JP2017091955A - リチウムイオン伝導体及びこれを用いたリチウムイオン電池 - Google Patents
リチウムイオン伝導体及びこれを用いたリチウムイオン電池 Download PDFInfo
- Publication number
- JP2017091955A JP2017091955A JP2015224025A JP2015224025A JP2017091955A JP 2017091955 A JP2017091955 A JP 2017091955A JP 2015224025 A JP2015224025 A JP 2015224025A JP 2015224025 A JP2015224025 A JP 2015224025A JP 2017091955 A JP2017091955 A JP 2017091955A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- electrode layer
- ion conductor
- composition ratio
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
【課題】安全性が高く、リチウムイオン伝導性が高いリチウムイオン伝導体、並びにこれを用いたリチウムイオン電池を提供すること。
【解決手段】下記一般式(1):LixAyBzZr1−wCwO3+α・・・(1){式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、BはH、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表し、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表し、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1であり、(3+α)は酸素原子の組成比を表し、−1≦α≦1である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する、リチウムイオン伝導体。
【選択図】なし
【解決手段】下記一般式(1):LixAyBzZr1−wCwO3+α・・・(1){式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、BはH、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表し、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表し、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1であり、(3+α)は酸素原子の組成比を表し、−1≦α≦1である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する、リチウムイオン伝導体。
【選択図】なし
Description
本発明は、リチウムイオン伝導体及びこれを用いたリチウムイオン電池に関する。
近年、ノートパソコン、タブレット端末、携帯電話、スマートフォン、及び電気自動車(EV)等の電源として、高出力かつ高容量の電池の開発が求められている。その中でも比較的エネルギー密度が高く、繰り返し放充電が可能なリチウムイオン電池の開発が盛んに行われている。
リチウムイオン電池としては、有機溶媒などの液体電解質を用いるリチウムイオン電池と並んで、液体電解質を固体電解質層に変えた全固体リチウムイオン電池が提案されている。全固体リチウムイオン電池は、安全性、製造コスト、及び生産性に優れるという点で注目を集めている。
リチウムイオン電池の正極層及び負極層は、リチウムイオンの吸蔵及び放出を助けるため、リチウムイオン伝導体を含有することがある。また、全固体リチウムイオン電池の場合、少なくとも固体電解質層にリチウムイオン伝導体を含有する。電池の高出力化の観点から、リチウムイオン伝導性が高いリチウムイオン伝導体の開発が求められている。
このようなリチウムイオン伝導体としては、例えば、硫化物固体電解質、チタン系酸化物固体電解質、及び非チタン系酸化物固体電解質が提案されている。
例えば、特許文献1(国際公開第2011/128977号)は、「一般式Lix(La2−aM1a)(Ti3−bM2b)O9+δで表され、前記xは0<x≦1を満たし、前記aは0≦a≦2を満たし、前記bは0≦b≦3を満たし、前記δは−2≦δ≦2を満たし、前記M1は、Sr、Na、Nd、Pr、Sm、Gd、Dy、Y、Eu、Tb、Baからなる群から選択される少なくとも一種であり、前記M2は、Mg、W、Mn、Al、Ge、Ru、Nb、Ta、Co、Zr、Hf、Fe、Cr、Gaからなる群から選択される少なくとも一種であることを特徴とする固体電解質材料」を記載している。
特許文献2(国際公開第2011/118801号)は、「M1元素(例えばLi元素)、M2元素(例えばGe元素およびP元素)、およびS元素を含有し、CuKα線を用いたX線回折測定における2θ=29.5°±0.50°の位置にピークを有し、上記2θ=29.5°±0.50°のピーク回折強度をIAとし、2θ=27.33±0.50°のピーク回折強度をIBとした場合に、IB/IAの値が0.50未満であることを特徴とする硫化固体電解質材料」を記載している。
特許文献1に記載されているような酸化物系固体電解質は、水に対する高い安定性から好ましいものの、電池動作時のチタンとリチウムの反応が懸念される。特許文献2に記載されているような硫化物固体電解質は、酸化物系固体電解質に比べてリチウムイオン伝導性が高いものの、水や電極活物質と反応しやすい。そのため、安全性が高く、かつリチウムイオン伝導性が高い固体電解質が求められている。
本発明は、安全性が高く、リチウムイオン伝導性が高いリチウムイオン伝導体、並びにこれを用いたリチウムイオン電池を提供することを目的とする。
本発明は以下のとおりである。
〔1〕 下記一般式(1):
LixAyBzZr1−wCwO3+α ・・・(1)
{式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、BはH、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表し、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表し、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1であり、(3+α)は酸素原子の組成比を表し、−1≦α≦1である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する、リチウムイオン伝導体。
〔2〕 前記金属酸化物は、X線回折における回折角2θ=63.9±1.0°及び70.8±1.0°にピークを更に有する、項目〔1〕に記載のリチウムイオン伝導体。
〔3〕 前記金属酸化物は、X線回折における回折角2θ=21.8±1.0°、25.9°±1.0°、32.7°±1.0°、及び39.9°±1.0°にピークを更に有する、項目〔1〕に記載のリチウムイオン伝導体。
〔4〕 前記金属酸化物は、80℃におけるリチウムイオン拡散係数が1.0×10−13m2/s以上である、項目〔1〕〜〔3〕のいずれか一項に記載のリチウムイオン伝導体。
〔5〕 正極層、負極層、及び前記正極層と前記負極層との間にセパレータを有するリチウムイオン電池であって、前記正極層、前記負極層、又は前記セパレータの少なくともいずれかに、項目〔1〕〜〔4〕のいずれか一項に記載のリチウムイオン伝導体を有する、リチウム。イオン電池。
〔6〕 正極層、負極層、及び前記正極層と前記負極層との間に固体電解質層を有する全固体リチウムイオン電池であって、前記正極層、前記負極層、又は前記固体電解質層の少なくともいずれかに、項目〔1〕〜〔4〕のいずれか一項に記載のリチウムイオン伝導体を有する、全固体リチウムイオン電池。
〔1〕 下記一般式(1):
LixAyBzZr1−wCwO3+α ・・・(1)
{式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、BはH、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表し、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表し、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1であり、(3+α)は酸素原子の組成比を表し、−1≦α≦1である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する、リチウムイオン伝導体。
〔2〕 前記金属酸化物は、X線回折における回折角2θ=63.9±1.0°及び70.8±1.0°にピークを更に有する、項目〔1〕に記載のリチウムイオン伝導体。
〔3〕 前記金属酸化物は、X線回折における回折角2θ=21.8±1.0°、25.9°±1.0°、32.7°±1.0°、及び39.9°±1.0°にピークを更に有する、項目〔1〕に記載のリチウムイオン伝導体。
〔4〕 前記金属酸化物は、80℃におけるリチウムイオン拡散係数が1.0×10−13m2/s以上である、項目〔1〕〜〔3〕のいずれか一項に記載のリチウムイオン伝導体。
〔5〕 正極層、負極層、及び前記正極層と前記負極層との間にセパレータを有するリチウムイオン電池であって、前記正極層、前記負極層、又は前記セパレータの少なくともいずれかに、項目〔1〕〜〔4〕のいずれか一項に記載のリチウムイオン伝導体を有する、リチウム。イオン電池。
〔6〕 正極層、負極層、及び前記正極層と前記負極層との間に固体電解質層を有する全固体リチウムイオン電池であって、前記正極層、前記負極層、又は前記固体電解質層の少なくともいずれかに、項目〔1〕〜〔4〕のいずれか一項に記載のリチウムイオン伝導体を有する、全固体リチウムイオン電池。
本発明のリチウムイオン伝導体は、特定の組成式を有し、特定の範囲にX線回折ピークを有する金属酸化物を含有するため、安全性が高く、かつリチウムイオン伝導性が高いリチウムイオン伝導体、及びこれを用いたリチウムイオン電池を提供することができる。
なお、上述の記載は、本発明の全ての実施形態及び本発明に関する全ての利点を記載したものとみなしてはならない。
以下、本発明の代表的な実施形態を例示する目的でより詳細に説明するが、本発明はこれらの実施形態に限定されない。
《リチウムイオン伝導体》
〈組成〉
本発明の一実施形態におけるリチウムイオン伝導体は、下記一般式(1):
LixAyBzZr1−wCwO3+α ・・・(1)
{式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、BはH、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表し、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表し、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1であり、(3+α)は酸素原子の組成比を表し、−1≦α≦1である。}で表される金属酸化物を含む。
〈組成〉
本発明の一実施形態におけるリチウムイオン伝導体は、下記一般式(1):
LixAyBzZr1−wCwO3+α ・・・(1)
{式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、BはH、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表し、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表し、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1であり、(3+α)は酸素原子の組成比を表し、−1≦α≦1である。}で表される金属酸化物を含む。
本発明の一実施形態のリチウムイオン伝導体は、上記一般式で表される金属酸化物を含むため、安全性及びリチウムイオン伝導性が良好である。
式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表す。その理由は、これらの元素のイオンは、イオン半径が大きいため、金属酸化物の結晶構造を安定化するとともに、多価イオンに比べて相対的に多くのリチウムイオンが導入可能な観点から好ましいからである。Aは、調製の容易さから、好ましくは、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、大きなイオン拡散係数を示す観点から、より好ましくは、K及びRbからなる群から選択される少なくとも一つの元素を表す。
式(1)中、Bは、H、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表す。その理由は、A元素同様、イオン半径が大きいため結晶構造を安定化するからである。
式(1)中、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表す。その理由は、これらの元素のイオンのイオン半径が、酸素イオン、A元素のイオンと比して、金属酸化物の結晶構造を安定化する適度なサイズを有し、かつ6配位をとりうるからである。Cは、調製の容易さから、好ましくは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Zn、Ga、Ge、Nb、Mo、Ru、In、Bi、Te、Hf、Ta、及びLuからなる群から選択される少なくとも一つの元素を表し、大きなイオン拡散係数を示す観点から、より好ましくは、Mg、Al、Si、Ti、Ge、Nb及びTaからなる群から選択される少なくとも一つの元素を表す。
式(1)中、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1である。
xは、0<x<3であればよく、0.05≦x<2であると、金属酸化物のイオン含有量が高く、イオン伝導度の観点から好ましく、調製の容易さの観点から、0.1≦x<1.5であるとより好ましい。yは、0<y<3であればよく、例えば0<y<1、0.01≦y≦0.8、又は0.05≦y≦0.7とすることができる。zは、0≦z<3であればよく、例えば0≦z≦1、0≦z≦0.8、0.05≦z≦0.5とすることができる。(x+y+z)は、0<(x+y+z)<3であればよく、例えば0.1≦(x+y+z)<3又は0.5≦(x+y+z)<2とすることができる。wは、0≦w<1であればよく、Liに対する安定性の観点から、好ましくは0≦w<0.5、合成容易性の観点から、0≦w<0.3であるとより好ましい。
式(1)中、(3+α)は酸素原子の組成比を表し、−1≦α≦1であればよく、結晶構造の安定性の観点から、好ましくは−0.5≦α≦0.5であり、調製の容易さの観点から、より好ましくは、−0.4≦α≦0.4である。
x、y、z、w、(x+y+z)、及びαが上記の範囲内であることにより、金属酸化物が以下に説明する結晶構造を取りやすく、リチウムイオン伝導性がより良好となる。
〈X線回折ピーク、及び結晶構造〉
本発明の一実施形態において、金属酸化物は、CuKα線をX線源とするX線回折(以下、単に「XRD」ともいう)における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する。なお、本発明においてXRDとは、CuKα線をX線源として測定したXRDのことを指す。ここで、「ピークを有する」とは、XRDパターンにおいて、回折角2θ=5°以上75°以下での範囲における最大強度を縦軸のフルスケールとしたX線回折図上において、少なくとも目視でピークを認識できるか、又は波形処理装置がバックグラウンドノイズと明確に区別してピークと認識できる場合をいう。リチウムイオン伝導性の観点から、好ましくは、回折角2θ=5°以上75°以下での範囲における最大強度のピーク高さに対し、少なくとも0.5%のピーク強度、より好ましくは1.0%を有することが好ましい。
本発明の一実施形態において、金属酸化物は、CuKα線をX線源とするX線回折(以下、単に「XRD」ともいう)における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する。なお、本発明においてXRDとは、CuKα線をX線源として測定したXRDのことを指す。ここで、「ピークを有する」とは、XRDパターンにおいて、回折角2θ=5°以上75°以下での範囲における最大強度を縦軸のフルスケールとしたX線回折図上において、少なくとも目視でピークを認識できるか、又は波形処理装置がバックグラウンドノイズと明確に区別してピークと認識できる場合をいう。リチウムイオン伝導性の観点から、好ましくは、回折角2θ=5°以上75°以下での範囲における最大強度のピーク高さに対し、少なくとも0.5%のピーク強度、より好ましくは1.0%を有することが好ましい。
金属酸化物は、X線回折における回折角2θ=63.9±1.0°、及び70.8±1.0°にピークを更に有することが好ましい。金属酸化物がさらにこれらの範囲にピークを有することは、立方晶由来の構造であることを意味しており、異方的なイオン伝導の観点から好ましい。
金属酸化物は、X線回折における回折角2θ=21.8±1.0°、25.9°±1.0°、32.7°±1.0°、及び39.9°±1.0°にピークを更に有することが好ましい。金属酸化物がさらにこれらの範囲にピークを有することは、正方晶であることを意味しており、異方的なイオン伝導の観点から好ましい。
〈リチウムイオン拡散係数〉
本発明の一実施形態において、金属酸化物は、80℃におけるリチウムイオン拡散係数が1.0×10−13m2/s以上であることが好ましい。80℃におけるリチウムイオン拡散係数は、より好ましくは1.0×10−12m2/s以上であり、更に好ましくは1.0×10−11m2/s以上である。80℃におけるリチウムイオン拡散係数が上記の範囲内であると、リチウムイオン伝導性がより高くなる傾向にある。
本発明の一実施形態において、金属酸化物は、80℃におけるリチウムイオン拡散係数が1.0×10−13m2/s以上であることが好ましい。80℃におけるリチウムイオン拡散係数は、より好ましくは1.0×10−12m2/s以上であり、更に好ましくは1.0×10−11m2/s以上である。80℃におけるリチウムイオン拡散係数が上記の範囲内であると、リチウムイオン伝導性がより高くなる傾向にある。
〈その他〉
本発明の一実施形態において、金属酸化物は、平均粒子径が0.05μm以上100μm以下である粉体であることが好ましい。平均粒子径は、好ましくは0.1μm以上30μm以下、より好ましくは0.2μm以上5μm以下とすることができる。平均粒子径は、レーザー回折・散乱式粒度分布測定装置により測定される体積基準での累積分布において、累積が50%となる径(D50)をいう。つまり、平均粒子径より大きい粒径の粒子の体積の合計と、平均粒子径より小さい粒径の粒子の体積の合計が、等量となる径をいう。
本発明の一実施形態において、金属酸化物は、平均粒子径が0.05μm以上100μm以下である粉体であることが好ましい。平均粒子径は、好ましくは0.1μm以上30μm以下、より好ましくは0.2μm以上5μm以下とすることができる。平均粒子径は、レーザー回折・散乱式粒度分布測定装置により測定される体積基準での累積分布において、累積が50%となる径(D50)をいう。つまり、平均粒子径より大きい粒径の粒子の体積の合計と、平均粒子径より小さい粒径の粒子の体積の合計が、等量となる径をいう。
《リチウムイオン伝導体の製造方法》
リチウムイオン伝導体は、固相反応により製造することが可能である。固相反応の原料としては、Li及び元素A(Na、K、Rb、及びCsからなる群から選択される少なくとも一つ)、及び元素B(Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つ)、Zr(ジルコニウム)、及び元素C(Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つ)の酸化物、水酸化物、塩化物、炭酸塩、酢酸塩、硝酸塩、硫酸塩、アンモニウム塩、アルコキシド等を用いることができる。元素BがHの場合は、例えば、酸性水溶液中でリチウムイオン伝導体の元素BをHにイオン交換することにより、調製される。
リチウムイオン伝導体は、固相反応により製造することが可能である。固相反応の原料としては、Li及び元素A(Na、K、Rb、及びCsからなる群から選択される少なくとも一つ)、及び元素B(Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つ)、Zr(ジルコニウム)、及び元素C(Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つ)の酸化物、水酸化物、塩化物、炭酸塩、酢酸塩、硝酸塩、硫酸塩、アンモニウム塩、アルコキシド等を用いることができる。元素BがHの場合は、例えば、酸性水溶液中でリチウムイオン伝導体の元素BをHにイオン交換することにより、調製される。
原料を、例えば、ボールミル、遊星ボールミルなど等で粉砕混合した後、焼成することにより、リチウムイオン伝導体を得ることができる。混合効率の観点から、各種原料を溶媒に溶解させた後に混合し、混合液を蒸発乾固した後、焼成する方法が好ましい。溶媒としては、アルコール等の有機溶媒も使用可能であるが、溶解度の観点から水が好ましい。各種原料を混合した際、反応により沈殿を生じてもよい。蒸発乾固は、エバポレーターを使用するなどして、減圧下で行っても良い。また、混合後沈殿の無い均一溶液を用いて、噴霧乾燥法により蒸発乾固し、得られた蒸発乾固体を焼成して、リチウムイオン伝導体を調製しても良い。噴霧乾燥法による蒸発乾固温度は、100℃〜300℃で行うことが好ましい。噴霧乾燥は、簡易的には、100℃〜300℃に加熱した鉄板などのプレート上に、原料調合液を噴霧して行うことができる。
水溶媒への溶解性の低い元素は、シュウ酸、クエン酸、酒石酸、リンゴ酸等有機配位子を配位させた錯体溶液を原料溶液としても良い。例えばNbやTaは、シュウ酸錯体水溶液を原料溶液として用いることが好ましい。シュウ酸/ニオブおよびシュウ酸/タンタルのモル比は、1以上10以下であり、好ましくは2以上4以下である。
水溶媒中での原料の溶解性、分散性を向上するために、過酸化水素水を添加しても良い。例えば、過酸化水素水/ニオブのモル比は、好ましくは0.5以上10以下、より好ましくは2以上6以下である。
水溶媒を使用して材料を混合する際には、溶解度と熱分解性の観点から、用いる原料は、シュウ酸溶液や酢酸塩等の有機金属錯体や、有機塩、硝酸塩、塩化物が好ましい。
粉砕混合後の原料や、溶媒を用いて混合した原料の蒸発乾固体の焼成温度は、リチウムイオン伝導体の組成や構造により適宜選択される。X線回折における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する構造を得る観点から、800℃以上で焼成する工程を含むことが好ましい。焼成時間を短くし、生産性を高める観点から、900℃以上で焼成する工程を含むことがより好ましい。リチウムの揮発を少なくし、組成の制御を容易にする観点から、1300℃以下で焼成することが好ましい。
分解温度の異なる原料を使用する際には、各原料の分解温度の低い順に、各原料の分解温度で多段焼成することが好ましい。調製の均一性の観点から、各原料の分解温度での焼成後、粉砕を行うことが好ましい。粉砕は、乳鉢やボールミル、遊星ボールミル等、公知の粉砕方法を使用することができる。
焼成時間は、原料の分解や、リチウムイオン伝導体生成の反応の進行度合いに応じて、適宜選択されるが、一焼成温度条件での焼成時間で30分以上50時間以内が好ましく、より好ましくは1時間以上24時間以内である。
焼成時の雰囲気は、空気でもよいが、αを所望の値とするために、純酸素、窒素、アルゴン等の雰囲気で焼成してもよい。また、シュウ酸等有機物を添加して焼成することで、還元的に焼成し、α<0とすることができる。
800℃を超える温度で焼成する際には、リチウムの揮発が起こるため、原料混合時、リチウム原料を多めに配合することや、焼成時に蓋をして揮発を防ぐことが好ましい。焼成後、リチウム塩の水溶液やリチウム溶融塩を使用して、リチウムイオン伝導体中のA元素とLiをイオン交換し、リチウムイオン伝導体のリチウム濃度を高めても良い。
焼成の際、金型プレス成形、CIP成形等を行い、成形体とした後、焼成しても構わない。また、リチウムイオン伝導体を成形する際には、金型プレス成形、CIP成形、キャスト成形、射出成形、押し出し成形、グリーンシート成形等の成形方法を用いることが可能である。成形後、焼成し、緻密な焼結体とすることが、イオン伝導性能の観点から好ましい。成形の際には、ポリビニルアルコールや、シリカ、アルミナ等の各種成形助剤を添加しても良い。
《リチウムイオン電池》
本発明の一実施形態におけるリチウムイオン電池は、正極層、負極層、及び正極層と負極層との間にセパレータを有しており、正極層、負極層、又は前記セパレータの少なくともいずれかに、本発明のリチウムイオン伝導体を有する。正極層及び/又は負極層が本発明のリチウムイオン伝導体を有することによって、正極層及び/又は負極層からのリチウムイオンの放出及び吸蔵を助けることができる。セパレータが本発明のリチウムイオン伝導体を有することによって、正極と負極との間のリチウムイオン伝導を助けることができる。
本発明の一実施形態におけるリチウムイオン電池は、正極層、負極層、及び正極層と負極層との間にセパレータを有しており、正極層、負極層、又は前記セパレータの少なくともいずれかに、本発明のリチウムイオン伝導体を有する。正極層及び/又は負極層が本発明のリチウムイオン伝導体を有することによって、正極層及び/又は負極層からのリチウムイオンの放出及び吸蔵を助けることができる。セパレータが本発明のリチウムイオン伝導体を有することによって、正極と負極との間のリチウムイオン伝導を助けることができる。
リチウムイオン電池が、正極層、負極層、及び上記正極層と上記負極層との間に固体電解質層を有する全固体リチウムイオン電池である場合、上記正極層、上記負極層、又は上記固体電解質層の少なくともいずれかに、本発明のリチウムイオン伝導体を有する。
正極層は正極活物質を含み、必要に応じて本発明のリチウムイオン伝導体、導電助剤、バインダー等を含有し、本発明のリチウムイオン伝導体以外の固体電解質を更に含有してもよい。また、正極層上に本発明のリチウムイオン伝導体をコーティングしてもよい。
負極層は負極活物質を含み、必要に応じて本発明のリチウムイオン伝導体、導電助剤、バインダー等を含有し、本発明のリチウムイオン伝導体以外の固体電解質を更に含有してもよい。また、負極層上に本発明のリチウムイオン伝導体をコーティングしてもよい。
正極層及び負極層における本発明のリチウムイオン伝導体の含有量又はコーティング量は、それぞれ独立して、好ましくは5質量%以上70質量%以下、より好ましくは10質量%以上60質量%以下とすることができる。
正極活物質としては、リチウムイオンを放電の際に吸蔵し、充電の際に放出することができる任意の物質とすることができる。正極活物質としては、例えばLiNiCoO2、LiNi1/3Mn1/3Co1/3O2、LiNiPO4、LiMnPO4等が挙げられる。
負極活物質としては、リチウムイオンを放電の際に放出し、充電の際に吸蔵することができる任意の物質とすることができる。負極活物質としては、例えばグラファイト等の炭素材料、金属酸化物、金属窒化物、及び金属硫化物等を挙げることができる。
セパレータとしては、正極層と負極層との電気的接触を防止する機能を有すれば任意の物質とすることができる。セパレータの材料としては、例えばポリエチレン、ポリプロピレン、ポリエステル、セルロース、及びポリアミド等の樹脂材料が挙げられる。セパレータの形態としては、不織布、及び多孔質体等が挙げられる。
セパレータが本発明のリチウムイオン伝導体を有する場合、例えば、セパレータ中に本発明のリチウムイオン伝導体を含有させてもよく、セパレータ上に本発明のリチウムイオン伝導体をコーティングしてもよい。
固体電解質層はリチウムイオン伝導体を含み、必要に応じて本発明のリチウムイオン伝導体、及びバインダー等を含有する。固体電解質層における本発明のリチウムイオン伝導体の含有量及びコーティング量は、好ましくは70質量%以上、より好ましくは80質量%以上とすることができる。
本発明のリチウムイオン伝導体以外の固体電解質としては、リチウムイオン伝導性を有し、常温(15〜25℃)において固体である任意の物質とすることができる。固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、及び高分子系固体電解質等が挙げられる。
本発明のリチウムイオン電池、及び全固体リチウムイオン電池の製造方法としては、特に限定されない。例えば、上記で説明した正極層、セパレータ、及び負極層をこの順に積層して積層体を作製し、積層体に任意の電解液を含侵することによって、本発明のリチウムイオン電池を製造することができる。また、上記で説明した正極層、固体電解質層、及び負極層をこの順に積層することによって、全固体リチウムイオン電池を製造することができる。
以下の実施例において、本開示の実施形態をより具体的に説明するが、本発明の範囲はこれに限定されるものではない。
[リチウムイオン拡散係数の測定法]
リチウムイオン拡散係数は、パルス磁場勾配NMR法(PFG−NMR法)を用いて、以下のように測定した。まず、リチウムイオン伝導体試料を、試料高さが約5mmとなるように、直径5mmのシゲミ製NMR対称型ミクロ試料管中に導入し、日本電子社製ECA400装置を使用して、測定温度80℃で、NMRシーケンスとしてStimulated Echo法を用いて、7Li−NMRスペクトルを測定した。SHIM調整は、外部標準物質としてNMR対称型ミクロ試料管に導入したDMSO―d6を用いて行った。核スピンの磁気回転比をγ(T−1・s−1)、磁場勾配パルス(PFG)の強度をg(T/m)、PFGの幅をδ(s)、二つのPFG間隔をΔ(s)とし、Δ=20×10−3(s)、δ=0.3×10−3(s)、g=0.2(T/m)、Grad recover=0.3(ms)として、NMRピーク強度E0を測定し、さらにΔとδを固定して、gを0.2(T/m)からLn(E/E0)≦−3となる範囲で10点以上変化させ、NMRピーク強度(E)を測定し、縦軸をLn(E/E0)、横軸をγ2δ2g2(Δ−δ/3)としてプロットを行い、このプロットの傾きから拡散係数D(m2/s)を、下記式(2)を利用し算出した。
Ln(E/E0)=−D×γ2δ2g2(Δ−δ/3) ・・・(2)
リチウムイオン拡散係数は、パルス磁場勾配NMR法(PFG−NMR法)を用いて、以下のように測定した。まず、リチウムイオン伝導体試料を、試料高さが約5mmとなるように、直径5mmのシゲミ製NMR対称型ミクロ試料管中に導入し、日本電子社製ECA400装置を使用して、測定温度80℃で、NMRシーケンスとしてStimulated Echo法を用いて、7Li−NMRスペクトルを測定した。SHIM調整は、外部標準物質としてNMR対称型ミクロ試料管に導入したDMSO―d6を用いて行った。核スピンの磁気回転比をγ(T−1・s−1)、磁場勾配パルス(PFG)の強度をg(T/m)、PFGの幅をδ(s)、二つのPFG間隔をΔ(s)とし、Δ=20×10−3(s)、δ=0.3×10−3(s)、g=0.2(T/m)、Grad recover=0.3(ms)として、NMRピーク強度E0を測定し、さらにΔとδを固定して、gを0.2(T/m)からLn(E/E0)≦−3となる範囲で10点以上変化させ、NMRピーク強度(E)を測定し、縦軸をLn(E/E0)、横軸をγ2δ2g2(Δ−δ/3)としてプロットを行い、このプロットの傾きから拡散係数D(m2/s)を、下記式(2)を利用し算出した。
Ln(E/E0)=−D×γ2δ2g2(Δ−δ/3) ・・・(2)
[組成分析法]
リチウムイオン伝導体試料30mgを、30ccの白金製るつぼに取り、炭酸カリウムナトリウム3gと四ホウ酸ナトリウム1gとを添加し、バーナー炎で加熱溶融後、塩酸により完全溶解し、さらに純水を加えて測定用試料とし、ICP―AES法により元素濃度を測定した。リチウムイオン伝導体試料がカリウム及び/又はナトリウムを含有する場合、組成の定量は、試料を王水に加熱分解後、不溶物を沈殿させ、上澄み液に純水を加えて測定用試料とし、ICP―AES法により元素濃度を測定した。
リチウムイオン伝導体試料30mgを、30ccの白金製るつぼに取り、炭酸カリウムナトリウム3gと四ホウ酸ナトリウム1gとを添加し、バーナー炎で加熱溶融後、塩酸により完全溶解し、さらに純水を加えて測定用試料とし、ICP―AES法により元素濃度を測定した。リチウムイオン伝導体試料がカリウム及び/又はナトリウムを含有する場合、組成の定量は、試料を王水に加熱分解後、不溶物を沈殿させ、上澄み液に純水を加えて測定用試料とし、ICP―AES法により元素濃度を測定した。
[X線回折(XRD)]
ブルカー・エイエックスエス(株)製D8 ADVANCE型X線回折装置を使用して、X線回折(XRD)の測定を行った。リチウムイオン伝導体試料を、メノウ乳鉢で粉砕後、XRD測定用セルに載せ、表面を平らにして測定した。X線源はCuKα1+CuKα2、管電圧は40kV、管電流は40mA、発散スリット(DS):0.3°、Step幅:0.02°/step、計数Time:0.5sec、測定範囲:2θ=5°〜75°とした。
ブルカー・エイエックスエス(株)製D8 ADVANCE型X線回折装置を使用して、X線回折(XRD)の測定を行った。リチウムイオン伝導体試料を、メノウ乳鉢で粉砕後、XRD測定用セルに載せ、表面を平らにして測定した。X線源はCuKα1+CuKα2、管電圧は40kV、管電流は40mA、発散スリット(DS):0.3°、Step幅:0.02°/step、計数Time:0.5sec、測定範囲:2θ=5°〜75°とした。
[実施例1]
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.5792gと、2gの純水に溶解した硝酸カリウム[KNO3]0.2831gと、2gの純水に溶解した硝酸ジルコニウム2水和物[ZrNO3・2H2O]1.8708gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、実施例1のリチウムイオン伝導体の粉体1.00gを得た。
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.5792gと、2gの純水に溶解した硝酸カリウム[KNO3]0.2831gと、2gの純水に溶解した硝酸ジルコニウム2水和物[ZrNO3・2H2O]1.8708gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、実施例1のリチウムイオン伝導体の粉体1.00gを得た。
実施例1のリチウムイオン伝導体は、組成分析の結果、Liが5.61質量%、Kが9.64質量%、Zrが56.25質量%、残部が酸素であり、組成式はLi2.95K0.9Zr2.25O6.5であった。XRDを測定した結果、2θ=9.79°、19.65°、21.80°、25.92°、30.20°、32.74°、39.92°、43.23°、50.41°、及び55.27°にピークを有していた。リチウムイオン拡散係数を測定した結果、1.0×10−12m2/sであった。平均粒子径を測定した結果、1.2μmであった。
[実施例2]
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.4137gと、2gの純水に溶解した硝酸カリウム[KNO3]0.2022gと、2gの純水に溶解した硝酸ランタン6水和物[La(NO3)36H2O]0.4330gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.3363gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、実施例2のリチウムイオン伝導体の粉体0.90gを得た。
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.4137gと、2gの純水に溶解した硝酸カリウム[KNO3]0.2022gと、2gの純水に溶解した硝酸ランタン6水和物[La(NO3)36H2O]0.4330gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.3363gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、実施例2のリチウムイオン伝導体の粉体0.90gを得た。
実施例2のリチウムイオン伝導体は、組成分析の結果、Liが4.33質量%、Kが8.12質量%、Zrが47.37質量%、Laが14.43質量%で、残部が酸素であり、組成式はLi6K2LaZr5O15.5であった。XRDを測定した結果、2θ=30.69°、37.83°、43.96°、54.56°、及び63.91°にピークを有していた。リチウムイオン拡散係数を測定した結果、3.0×10−12m2/sであった。平均粒子径を測定した結果、0.8μmであった。
[実施例3]
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.2482gと、2gの純水に溶解した硝酸カリウム[KNO3]0.1820gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.2026gと、2gの純水に溶解した酸化マグネシウム[MgO]0.0604gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、実施例3のリチウムイオン伝導体の粉体0.66gを得た。
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.2482gと、2gの純水に溶解した硝酸カリウム[KNO3]0.1820gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.2026gと、2gの純水に溶解した酸化マグネシウム[MgO]0.0604gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、実施例3のリチウムイオン伝導体の粉体0.66gを得た。
実施例3のリチウムイオン伝導体は、組成分析の結果、Liが3.33質量%、Kが9.38質量%、Zrが54.71質量%、Mgが4.86質量%で、残部が酸素であり、組成式はLi1.8K0.9Zr2.25Mg0.75O6.5であった。XRDを測定した結果、2θ=19.74°、21.84°、26.16°、30.25°、31.88°、32.86°、40.10°、43.32°、55.44°、及び62.90°にピークを有していた。リチウムイオン拡散係数を測定した結果、1.7×10−12m2/sであった。平均粒子径を測定した結果、2.2μmであった。
[比較例1]
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.4137gと、2gの純水に溶解した硝酸ランタン6水和物[La(NO3)36H2O]0.2858gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.3363gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、比較例1の粉体0.70gを得た。
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.4137gと、2gの純水に溶解した硝酸ランタン6水和物[La(NO3)36H2O]0.2858gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.3363gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、比較例1の粉体0.70gを得た。
比較例1の粉体は、組成分析の結果、Liが5.12質量%、Zrが56.07質量%、Laが11.27質量%で、残部が酸素であり、組成式はLi3La0.33Zr2.5O7であった。XRDを測定した結果、2θ=20.27°、21.98°、26.58°、28.59°、33.13°、35.83°、39.87°、42.48°、47.55°、56.43°及び59.67°にピークを有していた。リチウムイオン拡散係数は、十分な信号強度が得られず、測定することができなかった。平均粒子径を測定した結果、0.9μmであった。
[比較例2]
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.4137gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.3363gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、比較例2の粉体0.55gを得た。
30ccのアルミナ製るつぼに、2gの純水に溶解した硝酸リチウム[LiNO3]0.4137gと、2gの純水に溶解した硝酸ジルコニウム2水和物[Zr(NO3)2・2H2O]1.3363gを添加し、撹拌することで、透明液体とした。150℃のホットスターラー上で透明液体を蒸発乾固させた後、乾固残留物を電気炉にて900℃で1時間焼成した。得られた焼成物を粉砕して、比較例2の粉体0.55gを得た。
比較例2の粉体は、組成分析の結果、Liが5.90質量%、Zrが64.63質量%で残部が酸素であり、組成式はLi3Zr2.5O6.5であった。XRDを測定した結果、2θ=20.27°、21.98°、26.58°、35.83°、39.87°、42.48°、及び59.67°にピークを有していた。リチウムイオン拡散係数は、十分な信号強度が得られず、測定することができなかった。平均粒子径を測定した結果、1.3μmであった。
Claims (6)
- 下記一般式(1):
LixAyBzZr1−wCwO3+α ・・・(1)
{式(1)中、Aは、Na、K、Rb、及びCsからなる群から選択される少なくとも一つの元素を表し、BはH、Ca、Sr、Ba、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、及びErからなる群から選択される少なくとも一つの元素を表し、Cは、Mg、Al、Si、P、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Ru、In、Sn、Sb、Bi、Te、Hf、Ta、W、Eu、Tm、Yb、及びLuからなる群から選択される少なくとも一つの元素を表し、xはLiの組成比を表し、yはA元素の組成比を表し、zはB元素の組成比を表し、0<x<3、0<y<3、0≦z<3、かつ0<(x+y+z)<3であり、wはC元素の組成比を表し、0≦w<1であり、(3+α)は酸素原子の組成比を表し、−1≦α≦1である。}で表される金属酸化物を含み、前記金属酸化物は、X線回折における回折角2θ=30.3±0.5°、43.5±1.0°、及び54.9±1.0°の範囲にピークを有する、リチウムイオン伝導体。 - 前記金属酸化物は、X線回折における回折角2θ=63.9±1.0°、及び70.8±1.0°にピークを更に有する、請求項1に記載のリチウムイオン伝導体。
- 前記金属酸化物は、X線回折における回折角2θ=21.8±1.0°、25.9°±1.0°、32.7°±1.0°、及び39.9°±1.0°にピークを更に有する、請求項1に記載のリチウムイオン伝導体。
- 前記金属酸化物は、80℃におけるリチウムイオン拡散係数が1.0×10−13m2/s以上である、請求項1〜3のいずれか一項に記載のリチウムイオン伝導体。
- 正極層、負極層、及び前記正極層と前記負極層との間にセパレータを有するリチウムイオン電池であって、
前記正極層、前記負極層、又は前記セパレータの少なくともいずれかに、請求項1〜4のいずれか一項に記載のリチウムイオン伝導体を有する、リチウムイオン電池。 - 正極層、負極層、及び前記正極層と前記負極層との間に固体電解質層を有する全固体リチウムイオン電池であって、
前記正極層、前記負極層、又は前記固体電解質層の少なくともいずれかに、請求項1〜4のいずれか一項に記載のリチウムイオン伝導体を有する、全固体リチウムイオン電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224025A JP2017091955A (ja) | 2015-11-16 | 2015-11-16 | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224025A JP2017091955A (ja) | 2015-11-16 | 2015-11-16 | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017091955A true JP2017091955A (ja) | 2017-05-25 |
Family
ID=58768204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015224025A Pending JP2017091955A (ja) | 2015-11-16 | 2015-11-16 | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017091955A (ja) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111295720A (zh) * | 2018-01-05 | 2020-06-16 | 松下知识产权经营株式会社 | 固体电解质材料及电池 |
CN111344811A (zh) * | 2018-01-05 | 2020-06-26 | 松下知识产权经营株式会社 | 固体电解质材料及电池 |
CN113036214A (zh) * | 2021-03-29 | 2021-06-25 | 欣旺达电动汽车电池有限公司 | 无机填料粉体、固态电解质及其制备方法和电池 |
WO2021199549A1 (ja) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2021199550A1 (ja) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
CN114867686A (zh) * | 2019-12-27 | 2022-08-05 | 昭和电工株式会社 | 锂离子传导性氧化物及其用途 |
US11411247B2 (en) | 2018-01-05 | 2022-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11427477B2 (en) | 2018-01-05 | 2022-08-30 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11515565B2 (en) | 2018-01-05 | 2022-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
WO2022254755A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254756A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254757A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254754A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254753A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11652235B2 (en) | 2018-01-26 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
US11760649B2 (en) | 2018-01-05 | 2023-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11784345B2 (en) | 2018-01-05 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
JP7584107B2 (ja) | 2020-03-31 | 2024-11-15 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
-
2015
- 2015-11-16 JP JP2015224025A patent/JP2017091955A/ja active Pending
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11498850B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11760649B2 (en) | 2018-01-05 | 2023-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11427477B2 (en) | 2018-01-05 | 2022-08-30 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11784345B2 (en) | 2018-01-05 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
CN111344811B (zh) * | 2018-01-05 | 2022-05-10 | 松下知识产权经营株式会社 | 固体电解质材料及电池 |
CN111295720A (zh) * | 2018-01-05 | 2020-06-16 | 松下知识产权经营株式会社 | 固体电解质材料及电池 |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
CN111344811A (zh) * | 2018-01-05 | 2020-06-26 | 松下知识产权经营株式会社 | 固体电解质材料及电池 |
US11411247B2 (en) | 2018-01-05 | 2022-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498849B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11515565B2 (en) | 2018-01-05 | 2022-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
US11652235B2 (en) | 2018-01-26 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
CN114867686B (zh) * | 2019-12-27 | 2023-10-03 | 株式会社力森诺科 | 锂离子传导性氧化物及其用途 |
CN114867686A (zh) * | 2019-12-27 | 2022-08-05 | 昭和电工株式会社 | 锂离子传导性氧化物及其用途 |
CN115315755A (zh) * | 2020-03-31 | 2022-11-08 | 松下知识产权经营株式会社 | 固体电解质材料及使用该固体电解质材料的电池 |
WO2021199550A1 (ja) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
JP7584107B2 (ja) | 2020-03-31 | 2024-11-15 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
JP7555031B2 (ja) | 2020-03-31 | 2024-09-24 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
WO2021199549A1 (ja) * | 2020-03-31 | 2021-10-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
CN113036214A (zh) * | 2021-03-29 | 2021-06-25 | 欣旺达电动汽车电池有限公司 | 无机填料粉体、固态电解质及其制备方法和电池 |
CN113036214B (zh) * | 2021-03-29 | 2023-10-31 | 欣旺达电动汽车电池有限公司 | 无机填料粉体、固态电解质及其制备方法和电池 |
JP2022183529A (ja) * | 2021-05-31 | 2022-12-13 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254757A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254756A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254755A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254754A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
WO2022254753A1 (ja) * | 2021-05-31 | 2022-12-08 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
JP7196368B1 (ja) * | 2021-05-31 | 2022-12-26 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
JP7196371B1 (ja) * | 2021-05-31 | 2022-12-26 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
JP7196370B1 (ja) * | 2021-05-31 | 2022-12-26 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
JP7196369B1 (ja) * | 2021-05-31 | 2022-12-26 | キヤノンオプトロン株式会社 | イオン伝導性固体及び全固体電池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017091955A (ja) | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 | |
JP2017091953A (ja) | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 | |
Yin et al. | Synthesis and electrochemical properties of LiNi0. 5Mn1. 5O4 for Li-ion batteries by the metal–organic framework method | |
CN104124467B (zh) | 一种利用锂镧锆氧前驱体包覆粉体制备固体电解质的方法 | |
JP5828992B1 (ja) | ガーネット型化合物の製造方法及びガーネット型化合物、並びにこのガーネット型化合物を含む全固体リチウム二次電池 | |
JP6079307B2 (ja) | ガーネット型リチウムイオン伝導性酸化物の製造方法 | |
JP5819200B2 (ja) | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 | |
TWI596828B (zh) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
TWI453981B (zh) | A lithium ion battery positive electrode active material, positive electrode for a lithium ion battery, and a lithium ion battery | |
KR102316442B1 (ko) | 세라믹 분말 재료, 세라믹 분말 재료의 제조 방법 및 전지 | |
KR20120042973A (ko) | 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지 | |
JP2018073503A (ja) | リチウムイオン固体電解質及びこれを用いたリチウムイオン電池 | |
JP2016213181A (ja) | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 | |
JP2016213178A (ja) | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 | |
CN107579223B (zh) | 镍钴锰三元材料的方法 | |
JP6832073B2 (ja) | 全固体電池用正極活物質材料の製造方法 | |
CN103493263B (zh) | 活性物质、活性物质的制造方法、电极、锂离子二次电池 | |
EP2789585A1 (en) | Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it | |
CN105473506B (zh) | 使用浸渗有溶液的多孔性钛化合物的钛氧化物制造方法 | |
US20220352544A1 (en) | Ceramic powder material, sintered body, and battery | |
JP2017091910A (ja) | リチウムイオン伝導体及びこれを用いたリチウムイオン電池 | |
KR102016916B1 (ko) | Llzo 산화물 고체 전해질 분말의 제조방법 | |
EP4005999A1 (en) | Ceramic powder material, method for producing ceramic powder material, molded body, sintered body, and battery | |
JP6366956B2 (ja) | 導電助剤複合アルカリ金属チタン酸化物の製造方法 | |
JP2013120678A (ja) | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 |