウムイオン伝導度を有する固体電解質材料であるハロゲン化物固体電解質材料を実現できる。
 また、以上の構成によれば、実施の形態3の固体電解質材料を用いることで、充放電特性に優れた全固体二次電池を実現することができる。
 また、実施の形態3の固体電解質材料を用いることで、硫黄を含まない全固体二次電池を実現することができる。すなわち、硫化水素の発生が無く、安全性に優れた全固体二次電池を実現することができる。
 また、以上の構成によれば、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態3における固体電解質材料は、結晶相を含んでもよい。すなわち、実施の形態3における固体電解質材料は、下記の第3結晶相を含んでもよい。
 第3結晶相においては、Cu-Kα線(波長1.5405Å、および、1.5444Å)をX線として用いて、θ―2θ法でX線回折を測定し、十分な強度が得られる場合には、回折角2θの値が、それぞれ、13°以上18°以下の範囲に一つ以上のピーク、25°以上35°以下の範囲に二つ以上の明確に分離可能なピーク、43°以上51°以下の範囲に一つ以上のピーク、50°以上63°以下の範囲内に二つ以上のピークが観測される。測定強度が十分に得られない場合には、上述の一部のピークが観測されなくともよい。
 第3結晶相においては、X線回折図形の横軸として一般的に用いられる2θの値をq=4πsin(θ)/λで定義される散乱ベクトルに変換し、更に、q=1.76Å-1から2.18Å-1の範囲内に存在する二つの高強度のピークのうちの低角側のピークのq値をq’とし、規格化されたq/q’を横軸として回折図形を作図した際に、q/q’の値が、それぞれ、0.49以上0.66以下、1.14以上1.17以下、1.625以上1.645以下、1.88以上1.94以下、1.9以上2.1以下の範囲内に、それぞれピークが観測される。測定強度が十分に得られない場合には、上述の一部のピークが観測されなくともよい。
 上述のq’を用いて、q/q’=0.494から0.511の範囲を第一ピーク範囲、q/q’=0.538から0.550の範囲を第二ピーク範囲、q/q’=0.559から0.575の範囲を第三ピーク範囲、q/q’=0.632から0.644の範囲を第四ピーク範囲、q=q’のピークを第五ピーク、q/q’=1.140から1.170の範囲を第六ピーク範囲とし、第nピーク範囲内に存在する最も強度の高いピークの頂点の回折角、半値幅、ピーク強度を2θ、Δ2θ、Iと定義すると、第2結晶相においては、I/I≦20%、もしくは、I/I≦30%のいずれかもしくは両方の関係が成立する。なお、上述の範囲内にピークが観測されない場合には、I=0とすればよい。
 なお、実施の形態3における固体電解質材料は、I/I≦20%、I/I≦10%、I/I≦20%、及びI/I≦10%、からなる群から選択される少なくとも1つを満たしてもよい。
 ここで、Iは、前記第2の変換パターンにおいて前記q/q’の値が1である位置のピークのピーク強度である。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態3における固体電解質材料は、Δθ/θp1>1%、Δθ/θp2>1%、Δθ/θp3>1%、及びΔθ/θp4>1%、からなる群から選択される少なくとも1つを満たしてもよい。
 ここで、2θp1は、前記第1ピークの頂点の回折角である。
 また、Δ2θは、前記第1ピークの半値幅である。
 また、2θp2は、前記第2ピークの頂点の回折角である。
 また、Δ2θは、前記第2ピークの半値幅である。
 また、2θp3は、前記第3ピークの頂点の回折角である。
 また、Δ2θは、前記第3ピークの半値幅である。
 また、2θp4は、前記第4ピークの頂点の回折角である。
 また、Δ2θは、前記第4ピークの半値幅である。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 以上のように、実施の形態3においては、Δθ/θp1>1%、Δθ/θp2>1%、Δθ/θp3>1%のいずれか最低一つの関係が成立してもよい。特に、Δθ/θp2>2%、Δθ/θp3>2%であることで、上述の効果がより良く奏される。
 ピーク強度I、ピークの回折角2θ、ピークの半値幅Δ2θを求めるには、各ピークからバックグラウンドを除き、ピークの各特性を直接測定してもよいし、ピークをガウス関数でフィッティングしたうえで、フィッティングパラメーターより各特性を求めてもよい。
 なお、実施の形態3における固体電解質材料においては、Xは、Brを含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 上述の特徴的な回折図形が得られる第3結晶相は、特定の結晶構造に限定されないが、例えば、下記のような結晶構造が挙げられる。
 一つは、アニオンの副格子の構造が、立方最密充填構造(面心立方格子)、もしくは、立方最密充填構造(面心立方格子)が歪んだ原子配列となる構造である。すなわち、アニオンの副格子においては、各アニオンは12個の他のアニオンに配位されている。それらの12個のアニオンのうち、最近接の二個のアニオンと中心位置のアニオンとが作る三角形の内角は、いずれも60°程度である。より具体的には、60°±5°程度以内に収まる。
 このような構造の例として、一つは、空間群C2/mに属する結晶構造を有するLiErBr(以下、LEBとも表記される)構造が挙げられる。その詳細な原子配列は、無機結晶構造データベース(ICSD)に掲載されている(ICSD No.50182)。
 更に、Yもしくは、Li以外のカチオンの占有位置が、前述の結晶構造中に、2サイト以上あり、その占有率は、0.1から0.9程度であると考えられる。
 例えば、図3Aは、LiErBrのErをYに置換した構造の模式図である。第3結晶相においては、Yが、図3A中のY位置のみならず、カチオンが占有していない八面体位置、Li1位置、Li2位置も一部占有すると考えられる。これは、XRDパターンの解析・シミュレーションを行うことで明らかになる。図3Bには、図3Aで示されるLiErBrのXRDパターン(参考例B1)、Yの30%がカチオン非占有の八面体位置を占める場合のXRDパターン(参考例B2)、Yの30%がLi1サイトを占める場合のXRDパターン(参考例B3)、Yの30%がLi2サイトを占める場合のXRDパターン(参考例B4)、のシミュレーション結果を示している。例えば、参考例B2では第1,第3ピーク範囲におけるXRDピーク強度が、参考例B1に比べて低下しており、これは、第3結晶相におけるXRDパターンに該当する。
 第3結晶相がLEB構造の場合には、第一ピーク範囲におけるメインピークは(001)からの回折に由来し、第二ピーク範囲におけるメインピークは(020)面からの回折に由来し、第三ピーク範囲におけるメインピークは、(110)からの回折に由来し、第四ピーク範囲におけるメインピークは、(11-1)からの回折に由来する。これらの結晶面からの回折における構造因子はYの散乱因子に由来する項の寄与が大きい。一方、これらの結晶面の回折においてはBrからの散乱は、各Br原子からの散乱同士が互いに弱めあうため、その寄与は小さい。Yの散乱が強い要因は、図3Aに示すLEB構造における等価なYのサイトは1サイトのみ(Y1サイトと記載する)であり、干渉し合う他のYサイトが無い。一方、Y1サイト以外の八面体サイトに追加のYサイトがある場合、上記の(001)面、(020)面、(110)面、(11―1)面において、Y原子からの散乱も弱めあうことになるため、その強度が低減する。回折強度が低減するピークは、参考例B2からB4に示されるように追加のYサイトの存在位置により異なる。又、その低減量は、追加のYサイトと、元のYサイトにおけるYの占有率により異なる。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。具体的には、第3結晶相のような結晶構造をとることで、アニオンは、YまたはMの周辺に、より強く引き付けられ、かつ、MとYの混合によりLiイオンのポテンシャルが不安定となる領域が生じると考えられる。これにより、リチウムイオンが拡散する経路が形成される。又、Liが欠損した組成であることで、非占有サイトが形成され、リチウムイオンが伝導しやすくなる。このため、リチウムイオン伝導度がより向上すると推察される。
 以上のように、実施の形態3における固体電解質材料は、空間群C2/mに属するLiErBr構造の結晶構造を有してもよい。
 このとき、当該結晶構造において、Mが複数の等価な位置を占め、複数の等価な位置の各々において、Mの占有率が10%以上であってもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態3における固体電解質材料においては、Mは、Mg、Ca、Sr、Ba、Zn、Zr、Nb、Ta、及びSmからなる群より選択される少なくとも1種を含んでもよい。
 以上の構成によれば、より高いリチウムイオン伝導度を有する固体電解質材料を実現できる。さらに、中低温での熱処理、かつ、短時間の熱処理で製造可能な固体電解質材料を実現できる。
 なお、実施の形態1から3における固体電解質材料は、第1結晶相、第2結晶相、第3結晶相とは異なる結晶構造を有する異種結晶相を含んでもよい。
 また、実施の形態1から3における固体電解質材料の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状など、であってもよい。例えば、実施の形態1から3における固体電解質材料は、粒子であってもよい。複数の粒子を積層した後、加圧によりペレット状もしくは板状に成形してもよい。
 例えば、実施の形態1から3における固体電解質材料の形状が粒子状(例えば、球状)の場合、メジアン径は、0.1μm以上かつ100μm以下であってもよい。
 また、実施の形態1から3においては、メジアン径は0.5μm以上かつ10μm以下であってもよい。
 以上の構成によれば、イオン伝導性をより高めることができる。また、実施の形態1から3における固体電解質材料と活物質などとのより良好な分散状態を形成できる。
 また、実施の形態1から3においては、固体電解質材料は、活物質のメジアン径より小さくてもよい。
 以上の構成によれば、実施の形態1から3における固体電解質材料と活物質などとのより良好な分散状態を形成できる。
 なお、本開示においては、「所定の結晶構造において、Mがn個以上の等価な位置を占める」とは、具体的には、「Mが占めるサイトに対し、所定の結晶構造が有する対称性を満たす対称操作を行った際に、互いに重複しないサイトがn種類以上存在する」という意味を包含する。ここで、所定の結晶構造の対称性は、その結晶構造が属する空間群によって規定され得る。
 なお、本開示において、「所定の値Aが、値Bから値Cである範囲」との表記は、「B≦A≦Cである範囲」を意味する。
 <固体電解質材料の製造方法>
 実施の形態1から3における固体電解質材料は、例えば、下記の方法により、製造されうる。
 目的とする組成の配合比となるようなハロゲン化物の原料粉を用意する。例えば、LiYClを作製する場合には、LiClとYClを、3:1程度のモル比で用意する。合成プロセス過程における組成の変化を考慮して、変化分を相殺するようにあらかじめ配合比を調整してもよい。原料粉をよく混合した後、メカノケミカルミリングの方法を用いて原料粉同士を混合・粉砕・反応させる。その後、真空中または不活性雰囲気中で焼成してもよい。
 もしくは、原料粉をよく混合した後、真空中または不活性雰囲気中で焼成してもよい。
 焼成条件は、例えば、100℃から550℃の範囲内で、1時間以上の焼成を行ってもよい。さらには、48時間以内の時間で所定の温度で保持した後、48時間以内の時間で室温まで降下させてもよい。
 これにより、前述したような固体電解質材料が得られる。
 なお、固体質材料における結晶相の構成、結晶構造、および、Cu-Kαを線源として用いたX線回折パターンおよび、変換パターンにおける各ピークの位置は、原料比率の調整および原料粉どうしの反応方法および反応条件の調整により、決定することができる。
 (実施の形態4)
 以下、実施の形態4が説明される。上述の実施の形態1から3のいずれかと重複する説明は、適宜、省略される。
 実施の形態4における電池は、上述の実施の形態1から3のいずれかで説明された固体電解質材料を用いて構成される。
 実施の形態4における電池は、固体電解質材料と、正極と、負極と、電解質層と、を備える。
 電解質層は、正極と負極との間に設けられる層である。
 正極と電解質層と負極とのうちの少なくとも1つは、実施の形態1から3のいずれかにおける固体電解質材料を含む。
 以上の構成によれば、電池の充放電特性を向上させることができる。
 以下に、実施の形態4における電池の具体例が、説明される。
 図1は、実施の形態4における電池1000の概略構成を示す断面図である。
 実施の形態4における電池1000は、正極201と、負極203と、電解質層202とを備える。
 正極201は、正極活物質粒子204と固体電解質粒子100とを含む。
 電解質層202は、正極201と負極203との間に配置される。
 電解質層202は、電解質材料(例えば、固体電解質材料)を含む。
 負極203は、負極活物質粒子205と固体電解質粒子100とを含む。
 固体電解質粒子100は、実施の形態1から3のいずれかにおける固体電解質材料からなる粒子、または、実施の形態1から3のいずれかにおける固体電解質材料を主たる成分として含む粒子である。
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。正極201は、例えば、正極活物質(例えば、正極活物質粒子204)を含む。
 正極活物質には、例えば、リチウム含有遷移金属酸化物(例えば、Li(NiCoAl)O、LiCoO、など)、遷移金属フッ化物、ポリアニオンおよびフッ素化ポリアニオン材料、および、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物、など、が用いられうる。
 正極活物質粒子204のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質粒子204のメジアン径が0.1μmより小さいと、正極において、正極活物質粒子204とハロゲン化物固体電解質材料とが、良好な分散状態を形成できない可能性が生じる。この結果、電池の充放電特性が低下する。また、正極活物質粒子204のメジアン径が100μmより大きいと、正極活物質粒子204内のリチウム拡散が遅くなる。このため、電池の高出力での動作が困難となる場合がある。
 正極活物質粒子204のメジアン径は、ハロゲン化物固体電解質材料のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子204とハロゲン化物固体電解質材料との良好な分散状態を形成できる。
 正極201に含まれる、正極活物質粒子204とハロゲン化物固体電解質材料の体積比率「v:100-v」について、30≦v≦95であってもよい。v<30では、十分な電池のエネルギー密度確保が困難となる可能性がある。また、v>95では、高出力での動作が困難となる可能性がある。
 正極201の厚みは、10から500μmであってもよい。なお、正極201の厚みが10μmより薄い場合には、十分な電池のエネルギー密度の確保が困難となる可能性がある。なお、正極201の厚みが500μmより厚い場合には、高出力での動作が困難となる可能性がある。
 電解質層202は、電解質材料を含む層である。当該電解質材料は、例えば、固体電解質材料である。すなわち、電解質層202は、固体電解質層であってもよい。
 なお、固体電解質層は、上述の実施の形態1から3のいずれかにおける固体電解質材料を、主成分として、含んでもよい。すなわち、固体電解質層は、上述の実施の形態1から3のいずれかにおける固体電解質材料を、例えば、固体電解質層の全体に対する重量割合で50%以上(50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 また、固体電解質層は、上述の実施の形態1から3のいずれかにおける固体電解質材料を、例えば、固体電解質層の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、固体電解質層は、上述の実施の形態1から3のいずれかにおける固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、上述の固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 また、固体電解質層は、実施の形態1から3のいずれかにおける固体電解質材料を、例えば、混入が不可避的な不純物を除いて、固体電解質層の全体に対する重量割合で100%(100重量%)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 以上のように、固体電解質層は、実施の形態1から3のいずれかにおける固体電解質材料のみから構成されていてもよい。
 もしくは、実施の形態1から3における固体電解質材料とは異なる固体電解質材料のみから構成されていてもよい。実施の形態1から3における固体電解質材料とは異なる固体電解質材料として、例えば、LiMgX、LiFeX、Li(Al,Ga,In)X、Li(Al,Ga,In)X、LiI、など(X:F,Cl,Br,I)、が用いられうる。
 固体電解質層は、実施の形態1から3のいずれかにおける固体電解質材料と、上述の実施の形態1から3における固体電解質材料とは異なる固体電解質材料とを、同時に含んでもよい。このとき、両者が均一に分散していてもよい。実施のから3のいずれかにおける固体電解質材料からなる層と、上述の実施の形態1から3における固体電解質材料とは異なる固体電解質材料からなる層とが、電池の積層方向に対して、順に配置されていてもよい。
 固体電解質層の厚みは、1μm以上かつ1000μm以下であってもよい。固体電解質層の厚みが1μmより薄い場合には、正極201と負極203とが短絡する可能性が高まる。また、固体電解質層の厚みが1000μmより厚い場合には、高出力での動作が困難となる可能性がある。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。負極203は、例えば、負極活物質(例えば、負極活物質粒子205)を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、錫化合物、を好適に使用できる。平均反応電圧が低い負極活物質を用いた場合に、実施の形態1から3のいずれかにおける固体電解質材料による電気分解抑制の効果が、より良く発揮される。
 負極活物質粒子205のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質粒子205のメジアン径が0.1μmより小さいと、負極において、負極活物質粒子205と固体電解質粒子100とが、良好な分散状態を形成できない可能性が生じる。これにより、電池の充放電特性が低下する。また、負極活物質粒子205のメジアン径が100μmより大きいと、負極活物質粒子205内のリチウム拡散が遅くなる。このため、電池の高出力での動作が困難となる場合がある。
 負極活物質粒子205のメジアン径は、固体電解質粒子100のメジアン径よりも、大きくてもよい。これにより、負極活物質粒子205とハロゲン化物固体電解質材料との良好な分散状態を形成できる。
 負極203に含まれる、負極活物質粒子205と固体電解質粒子100の体積比率「v:100-v」について、30≦v≦95であってもよい。v<30では、十分な電池のエネルギー密度確保が困難となる可能性がある。また、v>95では、高出力での動作が困難となる可能性がある。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極の厚みが10μmより薄い場合には、十分な電池のエネルギー密度の確保が困難となる可能性がある。また、負極の厚みが500μmより厚い場合には、高出力での動作が困難となる可能性がある。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、イオン伝導性または化学的安定性・電気化学的安定性を高める目的で、硫化物固体電解質または酸化物固体電解質が含まれてもよい。硫化物固体電解質として、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。酸化物固体電解質として、LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO系のペロブスカイト型固体電解質、Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、LiNおよびそのH置換体、LiPOおよびそのN置換体、など、が用いられうる。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、イオン伝導性を高める目的で、有機ポリマー固体電解質が含まれてもよい。有機ポリマー固体電解質として、例えば高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有することで、リチウム塩を多く含有することができ、イオン導電率をより高めることができる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解質液、ゲル電解質、イオン液体が含まれてもよい。
 非水電解液は、非水溶媒と、非水溶媒に溶けたリチウム塩と、を含む。非水溶媒としては、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、フッ素溶媒、など、が使用されうる。環状炭酸エステル溶媒の例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、など、が挙げられる。鎖状炭酸エステル溶媒の例としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、など、が挙げられる。環状エーテル溶媒の例としては、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、など、が挙げられる。鎖状エーテル溶媒としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、など、が挙げられる。環状エステル溶媒の例としては、γ-ブチロラクトン、など、が挙げられる。鎖状エステル溶媒の例としては、酢酸メチル、など、が挙げられる。フッ素溶媒の例としては、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネート、など、が挙げられる。非水溶媒として、これらから選択される1種の非水溶媒が、単独で、使用されうる。もしくは、非水溶媒として、これらから選択される2種以上の非水溶媒の組み合わせが、使用されうる。非水電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、フルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒が含まれていてもよい。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.5から2mol/リットルの範囲にある。
 ゲル電解質は、ポリマー材料に非水電解液を含ませたものを用いることができる。ポリマー材料として、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、エチレンオキシド結合を有するポリマー、など、が用いられてもよい。
 イオン液体を構成するカチオンは、テトラアルキルアンモニウム、テトラアルキルホスホニウムなどの脂肪族鎖状4級塩類、ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、ピペリジニウム類などの脂肪族環状アンモニウム、ピリジニウム類、イミダゾリウム類などの含窒ヘテロ環芳香族カチオンなどであってもよい。イオン液体を構成するアニオンは、PF 、BF 、SbF6- 、AsF 、SOCF 、N(SOCF 、N(SO 、N(SOCF)(SO、C(SOCF などであってもよい。また、イオン液体はリチウム塩を含有してもよい。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエンより選択された2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 また、正極201および負極203のうちの少なくとも一方は、必要に応じて、導電助剤を含んでもよい。
 導電助剤は、電極抵抗を低減するために、用いられる。導電助剤としては、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が挙げられる。なお、導電助剤として、炭素導電助剤を用いることで、低コスト化が図れる。
 なお、実施の形態4における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 以下、実施例および比較例を用いて、本開示の詳細が説明される。
 ≪実施例A1≫
 [固体電解質材料の作製]
 露点-60℃以下のアルゴン雰囲気で、原料粉LiClとYClとを、モル比でLiCl:YCl=3:1となるように、秤量した。その後、遊星型ボールミルを用い、12時間、600rpmでミリング処理した。
 [リチウムイオン伝導度の評価]
 図4は、リチウムイオン伝導度の評価方法を示す模式図である。
 加圧成形用ダイス300は、電子的に絶縁性のポリカーボネート製の枠型301と、電子伝導性のステンレス製のパンチ上部303およびパンチ下部302とから構成される。
 図4に示す構成を用いて、下記の方法にて、イオン伝導度の評価を行った。
 露点-30℃以下のドライ雰囲気で、実施例A1の固体電解質材料の粉末を加圧成形用ダイス300に充填し、400MPaで一軸加圧し、実施例A1の伝導度測定セルを作製した。
 加圧状態のまま、パンチ上部303とパンチ下部302のそれぞれから導線を取り回し、周波数応答アナライザを搭載したポテンショスタット(Princeton Applied Resarch社 VersaSTAT4)に接続し、電気化学的インピーダンス測定法により、室温におけるイオン伝導度の測定を行った。
 インピーダンス測定結果のCole-Cole線図を図5に示す。
 図5において、複素インピーダンスの位相の絶対値が最も小さい測定点(図5中の矢印)のインピーダンスの実数値を実施例A1の固体電解質のイオン伝導に対する抵抗値とみなした。
 電解質の抵抗値を用いて、下記式より、イオン伝導度を算出した。
 σ=(RSE×S/t)-1
 ここで、σはイオン伝導度、Sは電解質面積(図4中、枠型301の内径)、RSEは上記のインピーダンス測定における固体電解質の抵抗値、tは電解質の厚み(図4中、複数の固体電解質粒子100の圧縮体の厚み)である。
 22℃で測定された、実施例A1の固体電解質材料のイオン伝導度は、6.0×10-4S/cmであった。
 [結晶構造の解析]
 図6Aは、XRDパターンを示すグラフである。
 図6Bは、図6Aの2θ=15°から20°の範囲を拡大したXRDパターンを示すグラフである。
 図6A及び図6Bに示される結果は、下記の方法により、測定された。
 すなわち、固体電解質の結晶構造の解析には、X線回折装置(RIGAKU社MiniFlex600)を用いて、露点-45℃以下のドライ環境でX線回折パターンを測定した。X線源については、Cu-Kα線を用いた。すなわち、Cu-Kα線(波長1.5405Å、および、1.5444Å)をX線として用いて、θ―2θ法でX線回折(XRD)を測定した。
 実施例A1におけるX線回折パターンにおいては、31.34°、40.86°、48.68°に比較的強度の高いピークが観測された。
 これらのピークは、LYC相から観測されるX線回折図形の一部のピーク位置と略一致した。
 図6Cは、上述のXRDパターンの横軸2θをq=4πsin(θ)/λで変換し、更に、前述のピーク位置2θ=31.34°におけるq値、q=2.338Å―1で規格化したq/qの値を横軸にとった場合の回折図形である。図6Cにおいては、q/q=1.2923、1.5259の位置にピークを観測した。
 図6Dは、図6Cのq/q=0.48から0.62の範囲を拡大したXRDパターンを示すグラフである。qにおけるピーク強度をIとし、q/q=0.503から0.514の範囲におけるピーク強度をI、ピーク位置を2θp1、ピーク半値幅をΔ2θとすると、2θp1=15.78°、Δ2θ=0.36°であった。q/q=0.511から0.531の範囲においては、明瞭なピークを認められなかったものの、バックグラウンドより強度の高い非常にブロードなピーク(2θ=16°―18°程度の範囲)が認められ、その強度をIとすると、I/I=8.2%であった。ピーク位置(2θp2)とピーク半値幅(Δ2θ)は、明確に定められないが、少なく見積もってΔ2θ/2θp2>5%であった。q/q=0.565から0.585の範囲は、第二のピーク範囲とオーバーラップしていた。
 [二次電池の作製]
 アルゴングローブボックス内で、実施例A1の固体電解質材料と、活物質であるLiCoOを、70:30の体積比率で秤量した。これらをメノウ乳鉢で混合することで、合剤を作製した。
 絶縁性外筒の中で、実施例A1の固体電解質材料を700μm厚相当分、上述の合剤を8.5mg、Al粉末を16.5mgの順に積層した。これを300MPaの圧力で加圧成型することで、第1電極と固体電解質層を得た。
 次に、固体電解質層の第1電極と接する側とは反対側に、金属In(厚さ200μm)を積層した。これを80MPaの圧力で加圧成型することで、第1電極、固体電解質層、第2電極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉した。
 以上により、実施例A1の二次電池を作製した。
 [充放電試験]
 図7は、初期放電特性を示すグラフである。
 図7に示される結果は、下記の方法により、測定された。
 すなわち、実施例A1の二次電池を、25℃の恒温槽に、配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値で、定電流充電し、電圧3.6Vで充電を終了した。
 次に、同じく0.05Cレートとなる電流値で、放電し、電圧1.9Vで放電を終了した。
 以上の測定の結果、実施例A1の二次電池の初期放電容量は、743μAhであった。
 ≪実施例A2からA7≫
 以下、実施例A2からA7の合成および評価方法について説明する。
 [固体電解質材料の作製]
 実施例A2からA7においては、露点-60℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、所定の組成となるよう原料粉を秤量した。実施例A2からA7のそれぞれにおいて作製した固体電解質の組成は、後述の表1に示される。例えば、組成がLiClの場合、LiCl:YCl:MCl=a:b:cの比で秤量し混合した。ここで、Mは金属元素で、mはMの価数である。その後、遊星型ボールミルを用い、12時間、600rpmでミリング処理した。実施例A2-A5、A7においては、所定の温度で5時間の熱処理を行った。それぞれの熱処理温度は表1に後述する。
 [結晶構造の解析]
 上記の実施例A1と同様の方法で、実施例A2からA7のそれぞれの固体電解質材料の結晶構造の測定を行った。但し、実施例A2、A3のXRD回折図形の測定には、X線回折装置(RIGAKU社SmartLab)を用い、X線源についてはCu-Kα線を用い、Johansson型モノクロメーターを用いてKα1のみを取り出した。
 実施例A2からA7のX線回折図形は、図6A及び図6Bに示される。
 実施例A1と同様に、図6A及び図6Bに示されるX線回折図形の横軸2θをq=4πsin(θ)/λで変換し、更に、q=2.109Å-1から2.315Å-1の範囲内の強度の最も高いピークをq(図6中のピーク4)とした際に、qで規格化したq/qの値を横軸にとった場合の回折図形は図6C及び図6Dに示される。
 q/qの範囲が、0.50から0.515、1.28から1.30、1.51から1.54の範囲内に、それぞれピークが観測された。これらのピークは、図6C中に、Peak1、Peak5、Peak6として図示される。
 実施例A1と同様に、qにおけるピーク強度をIとし、q/q=0.503から0.514の範囲(第一ピーク範囲)におけるピーク強度をI、ピーク位置を2θp1、ピーク半値幅を2Δθとし、q/q=0.511から0.531の範囲(第二ピーク範囲)におけるピーク強度をI、ピーク位置を2θp2、ピーク半値幅を2Δθとし、q/q=0.565から0.585の範囲(第三ピーク範囲)におけるピーク強度をI、ピーク位置を2θp3、ピーク半値幅を2Δθとした際の、2θp1、2θp2、2θp3の値は表1に、I/I、I/I、Δθ/θp1、Δθ/θp2、Δθ/θp3の値は後述の表2に示される。
 尚、上記範囲にピークが認められない場合には、I=0とみなした。又、上記範囲を超える非常にブロードなピークの場合には、上記範囲内の強度の最高値からバックグラウンドの値を差し引いた値をIとみなした。
 [結晶構造の詳細解析]
 実施例A2で得られたXRD回折パターンに対して、リートベルト解析を行った。リートベルト解析には、RIETAN-FP(F. Izumi and K. Momma, “Three-dimensional visualization in powder diffraction,” Solid State Phenom., 130, 15-20 (2007).参照)を使用した。モデル構造としてLYC構造(空間群Pnma、ICSD No.50152)のYbをYとした構造を採用した。LYC構造については、スケール因子、バックグラウンド関数、プロファイル関数に関するパラメーター、及び、結晶構造に関するパラメーターについて、フィッティングにより最適化を行った。ICSD No.50152におけるLYC構造をモデルと構造として用いた場合、良好なフィッティング結果は得られなかった。このモデル構造においては、結晶学的に等価なYのサイトは1サイトのみ(Y1サイトとする)であるが、YのサイトをY1のz座標に0.5加えた位置にも増やすことで、比較的良好なフィッティング結果が得られた。その際のY1サイト、Y2サイトの占有率はそれぞれ、83.6%と21.4%であった。
 [イオン伝導度の評価]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、上記の実施例A1と同様の方法で、実施例A2からA7のそれぞれの伝導度測定セルを作製した。
 これ以外は、上記の実施例A1と同様の方法で、イオン伝導度の測定を行った。
 上述の実施例A2からA7におけるイオン伝導度は、後述の表2に示される。
 [二次電池の作製]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、実施例A2からA7のそれぞれの固体電解質材料と、正極活物質であるLiCoOを、30:70の体積比率で秤量した。これらをメノウ乳鉢で混合することで、実施例A2からA7のそれぞれの正極合剤を作製した。
 これら以外は、上記の実施例A1と同様の方法で、実施例A2からA7のそれぞれの二次電池を作製した。
 [充放電試験]
 上記の実施例A1と同様の方法で、実施例A2からA7のそれぞれの二次電池の充放電試験を行った。実施例A2からA7の初期放電特性は、実施例A1と同様の特性を示し、良好な充放電特性を得た。
 ≪実施例B1からB5≫
 以下、実施例B1からB5の合成および評価方法について説明する。
 [固体電解質材料の作製]
 実施例B1からB5においては、露点-60℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、原料粉を秤量した。実施例B1からB5のそれぞれにおいて作製した固体電解質の組成は、後述の表3に示される。
 これら以外は、上記の実施例A1と同様の方法で、実施例B1からB5のそれぞれの固体電解質材料を作製した。
 実施例B1からB5においては、露点-60℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、所定の組成となるよう原料粉を秤量した。実施例B1からB5のそれぞれにおいて作製した固体電解質の組成は、後述の表2に示される。例えば、組成がLiBrの場合、LiBr:YBr:MBr=a:b:cの比で秤量し混合した。ここで、Mは金属元素で、mはMの価数である。構成するハロゲン種が複数にまたがる実施例B5については、LiCl:LiBr:LiI:YCl:YI:SmBr=0.651:1.700:0.650:0.450:0.450:0.100となるよう秤量し混合した。その後、遊星型ボールミルを用い、12時間、600rpmでミリング処理した。実施例B2からB4においては、所定の温度で5時間の熱処理を行った。それぞれの熱処理温度は表3に後述する。
 [結晶構造の解析]
 上記の実施例A1と同様の方法で、実施例B1からB5のそれぞれの固体電解質材料の結晶構造の測定を行った。
 実施例B1からB5のX線回折図形は、図8A及び図8Bに示される。
 実施例A1と同様に、図8A及び図8Bに示されるX線回折図形の横軸2θをq=4πsin(θ)/λで変換し、更に、q=1.76Å-1から2.18Å-1の範囲内の二つの強度の高いピーク(図8A中のPeak5、6)のうち、低角側のピーク(図8中のピーク5)のq値をq’とした際に、q’で規格化したq/q’の値を横軸にとった場合の回折図形は図8C及び図8Dに示される。
 q/q’の範囲が、0.49から0.66、1.14から1.17、1.625から1.645、1.88から1.94、1.90から2.10の範囲内に、それぞれピークが観測された。これらのピークは、図8C及び図8D中に、Peak1、Peak6、Peak7、Peak8、Peak9として図示される。
 q’におけるピーク強度をIとし、q/q’=0.494から0.511の範囲(第一ピーク範囲)におけるピーク強度をI、ピーク位置を2θp1、ピーク半値幅を2Δθとし、q/q’=0.538から0.550の範囲(第二ピーク範囲)におけるピーク強度をI、ピーク位置を2θp2、ピーク半値幅を2Δθとし、q/q’=0.559から0.575の範囲(第三ピーク範囲)におけるピーク強度をI、ピーク位置を2θp3、ピーク半値幅を2Δθとし、q/q’=0.632から0.644の範囲(第四ピーク範囲)におけるピーク強度をI、ピーク位置を2θp4、ピーク半値幅を2Δθとした際の、2θp1、2θp2、2θp3、2θp4の値は表3に、I/I、I/I、I/I、I/I、I/I、I/I、I/I、I/I、I/I、の値は後述の表4に、Δθ/θp1、Δθ/θp2、Δθ/θp3、Δθ/θp4の値は後述の表5に示される。
 尚、上記範囲にピークが認められない場合には、I=0とみなした。又、上記範囲を超える非常にブロードなピークの場合には、上記範囲内の強度の最高値からバックグラウンド強度を差し引いた値をIとみなした。
 [結晶構造の詳細解析]
 実施例B3にて得られたXRD回折パターンに対して、リートベルト解析を行った。リートベルト解析には、RIETAN-FPを使用した。モデル構造としてLEB構造(空間群C2/m、ICSD No.50182)のErをYとした構造を採用した。LYC構造については、スケール因子、バックグラウンド関数、プロファイル関数に関するパラメーター、及び、結晶構造に関するパラメーターについて、フィッティングにより最適化を行った。ICSD No.50152におけるLEB構造をモデル構造として用いた場合、良好なフィッティング結果は得られなかった。このモデル構造においては、結晶学的に等価なYのサイトは1サイトのみ(Y1サイトとする)であるが、YのサイトをLi2位置と同じ位置に設定し(Y2サイトとする)、パラメーターの最適化を行うことで、フィッティング結果が良化した。その際のY1サイト、Y2サイトの占有率はそれぞれ、90.2%と19.8%であった。
 [イオン伝導度の評価]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、上記の実施例A1と同様の方法で、実施例B1からB5のそれぞれの伝導度測定セルを作製した。
 これ以外は、上記の実施例A1と同様の方法で、イオン伝導度の測定を行った。
 上述の実施例B1からB5におけるイオン伝導度は、後述の表2に示される。
 [二次電池の作製]
 露点-90℃以下、酸素値5ppm以下のドライ・低酸素雰囲気で保たれるグローブボックス内で、実施例B1からB5のそれぞれの固体電解質材料と、正極活物質であるLiCoOを、30:70の体積比率で秤量した。これらをメノウ乳鉢で混合することで、実施例B1からB5のそれぞれの正極合剤を作製した。
 これら以外は、上記の実施例A1と同様の方法で、実施例B1からB5のそれぞれの二次電池を作製した。
 [充放電試験]
 上記の実施例A1と同様の方法で、実施例B1からB5のそれぞれの二次電池の充放電試験を行った。実施例B1からB5の初期放電特性は、実施例A1と同様の特性を示し、良好な充放電特性を得た。
 ≪比較例1≫
 固体電解質の原料粉として、LiClとFeClとを用い、LiCl:FeCl=2:1のモル比で混合した。これにより、比較例1の固体電解質材料であるLiFeClを得た。
 これ以外は、上記の実施例A1と同様の方法で、イオン伝導度の評価を、実施した。
 測定されたイオン伝導度は、8.7×10-6S/cmであった。
 また、合剤と固体電解質層に用いる固体電解質として、比較例1の固体電解質材料を用いた。
 これ以外は、上記の実施例A1と同様の方法で、二次電池の作製および充放電試験を、実施した。
 比較例1の二次電池の初期放電容量は、1μAh未満であった。すなわち、比較例1の二次電池では、充放電動作は確認できなかった。
 上述の実施例A1からA7、B1からB5および比較例1における各構成と各評価結果とが、表1から5に示される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 ≪考察≫
 実施例A1からA7、B1からB5は、比較例1と比較して、室温近傍において、1×10-4S/cm以上の高いイオン伝導性を示すことがわかる。さらに、いずれも合成に要した熱処理の温度と時間は500℃以下、5時間であった、もしくは、熱処理が不要であった。
 実施例A1からA7においては、q/qの範囲が、0.50から0.515、1.28から1.30、1.51から1.54の範囲内に、それぞれピークが観測され、LYC構造のように、ハロゲンイオンが六方最密充填構造に近い構造であった。
 さらに、I/Iは20%以下、I/Iは30%以下と、小さい値であった。これは、LYC構造に比べて、Yの位置が一つのサイトのみに存在するのではなく、二つ以上の異なる等価なサイトに分散して存在する構造であることを示す。これは、実施例A2におけるリートベルト解析においても一致する結果を得た。
 さらに、実施例A1からA7においては、Δθ/θp1>0.5%、Δθ/θp2>0.5%、Δθ/θp3>0.5%のいずれかの関係、もしくは、複数の関係を満たし、結晶中の原子位置、特に、Y位置の周期性の乱れが大きい構造であった。
 実施例B1からB5においては、q/q’の範囲が、0.49から0.66、1.14から1.17、1.625から1.645、1.88から1.94、1.90から2.10の範囲内に、それぞれピークが観測され、LEB構造のように、ハロゲンイオンが立方最密充填構造に近い構造であった。
 さらに、I/I≦20%、I/I≦10%、I/I≦20%、I/I≦10%、I/I≦15%、I/I≦5%、I/I≦10%、I/I≦5%のいずれか、もしくは、複数の条件を満たした。
 これは、LEB構造に比べて、Yの位置が一つのサイトのみに存在するのではなく、二つ以上の異なる等価なサイトに分散して存在する構造であることを示す。実際に、実施例B3におけるリートベルト解析においても一致する結果を得た。
 さらに、実施例B1からB5においては、Δθ/θp1>1%、Δθ/θp2>1%、Δθ/θp3>1%、Δθ/θp4>1%のいずれかの関係、もしくは、複数の関係を満たし、結晶中の原子位置、特に、Y位置の周期性の乱れが大きい構造であった。尚、θp1~θp4にピークが認められない場合は、ピーク幅が判定できないほどに広がっているとみなすことができるため、事実上、上記関係を満たすと考えられる。
 また、実施例A1からA7、B1からB5においては、いずれも室温において電池の充放電動作を示した。一方で、比較例1においては、放電容量がほとんど取れず、電池動作の確認ができなかった。さらに、実施例A1からA7、B1からB5の材料は、構成元素に硫黄を含まないため、硫化水素の発生がない。
 以上により、本開示による固体電解質材料は、硫化水素の発生が無く、かつ、高いリチウムイオン伝導度を示し、良好な充放電動作をすることができる電解質材料であることが示される。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
 100 固体電解質粒子
 201 正極
 202 電解質層
 203 負極
 204 正極活物質粒子
 205 負極活物質粒子
 300 加圧成形用ダイス
 301 枠型
 302 パンチ下部
 303 パンチ上部
 1000 電池

Claims (18)

  1.  LiとMとXとからなる固体電解質材料であって、
     前記Mは、Yを含み、
     前記Xは、Cl、Br、及びIからなる群より選択される少なくとも1種であり、
     前記固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、
      前記qの値が2.109Å-1以上2.315Å-1以下である範囲内に、基準ピークを含み、
       ここで、q=4πsinθ/λであり、λはX線の波長であり、
     前記X線回折パターンを、横軸が回折角2θからq/qとなるように変換することにより得られる、第2の変換パターンが、
      前記q/qの値が1.28以上1.30以下である範囲内、及び前記q/qの値が1.51以上1.54以下である範囲内の各々において、ピークを含み、
      ここで、qは、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値であり、
     I/I≦20%、及びI/I≦30%、からなる群から選択される少なくとも1つを満たし、
     ここで、Iは、前記第2の変換パターンのうち前記q/qの値が0.511以上0.531以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度であり、
     Iは、前記第2の変換パターンのうち前記q/qの値が0.565以上0.585以下である第三範囲に含まれる最も強度の高いピークである第3ピークのピーク強度であり、
     Iは、前記第2の変換パターンにおいて前記q/qの値が1である位置のピークのピーク強度である、
    固体電解質材料。
  2.  Δθ/θp1>0.5%、Δθ/θp2>0.5%、及びΔθ/θp3>0.5%、からなる群から選択される少なくとも満たし、
     ここで、2θp1は、前記第2の変換パターンのうち前記q/qの値が0.503以上0.514以下である第一範囲に含まれる最も強度の高いピークである第1ピークの頂点の回折角であり、
     Δ2θは、前記第1ピークの半値幅であり、
     2θp2は、前記第2ピークの頂点の回折角であり、
     Δ2θは、前記第2ピークの半値幅であり、
     2θp3は、前記第3ピークの頂点の回折角であり、
     Δ2θは、前記第3ピークの半値幅である、
    請求項1に記載の固体電解質材料。
  3.  前記Xは、Clを含む、
    請求項1または2のいずれかに記載の固体電解質材料。
  4.  空間群Pnmaに属するLiYbCl構造の結晶構造を有し、
     前記結晶構造において、前記Mは複数の等価な位置を占め、
     前記複数の等価な位置の各々において、前記Mの占有率が10%以上である、
    請求項1から3のいずれかに記載の固体電解質材料。
  5.  前記Mは、Mg、Ca、Sr、Ba、Zn、Zr、Nb、Ta、及びSmからなる群より選択される少なくとも1種をさらに含む、
    請求項1から4のいずれかに記載の固体電解質材料。
  6.  正極と、
     負極と、
     前記正極と前記負極との間に設けられる電解質層と、
    を備え、
     前記正極、前記負極、及び前記電解質層からなる群から選択される少なくとも1つは、請求項1から5のいずれかに記載の固体電解質材料を含む、
    電池。
  7.  LiとMとXとからなる固体電解質材料であって、
     前記Mは、Yを含み、
     前記Xは、Cl、Br、及びIからなる群より選択される少なくとも1種であり、
     前記固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、
      前記qの値が2.109Å-1以上2.315Å-1以下である範囲内に、基準ピークを含み、
       ここで、q=4πsinθ/λであり、λはX線の波長であり、
     前記X線回折パターンを、横軸が回折角2θからq/qとなるように変換することにより得られる、第2の変換パターンが、
      前記q/qの値が1.28以上1.30以下である範囲内、及び前記q/qの値が1.51以上1.54以下である範囲内の各々において、ピークを含み、
      ここで、qは、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値であり、
     I/I≦100%、及びI/I≦30%、からなる群から選択される少なくとも1つを満たし、
     ここで、Iは、前記第2の変換パターンのうち前記q/qの値が0.503以上0.514以下である第一範囲に含まれる最も強度の高いピークである第1ピークのピーク強度であり、
     Iは、前記第2の変換パターンのうち前記q/qの値が0.550以上0.565以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度であり、
     Iは、前記第2の変換パターンにおいて前記q/qの値が1である位置のピークのピーク強度である、
    固体電解質材料。
  8.  前記Xは、Clを含む、
    請求項7に記載の固体電解質材料。
  9.  空間群P-3m1に属するLiErCl構造の結晶構造を有し、
     前記結晶構造において、前記Mは三つ以上の等価な位置を占め、
     前記三つ以上の等価な位置の各々において、前記Mの占有率が10%以上である、
    請求項7または8に記載の固体電解質材料。
  10.  前記Mは、Mg、Ca、Sr、Ba、Zn、Zr、Nb、Ta、及びSmからなる群より選択される少なくとも1種をさらに含む、
    請求項7から9のいずれかに記載の固体電解質材料。
  11.  正極と、
     負極と、
     前記正極と前記負極との間に設けられる電解質層と、
    を備え、
     前記正極、前記負極、及び前記電解質層からなる群から選択される少なくとも1つは、請求項7から10のいずれかに記載の固体電解質材料を含む、
    電池。
  12.  LiとMとXとからなる固体電解質材料であって、
     前記Mは、Yを含み、
     前記Xは、Cl、Br、及びIからなる群より選択される少なくとも1種であり、
     前記固体電解質材料のX線回折パターンを、横軸が回折角2θからqとなるように変換することにより得られる、第1の変換パターンが、
      前記qの値が1.76Å-1以上2.18Å-1以下である範囲内に、2つのピークを含み、前記2つのピークのうち前記qの値の小さいピークが基準ピークであり、
       ここで、q=4πsinθ/λであり、λはX線の波長であり、
     前記X線回折パターンを、横軸が回折角2θからq/q’となるように変換することにより得られる、第2の変換パターンが、
      前記q/q’の値が1.14以上1.17以下である範囲内、及び前記q/q’の値が1.625以上1.645以下である範囲内の各々において、ピークを含み、
      ここで、q’は、前記第1の変換パターンにおける前記基準ピークに対応する前記qの値であり、
     I/I≦15%、I/I≦5%、I/I≦10%、及びI/I≦5%、からなる群から選択される少なくとも1つを満たし、
     ここで、Iは、前記第2の変換パターンのうち前記q/q’の値が0.494以上0.511以下である第一範囲に含まれる最も強度の高いピークである第1ピークのピーク強度であり、
     Iは、前記第2の変換パターンのうち前記q/q’の値が0.538以上0.550以下である第二範囲に含まれる最も強度の高いピークである第2ピークのピーク強度であり、
     Iは、前記第2の変換パターンのうち前記q/q’の値が0.559以上0.575以下である第三範囲に含まれる最も強度の高いピークである第3ピークのピーク強度であり、
     Iは、前記第2の変換パターンのうち前記q/q’の値が0.632以上0.644以下である第四範囲に含まれる最も強度の高いピークである第4ピークのピーク強度であり、
     Iは、前記第2の変換パターンのうち前記q/q’の値が1.140以上1.170以下である第六範囲に含まれる最も強度の高いピークである第6ピークのピーク強度である、
    固体電解質材料。
  13.  I/I≦20%、I/I≦10%、I/I≦20%、及びI/I≦10%、からなる群から選択される少なくとも1つを満たし、
     ここで、Iは、前記第2の変換パターンにおいて前記q/q’の値が1である位置のピークのピーク強度である、
    請求項12に記載の固体電解質材料。
  14.  Δθ/θp1>1%、Δθ/θp2>1%、Δθ/θp3>1%、及びΔθ/θp4>1%、からなる群から選択される少なくとも1つを満たし、
     ここで、2θp1は、前記第1ピークの頂点の回折角であり、
     Δ2θは、前記第1ピークの半値幅であり、
     2θp2は、前記第2ピークの頂点の回折角であり、
     Δ2θは、前記第2ピークの半値幅であり、
     2θp3は、前記第3ピークの頂点の回折角であり、
     Δ2θは、前記第3ピークの半値幅であり、
     2θp4は、前記第4ピークの頂点の回折角であり、
     Δ2θは、前記第4ピークの半値幅である、
    請求項12または13に記載の固体電解質材料。
  15.  前記Xは、Brを含む、
    請求項12から14のいずれかに記載の固体電解質材料。
  16.  空間群C2/mに属するLiErBr構造の結晶構造を有し、
     前記結晶構造において、前記Mが複数の等価な位置を占め、
     前記複数の等価な位置の各々において、前記Mの占有率が10%以上である、
    請求項12から15のいずれかに記載の固体電解質材料。
  17.  前記Mは、Mg、Ca、Sr、Ba、Zn、Zr、Nb、Ta、及びSmからなる群より選択される少なくとも1種をさらに含む、
    請求項12から16のいずれかに記載の固体電解質材料。
  18.  正極と、
     負極と、
     前記正極と前記負極との間に設けられる電解質層と、
    を備え、
     前記正極、前記負極、及び前記電解質層からなる群から選択される少なくとも1つは、請求項12から17のいずれかに記載の固体電解質材料を含む、
    電池。
PCT/JP2018/046263 2018-01-05 2018-12-17 固体電解質材料、および、電池 WO2019135347A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880070620.9A CN111279431B (zh) 2018-01-05 2018-12-17 固体电解质材料和电池
EP18898525.3A EP3736827A4 (en) 2018-01-05 2018-12-17 SOLID ELECTROLYTE MATERIAL AND BATTERY
JP2019563957A JPWO2019135347A1 (ja) 2018-01-05 2018-12-17 固体電解質材料、および、電池
US16/915,448 US11591236B2 (en) 2018-01-05 2020-06-29 Solid electrolyte material and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-000434 2018-01-05
JP2018000434 2018-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/915,448 Continuation US11591236B2 (en) 2018-01-05 2020-06-29 Solid electrolyte material and battery

Publications (1)

Publication Number Publication Date
WO2019135347A1 true WO2019135347A1 (ja) 2019-07-11

Family

ID=67143740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046263 WO2019135347A1 (ja) 2018-01-05 2018-12-17 固体電解質材料、および、電池

Country Status (5)

Country Link
US (1) US11591236B2 (ja)
EP (1) EP3736827A4 (ja)
JP (1) JPWO2019135347A1 (ja)
CN (1) CN111279431B (ja)
WO (1) WO2019135347A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534802A (zh) * 2019-09-11 2019-12-03 蜂巢能源科技有限公司 固态电解质及其制备方法和应用
CN111725560A (zh) * 2020-05-31 2020-09-29 国联汽车动力电池研究院有限责任公司 化合物晶体及其制备方法和固体电解质材料、固态锂电池
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253706B2 (ja) 2018-01-05 2023-04-07 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111448619B (zh) 2018-01-05 2021-11-05 松下知识产权经营株式会社 固体电解质材料和电池
CN111295720B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
JPWO2019135316A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135348A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135318A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JP7228816B2 (ja) 2018-01-05 2023-02-27 パナソニックIpマネジメント株式会社 正極材料、および、電池
EP3736899A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. BATTERY
WO2019135328A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JP7316564B6 (ja) 2018-01-26 2024-02-19 パナソニックIpマネジメント株式会社 電池
WO2019146292A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
JP7199038B2 (ja) 2018-01-26 2023-01-05 パナソニックIpマネジメント株式会社 負極材料およびそれを用いた電池
JP7217433B2 (ja) * 2018-01-26 2023-02-03 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
JP7429869B2 (ja) 2018-11-29 2024-02-09 パナソニックIpマネジメント株式会社 負極材料、および、電池
WO2020110480A1 (ja) 2018-11-29 2020-06-04 パナソニックIpマネジメント株式会社 負極材料、電池、および電池の製造方法
US20220045354A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing the same
US11928472B2 (en) 2020-09-26 2024-03-12 Intel Corporation Branch prefetch mechanisms for mitigating frontend branch resteers
KR20220069150A (ko) * 2020-11-19 2022-05-27 삼성전자주식회사 전고체 전지 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244734A (ja) * 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
JP2012246196A (ja) * 2011-05-30 2012-12-13 Ohara Inc リチウムイオン伝導性無機物質
JP2017518622A (ja) * 2014-03-28 2017-07-06 ビーワイディー カンパニー リミテッドByd Company Limited リチウムイオン電池、固体電解質及びその作製方法
WO2017154766A1 (ja) * 2016-03-10 2017-09-14 セイコーエプソン株式会社 固体電解質およびリチウムイオン電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352869A (en) 1980-12-24 1982-10-05 Union Carbide Corporation Solid state electrolytes
DE3171075D1 (en) 1980-12-24 1985-07-25 Union Carbide Corp Composition for use as solid state electrolyte and solid state cell employing same
US5714279A (en) 1989-10-24 1998-02-03 The United States Of America As Represented By The Secretary Of The Navy Non-aqueous lithium cells
JP3151925B2 (ja) 1992-05-07 2001-04-03 松下電器産業株式会社 非晶質リチウムイオン伝導性固体電解質並びにその合成法
US5506073A (en) 1992-06-22 1996-04-09 Arizona State University (Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University) Lithium ion conducting electrolytes
JPH08171938A (ja) 1994-12-15 1996-07-02 Mitsubishi Cable Ind Ltd Li二次電池及びその正極
JPH09293516A (ja) 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd 全固体リチウム電池
JPH11238528A (ja) 1998-02-20 1999-08-31 Ngk Insulators Ltd リチウム二次電池
JP2001052733A (ja) 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
KR100513726B1 (ko) 2003-01-30 2005-09-08 삼성전자주식회사 고체 전해질, 이를 채용한 전지 및 그 고체 전해질의 제조방법
JP5076134B2 (ja) 2004-06-08 2012-11-21 国立大学法人東京工業大学 リチウム電池素子
JP4945182B2 (ja) 2006-07-13 2012-06-06 シャープ株式会社 リチウム二次電池及びその製造方法
JP5448038B2 (ja) 2009-02-27 2014-03-19 公立大学法人大阪府立大学 硫化物固体電解質材料
JP2011065982A (ja) 2009-08-18 2011-03-31 Seiko Epson Corp リチウム電池用電極体及びリチウム電池
US9160034B2 (en) 2010-06-29 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid electrolyte material and method for producing lithium solid state battery
US20130295464A1 (en) 2011-01-27 2013-11-07 Idemitsu Kosan Co., Ltd. Composite material of alkaline metal sulfide and conducting agent
JP2013073791A (ja) 2011-09-28 2013-04-22 Panasonic Corp 非水電解質二次電池
CN104412440B (zh) 2012-07-11 2016-10-19 丰田自动车株式会社 全固体电池及其制造方法
FR3004467B1 (fr) * 2013-04-12 2016-05-27 Saint-Gobain Cristaux Et Detecteurs Fabrication d'une elpasolite stoechiometrique
FR3005207B1 (fr) 2013-04-24 2016-06-24 Batscap Sa Electrode positive pour batterie lithium
JP6003831B2 (ja) 2013-06-28 2016-10-05 トヨタ自動車株式会社 硫化物固体電解質材料、硫化物ガラス、リチウム固体電池、および、硫化物固体電解質材料の製造方法
JPWO2015011937A1 (ja) 2013-07-25 2017-03-02 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2015032529A (ja) 2013-08-06 2015-02-16 トヨタ自動車株式会社 硫化物系固体電解質
US10038192B2 (en) 2013-09-02 2018-07-31 Mitsubishi Gas Chemical Company, Inc. Solid-state battery
JP6187069B2 (ja) 2013-09-13 2017-08-30 富士通株式会社 リチウム電池
CN105531232B (zh) 2013-10-04 2019-04-26 独立行政法人产业技术综合研究所 非晶性的(锂)铌硫化物或(锂)钛铌硫化物
JP5873533B2 (ja) 2014-07-16 2016-03-01 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
US9608288B2 (en) 2014-07-17 2017-03-28 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JPWO2016075921A1 (ja) 2014-11-10 2017-08-17 ソニー株式会社 ガラスセラミックス、リチウムイオン導電体、電池、電子機器および電極の製造方法
JP6222134B2 (ja) 2015-02-25 2017-11-01 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10218032B2 (en) 2015-03-10 2019-02-26 Tdk Corporation Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
JP6672848B2 (ja) 2015-03-10 2020-03-25 Tdk株式会社 ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料
US10446872B2 (en) 2015-08-04 2019-10-15 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP2017059342A (ja) 2015-09-15 2017-03-23 トヨタ自動車株式会社 全固体電池の製造方法
JP2017091955A (ja) 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2017091953A (ja) 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
CN105254184A (zh) 2015-11-27 2016-01-20 宁波大学 一种稀土离子掺杂的Li3YCl6微晶玻璃及其制备方法
CN108292780B (zh) 2015-12-22 2021-03-12 丰田自动车欧洲公司 用于固体电解质的材料
JP6881892B2 (ja) 2015-12-25 2021-06-02 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電解質、全固体電池及び固体電解質の製造方法
US11245131B2 (en) 2015-12-25 2022-02-08 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP6748344B2 (ja) 2016-02-26 2020-09-02 富士通株式会社 全固体電池
CN109074893A (zh) 2016-03-08 2018-12-21 株式会社村田制作所 固体电解质、全固体电池、固体电解质的制造方法及全固体电池的制造方法
KR20180132122A (ko) * 2016-04-05 2018-12-11 메사추세츠 인스티튜트 오브 테크놀로지 리튬 금속 전극 및 그의 배터리
CN105680048B (zh) 2016-04-05 2019-05-17 惠州亿纬锂能股份有限公司 一种包含氮掺杂石墨烯的正极、其制备方法及采用该正极的锂电池
JP2017224474A (ja) 2016-06-15 2017-12-21 出光興産株式会社 正極合材
CN108258358B (zh) 2016-12-28 2022-11-11 松下知识产权经营株式会社 电池
CN111448619B (zh) 2018-01-05 2021-11-05 松下知识产权经营株式会社 固体电解质材料和电池
JPWO2019135318A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736831B1 (en) * 2018-01-05 2023-11-01 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
WO2019135328A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736899A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. BATTERY
JPWO2019135348A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736820A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL, AND BATTERY
JP7253706B2 (ja) 2018-01-05 2023-04-07 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JPWO2019135316A1 (ja) 2018-01-05 2021-01-14 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111557058B (zh) 2018-01-05 2023-09-01 松下知识产权经营株式会社 固体电解质材料和电池
JP7228816B2 (ja) 2018-01-05 2023-02-27 パナソニックIpマネジメント株式会社 正極材料、および、電池
CN111295720B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
JPWO2019146218A1 (ja) 2018-01-26 2021-01-28 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019146219A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
CN111566865B (zh) 2018-01-26 2024-03-22 松下知识产权经营株式会社 电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244734A (ja) * 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
JP2012246196A (ja) * 2011-05-30 2012-12-13 Ohara Inc リチウムイオン伝導性無機物質
JP2017518622A (ja) * 2014-03-28 2017-07-06 ビーワイディー カンパニー リミテッドByd Company Limited リチウムイオン電池、固体電解質及びその作製方法
WO2017154766A1 (ja) * 2016-03-10 2017-09-14 セイコーエプソン株式会社 固体電解質およびリチウムイオン電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BOHNSACK, ANDREAS ET AL.: "Ternary Halides of the A3 MX 6 Type. VI. Ternary Chlorides of the Rare- Earth Elements with Lithium, Li3 MC 16(M=Tb-Lu, Y, Sc):Synthesis, Crystal Structures, and Ionic Motion", JOURNAL OF INORGANIC AND GENERAL CHEMISTRY, vol. 623, 1997, pages 1067 - 1073, XP055600040, DOI: doi:10.1002/chin.199739018 *
BOHNSACK, ANDREAS ET AL.: "Ternary Halides of the A3 MX 6Type. VII. The Bromides Li3MBr6 (M=Sm-Lu, Y): Synthesis, Crystal Structure, and Ionic Mobility", JOURNAL OF INORGANIC AND GENERAL CHEMISTRY, vol. 623, 1997, pages 1352 - 1356, XP055600030, DOI: doi:10.1002/zaac.19976230905 *
F. IZUMIK. MOMMA: "Three-dimensional visualization in powder diffraction", SOLID STATE PHENOM., vol. 130, 2007, pages 15 - 20
See also references of EP3736827A4
Z. ANORG. ALLG. CHEM., vol. 623, 1997, pages 1352 - 1356

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534802A (zh) * 2019-09-11 2019-12-03 蜂巢能源科技有限公司 固态电解质及其制备方法和应用
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11978847B2 (en) 2020-04-14 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material, electrolyte including ion conductive material, and methods of forming
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11973186B2 (en) 2020-04-14 2024-04-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including halide material, electrolyte including the same, and methods of forming the same
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11984598B2 (en) 2020-04-23 2024-05-14 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US12095089B2 (en) 2020-04-23 2024-09-17 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
CN111725560A (zh) * 2020-05-31 2020-09-29 国联汽车动力电池研究院有限责任公司 化合物晶体及其制备方法和固体电解质材料、固态锂电池
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11978849B2 (en) 2020-08-07 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming

Also Published As

Publication number Publication date
EP3736827A1 (en) 2020-11-11
CN111279431A (zh) 2020-06-12
EP3736827A4 (en) 2021-03-10
CN111279431B (zh) 2022-03-25
JPWO2019135347A1 (ja) 2021-01-14
US11591236B2 (en) 2023-02-28
US20200328469A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2019135347A1 (ja) 固体電解質材料、および、電池
JP7253706B2 (ja) 固体電解質材料、および、電池
JP7253707B2 (ja) 固体電解質材料、および、電池
US11560320B2 (en) Solid electrolyte material and battery
WO2019146218A1 (ja) 固体電解質材料、および、電池
JP6934626B2 (ja) 固体電解質材料、および、電池
WO2019135318A1 (ja) 固体電解質材料、および、電池
WO2019135316A1 (ja) 固体電解質材料、および、電池
WO2019135317A1 (ja) 固体電解質材料、および、電池
US11485646B2 (en) Solid electrolyte material and battery
US11777132B2 (en) Solid electrolyte material and battery
WO2022249686A1 (ja) 固体電解質材料および電池
WO2022180964A1 (ja) 固体電解質材料およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898525

Country of ref document: EP

Effective date: 20200805