WO2017022374A1 - ステンレス鋼及び油井用ステンレス鋼材 - Google Patents
ステンレス鋼及び油井用ステンレス鋼材 Download PDFInfo
- Publication number
- WO2017022374A1 WO2017022374A1 PCT/JP2016/069241 JP2016069241W WO2017022374A1 WO 2017022374 A1 WO2017022374 A1 WO 2017022374A1 JP 2016069241 W JP2016069241 W JP 2016069241W WO 2017022374 A1 WO2017022374 A1 WO 2017022374A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stainless steel
- content
- less
- steel
- phase
- Prior art date
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 79
- 239000010935 stainless steel Substances 0.000 title claims abstract description 78
- 239000000463 material Substances 0.000 title claims description 62
- 239000003129 oil well Substances 0.000 title claims description 19
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 44
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 41
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 34
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 21
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 abstract description 28
- 230000007797 corrosion Effects 0.000 abstract description 28
- 229910052804 chromium Inorganic materials 0.000 abstract description 23
- 229910000831 Steel Inorganic materials 0.000 description 92
- 239000010959 steel Substances 0.000 description 92
- 239000011651 chromium Substances 0.000 description 35
- 238000012360 testing method Methods 0.000 description 32
- 238000005096 rolling process Methods 0.000 description 25
- 238000005098 hot rolling Methods 0.000 description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 238000001228 spectrum Methods 0.000 description 21
- 239000010949 copper Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 229910052761 rare earth metal Inorganic materials 0.000 description 13
- 230000007704 transition Effects 0.000 description 13
- 238000005496 tempering Methods 0.000 description 12
- 239000011575 calcium Substances 0.000 description 11
- 239000011777 magnesium Substances 0.000 description 11
- 239000011572 manganese Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000010955 niobium Substances 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000009628 steelmaking Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- UJCHIZDEQZMODR-BYPYZUCNSA-N (2r)-2-acetamido-3-sulfanylpropanamide Chemical compound CC(=O)N[C@@H](CS)C(N)=O UJCHIZDEQZMODR-BYPYZUCNSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 0 CC(C1C=C(C)*1)NC Chemical compound CC(C1C=C(C)*1)NC 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241001669680 Dormitator maculatus Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
Definitions
- the present invention relates to stainless steel, and more particularly to stainless steel for oil wells.
- martensitic stainless steel has been widely used in oil well environments.
- Conventional oil well environments contain carbon dioxide (CO 2 ) and / or chlorine ions (Cl ⁇ ).
- Martensitic stainless steel hereinafter referred to as 13% Cr steel
- 13% Cr steel containing about 13% by mass of Cr has excellent corrosion resistance in such a conventional oil well environment.
- Deep oil wells have been developed due to soaring crude oil prices. Deep oil wells are deep. And deep oil wells are highly corrosive and hot. More specifically, the deep well contains a hot corrosive gas. Corrosive gases, CO 2 and / or Cl - containing, further, sometimes containing hydrogen sulfide gas. Corrosion reactions at high temperatures are more severe than those at normal temperatures. Therefore, oil well steel used for deep oil wells is required to have higher strength and corrosion resistance than 13% Cr steel.
- duplex stainless steel has a higher Cr content than 13% Cr steel. Therefore, duplex stainless steel has higher corrosion resistance than 13% Cr steel. Examples of the duplex stainless steel include 22% Cr steel containing 22% Cr and 25% Cr steel containing 25% Cr. However, duplex stainless steel is expensive because it contains many alloying elements. Accordingly, there is a need for stainless steel that has higher corrosion resistance than 13% Cr steel and is less expensive than duplex stainless steel.
- Patent Document 1 proposes a stainless steel pipe having high strength and having carbon dioxide gas corrosion resistance in a high temperature environment of 230 ° C.
- the chemical composition of this steel pipe contains 15.5 to 18% Cr, 1.5 to 5% Ni, and 1 to 3.5% Mo, Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C ⁇ 19.5 and Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ⁇ 11.5.
- the metal structure of this steel pipe contains 10 to 60% of a ferrite phase and 30% or less of an austenite phase, and the balance consists of a martensite phase.
- Patent Document 2 has corrosion resistance in a high-temperature carbon dioxide gas environment at 200 ° C., and further, the recovery of crude oil or gas temporarily stops the environment temperature of the oil well or gas well.
- Patent Document 2 has corrosion resistance in a high-temperature carbon dioxide gas environment at 200 ° C., and further, the recovery of crude oil or gas temporarily stops the environment temperature of the oil well or gas well.
- the chemical composition of this steel pipe contains more than 16% to 18% Cr, more than 2% to 3% Mo, 1 to 3.5% Cu and less than 3 to 5% Ni. Mn] ⁇ ([N] ⁇ 0.0045) ⁇ 0.001 is satisfied.
- the metal structure of this steel pipe contains a ferrite phase of 10 to 40% by volume and a residual austenite phase of 10% or less, and the balance is a martensite phase.
- Patent Document 3 proposes a high-strength stainless steel having excellent corrosion resistance in a high temperature environment and excellent SSC resistance at room temperature.
- the chemical composition of this steel is over 16% to 18% Cr, 1.6 to 4.0% Mo, 1.5 to 3.0 Cu, and over 4.0 to 5.6%.
- Ni is contained, Cr + Cu + Ni + Mo ⁇ 25.5 is satisfied, and ⁇ 8 ⁇ 30 (C + N) + 0.5Mn + Ni + Cu / 2 + 8.2-1.1 (Cr + Mo) ⁇ ⁇ 4 is satisfied.
- the metal structure of this steel contains a martensite phase, 10 to 40% ferrite phase, and a retained austenite phase, and the ferrite phase distribution ratio is higher than 85%.
- Patent Document 4 proposes a high-strength stainless steel pipe for oil wells having excellent low-temperature toughness.
- This steel pipe contains 15.5 to 17.5% Cr, and in the largest crystal grain in the microstructure, the distance between any two points in the crystal grain is 200 ⁇ m or less (in other words, In this case, the crystal grain size is 200 ⁇ m or less).
- Patent Document 5 discloses that the GSI value defined as the number of ferrite-martensite grain boundaries existing per unit length of a line segment drawn in the thickness direction is the center of thickness. It is described that it has excellent corrosion resistance and low temperature toughness by having a structure of 120 or more in part.
- the object of the present invention is to have high strength, excellent stress corrosion cracking resistance at high temperature (SCC resistance), excellent resistance to sulfide stress corrosion cracking resistance at normal temperature (SSC resistance), and excellent low temperature toughness. It is to provide stainless steel and stainless steel material for oil wells.
- the stainless steel according to one embodiment of the present invention has a chemical composition of mass%, C: 0.001 to 0.06%, Si: 0.05 to 0.5%, Mn: 0.01 to 2.0. %, P: 0.03% or less, S: less than 0.005%, Cr: 15.5 to 18.0%, Ni: 2.5 to 6.0%, V: 0.005 to 0.25% Al: 0.05% or less, N: 0.06% or less, O: 0.01% or less, Cu: 0 to 3.5%, Co: 0 to 1.5%, Nb: 0 to 0.25 %, Ti: 0 to 0.25%, Zr: 0 to 0.25%, Ta: 0 to 0.25%, B: 0 to 0.005%, Ca: 0 to 0.01%, Mg: 0 One or two selected from the group consisting of: -0.01%, and REM: 0-0.05%, Mo: 0-3.5%, and W: 0-3.5% Include seeds in a range that satisfies equation (1) And, the balance being Fe and impurities
- the matrix structure has a volume ratio of 40 to 80% tempered martensite phase, 10 to 50% ferrite phase, and 1 to 15% austenite phase.
- a 1 mm ⁇ 1 mm microstructure image obtained by photographing a matrix structure at a magnification of 100 times is arranged in an xy coordinate system in which the thickness direction is the x axis and the length direction is the y axis, and is 1024 ⁇ 1024.
- ⁇ defined by Equation (2) is 1.55 or more.
- Mo and W are the contents of Mo and W expressed in mass%.
- f (x, y) represents the gradation of the pixel at coordinates (x, y).
- the stainless steel and oil well stainless steel material according to the present invention have high strength, excellent SCC resistance at high temperature and SSC resistance at room temperature, and excellent low temperature toughness.
- FIG. 1 is a microstructure image showing an example of a microstructure of stainless steel according to an embodiment of the present invention.
- FIG. 2 is a logarithmic frequency spectrum diagram obtained by two-dimensional discrete Fourier transform of the microstructure image of FIG.
- FIG. 3 is a photograph showing an example of the microstructure of a stainless steel as a comparative example.
- FIG. 4 is a logarithmic frequency spectrum diagram obtained by two-dimensional discrete Fourier transform of the microstructure image of FIG.
- FIG. 5 is a microstructure image showing an example of the microstructure of stainless steel according to an embodiment of the present invention.
- FIG. 6 is a logarithmic frequency spectrum diagram obtained by two-dimensional discrete Fourier transform of the microstructure image of FIG. FIG.
- FIG. 7 is a photograph showing an example of a microstructure of stainless steel as a comparative example.
- FIG. 8 is a logarithmic frequency spectrum diagram obtained by two-dimensional discrete Fourier transform of the microstructure image of FIG.
- FIG. 9 is a graph showing the relationship between ⁇ and the ductile brittle transition temperature.
- the present inventors investigated the relationship between low temperature toughness in order to solve the above problems. As a result, the present inventors obtained the following knowledge.
- the matrix structure of stainless steel includes a ferrite phase, a tempered martensite phase and an austenite phase (hereinafter referred to as a substantial martensite phase).
- a substantial martensite phase when the ferrite phase and the substantial martensite phase extend along the rolling direction (length direction) and are arranged in layers, the stainless steel is excellent in low temperature toughness.
- the ferrite phase is irregularly distributed like a network in the matrix structure, the low temperature toughness of stainless steel is low.
- the central axis of the steel plate extended by rolling is defined as the rolling direction.
- stainless steel is a steel pipe
- the central axis of the steel pipe is the rolling direction.
- the present inventor conducted a two-dimensional discrete Fourier transform of the microstructure image, the microstructure layered degree, characterized in that the ferrite phase and the substantial martensite phase of the stainless steel extend long in the length direction. It was found that both the thickness direction and the length direction can be evaluated and quantified. Hereinafter, this point will be described in detail.
- a microstructure image having an observation magnification of 100 times and a size of 1 mm ⁇ 1 mm is obtained in gray scale (256 gradations) using an optical microscope.
- An example of the microstructure image is shown in FIG.
- the microstructure image is arranged in the xy coordinate system.
- the y-axis in FIG. 1 is the length direction, and the x-axis is the thickness direction perpendicular to the length direction.
- the gray portion is the substantial martensite phase, and the white portion located between the grains of the substantial martensite phase is the ferrite phase.
- f (x, y) represents the gray scale of the pixel at the coordinate (x, y).
- a two-dimensional discrete Fourier transform (2D DFT) defined by equation (5) is performed on the obtained two-dimensional data.
- F (u, v) is a two-dimensional frequency spectrum after two-dimensional discrete Fourier transform of the two-dimensional data f (x, y).
- the frequency spectrum F (u, v) is generally a complex number and includes information on the periodicity and regularity of the two-dimensional data f (x, y).
- the frequency spectrum F (u, v) includes information on the periodicity and regularity of the structure of the ferrite phase and the substantial martensite phase in the microstructure image as shown in FIG.
- FIG. 2 is a logarithmic frequency spectrum diagram of the microstructure image shown in FIG.
- the horizontal axis in FIG. 2 is the v-axis, and the vertical axis is the u-axis.
- the frequency spectrum diagram of FIG. 2 is a black and white gradation image (grayscale image), where the maximum value of the frequency spectrum is white and the minimum value is black.
- the portion having a high frequency spectrum (white portion in FIG. 2) has a shape extending on the u axis, and the boundary is not clear.
- the sum Su of the absolute values of the spectrum on the u-axis is defined by Expression (3).
- the sum Sv of the absolute values of the spectrum on the v-axis is defined by Expression (4).
- the ratio of Su to Sv is ⁇ defined by equation (2). Note that Su and Sv do not include the spectral intensity at coordinates (0, 0) in the (u, v) space.
- the microstructure image of the stainless steel shown in FIGS. 3, 5, and 7 is obtained by the same method. Further, a logarithmic frequency spectrum diagram is obtained from each of the microstructure images shown in FIGS. 4 is a logarithmic frequency spectrum diagram of the microstructure image shown in FIG. 3, FIG. 6 is a logarithmic frequency spectrum diagram of the microstructure image shown in FIG. 5, and FIG. 8 is a diagram of the microstructure image shown in FIG. It is a logarithmic frequency spectrum diagram.
- the microstructure shown in FIG. 1 is referred to as organization 1
- the microstructure shown in FIG. 3 is referred to as organization 2
- the microstructure shown in FIG. 5 is referred to as organization 3
- the microstructure shown in FIG. Four the microstructure shown in FIG.
- the structure 1 Comparing the image of the structure 1 (FIG. 1) and the image of the structure 2 (FIG. 3), the structure 1 has a shape in which the ferrite phase and the substantial martensite phase extend in the rolling direction (length direction) more than the structure 2. . Further, the structure 1 is regular and has a shorter lamination period (period aligned in the thickness direction) of the ferrite phase and the substantial martensite phase than the structure 2. Comparing the image of the tissue 1 and the image of the tissue 3 (FIG. 5), each of the tissue 1 and the tissue 3 has a shape in which each phase extends in the length direction. Furthermore, the structure 3 has a short lamination period and is regular like the structure 1. Comparing the image of the tissue 3 and the image of the tissue 4 (FIG. 7), the tissue 3 has a shape in which each phase extends in the length direction as compared with the tissue 4. Furthermore, the structure 3 has a shorter lamination cycle than the structure 4 and is regular.
- the white portion extends along the u axis.
- the width of the white portion in the v-axis direction is narrower than that of the tissue 2 and the tissue 4.
- the structure 1 is 2.024
- the structure 2 is 1.458
- the structure 3 is 2.183
- the structure 4 is 1.395.
- the lower ⁇ is, the shorter the white portion is in the u-axis direction and the v-axis direction is expanded.
- the transition temperature of ductile brittleness is ⁇ 82 ° C. for structure 1, ⁇ 12 ° C. for structure 2, ⁇ 109 ° C. for structure 3 and ⁇ 19 ° C. for structure 4.
- the transition temperature is the result under the same conditions as in the examples described later.
- FIG. 9 is a diagram showing the relationship between ⁇ and the transition temperature (° C.).
- FIG. 9 was obtained by the following method. The chemical composition is within the range of this embodiment described later, and a plurality of stainless steels having different ⁇ s were produced. Each stainless steel was subjected to a low-temperature toughness evaluation test described later to obtain a transition temperature, and FIG. 9 was created.
- the straight line in FIG. 9 is a line obtained by the least square method from all the plots in FIG. 9, and R 2 is a correlation function.
- the fraction of austenite at the hot rolling temperature should be increased and the rolling rate should be increased.
- the chemical composition of the steel material may be adjusted, or the hot rolling temperature may be lowered.
- the hot rolling temperature is too low, wrinkles may occur on the surface of the steel material due to a decrease in hot workability. There is a limit to increasing the rolling rate.
- the content of austenite-forming elements such as C, Ni, Cu, Co, etc. is increased, or Si, Cr, V, Mo
- the content of ferrite-forming elements such as W and W may be reduced.
- ⁇ can be made 1.55 or more within a practical range of rolling temperature and rolling rate.
- the chemical composition is adjusted so that the austenite fraction at the hot rolling temperature is increased, the austenite fraction at room temperature, that is, the amount of retained austenite tends to increase. Therefore, it becomes difficult to obtain the required strength.
- V is a ferrite-forming element as described above, and is a disadvantageous element for increasing the austenite fraction at the hot rolling temperature.
- V increases the strength of the steel by increasing the temper softening resistance.
- the stainless steel according to one embodiment of the present invention has a chemical composition of mass%, C: 0.001 to 0.06%, Si: 0.05 to 0.5%, Mn: 0.01 to 2.0. %, P: 0.03% or less, S: less than 0.005%, Cr: 15.5 to 18.0%, Ni: 2.5 to 6.0%, V: 0.005 to 0.25% Al: 0.05% or less, N: 0.06% or less, O: 0.01% or less, Cu: 0 to 3.5%, Co: 0 to 1.5%, Nb: 0 to 0.25 %, Ti: 0 to 0.25%, Zr: 0 to 0.25%, Ta: 0 to 0.25%, B: 0 to 0.005%, Ca: 0 to 0.01%, Mg: 0 -0.01%, and REM: 0-0.05%.
- one or two selected from the group consisting of Mo: 0 to 3.5% and W: 0 to 3.5% are contained in a range satisfying the formula (1).
- the balance consists of Fe and impurities.
- the matrix structure has a volume ratio of 40 to 80% tempered martensite phase, 10 to 50% ferrite phase, and 1 to 15% austenite phase.
- a 1 mm ⁇ 1 mm microstructure image obtained by photographing a matrix structure at a magnification of 100 times is arranged in an xy coordinate system in which the thickness direction is the x axis and the length direction is the y axis, and is 1024 ⁇ 1024.
- ⁇ defined by Equation (2) is 1.55 or more.
- Mo and W are the contents of Mo and W expressed in mass%.
- f (x, y) represents the gradation of the pixel at coordinates (x, y).
- This stainless steel has a transition temperature of ductile brittleness of ⁇ 30 ° C. or less because ⁇ is 1.55 or more. As a result, this stainless steel is excellent in low temperature toughness. Furthermore, this stainless steel has high strength and is excellent in SCC resistance at high temperature and SSC resistance at room temperature.
- the chemical composition of the stainless steel according to an embodiment of the present invention may be one selected from the group consisting of Cu: 0.2 to 3.5% and Co: 0.05 to 1.5% by mass%. You may contain 2 types.
- the chemical composition of the stainless steel according to an embodiment of the present invention is, by mass, Nb: 0.01 to 0.25%, Ti: 0.01 to 0.25%, Zr: 0.01 to 0.25%. , And Ta: one or more selected from the group consisting of 0.01 to 0.25%.
- the chemical composition of the stainless steel according to an embodiment of the present invention is, by mass%, B: 0.0003 to 0.005%, Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%.
- REM One or more selected from the group consisting of 0.0005 to 0.05% may be contained.
- a preferred usage form of stainless steel according to an embodiment of the present invention is use as a steel material for oil wells.
- Stainless steel according to an embodiment of the present invention has the following chemical composition.
- “%” related to an element means mass%.
- C 0.001 to 0.06% Carbon (C) increases the strength of the steel. However, if there is too much C content, the hardness after tempering will become high too much and SSC resistance will fall. Furthermore, in the chemical composition of the present embodiment, the Ms point decreases as the C content increases. Therefore, as the C content increases, austenite tends to increase and yield strength tends to decrease. Therefore, the C content is 0.06% or less.
- the C content is preferably 0.05% or less, and more preferably 0.03% or less.
- C content is 0.001% or more. The C content is preferably 0.003% or more, and more preferably 0.005% or more.
- Si 0.05 to 0.5% Silicon (Si) deoxidizes steel. However, if there is too much Si content, the toughness and hot workability of steel will fall. If the Si content is too large, the amount of ferrite produced further increases and the yield strength tends to decrease. Moreover, it becomes difficult to increase ⁇ . Therefore, the Si content is 0.05 to 0.5%.
- the Si content is preferably less than 0.5%, more preferably 0.4% or less.
- the Si content is preferably 0.06% or more, and more preferably 0.07% or more.
- Mn 0.01 to 2.0%
- Manganese (Mn) deoxidizes and desulfurizes steel and improves hot workability. If the Mn content is too small, the above effect cannot be obtained effectively. On the other hand, if the Mn content is too high, austenite tends to remain excessively during quenching, and it becomes difficult to ensure the strength of the steel. Therefore, the Mn content is 0.01 to 2.0%.
- the Mn content is preferably 1.0% or less, and more preferably 0.6% or less.
- the Mn content is preferably 0.02% or more, and more preferably 0.04% or more.
- P 0.03% or less Phosphorus (P) is an impurity. P decreases the SSC resistance of the steel. Therefore, it is preferable that the P content is as small as possible.
- the P content is 0.03% or less.
- the P content is preferably 0.028% or less, more preferably 0.025% or less.
- the P content is preferably 0.0005% or more, and more preferably 0.0008% or more.
- S Less than 0.005% Sulfur (S) is an impurity. S decreases the hot workability of steel. Therefore, it is preferable that the S content is as small as possible.
- the S content is less than 0.005%.
- the S content is preferably 0.003% or less, and more preferably 0.0015% or less.
- the S content is preferably 0.0001% or more, and more preferably 0.0003% or more.
- Chromium (Cr) increases the corrosion resistance of steel. Specifically, Cr lowers the corrosion rate and increases the SCC resistance of the steel. If the C content is too small, the above effect cannot be obtained effectively. On the other hand, if there is too much Cr content, the volume fraction of the ferrite phase in steel will increase and the strength of steel will fall. Moreover, it becomes difficult to increase ⁇ . Therefore, the Cr content is 15.5 to 18.0%.
- the Cr content is preferably 17.8% or less, and more preferably 17.5% or less.
- the Cr content is preferably 16.0% or more, and more preferably 16.3% or more.
- Ni 2.5-6.0%
- Nickel (Ni) increases the toughness of the steel. Ni further increases the strength of the steel. Ni contributes to increasing the fraction of austenite at the hot working temperature and increasing ⁇ . If the Ni content is too small, the above effect cannot be obtained effectively. On the other hand, if there is too much Ni content, it will become easy to produce
- the Ni content is preferably less than 6.0%, and more preferably 5.9% or less.
- the Ni content is preferably 3.0% or more, and more preferably 3.5% or more.
- V Vanadium (V) increases the strength of the steel. If V is less than 0.005%, the required strength cannot be obtained. However, if there is too much V content, toughness will fall. Moreover, it becomes difficult to increase ⁇ . Therefore, the V content is set to 0.005 to 0.25%. V content becomes like this. Preferably it is 0.20% or less, More preferably, it is 0.15% or less. V content becomes like this. Preferably it is 0.008% or more, More preferably, it is 0.01% or more.
- Al 0.05% or less Aluminum (Al) deoxidizes steel. However, when there is too much Al content, the inclusion in steel will increase and the toughness of steel will fall. Therefore, the upper limit is made 0.05%.
- the Al content is preferably 0.048% or less, and more preferably 0.045% or less.
- the Al content is preferably 0.0005% or more, and more preferably 0.001% or more.
- N 0.06% or less Nitrogen (N) increases the strength of steel. However, if there is too much N content, austenite will produce
- Oxygen (O) is an impurity. O reduces the toughness and corrosion resistance of steel. Therefore, the O content is 0.01% or less.
- the O content is preferably less than 0.01%, more preferably 0.009% or less, and still more preferably 0.006% or less.
- the O content is preferably reduced as much as possible, but extreme reduction leads to an increase in steelmaking costs. Therefore, the O content is preferably 0.0001% or more, and more preferably 0.0003% or more.
- Mo 0 to 3.5%
- W 0 to 3.5%
- Molybdenum (Mo) and tungsten (W) are elements that can be substituted for each other, and may contain both or only one. It is essential that Mo and W contain at least one. These elements increase the SCC resistance of the steel. On the other hand, if the content of these elements is too large, the effect is saturated and it is difficult to increase ⁇ . Therefore, the Mo content is 0 to 3.5%, the W content is 0 to 3.5%, and one or two selected from the group consisting of Mo and W satisfy the formula (1). It is necessary to contain in the range. Mo content becomes like this. Preferably it is 3.3% or less, More preferably, it is 3.0% or less. Mo content becomes like this.
- W content becomes like this.
- it is 3.3% or less, More preferably, it is 3.0% or less.
- the W content is preferably 0.01% or more, and more preferably 0.03% or more.
- the chemical composition of stainless steel according to the present embodiment may contain the following selective elements. That is, none of the following elements may be contained in the stainless steel according to the present embodiment. Moreover, only a part may be contained.
- Cu 0 to 3.5%
- Co 0 to 1.5%
- Copper (Cu) and cobalt (Co) are mutually replaceable elements. These elements are selective elements. These elements increase the volume fraction of the tempered martensite phase and increase the strength of the steel. Also, it contributes to increase ⁇ . Furthermore, Cu precipitates as Cu particles during tempering and further increases its strength. If the content of these elements is too small, the above effects cannot be obtained effectively. On the other hand, if there is too much content of these elements, the hot workability of steel will fall. Therefore, the Cu content is 0 to 3.5%, and the Co content is 0 to 1.5%.
- it may contain one or two selected from the group consisting of Cu: 0.2 to 3.5% and Co: 0.05 to 1.5%.
- Cu content becomes like this.
- it is 3.3% or less, More preferably, it is 3.0% or less.
- the Cu content is preferably 0.3% or more, and more preferably 0.5% or more.
- the Co content is preferably 1.0% or less, and more preferably 0.8% or less.
- the Co content is preferably 0.08% or more, and more preferably 0.1% or more.
- Niobium (Nb), titanium (Ti), zirconium (Zr), and tantalum (Ta) are mutually replaceable elements. These elements are selective elements. These elements increase the strength of the steel. These elements improve the pitting corrosion resistance and SCC resistance of steel. If these elements are contained even a little, the above effect can be obtained. However, if there is too much content of these elements, the toughness of steel will fall. Therefore, the Nb content is 0 to 0.25%, the Ti content is 0 to 0.25%, the Zr content is 0 to 0.25%, and the Ta content is 0 to 0.25%.
- Nb 0.01 to 0.25%
- Ti 0.01 to 0.25%
- Zr 0.01 to 0.25%
- Ta 0.00%
- the Nb content is preferably 0.23% or less, more preferably 0.20% or less.
- the Nb content is preferably 0.02% or more, more preferably 0.05% or more.
- the Ti content is preferably 0.23% or less, and more preferably 0.20% or less.
- the Ti content is preferably 0.02% or more, and more preferably 0.05% or more.
- the Zr content is preferably 0.23% or less, and more preferably 0.20% or less.
- the Zr content is preferably 0.02% or more, more preferably 0.05% or more.
- the Ta content is preferably 0.24% or less, and more preferably 0.23% or less.
- the Ta content is preferably 0.02% or more, and more preferably 0.05% or more.
- Ca 0 to 0.01%, Mg: 0 to 0.01%, REM: 0 to 0.05%, and B: 0 to 0.005%
- Ca calcium
- Mg magnesium
- REM rare earth element
- B boron
- the Ca content is 0 to 0.01%
- the Mg content is 0 to 0.01%
- the REM content is 0 to 0.05%
- the B content is 0 to 0.005. %.
- B 0.0003 It is preferable to contain one or more selected from the group consisting of ⁇ 0.005%.
- the Ca content is preferably 0.008% or less, and more preferably 0.005% or less.
- the Ca content is preferably 0.0008% or more, and more preferably 0.001% or more.
- the Mg content is preferably 0.008% or less, and more preferably 0.005% or less.
- the Mg content is preferably 0.0008% or more, and more preferably 0.001% or more.
- the REM content is preferably 0.045% or less, and more preferably 0.04% or less.
- the REM content is preferably 0.0008% or more, and more preferably 0.001% or more.
- the B content is preferably 0.0045% or less, and more preferably 0.004% or less.
- the B content is preferably 0.0005% or more, and more preferably 0.0008% or more.
- REM is a general term for a total of 17 elements of scandium (Sc), yttrium (Y) and lanthanoid.
- the REM content means the total content of one or more of the 17 elements described above.
- the balance of the chemical composition of the stainless steel according to the present embodiment is Fe and impurities.
- An impurity here means the element mixed from the ore and scrap utilized as a raw material, or the element mixed from the environment of a manufacturing process, etc. when manufacturing stainless steel industrially.
- the matrix structure of the stainless steel according to the present embodiment has a volume ratio of 40 to 80% tempered martensite phase, 10 to 50% ferrite phase, and 1 to 15% austenite phase. Henceforth,% regarding these volume fractions (fraction) of a matrix structure means volume%.
- the lower limit of the volume ratio of the tempered martensite phase is preferably 45%, more preferably 50%.
- the upper limit of the volume ratio of the tempered martensite phase is preferably 75%, more preferably 70%.
- the lower limit of the volume fraction of the ferrite phase is preferably 15%, more preferably 20%.
- the upper limit of the volume fraction of the ferrite phase is preferably 45%, more preferably 40%.
- the lower limit of the volume fraction of the austenite phase is preferably 1.5%, more preferably 2%.
- the upper limit of the volume fraction of the austenite phase is preferably 12%, more preferably 10%.
- austenite formation elements such as C, Ni, Cu, Co
- the volume ratio of a tempered martensite phase and an austenite phase will become high, and the volume ratio of a ferrite phase will become low.
- content of ferrite forming elements such as Si, Cr, V, Mo, W
- the volume fraction of a ferrite phase will become high, and the volume fraction of a tempered martensite phase and an austenite phase will become low.
- the volume fraction of the ferrite phase in the matrix structure (ferrite fraction:%), the volume fraction of the austenite phase (austenite fraction:%), and the volume fraction of the tempered martensite phase (martensite fraction:%) are as follows. taking measurement.
- Samples are taken from any location on the stainless steel.
- the surface of the sample corresponding to the stainless steel cross section (hereinafter referred to as the observation surface) is polished.
- the polished observation surface is etched using a mixed solution of aqua regia and glycerin.
- the portion corroded in white by etching is a ferrite phase, and the area ratio of the ferrite phase is measured by a point calculation method based on JIS G0555 (2003). Since the measured area ratio is considered to be equal to the volume fraction of the ferrite phase, this is defined as the ferrite fraction (%).
- the austenite fraction is determined using an X-ray diffraction method.
- a 15 mm ⁇ 15 mm ⁇ 2 mm sample is taken from any location on the stainless steel.
- the X-ray intensities of the (200) plane and (211) plane of the ferrite phase ( ⁇ phase), the (200) plane, the (220) plane, and the (311) plane of the austenite phase ( ⁇ phase) are measured. Measure and calculate the integrated intensity of each surface.
- the volume ratio V ⁇ is obtained by using the following equation (6) for each combination (6 sets in total) of each surface of the ⁇ phase and each surface of the ⁇ phase.
- the average value of the volume fraction V ⁇ of each surface is defined as the austenite fraction (%).
- V ⁇ 100 / ⁇ 1+ (I ⁇ ⁇ R ⁇ ) / (I ⁇ ⁇ R ⁇ ) ⁇ (6)
- I ⁇ is the integrated intensity of the ⁇ phase
- R ⁇ is the crystallographic theoretical calculation value of the ⁇ phase
- I ⁇ is the integrated intensity of the ⁇ phase
- R ⁇ is the crystallographic theoretical calculation value of the ⁇ phase.
- the remainder of the matrix structure other than the ferrite phase and the austenite phase is defined as the volume ratio (martensite fraction) of the tempered martensite phase. That is, the martensite fraction (%) is a value obtained by subtracting the ferrite fraction (%) and the austenite fraction (%) from 100%.
- ⁇ defined by the formula (2) is 1.55 or more.
- ⁇ is obtained by the following method. A matrix structure is photographed at a magnification of 100 times from a cross section perpendicular to an arbitrary plate width direction of stainless steel (in the case of a steel pipe, a thick cross section parallel to the tube axis). The obtained 1 mm ⁇ 1 mm microstructure image is arranged in an xy coordinate system in which the thickness direction is the x-axis and the length direction is the y-axis, and each 1024 ⁇ 1024 pixel is represented in gray scale.
- a microstructure image expressed in gray scale (256 gradations) is obtained from a cross section of a surface including a thickness direction and a length direction in stainless steel. Furthermore, ⁇ defined by the equation (2) is obtained from the microstructure image expressed in gray scale using two-dimensional discrete Fourier transform.
- f (x, y) represents the gradation of the pixel at coordinates (x, y).
- ⁇ and low temperature toughness have the relationship shown in FIG.
- the stainless steel according to an embodiment of the present invention has a ductile brittle transition temperature of ⁇ 30 ° C. or less as shown in FIG. 9 when ⁇ obtained from the matrix structure is 1.55 or more. Therefore, the stainless steel according to an embodiment of the present invention exhibits excellent low temperature toughness at -10 ° C. which is usually required.
- ⁇ is preferably 1.6 or more, and more preferably 1.65 or more.
- Ss depends on the austenite fraction at the hot working temperature and the rolling rate. The higher the austenite fraction at the hot working temperature and the higher the rolling rate, the larger ⁇ .
- austenite forming elements such as C, Ni, Cu and Co is increased, or ferrite forming elements such as Si, Cr, V, Mo and W are used. The content of can be reduced. Or what is necessary is just to hot-process at low temperature.
- the stainless steel according to one embodiment of the present invention has high strength, excellent SCC resistance at high temperature and SSC resistance at room temperature, and excellent low temperature toughness.
- the stainless steel of this embodiment is preferably used for a stainless steel material for oil wells.
- the stainless steel according to the present embodiment preferably has a yield strength of 758 MPa or more.
- the stainless steel according to the present embodiment more preferably has a yield strength of 800 MPa or more.
- the stainless steel according to the present embodiment preferably has a ductile brittle transition temperature of ⁇ 30 ° C. or lower.
- the stainless steel according to the present embodiment more preferably has a ductile brittle transition temperature of ⁇ 35 ° C. or lower.
- the raw material may be a slab produced by continuous casting, or a plate material produced by hot working a slab or an ingot.
- the prepared material is charged into a heating furnace or a soaking furnace and heated.
- the heated material is hot-rolled to produce an intermediate material (steel material after hot rolling).
- the rolling rate in the hot rolling process is set to 40% or more.
- the steel material temperature (rolling start temperature) during hot rolling is set to 1200 to 1300 ° C.
- the steel material temperature here means the surface temperature of the material.
- the surface temperature of the material is measured at the start of hot rolling, for example.
- the surface temperature of the material is an average of the surface temperatures measured along the axial direction of the material.
- the steel material temperature at the end of hot rolling is preferably 1100 ° C. or higher.
- the rolling rate means the cumulative rolling rate of the hot rolling step continuously performed on the material having a steel material temperature of 1100 to 1300 ° C.
- the heating temperature of the steel material is higher from the viewpoint of preventing wrinkles.
- rolling is preferably performed at a low temperature in order to increase the degree of layering (that is, to increase ⁇ ).
- the base plate intermediate material
- the yield strength of the stainless steel plate can be increased to 758 MPa or more.
- the matrix structure has a tempered martensite phase and a ferrite phase.
- the intermediate material is once cooled to a temperature near normal temperature. Then, the cooled intermediate material is heated to a temperature range of 850 to 1050 ° C. The heated intermediate material is cooled with water or the like and quenched to produce a stainless steel plate.
- the quenched intermediate material is heated to a temperature of 650 ° C. or lower. That is, the tempering temperature is preferably 650 ° C. or lower. This is because if the tempering temperature exceeds 650 ° C., the austenite phase remaining in the steel at room temperature increases and the strength tends to decrease.
- the quenched intermediate material is heated to a temperature exceeding 500 ° C. That is, the tempering temperature is preferably a temperature exceeding 500 ° C.
- a stainless steel plate having ⁇ of 1.55 or more is manufactured.
- Stainless steel is not limited to a steel plate, and may have a shape other than a steel plate.
- the material is soaked at a temperature of 1200 to 1250 ° C. for a predetermined time, and then hot rolling is performed at a rolling rate of 50% or more and a rolling end temperature of 1100 ° C. or more.
- a stainless steel material having a high degree of layering can be obtained while suppressing generation of surface flaws.
- Steels of steel types A to W having chemical compositions shown in Table 1 were melted to produce ingots.
- the chemical compositions of steel types A to V are within the scope of this embodiment.
- Steel type W is a comparative example that does not contain V.
- Each ingot was hot forged to produce a plate material having a width of 100 mm and a height of 30 mm.
- the manufactured plate materials were prepared as steel materials with numbers 1 to 37.
- the content of each element is mass%, and the balance is Fe and impurities.
- a plurality of prepared materials were heated in a heating furnace.
- the heated material was extracted from the heating furnace, and after the extraction, it was hot-rolled immediately to produce intermediate materials numbered 1 to 37.
- Table 2 shows the steel temperature of each material during hot rolling. In this example, since the material was heated in a heating furnace for a sufficient time, the steel material temperature was equal to the heating temperature. Table 2 shows the rolling ratio of each number in hot rolling.
- the quenching temperature was 950 ° C.
- the holding time (heat treatment time) at the quenching temperature was 15 minutes.
- the intermediate material was quenched by water cooling.
- the tempering temperatures were 550 ° C. for the intermediate materials Nos. 1, 23 to 30, 32, 33, and 37, and 600 ° C. for the intermediate materials Nos. 2 to 22, 31, and 34 to 36.
- the holding time at the tempering temperature was 30 minutes.
- the steel plate of each number was manufactured according to the above manufacturing process.
- a 1 mm ⁇ 1 mm microstructure image (for example, an image as shown in FIG. 1) was obtained from an arbitrary position in the observation plane with an observation magnification of 100 times. Using the obtained microstructure image, ⁇ of each numbered steel sheet was calculated by the method described above.
- yield strength evaluation test A round bar for a tensile test was collected from the central portion in the thickness direction of each of the steel plates Nos. 1 to 37.
- the longitudinal direction of the round bar was a direction (L direction) parallel to the rolling direction of the steel plate.
- the diameter of the parallel part of the round bar was 6 mm, and the distance between the gauge points was 40 mm.
- the collected round bar was subjected to a tensile test at room temperature in accordance with JIS Z2241 (2011) to determine the yield strength (0.2% yield strength).
- the test piece was immersed in a 25 mass% NaCl solution in an autoclave for 720 hours.
- the solution was adjusted to pH 4.5 with a CH 3 COONa + CH 3 COOH buffer system containing 0.41 g / l CH 3 COONa.
- SCC stress corrosion cracking
- the presence or absence of occurrence of stress corrosion cracking (SCC) was observed on the test specimen after immersion.
- the cross section of the portion where the tensile stress was applied to the test piece was observed with an optical microscope at a magnification of 100 times to determine the presence or absence of cracks.
- “No crack” is “Good”, “With crack” is “Good”, and “Good” is better in SCC resistance than “No”.
- corrosion weight loss was calculated
- the annual corrosion amount (mm / Year) was calculated from the obtained corrosion weight loss.
- the solution was adjusted to pH 4.0 with a CH 3 COONa + CH 3 COOH buffer system containing 0.41 g / l CH 3 COONa. Furthermore, the temperature of the solution was adjusted to 25 ° C.
- the test piece after immersion was observed for the presence or absence of sulfide stress cracking (SSC). Specifically, among the test pieces of Nos. 1 to 37, for each of the test piece that was broken during the test and the test piece that was not broken, the parallel part was observed with the naked eye to check for cracks or pitting corrosion. The presence or absence of occurrence was determined. In Table 3, the case where there is no occurrence of cracks or pitting corrosion is o, the case where cracks or pitting corrosion occurs is x, and the case of o is more excellent in SSC resistance than the case of x.
- Table 3 shows the test results. All of the steel plates numbered 1 to 37 have the ferrite phase volume fraction ( ⁇ fraction), the austenite phase volume fraction ( ⁇ fraction), and the tempered martensite phase volume fraction (M fraction) of this embodiment. It was within the range. Among these, the steel materials of Nos. 1 to 36 have a yield strength of 758 MPa or more, an annual corrosion amount of 0.01 mm / Year or less, and excellent SCC resistance and SSC resistance.
- Each of the steel materials Nos. 1, 4, 7, 10, 12 to 16, and 19 to 36 had ⁇ of 1.55 or more. These steel materials have a transition temperature of ⁇ 30 ° C. or lower and are excellent in low temperature toughness.
- the steel material of No. 37 had a yield strength of less than 758 MPa, although ⁇ was 1.55 or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
1.0≦Mo+0.5W≦3.5 (1)
1.0≦Mo+0.5W≦3.5 (1)
本発明の一実施形態によるステンレス鋼は、以下の化学組成を有する。以降、元素に関する「%」は、質量%を意味する。
炭素(C)は鋼の強度を高める。しかしながら、C含有量が多すぎれば、焼戻し後の硬度が高くなり過ぎ、耐SSC性が低下する。さらに、本実施形態の化学組成では、C含有量が増加するに従い、Ms点が低下する。そのため、C含有量が増加するに従い、オーステナイトが増加しやすくなり、降伏強度が低下しやすくなる。したがって、C含有量は、0.06%以下である。C含有量は、好ましくは0.05%以下であり、さらに好ましくは0.03%以下である。また、製鋼工程における脱炭処理に掛かるコストを考慮すれば、C含有量は0.001%以上である。C含有量は、好ましくは0.003%以上であり、さらに好ましくは、0.005%以上である。
シリコン(Si)は鋼を脱酸する。しかしながら、Si含有量が多すぎれば、鋼の靱性及び熱間加工性が低下する。Si含有量が多すぎればさらに、フェライトの生成量が増加し、降伏強度が低下しやすくなる。また、βを大きくすることが難しくなる。したがって、Si含有量は0.05~0.5%である。Si含有量は、好ましくは0.5%未満であり、さらに好ましくは0.4%以下である。Si含有量は、好ましくは0.06%以上であり、さらに好ましくは、0.07%以上である。
マンガン(Mn)は、鋼を脱酸及び脱硫し、熱間加工性を高める。Mn含有量が少なすぎれば、上記効果が有効に得られない。一方、Mn含有量が高すぎれば、焼入れ時にオーステナイトが過剰に残留しやすくなり、鋼の強度を確保することが困難になる。したがって、Mn含有量は0.01~2.0%である。Mn含有量は、好ましくは1.0%以下であり、さらに好ましくは0.6%以下である。Mn含有量は、好ましくは0.02%以上であり、さらに好ましくは0.04%以上である。
リン(P)は不純物である。Pは鋼の耐SSC性を低下する。したがって、P含有量はなるべく少ない方が好ましい。P含有量は0.03%以下である。P含有量は、好ましくは0.028%以下、さらに好ましくは0.025%以下である。また、P含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、P含有量は、好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。
硫黄(S)は不純物である。Sは鋼の熱間加工性を低下する。したがって、S含有量はなるべく少ない方が好ましい。S含有量は0.005%未満である。S含有量は、好ましくは0.003%以下であり、さらに好ましくは0.0015%以下である。また、S含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、S含有量は、好ましくは0.0001%以上であり、さらに好ましくは0.0003%以上である。
クロム(Cr)は鋼の耐食性を高める。具体的には、Crは腐食速度を低くし、鋼の耐SCC性を高める。C含有量が少なすぎれば、上記効果が有効に得られない。一方、Cr含有量が多すぎれば、鋼中のフェライト相の体積率が増加して鋼の強度が低下する。また、βを大きくすることが難しくなる。したがって、Cr含有量は15.5~18.0%である。Cr含有量は、好ましくは17.8%以下であり、さらに好ましくは17.5%以下である。Cr含有量は、好ましくは16.0%以上であり、さらに好ましくは16.3%以上である。
ニッケル(Ni)は鋼の靱性を高める。Niはさらに、鋼の強度を高める。Niは、熱間加工の温度でのオーステナイトの分率を高め、βを大きくするのに寄与する。Ni含有量が少なすぎれば、上記効果が有効に得られない。一方、Ni含有量が多すぎれば、残留オーステナイトが多く生成しやすくなり、その結果、鋼の強度が低下する。したがって、Ni含有量は2.5~6.0%である。Ni含有量は、好ましくは6.0%未満であり、さらに好ましくは5.9%以下である。Ni含有量は、好ましくは3.0%以上であり、さらに好ましくは3.5%以上である。
バナジウム(V)は、鋼の強度を高める。Vが0.005%未満では、必要な強度が得られない。しかしながら、V含有量が多すぎれば、靱性が低下する。また、βを大きくすることが難しくなる。したがって、V含有量は0.005~0.25%とする。V含有量は、好ましくは0.20%以下であり、さらに好ましくは0.15%以下である。V含有量は、好ましくは0.008%以上であり、さらに好ましくは0.01%以上である。
アルミニウム(Al)は鋼を脱酸する。しかしながら、Al含有量が多すぎれば、鋼中の介在物が増加して鋼の靱性が低下する。そのため、上限は0.05%とする。Al含有量は、好ましくは0.048%以下であり、さらに好ましくは0.045%以下である。Al含有量は、好ましくは0.0005%以上であり、さらに好ましくは0.001%以上である。
窒素(N)は鋼の強度を高める。しかしながら、N含有量が多すぎれば、オーステナイトが過剰に生成し、鋼中の介在物も増加する。その結果、鋼の靱性が低下する。したがって、N含有量は0.06%以下である。N含有量は、0.05%以下であり、さらに好ましくは0.03%以下である。N含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、N含有量は、好ましくは0.001%以上であり、さらに好ましくは0.002%以上である。
酸素(O)は不純物である。Oは鋼の靭性及び耐食性を低下させる。したがって、O含有量は0.01%以下である。O含有量は、好ましくは0.01%未満であり、より好ましくは0.009%以下、さらに好ましくは0.006%以下である。O含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、O含有量は、好ましくは0.0001%以上であり、さらに好ましくは0.0003%以上である。
モリブデン(Mo)及びタングステン(W)は互いに置換可能な元素であり、両方を含有してもよく、一方だけを含有してもよい。Mo及びWは、少なくとも一方を含有することが必須である。これらの元素は鋼の耐SCC性を高める。一方、これらの元素の含有量が多すぎれば、その効果が飽和するとともに、βを大きくすることが難しくなる。したがって、Mo含有量は0~3.5%であり、W含有量は0~3.5%であり、Mo及びWからなる群から選択された1種又は2種を式(1)を満たす範囲で含有する必要がある。Mo含有量は、好ましくは3.3%以下であり、さらに好ましくは3.0%以下である。Mo含有量は、好ましくは0.01%以上であり、さらに好ましくは0.03%以上である。W含有量は、好ましくは3.3%以下であり、さらに好ましくは3.0%以下である。W含有量は、好ましくは0.01%以上であり、さらに好ましくは0.03%以上である。
1.0≦Mo+0.5W≦3.5 (1)
銅(Cu)及びコバルト(Co)は互いに置換可能な元素である。これらの元素は選択元素である。これらの元素は、焼戻しマルテンサイト相の体積分率を増加させ、鋼の強度を高める。また、βを大きくするのに寄与する。さらに、Cuは焼戻し時にCu粒子として析出し、その強度をさらに高める。これらの元素の含有量が少なすぎれば、上記効果が有効に得られない。一方、これらの元素の含有量が多すぎれば、鋼の熱間加工性が低下する。したがって、Cu含有量は0~3.5%とし、Co含有量は0~1.5%とする。さらに、上記効果を十分に得るためには、Cu:0.2~3.5%及びCo:0.05~1.5%からなる群から選択された1種又は2種を含有することが好ましい。Cu含有量は、好ましくは3.3%以下であり、さらに好ましくは3.0%以下である。Cu含有量は、好ましくは0.3%以上であり、さらに好ましくは0.5%以上である。Co含有量は、好ましくは1.0%以下であり、さらに好ましくは0.8%以下である。Co含有量は、好ましくは0.08%以上であり、さらに好ましくは0.1%以上である。
ニオブ(Nb)、チタン(Ti)、ジルコニウム(Zr)及びタンタル(Ta)は互いに置換可能な元素である。これらの元素は選択元素である。これらの元素は鋼の強度を高める。これらの元素は鋼の耐孔食性及び耐SCC性を向上させる。これらの元素が少しでも含有されれば、上記効果が得られる。しかしながら、これらの元素の含有量が多すぎれば、鋼の靭性が低下する。したがって、Nb含有量は0~0.25%であり、Ti含有量は0~0.25%であり、Zr含有量は0~0.25%であり、Ta含有量は0~0.25%である。さらに、上記効果を十分に得るためには、Nb:0.01~0.25%、Ti:0.01~0.25%、Zr:0.01~0.25%、及びTa:0.01~0.25%からなる群から選択された1種又は2種以上を含有することが好ましい。Nb含有量は、好ましくは0.23%以下であり、さらに好ましくは0.20%以下である。Nb含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。Ti含有量は、好ましくは0.23%以下であり、さらに好ましくは0.20%以下である。Ti含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。Zr含有量は、好ましくは0.23%以下であり、さらに好ましくは0.20%以下である。Zr含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。Ta含有量は、好ましくは0.24%以下であり、さらに好ましくは0.23%以下である。Ta含有量は、好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。
カルシウム(Ca)、マグネシウム(Mg)、希土類元素(REM)及びボロン(B)は互いに置換可能な元素である。これらの元素は選択元素である。これらの元素は製造時の熱間加工性を改善する。これらの元素が少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca、Mg及びREMの含有量が多すぎれば、酸素と結合して合金の清浄性を著しく低下させ、耐SSC性を劣化させる。また、B含有量が多すぎれば、鋼の靭性を低下させる。したがって、Ca含有量は0~0.01%であり、Mg含有量は0~0.01%であり、REM含有量は0~0.05%であり、B含有量は0~0.005%である。また、上記効果を十分に得るためには、Ca:0.0005~0.01%、Mg:0.0005~0.01%、REM:0.0005~0.05%及びB:0.0003~0.005%からなる群から選択された1種又は2種以上を含有することが好ましい。Ca含有量は、好ましくは0.008%以下であり、さらに好ましくは0.005%以下である。Ca含有量は、好ましくは0.0008%以上であり、さらに好ましくは0.001%以上である。Mg含有量は、好ましくは0.008%以下であり、さらに好ましくは0.005%以下である。Mg含有量は、好ましくは0.0008%以上であり、さらに好ましくは0.001%以上である。REM含有量は、好ましくは0.045%以下であり、さらに好ましくは0.04%以下である。REM含有量は、好ましくは0.0008%以上であり、さらに好ましくは0.001%以上である。B含有量は、好ましくは0.0045%以下であり、さらに好ましくは0.004%以下である。B含有量は、好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。
本実施形態によるステンレス鋼のマトリクス組織は、体積率で、40~80%の焼戻しマルテンサイト相と、10~50%のフェライト相と、1~15%のオーステナイト相とを有する。以降、マトリクス組織のこれらの体積率(分率)に関する%は、体積%を意味する。
ステンレス鋼の任意の位置からサンプルを採取する。ステンレス鋼の断面に相当するサンプルの表面(以下、観察面という)を研磨する。王水とグリセリンとの混合溶液を用いて、研磨された観察面をエッチングする。エッチングにより白く腐食された部分がフェライト相であり、このフェライト相の面積率を、JIS G0555(2003)に準拠した点算法で測定する。測定された面積率は、フェライト相の体積分率に等しいと考えられるため、これをフェライト分率(%)と定義する。
オーステナイト分率は、X線回折法を用いて求める。ステンレス鋼の任意の位置から、15mm×15mm×2mmのサンプルを採取する。サンプルを用いて、フェライト相(α相)の(200)面及び(211)面、オーステナイト相(γ相)の(200)面、(220)面及び(311)面の各々のX線強度を測定し、各面の積分強度を算出する。算出後、α相の各面とγ相の各面との組み合わせ(合計6組)毎に、以下の式(6)を用いて体積率Vγを求める。各面の体積率Vγの平均値を、オーステナイト分率(%)と定義する。
Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (6)
マトリクス組織のうち、フェライト相及びオーステナイト相以外の残部を、焼戻しマルテンサイト相の体積率(マルテンサイト分率)と定める。つまり、マルテンサイト分率(%)は100%からフェライト分率(%)及びオーステナイト分率(%)を引いた値である。
本実施形態のステンレス鋼は、式(2)で定義されるβが1.55以上である。βは、次の方法で求める。ステンレス鋼の任意の板幅方向に垂直な断面(鋼管の場合は、管軸に平行な肉厚断面)から、マトリクス組織を100倍の倍率で撮影する。得られた1mm×1mmのミクロ組織画像を、肉厚方向をx軸としかつ長さ方向をy軸とするxy座標系に配置し、1024×1024の各画素をグレースケールで表す。したがって、グレースケール(256階調)で表されるミクロ組織画像は、ステンレス鋼のうち、肉厚方向及び長さ方向を含む面での断面から得られる。さらに、2次元離散フーリエ変換を用いて、グレースケールで表されるミクロ組織画像から、式(2)で定義されるβを求める。
本実施形態のステンレス鋼の製造方法の一例を説明する。上述の化学組成を有する鋼素材(スラブ、ブルーム、ビレット等の鋳片又は鋼片)を適切な温度範囲においてなるべく高い圧延率で熱間圧延することにより、βが1.55以上のマトリクス組織が得られる。本例では、ステンレス鋼の製造方法の一例として、ステンレス鋼板の製造方法について説明する。
r={1-(熱間圧延後の鋼素材の肉厚/熱間圧延前の鋼素材の肉厚)}×100 (7)
番号1~37各々の鋼板を幅中央で長さ方向に切断した。切断面(長さ方向をy軸、肉厚方向をx軸とする)のうち、鋼板の中心部分からミクロ組織観察用のサンプルを採取した。採取されたサンプルから、上述の方法で面積率を測定し、フェライト相の体積率と定義した。さらに、オーステナイト相の体積率を、上述のX線回折法により求めた。さらに、焼戻しマルテンサイト相の体積率を、フェライト相の体積率及びオーステナイト相の体積率を用いて上述の方法により求めた。
番号1~37各々の鋼板の肉厚方向の中央部分から、引張試験用の丸棒を採取した。丸棒の長手方向は、鋼板の圧延方向に平行な方向(L方向)であった。丸棒の平行部の直径は6mmであり、標点間距離は40mmであった。採取された丸棒に対して、JIS Z2241(2011)に準拠して、室温で引張試験を実施し、降伏強度(0.2%耐力)を求めた。
低温靱性評価試験としてシャルピー衝撃試験を実施した。番号1~37各々の鋼板の肉厚方向の中央部分から、ASTM E23に準拠したフルサイズ試験片を採取した。試験片の長手方向は、板幅方向に平行であった。採取された試験片を用いて、20℃~-120℃の温度範囲においてシャルピー衝撃試験を実施し、吸収エネルギー(J)を測定し、衝撃吸収エネルギーの延性-脆性遷移温度を求めた。
番号1~37各々の鋼板から、4点曲げ試験片を採取した。試験片の長さは75mmであり、幅は10mmであり、厚さは2mmであった。試験片に4点曲げによるたわみを付与した。このとき、ASTM G39に準拠して、試験片に与えられる応力が試験片の0.2%オフセット耐力と等しくなるように、試験片のたわみ量を決定した。30bar(3.0MPa)のCO2と0.01bar(1kPa)のH2Sとが加圧封入された200℃のオートクレーブを番号1~36各々に準備した。たわみをかけた試験片をオートクレーブに収納した。試験片は、オートクレーブ内で25mass%のNaCl溶液に720時間浸漬した。溶液は、0.41g/lのCH3COONaを含有したCH3COONa+CH3COOH緩衝系によりpH4.5に調整した。浸漬後の試験片に対して応力腐食割れ(SCC)の発生の有無を観察した。具体的には、試験片に対して、引張応力が付加された部分の断面を100倍の倍率で光学顕微鏡を用いて観察し、割れの有無を判定した。表3において、割れ無しが○であり、割れ有りが×であり、○の場合が×の場合よりも耐SCC性に優れる。さらに、試験片に対して、試験前の重量及び浸漬後の重量の変化量に基づいて、腐食減量を求めた。得られた腐食減量から年間腐食量(mm/Year)を計算した。
番号1~37各々の鋼板から、NACE TM0177 METHOD A用の丸棒試験片を採取した。試験片の直径は6.35mmであり、平行部の長さは25.4mmであった。試験片の軸方向に引張応力を負荷した。このとき、NACA TM0177-2005に準拠して、試験片に与えられる応力が、試験材の実測の降伏応力の90%になるように調整した。試験片は、0.01bar(1kPa)のH2Sと0.99bar(0.099MPa)のCO2とを飽和させた25mass%のNaCl溶液に720時間浸漬した。溶液は、0.41g/lのCH3COONaを含有したCH3COONa+CH3COOH緩衝系によりpH4.0に調整した。さらに、溶液の温度は25℃に調整した。浸漬後の試験片に対して、硫化物応力割れ(SSC)の発生の有無を観察した。具体的には、番号1~37の試験片のうち、試験中に破断した試験片、及び破断しなかった試験片の各々に対して、平行部を肉眼にて観察し、クラック又は孔食の発生の有無を判定した。表3において、クラック又は孔食の発生が無い場合が○であり、クラック又は孔食の発生がある場合が×であり、○の場合が×の場合よりも耐SSC性に優れる。
表3に試験結果を示す。番号1~37の鋼板はいずれも、フェライト相の体積率(α分率)、オーステナイト相の体積率(γ分率)及び焼戻しマルテンサイト相の体積率(M分率)が、本実施形態の範囲内であった。このうち、番号1~36の鋼材は、降伏強度が758MPa以上であり、年間腐食量が0.01mm/Year以下であり、耐SCC性及び耐SSC性が優れた。
Claims (5)
- 化学組成が、質量%で、
C:0.001~0.06%、
Si:0.05~0.5%、
Mn:0.01~2.0%、
P:0.03%以下、
S:0.005%未満、
Cr:15.5~18.0%、
Ni:2.5~6.0%、
V:0.005~0.25%、
Al:0.05%以下、
N:0.06%以下、
O:0.01%以下、
Cu:0~3.5%、
Co:0~1.5%、
Nb:0~0.25%、
Ti:0~0.25%、
Zr:0~0.25%、
Ta:0~0.25%、
B:0~0.005%、
Ca:0~0.01%、
Mg:0~0.01%、及び
REM:0~0.05%を含有し、さらに、
Mo:0~3.5%、及び
W:0~3.5%からなる群から選択された1種又は2種を式(1)を満たす範囲で含有し、
残部がFe及び不純物からなり、
マトリクス組織が、体積率で、40~80%の焼戻しマルテンサイト相と、10~50%のフェライト相と、1~15%のオーステナイト相とを有し、
前記マトリクス組織を100倍の倍率で撮影して得られた1mm×1mmのミクロ組織画像を、肉厚方向をx軸としかつ長さ方向をy軸とするxy座標系に配置し、1024×1024の各画素をグレースケールで表したとき、式(2)で定義されるβが1.55以上である、ステンレス鋼。
1.0≦Mo+0.5W≦3.5 (1)
ここで、Mo,Wは、質量%で表したMo,Wの含有量である。
- 請求項1に記載のステンレス鋼であって、
前記化学組成が、質量%で、
Cu:0.2~3.5%、及び
Co:0.05~1.5%からなる群から選択された1種又は2種を含有する、ステンレス鋼。 - 請求項1又は請求項2に記載のステンレス鋼であって、
前記化学組成が、質量%で、
Nb:0.01~0.25%、
Ti:0.01~0.25%、
Zr:0.01~0.25%、及び
Ta:0.01~0.25%からなる群から選択された1種又は2種以上を含有する、ステンレス鋼。 - 請求項1~請求項3のいずれか1項に記載のステンレス鋼であって、
前記化学組成が、質量%で、
B:0.0003~0.005%、
Ca:0.0005~0.01%、
Mg:0.0005~0.01%、及び
REM:0.0005~0.05%からなる群から選択された1種又は2種以上を含有する、ステンレス鋼。 - 請求項1~請求項4のいずれか1項に記載のステンレス鋼からなる、油井用ステンレス鋼材。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2017012752A MX2017012752A (es) | 2015-08-04 | 2016-06-29 | Acero inoxidable y producto de acero inoxidable para pozo de petroleo. |
RU2017135000A RU2686727C2 (ru) | 2015-08-04 | 2016-06-29 | Нержавеющая сталь и изделие из нержавеющей стали для нефтяной скважины |
US15/747,825 US10378079B2 (en) | 2015-08-04 | 2016-06-29 | Stainless steel and stainless steel product for oil well |
JP2017532433A JP6432683B2 (ja) | 2015-08-04 | 2016-06-29 | ステンレス鋼及び油井用ステンレス鋼材 |
CN201680042985.1A CN107849661B (zh) | 2015-08-04 | 2016-06-29 | 不锈钢和油井用不锈钢材 |
EP16832653.6A EP3333276A4 (en) | 2015-08-04 | 2016-06-29 | STAINLESS STEEL AND STAINLESS STEEL MATERIAL FOR OIL WELLS |
AU2016302517A AU2016302517B2 (en) | 2015-08-04 | 2016-06-29 | Stainless steel and oil well stainless steel material |
CA2980889A CA2980889C (en) | 2015-08-04 | 2016-06-29 | Stainless steel and stainless steel product for oil well |
BR112017020184-4A BR112017020184A2 (ja) | 2015-08-04 | 2016-06-29 | Stainless steel and stainless steel material for oil wells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-154360 | 2015-08-04 | ||
JP2015154360 | 2015-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022374A1 true WO2017022374A1 (ja) | 2017-02-09 |
Family
ID=57942875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069241 WO2017022374A1 (ja) | 2015-08-04 | 2016-06-29 | ステンレス鋼及び油井用ステンレス鋼材 |
Country Status (11)
Country | Link |
---|---|
US (1) | US10378079B2 (ja) |
EP (1) | EP3333276A4 (ja) |
JP (1) | JP6432683B2 (ja) |
CN (1) | CN107849661B (ja) |
AR (1) | AR105570A1 (ja) |
AU (1) | AU2016302517B2 (ja) |
BR (1) | BR112017020184A2 (ja) |
CA (1) | CA2980889C (ja) |
MX (1) | MX2017012752A (ja) |
RU (1) | RU2686727C2 (ja) |
WO (1) | WO2017022374A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019501300A (ja) * | 2015-12-23 | 2019-01-17 | ポスコPosco | 三相ステンレス鋼およびその製造方法 |
JP2019163499A (ja) * | 2018-03-19 | 2019-09-26 | 日本製鉄株式会社 | 鋼材 |
WO2020071522A1 (ja) * | 2018-10-04 | 2020-04-09 | 日本製鉄株式会社 | 冷延鋼板 |
CN114921723A (zh) * | 2022-05-20 | 2022-08-19 | 无锡双马钻探工具有限公司 | 一种非开挖钻杆用耐腐蚀钢材及其制备方法和用途 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6837600B2 (ja) * | 2018-03-30 | 2021-03-03 | 日鉄ステンレス株式会社 | 耐リジング性に優れたフェライト系ステンレス鋼 |
CN109023072A (zh) * | 2018-09-04 | 2018-12-18 | 合肥久新不锈钢厨具有限公司 | 一种高稳定性耐腐蚀不锈钢及其制备方法 |
MX2022003877A (es) * | 2019-10-01 | 2022-04-18 | Jfe Steel Corp | Tubo de acero inoxidable sin soldadura y metodo para fabricar el mismo. |
CN111088459A (zh) * | 2019-12-31 | 2020-05-01 | 兴化市锐达建材机械有限公司 | 一种高强度耐腐蚀桥桩用不锈钢 |
JP7201094B2 (ja) * | 2020-04-01 | 2023-01-10 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
CN113584407A (zh) * | 2020-04-30 | 2021-11-02 | 宝山钢铁股份有限公司 | 一种高强度耐高温腐蚀马氏体不锈钢及其制造方法 |
CN112281067A (zh) * | 2020-10-29 | 2021-01-29 | 东营市元捷石油机械有限公司 | 一种耐腐蚀钢材及其制备方法和应用 |
CN112458370A (zh) * | 2020-12-01 | 2021-03-09 | 福州大学 | 一种含马氏体、铁素体和奥氏体的三相不锈钢 |
CN115717221B (zh) * | 2022-11-17 | 2024-02-02 | 清华大学 | 强韧耐腐蚀三相不锈钢、其制备方法和不锈钢制品 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279392A (ja) * | 2000-03-30 | 2001-10-10 | Sumitomo Metal Ind Ltd | マルテンサイト系ステンレス鋼および製造方法 |
JP2005336595A (ja) * | 2003-08-19 | 2005-12-08 | Jfe Steel Kk | 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法 |
WO2010134498A1 (ja) * | 2009-05-18 | 2010-11-25 | 住友金属工業株式会社 | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 |
JP2012149317A (ja) * | 2011-01-20 | 2012-08-09 | Jfe Steel Corp | 油井用高強度マルテンサイト系ステンレス継目無鋼管 |
JP2013249516A (ja) * | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | 油井管用高強度ステンレス鋼継目無管およびその製造方法 |
JP2015081352A (ja) * | 2013-10-21 | 2015-04-27 | Jfeスチール株式会社 | 厚肉鋼材製造用装置列 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1080886A (en) * | 1965-06-22 | 1967-08-23 | Avesta Jernverks Ab | Rollable and weldable stainless steel |
CN100532611C (zh) * | 2003-07-22 | 2009-08-26 | 住友金属工业株式会社 | 马氏体不锈钢 |
CN100451153C (zh) * | 2003-08-19 | 2009-01-14 | 杰富意钢铁株式会社 | 耐腐蚀性优良的油井用高强度不锈钢管及其制造方法 |
EP1683885B1 (en) | 2003-10-31 | 2013-05-29 | JFE Steel Corporation | High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof |
RU2321671C2 (ru) * | 2005-05-18 | 2008-04-10 | Зао "Ижевский Опытно-Механический Завод" | Нержавеющая сталь |
KR101569306B1 (ko) * | 2007-11-29 | 2015-11-13 | 에이티아이 프로퍼티즈, 인코퍼레이티드 | 린 오스테나이트계 스테인리스 강 |
CN101981215A (zh) * | 2008-03-28 | 2011-02-23 | 住友金属工业株式会社 | 油井管用不锈钢 |
AR073884A1 (es) * | 2008-10-30 | 2010-12-09 | Sumitomo Metal Ind | Tubo de acero inoxidable de alta resistencia excelente en resistencia a la fisuracion bajo tension por sulfuros y a la corrosion de gas de acido carbonico en alta temperatura. |
JP5446335B2 (ja) | 2009-03-10 | 2014-03-19 | Jfeスチール株式会社 | 油井用高強度ステンレス鋼管の評価方法 |
CN102859019A (zh) * | 2010-04-19 | 2013-01-02 | 杰富意钢铁株式会社 | 焊接热影响部的耐晶间应力腐蚀开裂性优异的线管用含Cr钢管 |
CA2795326C (en) * | 2010-04-28 | 2016-05-17 | Sumitomo Metal Industries, Ltd. | High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well |
BR112014017204B1 (pt) * | 2012-03-26 | 2019-04-02 | Nippon Steel & Sumitomo Metal Corporation | Aço inoxidável para poços de petróleo e tubos de aço inoxidável para poços de petróleo |
EP3042968B1 (en) * | 2013-09-04 | 2020-12-09 | JFE Steel Corporation | Method of manufacturing a high-strength stainless steel pipe and high-strength stainless steel pipe |
JP2015082352A (ja) * | 2013-10-21 | 2015-04-27 | 住友電装株式会社 | ワイヤーハーネス |
EP3246418B1 (en) * | 2015-01-15 | 2021-02-03 | JFE Steel Corporation | Seamless stainless steel pipe for oil well, and method for manufacturing same |
US10876183B2 (en) * | 2015-07-10 | 2020-12-29 | Jfe Steel Corporation | High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe |
-
2016
- 2016-06-29 WO PCT/JP2016/069241 patent/WO2017022374A1/ja active Application Filing
- 2016-06-29 CA CA2980889A patent/CA2980889C/en not_active Expired - Fee Related
- 2016-06-29 MX MX2017012752A patent/MX2017012752A/es unknown
- 2016-06-29 AU AU2016302517A patent/AU2016302517B2/en not_active Ceased
- 2016-06-29 EP EP16832653.6A patent/EP3333276A4/en not_active Withdrawn
- 2016-06-29 RU RU2017135000A patent/RU2686727C2/ru active
- 2016-06-29 BR BR112017020184-4A patent/BR112017020184A2/ja not_active Application Discontinuation
- 2016-06-29 JP JP2017532433A patent/JP6432683B2/ja active Active
- 2016-06-29 CN CN201680042985.1A patent/CN107849661B/zh active Active
- 2016-06-29 US US15/747,825 patent/US10378079B2/en active Active
- 2016-08-02 AR ARP160102350A patent/AR105570A1/es unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279392A (ja) * | 2000-03-30 | 2001-10-10 | Sumitomo Metal Ind Ltd | マルテンサイト系ステンレス鋼および製造方法 |
JP2005336595A (ja) * | 2003-08-19 | 2005-12-08 | Jfe Steel Kk | 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法 |
WO2010134498A1 (ja) * | 2009-05-18 | 2010-11-25 | 住友金属工業株式会社 | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 |
JP2012149317A (ja) * | 2011-01-20 | 2012-08-09 | Jfe Steel Corp | 油井用高強度マルテンサイト系ステンレス継目無鋼管 |
JP2013249516A (ja) * | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | 油井管用高強度ステンレス鋼継目無管およびその製造方法 |
JP2015081352A (ja) * | 2013-10-21 | 2015-04-27 | Jfeスチール株式会社 | 厚肉鋼材製造用装置列 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3333276A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019501300A (ja) * | 2015-12-23 | 2019-01-17 | ポスコPosco | 三相ステンレス鋼およびその製造方法 |
JP2019163499A (ja) * | 2018-03-19 | 2019-09-26 | 日本製鉄株式会社 | 鋼材 |
JP7264596B2 (ja) | 2018-03-19 | 2023-04-25 | 日本製鉄株式会社 | 鋼材 |
WO2020071522A1 (ja) * | 2018-10-04 | 2020-04-09 | 日本製鉄株式会社 | 冷延鋼板 |
JP6697728B1 (ja) * | 2018-10-04 | 2020-05-27 | 日本製鉄株式会社 | 冷延鋼板 |
CN114921723A (zh) * | 2022-05-20 | 2022-08-19 | 无锡双马钻探工具有限公司 | 一种非开挖钻杆用耐腐蚀钢材及其制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
RU2686727C2 (ru) | 2019-04-30 |
JPWO2017022374A1 (ja) | 2017-12-14 |
BR112017020184A2 (ja) | 2018-06-12 |
AR105570A1 (es) | 2017-10-18 |
AU2016302517A1 (en) | 2017-11-02 |
CA2980889A1 (en) | 2017-02-09 |
US20180209009A1 (en) | 2018-07-26 |
US10378079B2 (en) | 2019-08-13 |
CN107849661A (zh) | 2018-03-27 |
EP3333276A4 (en) | 2019-01-09 |
CA2980889C (en) | 2020-02-25 |
RU2017135000A (ru) | 2019-04-05 |
EP3333276A1 (en) | 2018-06-13 |
JP6432683B2 (ja) | 2018-12-05 |
AU2016302517B2 (en) | 2018-11-29 |
MX2017012752A (es) | 2018-06-06 |
RU2017135000A3 (ja) | 2019-04-05 |
CN107849661B (zh) | 2020-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6432683B2 (ja) | ステンレス鋼及び油井用ステンレス鋼材 | |
JP4577457B2 (ja) | 油井管に用いられるステンレス鋼 | |
JP4930654B2 (ja) | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 | |
JP4911266B2 (ja) | 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管 | |
JP5348354B1 (ja) | 油井用ステンレス鋼及び油井用ステンレス鋼管 | |
US10876183B2 (en) | High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe | |
RU2643735C1 (ru) | Низколегированная стальная труба для нефтяной скважины | |
JPWO2018181404A1 (ja) | マルテンサイトステンレス鋼材 | |
JP6372070B2 (ja) | フェライト・マルテンサイト二相鋼及び油井用鋼管 | |
JP6672620B2 (ja) | 油井用ステンレス鋼及び油井用ステンレス鋼管 | |
JP6315076B2 (ja) | 油井用高強度ステンレス継目無鋼管の製造方法 | |
JP6515340B2 (ja) | 油井管 | |
JP6578810B2 (ja) | 油井管 | |
JP7381983B2 (ja) | マルテンサイト系ステンレス継目無鋼管、及び、マルテンサイト系ステンレス継目無鋼管の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16832653 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017532433 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016832653 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2980889 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/012752 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2016302517 Country of ref document: AU Date of ref document: 20160629 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15747825 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017135000 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017020184 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017020184 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170921 |