WO2014171597A1 - 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 - Google Patents
나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 Download PDFInfo
- Publication number
- WO2014171597A1 WO2014171597A1 PCT/KR2013/008182 KR2013008182W WO2014171597A1 WO 2014171597 A1 WO2014171597 A1 WO 2014171597A1 KR 2013008182 W KR2013008182 W KR 2013008182W WO 2014171597 A1 WO2014171597 A1 WO 2014171597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- sensor
- conductive nanoparticles
- metal
- nanoparticles
- Prior art date
Links
- XCCYBFBFBLQKDZ-SDQBBNPISA-N CCC/C=C1\CC(CCC2)C2CCC1 Chemical compound CCC/C=C1\CC(CCC2)C2CCC1 XCCYBFBFBLQKDZ-SDQBBNPISA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
- G01N21/554—Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00349—Creating layers of material on a substrate
- B81C1/0038—Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/068—Optics, miscellaneous
Definitions
- the present invention relates to sensor technology for the detection of biological or non-biological materials, and more particularly, to a method of manufacturing a nanoparticle array, a sensor based on surface plasmon resonance, and an analysis method using the same.
- SPR Surface plasmon resonance
- SPPs surface plasmon polaritons
- the SPR is generally a collective vibration phenomenon of conduction band electrons propagating along the interface of a metal having a negative dielectric function and a medium having a positive dielectric function, and having an increased intensity than an incident electromagnetic wave and in a vertical direction at the interface. It is characterized by an evanescent wave that decreases exponentially with distance.
- the SPR may be classified into propagating plasmons observed at the surface of a flat metal having a thickness of about 10 to 200 nm and dielectric interface and localized surface plasmon resonance (LSPR) observed in nanoparticles or nanostructures.
- LSPR localized surface plasmon resonance
- Dual LSPRs identify specific molecules by detecting changes in the chemical and physical environment of the nanoparticles or nanostructure surface, such as changes in plasmon resonance wavelengths with maximum absorption or scattering rates due to refractive index changes in the media in contact with them.
- the concentration of the specific molecule in the medium can be obtained, and since it has a high sensitivity to the change in the refractive index, the detection can be performed by a label-free method, and the waveform plasmon by the conventional prism coupling can be achieved. It has many advantages over bulk SPR sensors.
- nano patterning techniques such as electron beam lithography, focused ion beam, or nanoimprint have been proposed on a substrate.
- these conventional techniques have limitations in improving yields in response to continuous processes and various substrate sizes, and defects easily occur due to defects or contamination when mechanical contact is required.
- a technique of depositing a metal thin film having a continuous profile and heat-treating it to form an array of nano-isolated structures isolated from each other has been proposed.
- the material of the substrate for forming the nanoislets is limited to heat resistant materials such as glass, and there is a problem in that a high density nanoparticle array cannot be obtained.
- the problem to be solved by the present invention is a high yield during the continuous process, low temperature process is possible not only wide the window of the substrate material, but also to secure the high-density conductive nanoparticles on the substrate to improve the SPR amplification effect It is to provide a method for producing an array of nanoparticles that can be.
- Another object of the present invention is to provide an SPR-based sensor manufactured by using an array of nanoparticles having the aforementioned advantages and having improved spectroscopic analysis sensitivity.
- another object of the present invention is to provide a spectroscopic analysis method having a simple analysis process, fast response and high reliability by using the SPR-based sensor.
- Method of manufacturing a nanoparticle array for solving the above problems, providing a mixed solution of ionic binder and conductive nanoparticles; Immersing a substrate in the mixed solution; And applying an electric field to the mixed solution in which the substrate is immersed to induce the conductive nanoparticles to be coated on the substrate.
- a sensor for spectral analysis the substrate; A polymer binder layer coated on the substrate; And conductive nano particles dispersed and fixed on the polymer binder layer, and a surface plasmon-based sensor for spectroscopic analysis may be provided.
- a spectroscopic analysis method comprising: immersing a sensor for spectroscopic analysis in a solution in which a target material is dispersed; And detecting a change in reflected or transmitted light at the sensor surface using SPR or LSPR.
- the spectroscopic spectroscopic analysis method includes immersing two or more sensors stacked spatially spaced apart from each other in a solution in which a target material is dispersed; And injecting light into the sensors to detect a change in reflected or transmitted light coupled in SPR or LSPR mode.
- a wet and economical nanoparticle array for rapidly coating a high density and dense metal nanoparticles onto a substrate by immersing the substrate in a mixed solution of the ionic binder and the conductive nanoparticles is applied externally.
- a method may be provided.
- the present invention by applying the sensor coated with the high-density metal nanoparticles for the spectroscopic analysis by the SPR or LSPR mode, it is possible to provide a sensor that improves the detection sensitivity according to the type and concentration of the target material. .
- the SPR and LSPR based spectroscopic analysis is performed by stacking a plurality of sensors, the number of sensors that are substantially stacked is increased through the effect of substantially increasing the density of conductive nanoparticles per unit area through which light is transmitted. Measurement sensitivity can be easily amplified.
- FIG. 1 is a flowchart illustrating a method of manufacturing a nanoparticle array according to an embodiment of the present invention.
- FIG. 2A to 2E illustrate a method of manufacturing a nanoparticle array according to an embodiment of the present invention.
- FIG 3 shows an apparatus for manufacturing a nanoparticle array according to an embodiment of the present invention.
- 4A and 4B are optical photograph images of an array of gold nanoparticles prepared according to the above Examples and Comparative Examples, respectively.
- 5A and 5B are scanning electron microscope (SEM) images of an array of gold nanoparticles prepared according to Examples and Comparative Examples, respectively.
- Figure 6a is a schematic diagram of a spectroscopic analysis device according to an embodiment of the present invention
- Figure 6b shows a spectroscopic analysis cuvette according to an embodiment of the present invention.
- Example 7 is a graph showing the response of the sensor according to the Example and Comparative Example measured using the spectroscopic analysis device.
- FIG. 8 is a perspective view showing a cuvette according to another embodiment of the present invention.
- 9A and 9B are graphs showing the absorbance of each wavelength band and the absorbance of each wavelength band of absorbance spectra measured using one to three LSPR based sensors for samples having different refractive indices according to an embodiment of the present invention. to be.
- 10 is a graph showing the relationship between the change in refractive index and the change in absorbance measured using a single or two LSPR sensors.
- a layer formed “on” a substrate or other layer refers to a layer formed directly on or above the substrate or other layer, or formed on an intermediate layer or intermediate layers formed on the substrate or other layer. It may also refer to a layer.
- a structure or shape disposed "adjacent" to another shape may have a portion that overlaps or is disposed below the adjacent shape.
- FIG. 1 is a flowchart illustrating a method of manufacturing a nanoparticle array according to an embodiment of the present invention
- Figures 2a to 2e shows a method of manufacturing a nanoparticle array according to an embodiment of the present invention.
- the ionic binder 10 is dissolved in a suitable solvent 20, and the conductive nanoparticles 30 are dispersed in the solvent 20 to prepare a mixed solution 40.
- the mixed solution 40 may be provided by adding the ionic binder 10 in the solvent 20 in which the conductive nanoparticles 30 are dispersed (S10).
- the ionic binder 10 and the conductive nanoparticles 30 may be combined with each other to have a gel form.
- the mixed solution 40 may be agitated or applied ultrasonic energy to prevent aggregation of the conductive nanoparticles to prevent uniform dispersion and aggregation of the conductive nanoparticles.
- the ionic binder 10 may be a polymer exhibiting cationic or anionic properties in the mixed solution 40.
- the polymer may be selected from ionic polymers having a molecular weight of about 1,000 kDal to 60,000 kDal. When the molecular weight is less than 1,000 kDal, the fixing force on the substrate of the conductive nanoparticles described below is not sufficient, and when the molecular weight is more than 60,000 kDal, the viscosity is excessive and sufficient flux can be expected even if an electric field is applied as described below. none.
- the cationic polymer is poly diallydimethylammonium chloride (poly diallydimethylammonium chloride), poly allylamine hydrochloride (poly allylamine hydrochloride), polyvinylbenzyltrimethyl ammonium chloride (poly 4-vinylbenzyltrimethyl ammonium chloride), polyethylene It may include any one of the imine (polyethyleneimine) or a mixture thereof.
- the anionic polymer is poly acrylic acid, poly sodium 4-styrene sulfonate, poly vinylsulfonic acid, poly sodium salt, polyamino acid amino acids) or mixtures thereof.
- polymers described above are exemplary, and polymers or copolymers having other known ionic groups, polymers in which the positive or negative ionic groups are bonded to the polymer backbone described above, other synthetic resins, and natural resins, or electrolytes Polymers are also included in the present invention.
- the solvent can be any of water, such as distilled or deionized water, aliphatic alcohols, aliphatic ketones, aliphatic carboxylic acid esters, aliphatic carboxylic acid amides, aromatic hydrocarbons, aliphatic hydrocarbons, acetonitrile, aliphatic sulfoxides or mixtures thereof. And, these are exemplary only and may include other known polar solvents.
- the conductive nanoparticles 20 combined with the polymer 10 in the mixed solution 40 may have an average diameter of 10 nm to 200 nm, and may be spherical, nanotubes, nanocolumns, nanorods, nanopores, and nanoparticles. Any one of the wires or a combination thereof may have a shape. These particles can be solid or porous or hollow, depending on the shape.
- the conductive nanoparticles are conductive particles of carbon, graphite, metalloid, metal, alloy of the metalloid or metal, conductive metal oxide, metal nitride, or a conductive layer such as a metal thin film coated on glass or polymer insulating beads. Particles of the core shell structure.
- the metalloid may be any one or alloys of antimony (Sb), germanium (Ge), and arsenic (As).
- the metal is a metal, a transition metal or a post-transition metal, and includes titanium (Ti), zinc (Zn), aluminum (Al), stanium (Sc), chromium (Cr), manganese (Mn), iron (Fe), and cobalt.
- Co nickel (Ni), copper (Cu), indium (In), tin (Sn), yttrium (Y), zirconium (Zr), neobium (Nb), molybdenum (Mo), ruthenium (Ru ), Rhodium (Rh), palladium (Pd), gold (Au), silver (Ag), platinum (Pt), strontium (Sr), tungsten (W) or cadmium (Cd), tantalum (Ta), titanium ( Ti), titanium (Ti) or alloys thereof.
- indium tin oxide ITO
- indium zinc oxide IZO
- aluminum doped zinc oxide AZO
- gallium indium zinc oxide GIZO
- ZnO zinc oxide
- conductive nitride tungsten nitride (WN) can be exemplified without limitation.
- an ionic binder 20 is added at 0.01 wt% to 0.3 wt% with respect to the total weight of the mixed solution 40, and the conductive nanoparticles 30 are at 0.1 wt%-0.3 wt%. May be added, and the remaining weight percent may be filled with a solvent.
- the weight% described above may be determined according to the type of the ionic binder 20 and the conductive nanoparticles 30, but the present invention is not limited thereto.
- suitable dispersion stabilizers or pH regulators such as boric acid, orthophosphoric acid, acetic acid, ascorbic acid and citric acid may be added to the alginic acid, alginic acid derivatives, and mixtures thereof.
- a photoinitiator may be added for the crosslinking reaction.
- the substrate 50 is immersed in the mixed solution 40.
- Substrate 50 may be secured in a container by a suitable mechanism and two or more substrates may be immersed.
- Substrate 50 may be cleaned or surface treated prior to dipping.
- Substrate 50 may be a transparent or opaque substrate, preferably a transparent substrate.
- the thickness of these substrates may be in the range of 50 ⁇ m to 2 mm.
- the transparent substrate may include, for example, glass or a polymer material optically having a light transmittance of 85% or more.
- the polymer material is polycarbonate, polyethylene terephthalate, polymethyl methacrylate, traacetyl cellulose, cyclic olefin, polyethylene terephthalate, polyarylate, polyacrylate, polyethylene naphthalate, polybutylene terephthala Rate, or polyimide, and the invention is not limited to these examples.
- the opaque substrate may include sapphire or silicon single crystal, but the present invention is not limited thereto. Further, in other embodiments, the substrate 50 may comprise silicone rubber, latex, or magnetic material.
- an electric field E is applied to the mixed solution while the substrate 50 is immersed.
- the direction of the electric field may be determined according to the main surface of the coating of the substrate 50, that is, the surface to which the conductive nanoparticles should be mainly coated. For example, as shown in FIG. 2C, when the conductive nanoparticles are mainly coated on the upper surface of the substrate 50, an electric field may be formed vertically downward when a cationic binder is used. In contrast, when an anionic binder is used, an electric field can be formed vertically upwards.
- the conductive nanoparticles 30 bonded to the ionic binder by the electric field E are accelerated and electrophoresed to the substrate, whereby a directional flux of the conductive nanoparticles 30 to the substrate 50 occurs.
- the flow is accelerated by the electric field (E), which is activated with a larger kinetic energy, thereby improving the coating speed of the conductive nanoparticles 30 onto the main surface of the substrate 50, as well as the conductive nanoparticles (
- the fixing force of 30 may be improved and the conductive nanoparticles 30 may be coated on the substrate 50 in a high density.
- the substrate 50 is an insulator, the substrate 50 is in an electrically floating state, the electric field E is formed outside the mixed solution 40, and the mixed solution 40 It penetrates inside.
- the electric field E may have an electrostatic field, an alternating electric field, or another waveform, but the present invention is not limited thereto.
- the above-described electric field E may be generated by plasma discharge in the chamber, which will be described later with reference to FIG. 3.
- the substrate 50 is recovered from the mixed solution 40. Thereafter, drying of the recovered substrate 50 may be performed, or ultraviolet rays or heat may be irradiated for the crosslinking reaction of the binder. In some embodiments, cleaning of the substrate 50 may be performed. Unfixed conductive nanoparticles may be removed by the cleaning, and then shrinkage of the ionic binder may occur by a drying process.
- the conductive nanoparticles 30 are fixed onto the substrate 50 by the polymer binder layer 10 ′ derived from the cationic binder.
- the conductive nanoparticles can form a monolayered nanoparticle array.
- the upper surface of the conductive nanoparticles 30 is exposed as the polymer binder layer 10 ′ is contracted, and thus may be used as a surface plasmon-based sensor or LSPR as described below.
- the polymeric binder layer 10 ′ may be a dielectric.
- the fixing material L may be further formed on the conductive nanoparticles 30 to be specifically bound to the target material to be measured.
- the fixing material may be formed on the surface of the binder between the conductive nanoparticles 30 as well as the surface of the conductive nanoparticles 30.
- the immobilized substance (L) is any one of a synthetic reagent including a small molecule compound, an antigen, an antibody, a protein, a peptide, a DNA, an RNA, a PNA, an enzyme, an enzyme substrate, a hormone, a hormone receptor, and a functional group capable of binding to the target substance, and It may include a replica, or a combination thereof, and reference may be made to known techniques regarding the fixing method thereof.
- FIG 3 illustrates an apparatus 1000 for manufacturing a nanoparticle array according to an embodiment of the present invention.
- the manufacturing apparatus 1000 is the electric field E generator described above with reference to FIG. 2C.
- the manufacturing apparatus 1000 may have two electrodes for generating an electric field, that is, the anode AE and the cathode CE.
- the manufacturing apparatus 1000 may further include a suitable gas flow regulator for gas discharge.
- Gas P enters into the space defined by anode AE and cathode CE as indicated by arrow A, and is subsequently discharged as indicated by arrow B.
- the gas P may be provided from either or both of the anode AE and the cathode CE, for which the anode AE and the cathode CE are shaped like a shower head. It may have a through hole.
- the gas may include any one of helium (He), neon (Ne), argon (Ar), nitrogen (N 2 ), and air, or a mixture thereof.
- He helium
- Ne neon
- Ar argon
- N 2 nitrogen
- air or a mixture thereof.
- the cathode CE may be electrically coupled to an AC generator for gas discharge, that is, plasma generation, of the gas P, and the anode AE may be grounded. Alternatively, a positive voltage may be applied to the anode AE and a negative voltage may be applied to the cathode CE for the DC discharge instead of the AC discharge.
- power is supplied to the anode AE and / or the cathode CE for plasma generation. With this supplied, the fixing process of the nanoparticles is performed for several seconds to several minutes.
- the distance from the anode AE to the vessel 60 can be maintained at a distance of 0.5 cm to 40 cm.
- the cathode CE when power is applied to the AC generator of the cathode CE, the cathode CE has a negative potential by self-biasing, whereby the grounded anode AE And an electric field E in the direction of the arrow is generated between the cathode and the cathode CE.
- a flow of the conductive nanoparticles and the ionic binder in the mixed solution is generated, and the conductive nanoparticles can be fixed onto the substrate 50 by lasting several seconds to several minutes.
- the illustrated positions of the anode AE and the cathode CE may be opposite to each other.
- the anode AE is not limited to a flat one, and has a side wall like a lid to limit the gas discharge space or may be a main body of the chamber.
- the pressure in the space for the gas discharge may be at or below vacuum, and a vacuum pump may be provided to the manufacturing apparatus 1000 for this purpose.
- a mixed solution was prepared by adding 0.01% by weight of an electrolyte polymer and 0.01% of a stabilizer as the ionic binder described above, and adding 0.05% by weight of gold nanoparticles to distilled water as conductive nanoparticles and stirring.
- a substrate on which the conductive nanoparticles are to be coated polyethyl terephthalate (PET) or polycarbonate (PC), which is a polymer film, was cleaned and surface treated with distilled water, and then immersed in the mixed solution.
- PET polyethyl terephthalate
- PC polycarbonate
- the mixed solution was placed in an electric field generating device so that the conductive nanoparticles bonded to the ionic binder could be quickly and uniformly coated on the substrate, and the electric field was transmitted into the mixed solution to proceed with a coating reaction to prepare a nano array. .
- the absorbance is measured while the conductive nanoparticles are coated. This was done. According to the embodiment, a coating density of 0.5 was obtained within about 5 minutes, and thus a suitable coating density coating process was completed. However, in the case of the comparative example, a coating density having an absorbance of 0.2 was obtained only after at least 12 hours.
- 4A and 4B are black and white converted images of an optical photograph image of an array of gold nanoparticles prepared according to the above examples and comparative examples, respectively.
- the substrate used is polyethyl terephthalate (PET).
- PET polyethyl terephthalate
- 4A and 4B it can be seen that the case according to the embodiment has a darker color than the case according to the comparative example. This indicates that the case according to the example was coated with gold nanoparticles at a higher density than the comparative example.
- 5A and 5B are scanning electron microscope (SEM) images of an array of gold nanoparticles prepared according to Examples and Comparative Examples, respectively.
- the substrate used is polycarbonate (PC).
- the gold nanoparticles are coated on the substrate in a more uniform and higher density than in the case of the example according to the comparative example.
- the present invention it is possible to coat the gold nanoparticles on the substrate in a high density even in a short time by the wet method.
- the above-described experimental example relates to gold nanoparticles
- the characteristic bonding of the conductive nanoparticles to the binder is not necessarily required, and thus the above-described experimental examples may be applied to the other conductive nanoparticles described above. It should be understood that it is not limited.
- the conductive nanoparticles and the ionic polymer combined with the ionic polymer in a mixed solution in which the ionic binder is dispersed Nanoparticles can be activated with kinetic energy by an electric field.
- the activated ionic polymer or the conductive nanoparticles may increase their flux delivered to the surface of the substrate and provide a strong fixing force on the surface of the polymer substrate.
- the coating speed of the metal nanoparticles can be improved and coated on the substrate with high density.
- a sensor for SPR-based spectroscopic analysis as shown in FIG. 2D was manufactured, and Genesys 10A UV-visible spectroscopic analysis apparatus of Thermo-Fisher (2000) having a basic configuration shown in FIG. 6A. ), The absorbance change was measured in the configuration shown in Figure 6a.
- the spectroscopic sensor 100 may be made of a spectroscopic cuvette 300A as shown in FIG. 6B.
- the spectroscopic analyzer 2000 may include an SPR including a light emitting part 2000_1, a transparent substrate 50, and an array 30L of conductive nanoparticles formed on a main surface of the transparent substrate 50.
- the LSPR sensor 100 and the light receiver 2000_2 are included.
- the light emitter 2000_1 may emit light passing through the transparent substrate 50. Preferably, light may be emitted in a direction perpendicular to the transparent substrate 50, but the present invention is not limited thereto.
- the light emitter 2000_1 and the light receiver 2000_2 may be located in opposite directions with respect to the sensor 100.
- the present invention is not limited thereto, and the light receiving unit 2000_1 and the light emitting unit 2000_2 do not face each other depending on a measurement mode of transmitted light or reflected light, or an optical system such as a suitable reflecting plate or lens is combined. have.
- the light may have a wavelength in the range of 380 nm to 1500 nm including the visible light region in the ultraviolet region.
- the sensor 100 may be disposed singly or two or more on the light path from the light emitting unit 2000_1 to the light receiving unit 2000_2. A configuration in which two or more are disposed will be described later with reference to FIG. 8.
- the spectroscopic analyzer 2000 measures and analyzes the rate of change of absorbance value calculated from the light emitted from the light emitting part 2000_1 and the light incident from the light receiving part 2000_2 or the absorption wavelength value having the maximum signal size.
- the rate of change of absorbance and the wavelength of absorption are based on the LSPR phenomenon of the conductive nanoparticles, and is based on the change in the effective refractive index around the conductive nanoparticles according to the reactivity of the biological or non-biological material in the sample in contact with the conductive nanoparticles. Induced. As described above, the change in absorbance change rate and absorption wavelength value can be improved by increasing the density of the conductive nanoparticles.
- the spectroscopic analyzer 2000 may further include an analysis module (not shown) for analyzing the target material.
- the analysis module may include a computing system such as a conventional microprocessor, a memory, and a storage device, but the present invention is not limited thereto.
- the cuvette 300A may be made of a transparent material so that light L in may be incident from the light emitting part, and light L out passing through the sensor 100 may be transmitted to the light receiving part.
- the cuvette 40 may further include a fixing part for fixing the sensor 100 therein, and may further include an injection part for injecting a reaction sample including a target material to be analyzed. Can be.
- FIG. 7 is a graph showing the response of the sensor according to the embodiment and the comparative example measured using the spectroscopic analyzer 2000 of FIG. 6A.
- the rate of change in absorbance increase with respect to the change in refractive index increase in the measurement sensor is improved by at least 43% compared to the comparative example according to the embodiment. This is due to the densification of the coated conductive nanoparticles.
- FIG. 8 is a perspective view showing a cuvette 300B according to another embodiment of the present invention.
- the cuvette 300B includes two SPR and LSPR based sub-sensors 100_1 and 100_2 disposed on an optical path between the light emitting part and the light receiving part of the spectroscopic analyzer 2000 of FIG. 6A. do.
- each of the arrays 30L of conductive nanoparticles on these sub-sensors 100_1 and 100_2 may be the same or different from each other in terms of coating density and coating thickness.
- absorbances for wavelengths having different optical characteristics can be simultaneously obtained and used for analysis for detecting two or more materials.
- each of the sensors 100_1, 100_2 may be used for spectroscopic analysis of multiple homogeneous or heterogeneous samples at the same time by including a fixed material that binds to the same or a different target material.
- the density of the conductive nanoparticles per unit area through which light is transmitted is substantially reduced by using a plurality of sensors that are spatially stacked and arranged along the optical path from the light emitting unit to the light receiving unit by SPR or LSPR based analysis.
- the measurement sensitivity can be easily amplified substantially by the number of sensors used.
- 9A and 9B are graphs showing the absorbance of each wavelength band and the absorbance of each wavelength band of absorbance spectra measured using one to three LSPR based sensors for samples having different refractive indices according to an embodiment of the present invention. to be.
- the refractive index (RI) in distilled water at room temperature is 1.3333 and the refractive index in 40% glycerol is 1.3841, which is the same in the case of one LSPR sensor and two or three sensors.
- the increase in absorbance for a wavelength within a specific range that is, the increase in LSPR detection signal, is about 2 times higher when measured by two sensors than when measured by a single sensor, and includes three sensors. If it is about 3 times more is increased.
- the absorbance increases by about 2 times or more.
- Table 1 below shows the detection sensitivity (Comparative Examples 1 and 2) obtained from SPR-based spectroscopic analysis experiments using the conductive nanoparticles described in the paper and the detection sensitivity measured while increasing the number of analysis chips according to the embodiment of the present invention. Examples 1 to 3 are shown.
- Example 1 1 sensor 1.0
- Example 2 2 sensors 2.0
- Example 3 3 sensors 2.6 Comparative Example 1 (Anal Chem 2004, 76, 5370-5378) Nanostructures on Glass Substrates 1.2 Comparative Example 2 (Microelectronic Engineering 86 (2009) 2437-2441) Nanostructures on Glass Substrates 0.7 Comparative Example 3 (Anal Chem 2002, 74, 504-509) Nanostructures on Glass Substrates 0.5
- the detection sensitivity that is, the magnitude of the LSPR signal is measured differently according to the type of spectroscopic analyzer and the number of sensors.
- the magnitude of the LSPR signal increases approximately several times.
- the reaction slope is larger than the reaction slope obtained in the analysis according to Comparative Examples 1 and 2.
- the amount of change in absorbance in the optical absorption spectrum is approximately higher than when using a single sensor when using two sensors at various wavelengths. Increasing by more than two times, it can be seen that the absorbance change is increased by three times or more when using three sensors.
- 10 is a graph showing the relationship between the change in refractive index and the change in absorbance measured using a single or two LSPR sensors.
- the ratio of the change in absorbance to the rate of change in refractive index is about 1.0, but in the case of two LSPR sensors, the ratio is about 2.0, and in the case of three LSPR sensors, the ratio is about. You can see the improvement to 2.6.
- the spectroscopic analysis device can be modified as follows, which is also included within the scope of the present invention.
- the light emitting portion and the light receiving portion may be aligned up and down with respect to the well-placed well plate, respectively, as shown in FIG. 6A.
- the sensors may be manufactured in a small size that can be carried in each well of the well plate, and arranged in an array form so as to be simultaneously supported in the wells.
- each of the substrates of the sensors may be arranged in a horizontal direction corresponding to the light emitting portion and the light receiving portion disposed up and down, and in order to apply two or more sensors to a single well, each sensor may be spaced apart, for example, by two sheets. Can be stacked in a vertical direction.
- the plurality of LSPR sensors may be repeatedly stacked with each other with spacers interposed therebetween such that they are attached to each other such as microfluidic devices to provide various fluid passageways.
- the LSPR sensor may be selectively used only at the top and / or bottom of the array to amplify the absorbance due to LSPR phenomenon several times.
- a substrate of a polymer material that is easy to mold and process can be used, thereby reducing manufacturing costs.
- it is possible to analyze the target material without the pretreatment step for the formation of the labeling material such as chromophore using the LSPR phenomenon it is possible to quickly analyze a large amount of material.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
실험예 | 센서 | 검출 감도(흡광도변화/굴절률변화) |
실시예 1 | 1 개의 센서 | 1.0 |
실시예 2 | 2 개의 센서들 | 2.0 |
실시예 3 | 3 개의 센서들 | 2.6 |
비교예 1(Anal Chem 2004, 76, 5370-5378) | 유리 기판 상의 나노 구조들 | 1.2 |
비교예 2(Microelectronic Engineering 86 (2009) 2437-2441) | 유리 기판 상의 나노 구조들 | 0.7 |
비교예 3(Anal Chem 2002, 74, 504-509) | 유리 기판 상의 나노 구조들 | 0.5 |
Claims (34)
- 이온성 바인더 및 도전성 나노 입자들의 혼합 용액을 제공하는 단계;상기 혼합 용액 내에 기판을 침지하는 단계; 및상기 도전성 나노 입자들이 상기 기판 상에 코팅되는 것을 유도하도록 상기 기판이 침지된 상기 혼합 용액에 전기장을 인가하는 단계를 포함하는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 이온성 바인더 및 도전성 나노 입자들은 상기 혼합 용액 내에서 겔 상태를 갖는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 이온성 바인더는 폴리다이알릴다이메틸암모늄 클로라이드(poly diallydimethylammonium chloride), 폴리알릴아민 하이드로클로라이드(poly allylamine hydrochloride), 폴리비닐벤질트리메틸 암모늄 클로라이드(poly 4-vinylbenzyltrimethyl ammonium chloride), 폴리에틸렌이민(polyethyleneimine) 중 어느 하나 또는 이들의 혼합물을 포함하는 양이온성 고분자, 또는 폴리아크릴산(poly acrylic acid), 폴리소디움 스티렌 술포네이트(poly sodium 4-styrene sulfonate), 폴리비닐술포닉산(poly vinylsulfonic acid), 폴리소디움염(poly sodium salt), 폴리아미노산 (poly amino acids) 중 어느 하나 또는 이들의 혼합물을 포함하는 음이온성 고분자를 포함하는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 기판은 투명한 재료를 포함하는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 기판은 고분자 기판을 포함하는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 전기장은 정전기장 또는 교류 전기장인 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 전기장은 플라즈마 방전에 의해 생성되는 나노 입자 어레이의 제조 방법.
- 제 6 항에 있어서,상기 기체는, 헬륨(He), 네온(Ne), 아르곤(Ar), 질소(N2), 및 공기 중 어느 하나 또는 이들의 혼합 기체를 포함하는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 기판은 전기적으로 플로팅되어 있는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 도전성 나노 입자들은 구형, 나노 튜브, 나노 컬럼, 나노 로드, 나노 기공 및 나노 와이어 중 어느 하나 또는 이들이 조합된 형상을 갖는 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 도전성 나노 입자들은 다공질 또는 중공형인 나노 입자 어레이의 제조 방법.
- 제 1 항에 있어서,상기 도전성 나노 입자들은 탄소, 흑연, 준금속, 금속, 도전성 금속 산화물, 또는 금속 질화물의 입자들을 포함하거나, 절연성 비드 상에 상기 입자들이 코팅된 코어 쉘 구조의 입자 또는 이들의 조합을 포함하는 나노 입자 어레이의 제조 방법.
- 제 12 항에 있어서,상기 준금속은, 안티몬(Sb), 게르마늄(Ge) 및 비소(As) 중 어느 하나 또는 이들의 합금을 포함하고,상기 금속은 금속, 전이 금속 또는 전이후 금속으로서, 타이타늄(Ti), 아연(Zn), 알루미늄(Al), 스탄튬(Sc), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 인듐(In), 주석(Sn), 이트륨(Y), 지르코늄(Zr), 네오븀(Nb), 몰리브데늄(Mo), 루테늄(Ru), 로듐(Rh), 파라듐(Pd), 금(Au), 은(Ag), 백금(Pt), 스트론튬(Sr), 텅스텐(W) 또는 카드뮴(Cd), 탄탈륨(Ta), 타이타늄(Ti), 타이타늄(Ti) 또는 이들의 합금을 포함하며,상기 도전성 금속 산화물은 인듐 틴 옥사이드(ITO), 인듐 아연 옥사이드(IZO), 알루미늄 도프된 아연 산화물(AZO), 갈륨 인듐 아연 산화물(GIZO), 아연 산화물(ZnO) 또는 이들의 혼합물을 포함하는 나노 입자 어레이의 제조 방법.
- 기판;상기 기판 상에 코팅된 고분자 바인더층; 및상기 고분자 바인더층 상에 분산 고정된 도전성 나노 입자들을 포함하는 표면 플라즈몬 기반의 분광 분석용 센서.
- 제 14 항에 있어서,상기 고분자 바인더층은 유전체인 표면 플라즈몬 기반의 분광 분석용 센서.
- 제 14 항에 있어서,상기 고분자 바인더층은 이온성 고분자를 포함하는 분광 분석용 센서.
- 제 14 항에 있어서,상기 도전성 나노 입자들은 전파되는 표면 플라즈몬 폴라리톤(SPP) 파장 및 국소 표면 플라즈몬 공명(LSPR) 모드와 결합하도록 구성되는 분광 분석용 센서.
- 제 14 항에 있어서,상기 도전성 나노 입자들은 탄소, 흑연, 준금속, 금속, 도전성 금속 산화물, 또는 금속 질화물의 입자들을 포함하거나, 절연성 비드 상에 상기 입자들이 코팅된 코어 쉘 구조의 입자 또는 이들의 조합을 포함하는 분광 분석용 센서.
- 제 14 항에 있어서,상기 준금속은, 안티몬(Sb), 게르마늄(Ge) 및 비소(As) 중 어느 하나 또는 이들의 합금을 포함하고,상기 금속은 금속, 전이 금속 또는 전이후 금속으로서, 타이타늄(Ti), 아연(Zn), 알루미늄(Al), 스탄튬(Sc), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 인듐(In), 주석(Sn), 이트륨(Y), 지르코늄(Zr), 네오븀(Nb), 몰리브데늄(Mo), 루테늄(Ru), 로듐(Rh), 파라듐(Pd), 금(Au), 은(Ag), 백금(Pt), 스트론튬(Sr), 텅스텐(W) 또는 카드뮴(Cd), 탄탈륨(Ta), 타이타늄(Ti), 타이타늄(Ti) 또는 이들의 합금을 포함하며,상기 도전성 금속 산화물은 인듐 틴 옥사이드(ITO), 인듐 아연 옥사이드(IZO), 알루미늄 도프된 아연 산화물(AZO), 갈륨 인듐 아연 산화물(GIZO), 아연 산화물(ZnO) 또는 이들의 혼합물을 포함하는 분광 분석용 센서.
- 제 14 항에 있어서,상기 도전성 나노 입자들은 구형, 나노 튜브, 나노 컬럼, 나노 로드, 나노 기공 및 나노 와이어 중 어느 하나 또는 이들이 조합된 형상을 갖는 분광 분석용 센서.
- 제 14 항에 있어서,상기 도전성 나노 입자들은 다공질 또는 중공형인 분광 분석용 센서.
- 제 14 항에 있어서,상기 도전성 나노 입자들 상에 타겟 물질과 특이적 결합이 가능한 고정 물질을 더 포함하는 분광 분석용 센서.
- 제 22 항에 있어서,상기 고정 물질은 상기 타겟 물질과 결합하는 저분자 화합물, 항원, 항체, 단백질, 펩타이드, DNA, RNA, PNA, 효소, 효소 기질, 호르몬, 호르몬 수용체, 관능기를 포함하는 합성 시약 중 어느 하나, 이의 모사물, 또는 이들의 조합을 포함하는 분광 분석용 센서.
- 제 14 항에 있어서,상기 기판은 절연성인 분광 분석용 센서.
- 제 14 항에 있어서,상기 기판은 유리, 실리콘, 실리콘 고무, 라텍스, 전이 금속 플레이트, 자성 재료, 실리콘 산화물, 고분자 재료를 포함하는 분광 분석용 센서.
- 제 25 항에 있어서,상기 고분자 재료는, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 트라아세틸셀룰로오스, 환상올레핀, 폴리에틸렌테레프탈레이트, 폴리아릴레이트, 폴리아크릴레이트, 폴리에틸렌 나프탈레이트, 폴리부틸렌테레프타레이트, 또는 폴리이미드를 포함하는 분광 분석용 센서.
- 타겟 물질이 분산된 용액 내에 분광 분석용 센서를 침지하는 단계; 및SPR 또는 LSPR을 이용하여 상기 센서 표면에서의 반사광 또는 투과광의 변화를 검출하는 단계를 포함하며,상기 분광 분석용 센서는, 제 14 항 기재의 것인 분광 분석 방법.
- 제 27 항에 있어서,상기 반사광 또는 투과광의 변화로부터 흡광도 및 굴절률의 변화 중 적어도 어느 하나를 산출하는 단계를 더 포함하는 분광 분석 방법.
- 제 27 항에 있어서,상기 분광 분석용 센서의 가시 광선 흡광도는 순수(deionized water) 내에서 0.5 내지 1의 범위 내인 분광 분석 방법.
- 제 27 항에 있어서,상기 분광 분석용 센서는 상기 용액 내 광 경로 상에 배치되는 2 개 이상의 센서들을 포함하는 것을 특징으로 하는 분광 분석 방법.
- 타겟 물질이 분산된 용액 내에 서로 공간적으로 이격 적층된 2 이상의 센서들을 침지하는 단계; 및상기 센서들에 광을 입사시켜 SPR 또는 LSPR 모드로 결합된 반사광 또는 투과광의 변화를 검출하는 단계를 포함하는 분광 분석 방법.
- 제 31 항에 있어서,상기 반사광 또는 투과광의 변화로부터 흡광도 및 굴절률의 변화 중 적어도 어느 하나를 산출하는 단계를 더 포함하는 분광 분석 방법.
- 제 1 기판; 및 상기 제 1 기판의 주면 상의 도전성 나노 입자들의 어레이를 포함하는 제 1 서브 센서; 및상기 제 1 기판의 상기 주면과 평행 이격 배치된 주면을 갖는 제 2 기판; 및 상기 제 2 기판의 상기 주면 상에 분산 고정된 도전성 나노 입자들의 어레이를 포함하는 제 2 서브 센서가 결합된 분광 분석용 센서.
- 제 33 항에 있어서,상기 제 1 서브 센서와 상기 제 2 서브 센서의 각 도전성 나노 입자들의 어레이들은 코팅 밀도와 코팅 두께에 있어 서로 동일하거나 서로 다른 분광 분석용 센서.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/784,569 US10359362B2 (en) | 2013-04-15 | 2013-09-10 | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
US14/863,238 US10060851B2 (en) | 2013-03-05 | 2015-09-23 | Surface plasmon detection apparatuses and methods |
US16/053,631 US20190094143A1 (en) | 2013-03-05 | 2018-08-02 | Surface plasmon detection apparatuses and methods |
US16/513,231 US20190339200A1 (en) | 2013-04-15 | 2019-07-16 | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
US17/185,737 US20220018768A1 (en) | 2013-04-15 | 2021-02-25 | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
US17/188,197 US20220018769A1 (en) | 2013-03-05 | 2021-03-01 | Surface plasmon detection apparatuses and methods |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0041228 | 2013-04-15 | ||
KR20130041228 | 2013-04-15 | ||
KR20130083142 | 2013-07-15 | ||
KR10-2013-0083142 | 2013-07-15 |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/784,569 A-371-Of-International US10359362B2 (en) | 2013-04-15 | 2013-09-10 | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
US14/773,304 Continuation-In-Part US20160161406A1 (en) | 2013-03-05 | 2014-03-05 | Cartridge for analyzing specimen by means of local surface plasmon resonance and method using same |
PCT/KR2014/001799 Continuation-In-Part WO2014137152A1 (ko) | 2013-03-05 | 2014-03-05 | 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법 |
US14/863,238 Continuation-In-Part US10060851B2 (en) | 2013-03-05 | 2015-09-23 | Surface plasmon detection apparatuses and methods |
US16/513,231 Continuation US20190339200A1 (en) | 2013-04-15 | 2019-07-16 | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014171597A1 true WO2014171597A1 (ko) | 2014-10-23 |
Family
ID=51731516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/008182 WO2014171597A1 (ko) | 2013-03-05 | 2013-09-10 | 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 |
Country Status (3)
Country | Link |
---|---|
US (3) | US10359362B2 (ko) |
KR (1) | KR101592241B1 (ko) |
WO (1) | WO2014171597A1 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101768664B1 (ko) * | 2015-09-07 | 2017-08-17 | 주식회사 엠셀 | 마이크로 어레이 기판 제조방법 및 마이크로 어레이 기판 제조장치 |
CN107203081A (zh) * | 2017-05-08 | 2017-09-26 | 东南大学 | 一种等离激元宽光谱调控的智能变色玻璃 |
CN107249758A (zh) * | 2014-12-15 | 2017-10-13 | 福莱森斯有限公司 | 表面等离子体检测装置及方法 |
US10060851B2 (en) | 2013-03-05 | 2018-08-28 | Plexense, Inc. | Surface plasmon detection apparatuses and methods |
CN109154566A (zh) * | 2016-05-17 | 2019-01-04 | 福莱森斯有限公司 | 生物传感器和使用其分析样品的方法 |
US10359362B2 (en) | 2013-04-15 | 2019-07-23 | Plexense, Inc. | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
WO2024125254A1 (zh) * | 2022-12-15 | 2024-06-20 | 中国科学院深圳先进技术研究院 | Lspr传感芯片、制备方法、lspr传感器及应用 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104568850B (zh) * | 2014-12-25 | 2018-06-05 | 中北大学 | 一种利用表面等离子芯片的计算芯片成像生物传感平台 |
CN104568848B (zh) * | 2014-12-25 | 2018-10-12 | 中北大学 | 一种用于生物传感器的表面等离子芯片及其制备方法 |
EP3051273A1 (en) * | 2015-02-02 | 2016-08-03 | Nokia Technologies OY | A mechanical deformation sensor based on plasmonic nanoparticles |
US11499248B2 (en) * | 2017-03-15 | 2022-11-15 | Lawrence Livermore National Security, Llc | Electric field driven assembly of ordered nanocrystal superlattices |
CN110945344B (zh) * | 2017-06-01 | 2023-09-12 | 港大科桥有限公司 | 具有梯度纳米结构的传感器及其使用方法 |
US11377342B2 (en) * | 2018-03-23 | 2022-07-05 | Wayne Fueling Systems Llc | Fuel dispenser with leak detection |
US11245044B2 (en) * | 2020-01-14 | 2022-02-08 | Hoon Kim | Plasmonic field-enhanced photodetector and image sensor |
US20230129378A1 (en) * | 2020-02-24 | 2023-04-27 | The Texas A&M University System | Systems and methods for detection of analytes |
WO2021231264A1 (en) * | 2020-05-12 | 2021-11-18 | The Regents Of The University Of Michigan | Localized surface plasmon resonance sensor systems and methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100480340B1 (ko) * | 2002-11-02 | 2005-03-31 | 한국전자통신연구원 | 정렬된 나노 크기의 금속 구조체들을 사용하는 국소 표면플라즈몬 센서 및 그 제조 방법 |
KR100787046B1 (ko) * | 2006-02-09 | 2007-12-21 | 연세대학교 산학협력단 | 나노 크기의 정렬된 금속 구조체들을 사용하는 국소 표면플라즈몬 센서 |
KR20120013770A (ko) * | 2010-08-06 | 2012-02-15 | 삼성전자주식회사 | 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광 소자 및 그 제조 방법 |
KR20120014206A (ko) * | 2009-07-01 | 2012-02-16 | 한국과학기술연구원 | 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템 |
KR101145133B1 (ko) * | 2009-11-17 | 2012-05-14 | 한국과학기술원 | 금속 나노입자 전자 이동을 이용한 플라즈몬 센서 및 그 제조 방법 |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102139A (ja) | 1985-10-30 | 1987-05-12 | Canon Inc | センサ− |
JPS62187248A (ja) | 1986-02-13 | 1987-08-15 | Toyama Pref Gov | 薄膜aeセンサ− |
US6818259B1 (en) | 1989-10-31 | 2004-11-16 | The United States Of America As Represented By The National Aeronautics And Space Administration | Porous article with surface functionality and method for preparing same |
JPH0747265A (ja) | 1993-08-09 | 1995-02-21 | Maruyoshi:Kk | 高分子ゲルによるメカノケミカル素子及び該素子の制御 方法 |
KR0136144B1 (ko) | 1994-12-26 | 1998-07-01 | 김만제 | 도포안정성이 우수한 무방향성 전기강판 표면의 절연피막 형성용 피복조성물 및 이를 이용한 절연피막 제조방법 |
JPH10307104A (ja) | 1997-05-07 | 1998-11-17 | Shimadzu Corp | Sprセンサ |
KR100265692B1 (ko) | 1997-07-03 | 2000-09-15 | 윤덕용 | 에이에프엠을이용한비휘발성메모리소자와해당메모리소자의운영방법 |
DE19802971C2 (de) | 1998-01-27 | 1999-12-02 | Fraunhofer Ges Forschung | Plasmareaktor |
US6429023B1 (en) | 1998-07-20 | 2002-08-06 | Shayda Technologies, Inc. | Biosensors with polymeric optical waveguides |
AU769571B2 (en) | 1999-04-28 | 2004-01-29 | Universitat Zurich | Polyionic coatings in analytic and sensor devices |
DE19963378A1 (de) | 1999-12-28 | 2001-07-12 | Alstom Power Schweiz Ag Baden | Verfahren zur Herstellung von Isolierungen elektrischer Leiter mittels Pulverbeschichtung |
JP2004506530A (ja) * | 2000-08-24 | 2004-03-04 | ウィリアム・マーシュ・ライス・ユニバーシティ | ポリマー巻き付け単層カーボンナノチューブ |
US6770721B1 (en) | 2000-11-02 | 2004-08-03 | Surface Logix, Inc. | Polymer gel contact masks and methods and molds for making same |
ES2208530T3 (es) | 2001-04-27 | 2004-06-16 | European Community | Metodo y aparato para el tratamiento secuencial por plasma. |
JP2002357540A (ja) | 2001-05-31 | 2002-12-13 | Suzuki Motor Corp | プラズモンセンサ及びこれを用いた測定方法 |
AU2002365255A1 (en) | 2001-10-02 | 2003-09-02 | The Regents Of The University Of California | Nanoparticle assembled hollow spheres |
US7455757B2 (en) * | 2001-11-30 | 2008-11-25 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US7352468B2 (en) | 2001-12-12 | 2008-04-01 | Trustees Of Princeton University | Cavity ring-down detection of surface plasmon resonance in an optical fiber resonator |
DE60214118T2 (de) | 2001-12-21 | 2007-03-01 | Interuniversitair Micro-Elektronica Centrum | Verfahren zum Nachweis eines Analyten |
JP3897703B2 (ja) | 2002-01-11 | 2007-03-28 | キヤノン株式会社 | センサ装置およびそれを用いた検査方法 |
JP3730652B2 (ja) | 2002-01-16 | 2006-01-05 | 株式会社東芝 | 光導波路型グルコースセンサ |
KR100465278B1 (ko) | 2002-04-03 | 2005-01-13 | 한국과학기술연구원 | 자외선 경화형 젤형 고분자 전해질을 이용한 전기이중층캐패시터 |
JP2004234865A (ja) | 2003-01-28 | 2004-08-19 | Sony Corp | カーボンナノチューブ配列材料とその製造方法、炭素繊維配列材料とその製造方法、及び電界放出表示素子 |
RU2005131013A (ru) | 2003-03-07 | 2006-03-20 | Филип Моррис Продактс С.А. (Ch) | Способ электростатической обработки полимерных композиций и устройство для его осуществления |
EP1636829B1 (en) | 2003-06-12 | 2016-11-23 | Georgia Tech Research Corporation | Patterned thin film graphite devices |
JP4773955B2 (ja) | 2003-06-30 | 2011-09-14 | ロウステック プロプライエタリー リミテッド | 空間選択的堆積によるミクロスケール及びナノスケールの加工及び製造 |
US7687239B2 (en) | 2003-07-12 | 2010-03-30 | Accelrs Technology Corporation | Sensitive and rapid determination of antimicrobial susceptibility |
GB0316926D0 (en) | 2003-07-18 | 2003-08-27 | Eastman Kodak Co | Method of coating |
JP4220879B2 (ja) | 2003-10-17 | 2009-02-04 | 日立ソフトウエアエンジニアリング株式会社 | 吸光度測定装置及び吸光度測定方法 |
DE10349963A1 (de) | 2003-10-24 | 2005-06-02 | Leonhard Kurz Gmbh & Co. Kg | Verfahren zur Herstellung einer Folie |
EP1728065A1 (en) | 2003-11-28 | 2006-12-06 | Lumiscence A/S | An examination system for examination of a specimen; sub-units and units therefore, a sensor and a microscope |
JP4224641B2 (ja) | 2003-11-28 | 2009-02-18 | 国立大学法人東京工業大学 | 局在化表面プラズモンセンサ、センシング装置およびセンシング方法 |
GB0423686D0 (en) | 2004-10-25 | 2004-11-24 | Attana Ab | Surface preparation method |
DE102004057155B4 (de) | 2004-11-26 | 2007-02-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur chemischen Funktionalisierung von Oberflächen durch Plasmapolymerisation |
JP2008527169A (ja) | 2005-01-10 | 2008-07-24 | イシウム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ イエルサレム | 金属ナノ粒子の水系分散物 |
KR20060094409A (ko) | 2005-02-24 | 2006-08-29 | 주식회사 에이디피엔지니어링 | 유도 결합 플라즈마 처리장치 |
JP4481967B2 (ja) | 2005-09-05 | 2010-06-16 | キヤノン株式会社 | センサ装置 |
JP2009525891A (ja) | 2005-12-05 | 2009-07-16 | スリーエム イノベイティブ プロパティズ カンパニー | 超吸収ナノ粒子組成物 |
US7915053B2 (en) | 2005-12-22 | 2011-03-29 | Canon Kabushiki Kaisha | Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor |
KR100662021B1 (ko) | 2005-12-30 | 2006-12-27 | 주식회사 인포피아 | 바이오 카트리지 |
US7652760B1 (en) | 2006-04-05 | 2010-01-26 | Electronic Design To Market, Inc. | System for detecting coatings on transparent or semi-transparent materials |
US7923053B2 (en) | 2006-04-28 | 2011-04-12 | Kitching Kathryn J | Wettable ePTFE medical devices |
US7393699B2 (en) * | 2006-06-12 | 2008-07-01 | Tran Bao Q | NANO-electronics |
US7731826B2 (en) | 2006-08-17 | 2010-06-08 | Electronic Bio Sciences, Llc | Controlled translocation of a polymer in an electrolytic sensing system |
JP2010515566A (ja) | 2007-01-12 | 2010-05-13 | モメンティブ パフォーマンス マテリアルズ インコーポレイテッド | 組成物の塗布方法 |
JP2008175615A (ja) | 2007-01-17 | 2008-07-31 | Fdk Corp | 表面プラズモン共鳴センサ |
JP5397577B2 (ja) | 2007-03-05 | 2014-01-22 | オムロン株式会社 | 表面プラズモン共鳴センサ及び当該センサ用チップ |
JP2008232853A (ja) | 2007-03-20 | 2008-10-02 | Tohoku Univ | 局在表面プラズモン励起型超薄膜発光型センサー |
US8039379B1 (en) * | 2007-07-02 | 2011-10-18 | Novellus Systems, Inc. | Nanoparticle cap layer |
KR100860958B1 (ko) | 2007-08-08 | 2008-09-30 | 전남대학교산학협력단 | 광학센서막 부착형 다채널 소형 생물반응기 |
EP2194027A4 (en) | 2007-09-03 | 2011-04-27 | Kawamura Inst Chem Res | METHOD FOR PRODUCING A STRUCTURE COATED WITH A NANOSTRUCTURE COMPOSITE, A STRUCTURE COATED WITH A NANOSTRUCTURE COMPOUND AND A NANOSTRUCTURED COMPOSITE STRUCTURE REACTOR |
JP4413252B2 (ja) | 2007-09-03 | 2010-02-10 | 財団法人川村理化学研究所 | ナノ構造複合体被覆型構造物及びその製造方法 |
KR100928546B1 (ko) | 2007-11-26 | 2009-11-24 | 연세대학교 산학협력단 | 국소 표면 플라즈몬 센서 및 상기 센서를 이용하여 시료를분석하는 방법 |
KR100987993B1 (ko) | 2007-11-28 | 2010-10-18 | 충남대학교산학협력단 | 전기전도도 및 광 투과율이 우수한 탄소나노튜브 필름, 및이로부터 얻어진 전자 소자 및 광 투과형 전극 |
KR20090060635A (ko) | 2007-12-10 | 2009-06-15 | 한국전자통신연구원 | 나노입자를 이용한 바이오 센서 및 그 제조 방법 |
KR100962290B1 (ko) | 2008-02-13 | 2010-06-11 | 성균관대학교산학협력단 | 금 나노입자의 국지화된 표면 플라즈몬 공명 센서를 이용한 생체물질 검출 방법 |
KR101081336B1 (ko) | 2008-04-17 | 2011-11-08 | 충남대학교산학협력단 | 나노기공을 가지는 고분자 전해질막을 주형기질로 사용한 금속이나 졸-겔의 나노 입자의 합성과 그의 바이오 센서에의 응용 |
EP2128598B1 (en) | 2008-05-29 | 2017-08-23 | Leibniz-Institut für Polymerforschung Dresden e.V. | Method for detecting analytes or other stimuli by stimuli-responsive polymer brushes |
KR100991011B1 (ko) | 2008-06-10 | 2010-10-29 | 한국화학연구원 | 금속 나노입자가 고정화된 탄소나노튜브를 포함하는 바이오센서 및 그 제조방법 |
KR101029115B1 (ko) | 2008-07-10 | 2011-04-13 | 한국과학기술원 | 금속 증착형 다공성 산화 알루미늄 바이오칩 및 그 제조방법 |
US20110281070A1 (en) | 2008-08-21 | 2011-11-17 | Innova Dynamics, Inc. | Structures with surface-embedded additives and related manufacturing methods |
KR100996450B1 (ko) | 2008-08-21 | 2010-11-25 | 한국과학기술연구원 | 표면 플라즈몬 공명의 원리를 이용한 산소센서와 표면 플라즈몬 공명의 원리를 이용한 산소센서가 포함된 산소투과도 측정장치 |
JP2010071693A (ja) | 2008-09-16 | 2010-04-02 | Fujifilm Corp | センシング方法、センシング装置、検査チップおよび検査キット |
TWI383139B (zh) | 2008-11-20 | 2013-01-21 | Nat Chung Cheng University Inv | Tubular waveguide type plasma resonance sensing device and sensing system |
KR20100061603A (ko) | 2008-11-29 | 2010-06-08 | 한국전자통신연구원 | 바이오 물질 감지용 나노 입자 및 이를 이용한 바이오 센서 |
KR20100063316A (ko) | 2008-12-03 | 2010-06-11 | 한국전자통신연구원 | 바이오 물질 검출 장치 및 이를 이용한 바이오 물질 검출 방법 |
KR101079271B1 (ko) | 2008-12-16 | 2011-11-03 | 한국세라믹기술원 | 나노하이브리드 복합체의 제조방법 |
JP2010155218A (ja) | 2008-12-27 | 2010-07-15 | Osaka Univ | 微粒子単層膜付き基板の製造方法及び微粒子単層膜付き基板 |
WO2010078662A1 (en) | 2009-01-09 | 2010-07-15 | Optotune Ag | Electroactive optical device |
EP2391657A1 (de) | 2009-01-30 | 2011-12-07 | Philipps-Universität Marburg | Verfahren zur herstellung von mit polymeren umhüllten metallhaltigen nanopartikeln und daraus erhältliche partikel |
CN101823355B (zh) | 2009-03-03 | 2013-09-25 | E.I.内穆尔杜邦公司 | 聚合物叠层膜和使用该叠层膜的太阳能电池板 |
KR101027795B1 (ko) | 2009-04-10 | 2011-04-07 | 주식회사 케이엔더블유 | 평판 디스플레이 모듈 및 이를 포함하는 전자 장치 |
KR101017994B1 (ko) | 2009-05-01 | 2011-03-02 | 서울대학교산학협력단 | 전기 방사를 이용한 나노 패터닝 장치 및 방법 |
US8557275B2 (en) | 2009-07-23 | 2013-10-15 | U.S. Nutraceuticals, LLC | Composition and method to alleviate joint pain using a mixture of fish oil and fish oil derived, choline based, phospholipid bound fatty acid mixture including polyunsaturated EPA and DHA |
KR101097882B1 (ko) | 2009-09-25 | 2011-12-23 | 한국과학기술원 | 과산화효소 활성을 가지는 자성 나노입자와 효소가 다공성 실리카의 기공 내에 고정되어 있는 다공성 실리카 복합체 및 그 제조방법 |
KR101084211B1 (ko) | 2009-11-20 | 2011-11-17 | 삼성에스디아이 주식회사 | 배터리 팩, 및 배터리 팩의 충전 제어 방법 |
KR101145660B1 (ko) | 2009-12-22 | 2012-05-24 | 전자부품연구원 | 나노자성입자 및 나노센서를 포함하는 질병진단용 기기 및 그 검사방법 |
KR101134349B1 (ko) | 2009-12-31 | 2012-04-09 | 웅진케미칼 주식회사 | 편광필름의 제조방법 및 그로부터 제조되는 편광필름 |
US8476007B2 (en) | 2010-02-19 | 2013-07-02 | Indian Institute Of Technology Bombay | Optical fiber probe |
KR101169418B1 (ko) | 2010-05-11 | 2012-07-27 | 부산대학교 산학협력단 | 면역측정법을 위한 자기영동 나노바이오센서 |
KR101124618B1 (ko) | 2010-05-20 | 2012-03-20 | 한국기계연구원 | 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지 |
KR101175977B1 (ko) | 2010-06-23 | 2012-08-22 | 한국기계연구원 | 국소표면 플라즈몬공명의 유도를 위한 금속 나노구조 어레이 제작방법 |
KR20100106263A (ko) | 2010-08-27 | 2010-10-01 | 주식회사 나노브릭 | 전하를 갖는 입자를 이용한 광 투과 및 반사 조절 방법 |
KR20100101549A (ko) | 2010-08-16 | 2010-09-17 | 주식회사 나노브릭 | 반사광을 제어하기 위한 표시 방법 |
KR101238551B1 (ko) | 2010-09-29 | 2013-03-04 | 한국과학기술원 | 나노입자 어레이 제조방법, 이에 의하여 제조된 나노입자 어레이, 플라즈몬 나노입자를 포함하는 바이오 센서의 제조방법, 이에 의하여 제조된 바이오 센서 및 이를 이용한 바이오 물질 센싱방법 |
JP2012098211A (ja) | 2010-11-04 | 2012-05-24 | Konica Minolta Holdings Inc | 金属薄膜の光学特性測定方法及び金属薄膜の光学特性測定装置 |
KR101239356B1 (ko) | 2010-12-21 | 2013-03-05 | 한국원자력연구원 | 소수성 고분자로 표면처리된 세라믹 나노 분말의 제조방법 및 이에 따라 제조되는 세라믹 나노 분말 |
JP2012132886A (ja) | 2010-12-24 | 2012-07-12 | Konica Minolta Holdings Inc | 金属薄膜上誘電体の光学特性測定方法及び金属薄膜上誘電体の光学特性測定装置 |
KR101279586B1 (ko) | 2011-01-20 | 2013-06-27 | 한국과학기술연구원 | 플렉서블 광전극과 그 제조방법, 및 이를 이용한 염료감응 태양전지 |
KR101319908B1 (ko) | 2011-02-16 | 2013-10-18 | 한국과학기술원 | 고 굴절률 메타물질 |
KR101254666B1 (ko) | 2011-03-02 | 2013-04-15 | 포항공과대학교 산학협력단 | 탄소 섬유 표면에 대한 접착력이 향상된 탄소 섬유-탄소 나노튜브 복합체와 그 제조 방법 |
US20120263793A1 (en) * | 2011-04-14 | 2012-10-18 | Franco Vitaliano | Bio-nano-plasmonic elements and platforms |
EP2711689B1 (en) | 2011-05-19 | 2020-01-01 | Konica Minolta, Inc. | Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using same |
KR101336867B1 (ko) | 2011-06-10 | 2013-12-04 | 고려대학교 산학협력단 | 중기공성 실리카 나노입자에 고정된 아조피리딘계 화합물을 포함하는 신경작용제 검출용 화학 센서 |
KR101271418B1 (ko) | 2011-06-10 | 2013-06-05 | 고려대학교 산학협력단 | 중기공성 실리카 나노입자에 고정된 비스인돌 유도체를 포함하는 시안화이온 검출용 화학 센서 |
KR101275742B1 (ko) | 2011-06-23 | 2013-06-17 | 주식회사 아이센스 | 광학 분석용 셀 |
KR20130006169A (ko) | 2011-07-08 | 2013-01-16 | 경희대학교 산학협력단 | 미세 격자 구조물을 갖는 국소 표면 플라즈몬 공명 센서칩 및 이를 갖는 바이오센서 |
CN103930472B (zh) | 2011-07-29 | 2016-01-06 | 艾德昂有限责任公司 | 一种通过电子束辐射、并通过气体产生的等离子和紫外辐射进行固化组合物的方法 |
KR20130015806A (ko) | 2011-08-05 | 2013-02-14 | 전자부품연구원 | 산화 실리콘 나노 입자 제조 방법 |
KR101360281B1 (ko) | 2012-01-12 | 2014-02-12 | 한국과학기술원 | 다중 진공 여과 방법을 이용한 단일벽 탄소나노튜브 포화 흡수체 제작법 |
EP2700455A1 (de) | 2012-08-23 | 2014-02-26 | Bayer MaterialScience AG | Nasslackapplikation auf Kunststoffsubstraten mit Plasmahärtung |
KR101335032B1 (ko) | 2012-11-06 | 2013-12-02 | (주)플렉센스 | 시료의 정량적 분석을 위한 시료측정 카트리지 및 시료 정량 분석 장치 |
WO2014171597A1 (ko) | 2013-04-15 | 2014-10-23 | (주)플렉센스 | 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 |
US10060851B2 (en) | 2013-03-05 | 2018-08-28 | Plexense, Inc. | Surface plasmon detection apparatuses and methods |
KR101328190B1 (ko) | 2013-03-05 | 2013-11-13 | (주)플렉센스 | 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법 |
KR101474844B1 (ko) | 2014-04-09 | 2014-12-22 | 주식회사 리온 | 분광 분석 센서 및 이의 제조 방법 |
JP6441500B2 (ja) | 2014-12-15 | 2018-12-19 | プレクセンス・インコーポレイテッド | 表面プラズモン検出装置及び方法 |
-
2013
- 2013-09-10 WO PCT/KR2013/008182 patent/WO2014171597A1/ko active Application Filing
- 2013-09-10 KR KR1020130108756A patent/KR101592241B1/ko active IP Right Grant
- 2013-09-10 US US14/784,569 patent/US10359362B2/en not_active Expired - Fee Related
-
2019
- 2019-07-16 US US16/513,231 patent/US20190339200A1/en not_active Abandoned
-
2021
- 2021-02-25 US US17/185,737 patent/US20220018768A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100480340B1 (ko) * | 2002-11-02 | 2005-03-31 | 한국전자통신연구원 | 정렬된 나노 크기의 금속 구조체들을 사용하는 국소 표면플라즈몬 센서 및 그 제조 방법 |
KR100787046B1 (ko) * | 2006-02-09 | 2007-12-21 | 연세대학교 산학협력단 | 나노 크기의 정렬된 금속 구조체들을 사용하는 국소 표면플라즈몬 센서 |
KR20120014206A (ko) * | 2009-07-01 | 2012-02-16 | 한국과학기술연구원 | 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템 |
KR101145133B1 (ko) * | 2009-11-17 | 2012-05-14 | 한국과학기술원 | 금속 나노입자 전자 이동을 이용한 플라즈몬 센서 및 그 제조 방법 |
KR20120013770A (ko) * | 2010-08-06 | 2012-02-15 | 삼성전자주식회사 | 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광 소자 및 그 제조 방법 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10060851B2 (en) | 2013-03-05 | 2018-08-28 | Plexense, Inc. | Surface plasmon detection apparatuses and methods |
US10359362B2 (en) | 2013-04-15 | 2019-07-23 | Plexense, Inc. | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same |
CN107249758A (zh) * | 2014-12-15 | 2017-10-13 | 福莱森斯有限公司 | 表面等离子体检测装置及方法 |
EP3233303A4 (en) * | 2014-12-15 | 2018-08-22 | Plexense, Inc. | Surface plasmon detection apparatuses and methods |
KR101768664B1 (ko) * | 2015-09-07 | 2017-08-17 | 주식회사 엠셀 | 마이크로 어레이 기판 제조방법 및 마이크로 어레이 기판 제조장치 |
CN109154566A (zh) * | 2016-05-17 | 2019-01-04 | 福莱森斯有限公司 | 生物传感器和使用其分析样品的方法 |
EP3460454A4 (en) * | 2016-05-17 | 2020-01-01 | Plexense, Inc. | BIOSENSOR AND METHOD OF ANALYZING A SPECIMEN USING THE BIOSENSOR |
CN107203081A (zh) * | 2017-05-08 | 2017-09-26 | 东南大学 | 一种等离激元宽光谱调控的智能变色玻璃 |
WO2024125254A1 (zh) * | 2022-12-15 | 2024-06-20 | 中国科学院深圳先进技术研究院 | Lspr传感芯片、制备方法、lspr传感器及应用 |
Also Published As
Publication number | Publication date |
---|---|
US20160146733A1 (en) | 2016-05-26 |
US20190339200A1 (en) | 2019-11-07 |
KR20140124316A (ko) | 2014-10-24 |
US20220018768A1 (en) | 2022-01-20 |
US10359362B2 (en) | 2019-07-23 |
KR101592241B1 (ko) | 2016-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014171597A1 (ko) | 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 | |
US7403287B2 (en) | Sensing element used in sensing device for sensing target substance in specimen by using plasmon resonance | |
US8525129B2 (en) | Gas sensing device | |
US9683991B2 (en) | Method of generating a metamaterial, and a metamaterial generated thereof | |
WO2015041442A1 (ko) | 표면 증강 라만 분광용 기판 및 이의 제조방법 | |
WO2015156617A1 (ko) | 분광 분석 센서 및 이의 제조 방법 | |
WO2011002117A1 (ko) | 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템 | |
JP2007017432A (ja) | プラズモン共鳴を利用して検体中の標的物質を検知するための検知装置に用いられる検知素子及びその製造方法 | |
TWI500921B (zh) | 光學感測晶片 | |
JP2005144569A (ja) | 二次元配列構造体基板および該基板から剥離した微粒子 | |
US20070264154A1 (en) | Chemical sensor element and method for fabricating the same | |
ITTO20010801A1 (it) | Metodo e dispositivo per analisi biomolecolari integrate. | |
CN104764732A (zh) | 基于特异材料超吸收体的表面增强拉曼散射基底及其制备方法 | |
Yin et al. | Plasmonic and sensing properties of vertically oriented hexagonal gold nanoplates | |
Iarossi et al. | High‐Density Plasmonic Nanopores for DNA Sensing at Ultra‐Low Concentrations by Plasmon‐Enhanced Raman Spectroscopy | |
Tan et al. | Honeycomb meshed working electrodes based on microsphere lithography for high-resolution chemical image sensor | |
Dong et al. | Plasmonic alloy nanochains assembled via dielectrophoresis for ultrasensitive SERS | |
CN104697969B (zh) | 传感器及其制造方法 | |
KR101759894B1 (ko) | 랩온어칩 및 이의 제조 방법 | |
CN115939718A (zh) | 一种谐振芯片及其制作方法 | |
WO2024076193A1 (ko) | 감도가 개선된 국소 표면 플라즈몬 공명 센서 및 이의 제조방법 | |
WO2010021509A2 (en) | Quantification method of biochemical substances using ion scattering spectroscopy and specific-binding efficiency quantification method of biochemical substances using ion scattering spectroscopy | |
CN114199828B (zh) | 一种基于金属-石墨烯杂化超表面生物传感器及其制备方法 | |
CN109557072B (zh) | Sers基底结构、制备方法及检测方法 | |
Li et al. | Template‐Electrodeposited Plasmonic Metasurfaces for High‐Sensitivity Biomolecular Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13882252 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14784569 Country of ref document: US |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.02.2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13882252 Country of ref document: EP Kind code of ref document: A1 |