Nothing Special   »   [go: up one dir, main page]

WO2014171597A1 - 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 - Google Patents

나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 Download PDF

Info

Publication number
WO2014171597A1
WO2014171597A1 PCT/KR2013/008182 KR2013008182W WO2014171597A1 WO 2014171597 A1 WO2014171597 A1 WO 2014171597A1 KR 2013008182 W KR2013008182 W KR 2013008182W WO 2014171597 A1 WO2014171597 A1 WO 2014171597A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sensor
conductive nanoparticles
metal
nanoparticles
Prior art date
Application number
PCT/KR2013/008182
Other languages
English (en)
French (fr)
Inventor
김기범
Original Assignee
(주)플렉센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)플렉센스 filed Critical (주)플렉센스
Priority to US14/784,569 priority Critical patent/US10359362B2/en
Publication of WO2014171597A1 publication Critical patent/WO2014171597A1/ko
Priority to US14/863,238 priority patent/US10060851B2/en
Priority to US16/053,631 priority patent/US20190094143A1/en
Priority to US16/513,231 priority patent/US20190339200A1/en
Priority to US17/185,737 priority patent/US20220018768A1/en
Priority to US17/188,197 priority patent/US20220018769A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous

Definitions

  • the present invention relates to sensor technology for the detection of biological or non-biological materials, and more particularly, to a method of manufacturing a nanoparticle array, a sensor based on surface plasmon resonance, and an analysis method using the same.
  • SPR Surface plasmon resonance
  • SPPs surface plasmon polaritons
  • the SPR is generally a collective vibration phenomenon of conduction band electrons propagating along the interface of a metal having a negative dielectric function and a medium having a positive dielectric function, and having an increased intensity than an incident electromagnetic wave and in a vertical direction at the interface. It is characterized by an evanescent wave that decreases exponentially with distance.
  • the SPR may be classified into propagating plasmons observed at the surface of a flat metal having a thickness of about 10 to 200 nm and dielectric interface and localized surface plasmon resonance (LSPR) observed in nanoparticles or nanostructures.
  • LSPR localized surface plasmon resonance
  • Dual LSPRs identify specific molecules by detecting changes in the chemical and physical environment of the nanoparticles or nanostructure surface, such as changes in plasmon resonance wavelengths with maximum absorption or scattering rates due to refractive index changes in the media in contact with them.
  • the concentration of the specific molecule in the medium can be obtained, and since it has a high sensitivity to the change in the refractive index, the detection can be performed by a label-free method, and the waveform plasmon by the conventional prism coupling can be achieved. It has many advantages over bulk SPR sensors.
  • nano patterning techniques such as electron beam lithography, focused ion beam, or nanoimprint have been proposed on a substrate.
  • these conventional techniques have limitations in improving yields in response to continuous processes and various substrate sizes, and defects easily occur due to defects or contamination when mechanical contact is required.
  • a technique of depositing a metal thin film having a continuous profile and heat-treating it to form an array of nano-isolated structures isolated from each other has been proposed.
  • the material of the substrate for forming the nanoislets is limited to heat resistant materials such as glass, and there is a problem in that a high density nanoparticle array cannot be obtained.
  • the problem to be solved by the present invention is a high yield during the continuous process, low temperature process is possible not only wide the window of the substrate material, but also to secure the high-density conductive nanoparticles on the substrate to improve the SPR amplification effect It is to provide a method for producing an array of nanoparticles that can be.
  • Another object of the present invention is to provide an SPR-based sensor manufactured by using an array of nanoparticles having the aforementioned advantages and having improved spectroscopic analysis sensitivity.
  • another object of the present invention is to provide a spectroscopic analysis method having a simple analysis process, fast response and high reliability by using the SPR-based sensor.
  • Method of manufacturing a nanoparticle array for solving the above problems, providing a mixed solution of ionic binder and conductive nanoparticles; Immersing a substrate in the mixed solution; And applying an electric field to the mixed solution in which the substrate is immersed to induce the conductive nanoparticles to be coated on the substrate.
  • a sensor for spectral analysis the substrate; A polymer binder layer coated on the substrate; And conductive nano particles dispersed and fixed on the polymer binder layer, and a surface plasmon-based sensor for spectroscopic analysis may be provided.
  • a spectroscopic analysis method comprising: immersing a sensor for spectroscopic analysis in a solution in which a target material is dispersed; And detecting a change in reflected or transmitted light at the sensor surface using SPR or LSPR.
  • the spectroscopic spectroscopic analysis method includes immersing two or more sensors stacked spatially spaced apart from each other in a solution in which a target material is dispersed; And injecting light into the sensors to detect a change in reflected or transmitted light coupled in SPR or LSPR mode.
  • a wet and economical nanoparticle array for rapidly coating a high density and dense metal nanoparticles onto a substrate by immersing the substrate in a mixed solution of the ionic binder and the conductive nanoparticles is applied externally.
  • a method may be provided.
  • the present invention by applying the sensor coated with the high-density metal nanoparticles for the spectroscopic analysis by the SPR or LSPR mode, it is possible to provide a sensor that improves the detection sensitivity according to the type and concentration of the target material. .
  • the SPR and LSPR based spectroscopic analysis is performed by stacking a plurality of sensors, the number of sensors that are substantially stacked is increased through the effect of substantially increasing the density of conductive nanoparticles per unit area through which light is transmitted. Measurement sensitivity can be easily amplified.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a nanoparticle array according to an embodiment of the present invention.
  • FIG. 2A to 2E illustrate a method of manufacturing a nanoparticle array according to an embodiment of the present invention.
  • FIG 3 shows an apparatus for manufacturing a nanoparticle array according to an embodiment of the present invention.
  • 4A and 4B are optical photograph images of an array of gold nanoparticles prepared according to the above Examples and Comparative Examples, respectively.
  • 5A and 5B are scanning electron microscope (SEM) images of an array of gold nanoparticles prepared according to Examples and Comparative Examples, respectively.
  • Figure 6a is a schematic diagram of a spectroscopic analysis device according to an embodiment of the present invention
  • Figure 6b shows a spectroscopic analysis cuvette according to an embodiment of the present invention.
  • Example 7 is a graph showing the response of the sensor according to the Example and Comparative Example measured using the spectroscopic analysis device.
  • FIG. 8 is a perspective view showing a cuvette according to another embodiment of the present invention.
  • 9A and 9B are graphs showing the absorbance of each wavelength band and the absorbance of each wavelength band of absorbance spectra measured using one to three LSPR based sensors for samples having different refractive indices according to an embodiment of the present invention. to be.
  • 10 is a graph showing the relationship between the change in refractive index and the change in absorbance measured using a single or two LSPR sensors.
  • a layer formed “on” a substrate or other layer refers to a layer formed directly on or above the substrate or other layer, or formed on an intermediate layer or intermediate layers formed on the substrate or other layer. It may also refer to a layer.
  • a structure or shape disposed "adjacent" to another shape may have a portion that overlaps or is disposed below the adjacent shape.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a nanoparticle array according to an embodiment of the present invention
  • Figures 2a to 2e shows a method of manufacturing a nanoparticle array according to an embodiment of the present invention.
  • the ionic binder 10 is dissolved in a suitable solvent 20, and the conductive nanoparticles 30 are dispersed in the solvent 20 to prepare a mixed solution 40.
  • the mixed solution 40 may be provided by adding the ionic binder 10 in the solvent 20 in which the conductive nanoparticles 30 are dispersed (S10).
  • the ionic binder 10 and the conductive nanoparticles 30 may be combined with each other to have a gel form.
  • the mixed solution 40 may be agitated or applied ultrasonic energy to prevent aggregation of the conductive nanoparticles to prevent uniform dispersion and aggregation of the conductive nanoparticles.
  • the ionic binder 10 may be a polymer exhibiting cationic or anionic properties in the mixed solution 40.
  • the polymer may be selected from ionic polymers having a molecular weight of about 1,000 kDal to 60,000 kDal. When the molecular weight is less than 1,000 kDal, the fixing force on the substrate of the conductive nanoparticles described below is not sufficient, and when the molecular weight is more than 60,000 kDal, the viscosity is excessive and sufficient flux can be expected even if an electric field is applied as described below. none.
  • the cationic polymer is poly diallydimethylammonium chloride (poly diallydimethylammonium chloride), poly allylamine hydrochloride (poly allylamine hydrochloride), polyvinylbenzyltrimethyl ammonium chloride (poly 4-vinylbenzyltrimethyl ammonium chloride), polyethylene It may include any one of the imine (polyethyleneimine) or a mixture thereof.
  • the anionic polymer is poly acrylic acid, poly sodium 4-styrene sulfonate, poly vinylsulfonic acid, poly sodium salt, polyamino acid amino acids) or mixtures thereof.
  • polymers described above are exemplary, and polymers or copolymers having other known ionic groups, polymers in which the positive or negative ionic groups are bonded to the polymer backbone described above, other synthetic resins, and natural resins, or electrolytes Polymers are also included in the present invention.
  • the solvent can be any of water, such as distilled or deionized water, aliphatic alcohols, aliphatic ketones, aliphatic carboxylic acid esters, aliphatic carboxylic acid amides, aromatic hydrocarbons, aliphatic hydrocarbons, acetonitrile, aliphatic sulfoxides or mixtures thereof. And, these are exemplary only and may include other known polar solvents.
  • the conductive nanoparticles 20 combined with the polymer 10 in the mixed solution 40 may have an average diameter of 10 nm to 200 nm, and may be spherical, nanotubes, nanocolumns, nanorods, nanopores, and nanoparticles. Any one of the wires or a combination thereof may have a shape. These particles can be solid or porous or hollow, depending on the shape.
  • the conductive nanoparticles are conductive particles of carbon, graphite, metalloid, metal, alloy of the metalloid or metal, conductive metal oxide, metal nitride, or a conductive layer such as a metal thin film coated on glass or polymer insulating beads. Particles of the core shell structure.
  • the metalloid may be any one or alloys of antimony (Sb), germanium (Ge), and arsenic (As).
  • the metal is a metal, a transition metal or a post-transition metal, and includes titanium (Ti), zinc (Zn), aluminum (Al), stanium (Sc), chromium (Cr), manganese (Mn), iron (Fe), and cobalt.
  • Co nickel (Ni), copper (Cu), indium (In), tin (Sn), yttrium (Y), zirconium (Zr), neobium (Nb), molybdenum (Mo), ruthenium (Ru ), Rhodium (Rh), palladium (Pd), gold (Au), silver (Ag), platinum (Pt), strontium (Sr), tungsten (W) or cadmium (Cd), tantalum (Ta), titanium ( Ti), titanium (Ti) or alloys thereof.
  • indium tin oxide ITO
  • indium zinc oxide IZO
  • aluminum doped zinc oxide AZO
  • gallium indium zinc oxide GIZO
  • ZnO zinc oxide
  • conductive nitride tungsten nitride (WN) can be exemplified without limitation.
  • an ionic binder 20 is added at 0.01 wt% to 0.3 wt% with respect to the total weight of the mixed solution 40, and the conductive nanoparticles 30 are at 0.1 wt%-0.3 wt%. May be added, and the remaining weight percent may be filled with a solvent.
  • the weight% described above may be determined according to the type of the ionic binder 20 and the conductive nanoparticles 30, but the present invention is not limited thereto.
  • suitable dispersion stabilizers or pH regulators such as boric acid, orthophosphoric acid, acetic acid, ascorbic acid and citric acid may be added to the alginic acid, alginic acid derivatives, and mixtures thereof.
  • a photoinitiator may be added for the crosslinking reaction.
  • the substrate 50 is immersed in the mixed solution 40.
  • Substrate 50 may be secured in a container by a suitable mechanism and two or more substrates may be immersed.
  • Substrate 50 may be cleaned or surface treated prior to dipping.
  • Substrate 50 may be a transparent or opaque substrate, preferably a transparent substrate.
  • the thickness of these substrates may be in the range of 50 ⁇ m to 2 mm.
  • the transparent substrate may include, for example, glass or a polymer material optically having a light transmittance of 85% or more.
  • the polymer material is polycarbonate, polyethylene terephthalate, polymethyl methacrylate, traacetyl cellulose, cyclic olefin, polyethylene terephthalate, polyarylate, polyacrylate, polyethylene naphthalate, polybutylene terephthala Rate, or polyimide, and the invention is not limited to these examples.
  • the opaque substrate may include sapphire or silicon single crystal, but the present invention is not limited thereto. Further, in other embodiments, the substrate 50 may comprise silicone rubber, latex, or magnetic material.
  • an electric field E is applied to the mixed solution while the substrate 50 is immersed.
  • the direction of the electric field may be determined according to the main surface of the coating of the substrate 50, that is, the surface to which the conductive nanoparticles should be mainly coated. For example, as shown in FIG. 2C, when the conductive nanoparticles are mainly coated on the upper surface of the substrate 50, an electric field may be formed vertically downward when a cationic binder is used. In contrast, when an anionic binder is used, an electric field can be formed vertically upwards.
  • the conductive nanoparticles 30 bonded to the ionic binder by the electric field E are accelerated and electrophoresed to the substrate, whereby a directional flux of the conductive nanoparticles 30 to the substrate 50 occurs.
  • the flow is accelerated by the electric field (E), which is activated with a larger kinetic energy, thereby improving the coating speed of the conductive nanoparticles 30 onto the main surface of the substrate 50, as well as the conductive nanoparticles (
  • the fixing force of 30 may be improved and the conductive nanoparticles 30 may be coated on the substrate 50 in a high density.
  • the substrate 50 is an insulator, the substrate 50 is in an electrically floating state, the electric field E is formed outside the mixed solution 40, and the mixed solution 40 It penetrates inside.
  • the electric field E may have an electrostatic field, an alternating electric field, or another waveform, but the present invention is not limited thereto.
  • the above-described electric field E may be generated by plasma discharge in the chamber, which will be described later with reference to FIG. 3.
  • the substrate 50 is recovered from the mixed solution 40. Thereafter, drying of the recovered substrate 50 may be performed, or ultraviolet rays or heat may be irradiated for the crosslinking reaction of the binder. In some embodiments, cleaning of the substrate 50 may be performed. Unfixed conductive nanoparticles may be removed by the cleaning, and then shrinkage of the ionic binder may occur by a drying process.
  • the conductive nanoparticles 30 are fixed onto the substrate 50 by the polymer binder layer 10 ′ derived from the cationic binder.
  • the conductive nanoparticles can form a monolayered nanoparticle array.
  • the upper surface of the conductive nanoparticles 30 is exposed as the polymer binder layer 10 ′ is contracted, and thus may be used as a surface plasmon-based sensor or LSPR as described below.
  • the polymeric binder layer 10 ′ may be a dielectric.
  • the fixing material L may be further formed on the conductive nanoparticles 30 to be specifically bound to the target material to be measured.
  • the fixing material may be formed on the surface of the binder between the conductive nanoparticles 30 as well as the surface of the conductive nanoparticles 30.
  • the immobilized substance (L) is any one of a synthetic reagent including a small molecule compound, an antigen, an antibody, a protein, a peptide, a DNA, an RNA, a PNA, an enzyme, an enzyme substrate, a hormone, a hormone receptor, and a functional group capable of binding to the target substance, and It may include a replica, or a combination thereof, and reference may be made to known techniques regarding the fixing method thereof.
  • FIG 3 illustrates an apparatus 1000 for manufacturing a nanoparticle array according to an embodiment of the present invention.
  • the manufacturing apparatus 1000 is the electric field E generator described above with reference to FIG. 2C.
  • the manufacturing apparatus 1000 may have two electrodes for generating an electric field, that is, the anode AE and the cathode CE.
  • the manufacturing apparatus 1000 may further include a suitable gas flow regulator for gas discharge.
  • Gas P enters into the space defined by anode AE and cathode CE as indicated by arrow A, and is subsequently discharged as indicated by arrow B.
  • the gas P may be provided from either or both of the anode AE and the cathode CE, for which the anode AE and the cathode CE are shaped like a shower head. It may have a through hole.
  • the gas may include any one of helium (He), neon (Ne), argon (Ar), nitrogen (N 2 ), and air, or a mixture thereof.
  • He helium
  • Ne neon
  • Ar argon
  • N 2 nitrogen
  • air or a mixture thereof.
  • the cathode CE may be electrically coupled to an AC generator for gas discharge, that is, plasma generation, of the gas P, and the anode AE may be grounded. Alternatively, a positive voltage may be applied to the anode AE and a negative voltage may be applied to the cathode CE for the DC discharge instead of the AC discharge.
  • power is supplied to the anode AE and / or the cathode CE for plasma generation. With this supplied, the fixing process of the nanoparticles is performed for several seconds to several minutes.
  • the distance from the anode AE to the vessel 60 can be maintained at a distance of 0.5 cm to 40 cm.
  • the cathode CE when power is applied to the AC generator of the cathode CE, the cathode CE has a negative potential by self-biasing, whereby the grounded anode AE And an electric field E in the direction of the arrow is generated between the cathode and the cathode CE.
  • a flow of the conductive nanoparticles and the ionic binder in the mixed solution is generated, and the conductive nanoparticles can be fixed onto the substrate 50 by lasting several seconds to several minutes.
  • the illustrated positions of the anode AE and the cathode CE may be opposite to each other.
  • the anode AE is not limited to a flat one, and has a side wall like a lid to limit the gas discharge space or may be a main body of the chamber.
  • the pressure in the space for the gas discharge may be at or below vacuum, and a vacuum pump may be provided to the manufacturing apparatus 1000 for this purpose.
  • a mixed solution was prepared by adding 0.01% by weight of an electrolyte polymer and 0.01% of a stabilizer as the ionic binder described above, and adding 0.05% by weight of gold nanoparticles to distilled water as conductive nanoparticles and stirring.
  • a substrate on which the conductive nanoparticles are to be coated polyethyl terephthalate (PET) or polycarbonate (PC), which is a polymer film, was cleaned and surface treated with distilled water, and then immersed in the mixed solution.
  • PET polyethyl terephthalate
  • PC polycarbonate
  • the mixed solution was placed in an electric field generating device so that the conductive nanoparticles bonded to the ionic binder could be quickly and uniformly coated on the substrate, and the electric field was transmitted into the mixed solution to proceed with a coating reaction to prepare a nano array. .
  • the absorbance is measured while the conductive nanoparticles are coated. This was done. According to the embodiment, a coating density of 0.5 was obtained within about 5 minutes, and thus a suitable coating density coating process was completed. However, in the case of the comparative example, a coating density having an absorbance of 0.2 was obtained only after at least 12 hours.
  • 4A and 4B are black and white converted images of an optical photograph image of an array of gold nanoparticles prepared according to the above examples and comparative examples, respectively.
  • the substrate used is polyethyl terephthalate (PET).
  • PET polyethyl terephthalate
  • 4A and 4B it can be seen that the case according to the embodiment has a darker color than the case according to the comparative example. This indicates that the case according to the example was coated with gold nanoparticles at a higher density than the comparative example.
  • 5A and 5B are scanning electron microscope (SEM) images of an array of gold nanoparticles prepared according to Examples and Comparative Examples, respectively.
  • the substrate used is polycarbonate (PC).
  • the gold nanoparticles are coated on the substrate in a more uniform and higher density than in the case of the example according to the comparative example.
  • the present invention it is possible to coat the gold nanoparticles on the substrate in a high density even in a short time by the wet method.
  • the above-described experimental example relates to gold nanoparticles
  • the characteristic bonding of the conductive nanoparticles to the binder is not necessarily required, and thus the above-described experimental examples may be applied to the other conductive nanoparticles described above. It should be understood that it is not limited.
  • the conductive nanoparticles and the ionic polymer combined with the ionic polymer in a mixed solution in which the ionic binder is dispersed Nanoparticles can be activated with kinetic energy by an electric field.
  • the activated ionic polymer or the conductive nanoparticles may increase their flux delivered to the surface of the substrate and provide a strong fixing force on the surface of the polymer substrate.
  • the coating speed of the metal nanoparticles can be improved and coated on the substrate with high density.
  • a sensor for SPR-based spectroscopic analysis as shown in FIG. 2D was manufactured, and Genesys 10A UV-visible spectroscopic analysis apparatus of Thermo-Fisher (2000) having a basic configuration shown in FIG. 6A. ), The absorbance change was measured in the configuration shown in Figure 6a.
  • the spectroscopic sensor 100 may be made of a spectroscopic cuvette 300A as shown in FIG. 6B.
  • the spectroscopic analyzer 2000 may include an SPR including a light emitting part 2000_1, a transparent substrate 50, and an array 30L of conductive nanoparticles formed on a main surface of the transparent substrate 50.
  • the LSPR sensor 100 and the light receiver 2000_2 are included.
  • the light emitter 2000_1 may emit light passing through the transparent substrate 50. Preferably, light may be emitted in a direction perpendicular to the transparent substrate 50, but the present invention is not limited thereto.
  • the light emitter 2000_1 and the light receiver 2000_2 may be located in opposite directions with respect to the sensor 100.
  • the present invention is not limited thereto, and the light receiving unit 2000_1 and the light emitting unit 2000_2 do not face each other depending on a measurement mode of transmitted light or reflected light, or an optical system such as a suitable reflecting plate or lens is combined. have.
  • the light may have a wavelength in the range of 380 nm to 1500 nm including the visible light region in the ultraviolet region.
  • the sensor 100 may be disposed singly or two or more on the light path from the light emitting unit 2000_1 to the light receiving unit 2000_2. A configuration in which two or more are disposed will be described later with reference to FIG. 8.
  • the spectroscopic analyzer 2000 measures and analyzes the rate of change of absorbance value calculated from the light emitted from the light emitting part 2000_1 and the light incident from the light receiving part 2000_2 or the absorption wavelength value having the maximum signal size.
  • the rate of change of absorbance and the wavelength of absorption are based on the LSPR phenomenon of the conductive nanoparticles, and is based on the change in the effective refractive index around the conductive nanoparticles according to the reactivity of the biological or non-biological material in the sample in contact with the conductive nanoparticles. Induced. As described above, the change in absorbance change rate and absorption wavelength value can be improved by increasing the density of the conductive nanoparticles.
  • the spectroscopic analyzer 2000 may further include an analysis module (not shown) for analyzing the target material.
  • the analysis module may include a computing system such as a conventional microprocessor, a memory, and a storage device, but the present invention is not limited thereto.
  • the cuvette 300A may be made of a transparent material so that light L in may be incident from the light emitting part, and light L out passing through the sensor 100 may be transmitted to the light receiving part.
  • the cuvette 40 may further include a fixing part for fixing the sensor 100 therein, and may further include an injection part for injecting a reaction sample including a target material to be analyzed. Can be.
  • FIG. 7 is a graph showing the response of the sensor according to the embodiment and the comparative example measured using the spectroscopic analyzer 2000 of FIG. 6A.
  • the rate of change in absorbance increase with respect to the change in refractive index increase in the measurement sensor is improved by at least 43% compared to the comparative example according to the embodiment. This is due to the densification of the coated conductive nanoparticles.
  • FIG. 8 is a perspective view showing a cuvette 300B according to another embodiment of the present invention.
  • the cuvette 300B includes two SPR and LSPR based sub-sensors 100_1 and 100_2 disposed on an optical path between the light emitting part and the light receiving part of the spectroscopic analyzer 2000 of FIG. 6A. do.
  • each of the arrays 30L of conductive nanoparticles on these sub-sensors 100_1 and 100_2 may be the same or different from each other in terms of coating density and coating thickness.
  • absorbances for wavelengths having different optical characteristics can be simultaneously obtained and used for analysis for detecting two or more materials.
  • each of the sensors 100_1, 100_2 may be used for spectroscopic analysis of multiple homogeneous or heterogeneous samples at the same time by including a fixed material that binds to the same or a different target material.
  • the density of the conductive nanoparticles per unit area through which light is transmitted is substantially reduced by using a plurality of sensors that are spatially stacked and arranged along the optical path from the light emitting unit to the light receiving unit by SPR or LSPR based analysis.
  • the measurement sensitivity can be easily amplified substantially by the number of sensors used.
  • 9A and 9B are graphs showing the absorbance of each wavelength band and the absorbance of each wavelength band of absorbance spectra measured using one to three LSPR based sensors for samples having different refractive indices according to an embodiment of the present invention. to be.
  • the refractive index (RI) in distilled water at room temperature is 1.3333 and the refractive index in 40% glycerol is 1.3841, which is the same in the case of one LSPR sensor and two or three sensors.
  • the increase in absorbance for a wavelength within a specific range that is, the increase in LSPR detection signal, is about 2 times higher when measured by two sensors than when measured by a single sensor, and includes three sensors. If it is about 3 times more is increased.
  • the absorbance increases by about 2 times or more.
  • Table 1 below shows the detection sensitivity (Comparative Examples 1 and 2) obtained from SPR-based spectroscopic analysis experiments using the conductive nanoparticles described in the paper and the detection sensitivity measured while increasing the number of analysis chips according to the embodiment of the present invention. Examples 1 to 3 are shown.
  • Example 1 1 sensor 1.0
  • Example 2 2 sensors 2.0
  • Example 3 3 sensors 2.6 Comparative Example 1 (Anal Chem 2004, 76, 5370-5378) Nanostructures on Glass Substrates 1.2 Comparative Example 2 (Microelectronic Engineering 86 (2009) 2437-2441) Nanostructures on Glass Substrates 0.7 Comparative Example 3 (Anal Chem 2002, 74, 504-509) Nanostructures on Glass Substrates 0.5
  • the detection sensitivity that is, the magnitude of the LSPR signal is measured differently according to the type of spectroscopic analyzer and the number of sensors.
  • the magnitude of the LSPR signal increases approximately several times.
  • the reaction slope is larger than the reaction slope obtained in the analysis according to Comparative Examples 1 and 2.
  • the amount of change in absorbance in the optical absorption spectrum is approximately higher than when using a single sensor when using two sensors at various wavelengths. Increasing by more than two times, it can be seen that the absorbance change is increased by three times or more when using three sensors.
  • 10 is a graph showing the relationship between the change in refractive index and the change in absorbance measured using a single or two LSPR sensors.
  • the ratio of the change in absorbance to the rate of change in refractive index is about 1.0, but in the case of two LSPR sensors, the ratio is about 2.0, and in the case of three LSPR sensors, the ratio is about. You can see the improvement to 2.6.
  • the spectroscopic analysis device can be modified as follows, which is also included within the scope of the present invention.
  • the light emitting portion and the light receiving portion may be aligned up and down with respect to the well-placed well plate, respectively, as shown in FIG. 6A.
  • the sensors may be manufactured in a small size that can be carried in each well of the well plate, and arranged in an array form so as to be simultaneously supported in the wells.
  • each of the substrates of the sensors may be arranged in a horizontal direction corresponding to the light emitting portion and the light receiving portion disposed up and down, and in order to apply two or more sensors to a single well, each sensor may be spaced apart, for example, by two sheets. Can be stacked in a vertical direction.
  • the plurality of LSPR sensors may be repeatedly stacked with each other with spacers interposed therebetween such that they are attached to each other such as microfluidic devices to provide various fluid passageways.
  • the LSPR sensor may be selectively used only at the top and / or bottom of the array to amplify the absorbance due to LSPR phenomenon several times.
  • a substrate of a polymer material that is easy to mold and process can be used, thereby reducing manufacturing costs.
  • it is possible to analyze the target material without the pretreatment step for the formation of the labeling material such as chromophore using the LSPR phenomenon it is possible to quickly analyze a large amount of material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법에 관한 것이다. 본 발명의 일 실시예에 따르면, 이온성 바인더 및 도전성 나노 입자들의 혼합 용액을 제조한 후, 상기 혼합 용액 내에 기판을 침지한다. 이후, 상기 도전성 나노 입자들이 상기 기판 상에 코팅되는 것을 유도하도록 상기 기판이 침지된 상기 혼합 용액에 전기장을 인가함으로써, 습식 방법으로 도전성 나노 입자들이 기판 상에 고밀도로 신속하게 코팅된 나노 입자 어레이가 제조될 수 있다.

Description

나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법
생물학적 또는 비생물학적 물질의 검출을 위한 센서 기술에 관한 것으로서, 더욱 상세하게는 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법에 관한 것이다.
표면 플라즈몬 공명(surface plasmon resonance; SPR)은 도전성 재료의 표면 또는 그 근방에서 특정 파장을 갖는 광자와 전자가 결합되어 생성된 표면 플라즈몬 폴라리톤들(surface plasmon polaritons; SPPs)의 전파 현상을 지칭한다. 상기 SPR은 일반적으로 음의 유전 함수를 갖는 금속과 양의 유전 함수를 갖는 매질의 계면을 따라 전파하는 전도대 전자들의 집단적인 진동 현상이며, 입사된 전자기파보다 증가된 강도를 갖고 상기 계면에서 수직 방향으로 멀어질수록 지수적으로 감소하는 소멸파의 특성을 갖는다.
상기 SPR은 약 10 내지 200 nm 두께의 평탄한 금속의 표면과 유전체 계면에서 관찰되는 파형 플라즈몬(propagating plasmons)과 나노 입자 또는 나노 구조체에서 관찰되는 국소표면 플라즈몬 공명(localized surface plasmon resonance; LSPR)으로 분류될 수 있다. 이중 LSPR은 나노 입자들 또는 나노 구조체 표면의 화학적 및 물리적 환경에 따른 변화, 예를 들면, 이들에 접하는 매질의 굴절률 변화에 따른 최대 흡수율 또는 산란율을 갖는 플라즈몬 공명 파장의 변화를 검출함으로써 특정 분자를 식별하거나, 특정 분자의 매질 내 농도를 구할 수 있고, 상기 굴절률의 변화에 고감도를 갖기 때문에 비표지(label-free) 방식에 의해 검지가 이루어질 수 있어, 기존의 프리즘 결합(prism coupling)에 의한 파형 플라즈몬을 이용한 벌크 SPR 센서에 비하여 많은 장점을 갖는다.
이러한 LSPR을 유도하기 위한 금속 나노 파티클 어레이의 제조 방법으로서, 기판 상에 전자빔리소그래피, 집속이온빔, 또는 나노임프린트와 같은 나노 패터닝 기술이 제안되고 있다. 그러나 이러한 종래의 기술은 연속 공정과 다양한 기판 크기에 대응하여 수율을 향상시키는데 한계가 있을 뿐만 아니라 기계적 접촉이 요구되는 경우 결함이나 오염에 의해 불량이 쉽게 발생한다. 다른 제조 방법으로서, 연속적 프로파일을 갖는 금속 박막을 증착하고, 이를 열처리하여 서로 격리된 나노섬 구조의 어레이를 형성하는 기술이 제안된 바 있다. 그러나, 이 경우, 나노섬을 형성하기 위한 기판의 재료가 유리와 같은 내열성 재료로 제한되며, 고밀도의 나노 입자 어레이를 얻지 못하는 문제점이 있다.
따라서, 본 발명이 해결하고자 하는 과제는, 연속 공정시 수율이 높고, 저온 공정이 가능하여 기판 재료의 윈도우가 넓을 뿐만 아니라, SPR 증폭 효과를 향상시키기 위해 기판 상에 도전성 나노 입자들을 고밀도로 고정할 수 있는 나노 입자 어레이의 제조 방법을 제공하는 것이다.
또한, 본 발명의 해결하고자 하는 다른 과제는, 전술한 이점을 갖는 나노 입자 어레이를 이용하여 제조되고, 분광 분석 감도가 향상된 SPR 기반의 센서를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 과제는, 상기 SPR 기반의 센서를 이용하여, 간단한 분석 과정, 빠른 응답성 및 고신뢰성을 갖는 분광 분석 방법을 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 나노 입자 어레이의 제조 방법은, 이온성 바인더 및 도전성 나노 입자들의 혼합 용액을 제공하는 단계; 상기 혼합 용액 내에 기판을 침지하는 단계; 및 상기 도전성 나노 입자들이 상기 기판 상에 코팅되는 것을 유도하도록 상기 기판이 침지된 상기 혼합 용액에 전기장을 인가하는 단계를 포함한다.
상기 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 분광 분석용 센서는, 기판; 상기 기판 상에 코팅된 고분자 바인더층; 및 상기 고분자 바인더층 상에 분산 고정된 도전성 나노 입자들을 포함하며, 표면 플라즈몬 기반의 분광 분석용 센서가 제공될 수 있다.
상기 또 다른 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 분광 분석 방법은, 타겟 물질이 분산된 용액 내에 분광 분석용 센서를 침지하는 단계; 및 SPR 또는 LSPR을 이용하여 상기 센서 표면에서의 반사광 또는 투과광의 변화를 검출하는 단계를 포함한다. 또한, 다른 실시예에서, 상기 분광 분광 분석 방법은, 타겟 물질이 분산된 용액 내에 서로 공간적으로 이격 적층된 2 이상의 센서들을 침지하는 단계; 및 상기 센서들에 광을 입사시켜 SPR 또는 LSPR 모드로 결합된 반사광 또는 투과광의 변화를 검출하는 단계를 포함한다.
본 발명에 따르면, 이온성 바인더와 도전성 나노 입자들의 혼합 용액 내에 기판을 침지시켜 외부에서 전기장을 인가함으로써, 금속 나노 입자를 상기 기판 상에 고밀도로 신속하게 코팅하는 습식의 경제적인 나노 입자 어레이의 제조 방법이 제공될 수 있다.
또한, 본 발명에 따르면, 상기 고밀도의 금속 나노 입자가 코팅된 센서를 SPR 또는 LSPR 모드에 의해 분광 분석을 위해 응용함으로써, 표적 물질의 종류 및 농도에 따른 검출 감도를 향상시킨 센서가 제공될 수 있다. 또한, 상기 센서를 복수 개로 적층시켜 SPR 및 LSPR 기반의 분광 분석을 수행하는 경우, 광이 투과되는 단위 면적당 도전성 나노 입자들의 밀도를 실질적으로 증가시키는 효과를 통해, 실질적으로 적층된 센서들의 개수만큼 그 측정 감도를 쉽게 증폭시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 나노 입자 어레이의 제조 방법을 설명하기 위한 순서도이다.
도 2a 내지 도 2e는 본 발명의 일 실시예에 따른 나노 입자 어레이의 제조 방법을 도시한다.
도 3은 본 발명의 일 실시예에 따른 나노 입자 어레이의 제조 장치를 도시한다.
도 4a 및 도 4b는 각각 위 실시예와 비교예에 따라 제조된 금 나노 입자들의 어레이의 광학 사진 이미지이다.
도 5a 및 도 5b는 각각 실시예와 비교예에 따라 제조된 금 나노 입자들의 어레이의 주사전자현미경(SEM) 이미지이다.
도 6a는 본 발명의 일 실시예에 따른 분광 분석 장치의 개략도이며, 도 6b는 본 발명의 일 실시예에 따른 분광 분석용 큐벳을 도시한다.
도 7은 분광 분석 장치를 사용하여 측정된 실시예와 비교예에 따른 센서의 응답도를 도시하는 그래프이다.
도 8은 본 발명의 다른 실시예에 따른 큐벳을 도시하는 사시도이다.
도 9a 및 9b는 본 발명의 일 실시예에 따른 서로 다른 굴절률을 갖는 시료에 대해 1 개 내지 3 개의 LSPR 기반의 센서를 이용하여 측정된 흡광 스펙트럼의 파장대별 흡광도 및 파장대별 흡광도의 변화율을 나타내는 그래프이다.
도 10은 단일 또는 2 개의 LSPR 센서를 이용하여 측정되는 굴절률 변화율과 흡광도 변화율 사이의 관계를 나타내는 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
도면에서 동일 부호는 동일한 요소를 지칭한다. 또한, 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 실시예를 설명하기 위하여 사용되며, 본 발명의 범위를 제한하기 위한 것이 아니다. 또한, 본 명세서에서 단수로 기재되어 있다 하더라도, 문맥상 단수를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 "포함한다(comprise)" 및/또는 "포함하는(comprising)"이란 용어는 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 명세서에서 기판 또는 다른 층 "상에(on)" 형성된 층에 대한 언급은 상기 기판 또는 다른 층의 바로 위에 형성된 층을 지칭하거나, 상기 기판 또는 다른 층 상에 형성된 중간 층 또는 중간 층들 상에 형성된 층을 지칭할 수도 있다. 또한, 당해 기술 분야에서 숙련된 자들에게 있어서, 다른 형상에 "인접하여(adjacent)" 배치된 구조 또는 형상은 상기 인접하는 형상에 중첩되거나 하부에 배치되는 부분을 가질 수도 있다.
본 명세서에서, "아래로(below)", "위로(above)", "상부의(upper)", "하부의(lower)", "수평의(horizontal)" 또는 "수직의(vertical)"와 같은 상대적 용어들은, 도면들 상에 도시된 바와 같이, 일 구성 부재, 층 또는 영역들이 다른 구성 부재, 층 또는 영역과 갖는 관계를 기술하기 위하여 사용될 수 있다. 이들 용어들은 도면들에 표시된 방향뿐만 아니라 소자의 다른 방향들도 포괄하는 것임을 이해하여야 한다.
이하에서, 본 발명의 실시예들은 본 발명의 이상적인 실시예들(및 중간 구조들)을 개략적으로 도시하는 단면도들을 참조하여 설명될 것이다. 이들 도면들에 있어서, 예를 들면, 부재들의 크기와 형상은 설명의 편의와 명확성을 위하여 과장될 수 있으며, 실제 구현시, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 된다. 또한, 도면의 부재들의 참조 부호는 도면 전체에 걸쳐 동일한 부재를 지칭한다.
도 1은 본 발명의 일 실시예에 따른 나노 입자 어레이의 제조 방법을 설명하기 위한 순서도이며, 도 2a 내지 도 2e는 본 발명의 일 실시예에 따른 나노 입자 어레이의 제조 방법을 도시한다.
도 1과 함께 도 2a를 참조하면, 이온성 바인더(10)를 적합한 용매(20)에 용해하고, 도전성 나노 입자들(30)을 상기 용매(20)에 분산시켜 혼합 용액(40)을 제조하거나, 도전성 나노 입자들(30)이 분산된 용매(20) 내에 이온성 바인더(10)를 첨가하여 혼합 용액(40)이 제공될 수 있다(S10). 혼합 용액(40) 내에서 이온성 바인더(10)와 도전성 나노 입자들(30)은 서로 결합되어 겔(gel) 형태를 가질 수 있다. 일부 실시예에서, 혼합 용액(40)은 도전성 나노 입자의 균일한 분산과 응집을 막기 위해 교반되거나 초음파 에너지를 인가하여 도전성 나노 입자의 응집을 막을 수 있다.
이온성 바인더(10)는 혼합 용액(40) 내에서 양이온성 또는 음이온성을 나타내는 고분자일 수 있다. 일 실시예에서, 상기 고분자는 그 분자량이 약 1,000 kDal 내지 60,000 kDal을 갖는 이온성 고분자 중에서 선택될 수 있다. 분자량이 1,000 kDal 미만인 경우에는 후술하는 도전성 나노 입자들의 기판 상 고정력이 충분하지 않으며, 분자량이 60,000 kDal을 초과하는 경우, 점성이 과다하여 후술하는 바와 같이 전기장이 인가되더라도 충분한 흐름(flux)를 기대할 수 없다.
일 실시예에서, 상기 양이온성 고분자는 폴리다이알릴다이메틸암모늄 클로라이드(poly diallydimethylammonium chloride), 폴리알릴아민 하이드로클로라이드(poly allylamine hydrochloride), 폴리비닐벤질트리메틸 암모늄 클로라이드(poly 4-vinylbenzyltrimethyl ammonium chloride), 폴리에틸렌이민(polyethyleneimine) 중 어느 하나 또는 이들의 혼합물을 포함할 수 있다. 상기 음이온성 고분자는 폴리아크릴산(poly acrylic acid), 폴리소디움 스티렌 술포네이트(poly sodium 4-styrene sulfonate), 폴리비닐술포닉산(poly vinylsulfonic acid), 폴리소디움염(poly sodium salt), 폴리아미노산 (poly amino acids) 중 어느 하나 또는 이들의 혼합물을 포함할 수 있다. 그러나, 전술한 고분자들은 예시적이며, 다른 공지의 이온성기를 갖는 중합체 또는 공중합체들, 전술한 고분자 주쇄에 양성 또는 음극성 이온성기가 결합된 고분자들, 다른 합성 수지, 및 천연 수지, 또는 전해질 고분자도 본 발명에 포함된다.
상기 용매는 증류수 또는 탈이온수와 같은 물, 지방족 알코올, 지방족 케톤, 지방족 카르복실산 에스테르, 지방족 카르복실산 아미드, 방향족 탄화수소, 지방족 탄화수소, 아세토니트릴, 지방족 술폭시드 또는 이들의 혼합물 중 어느 하나일 수 있으며, 이들은 예시적일 뿐 다른 공지의 극성 용매를 포함할 수도 있다.
혼합 용액(40) 내에 상기 고분자(10)와 결합되는 도전성 나노 입자들(20)은 10 nm 내지 200 nm의 평균 직경을 가질 수 있으며, 구형, 나노 튜브, 나노 컬럼, 나노 로드, 나노 기공, 나노 와이어 중 어느 하나 또는 이들이 조합된 형상을 가질 수 있다. 이들 입자들은 상기 형상에 따라 속이 꽉 찬 형태이거나 다공질 또는 중공형일 수 있다. 상기 도전성 나노 입자들은, 탄소, 흑연, 준금속, 금속, 상기 준금속 또는 금속의 합금, 도전성 금속 산화물, 금속 질화물의 도전성 입자이거나, 유리 또는 고분자 절연성 비드 상에 금속 박막과 같은 도전층이 코팅된 코어 쉘 구조의 입자일 수 있다.
상기 준금속은, 안티몬(Sb), 게르마늄(Ge) 및 비소(As) 중 어느 하나 또는 이들의 합금일 수 있다. 상기 금속은 금속, 전이 금속 또는 전이후 금속으로서, 타이타늄(Ti), 아연(Zn), 알루미늄(Al), 스탄튬(Sc), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 인듐(In), 주석(Sn), 이트륨(Y), 지르코늄(Zr), 네오븀(Nb), 몰리브데늄(Mo), 루테늄(Ru), 로듐(Rh), 파라듐(Pd), 금(Au), 은(Ag), 백금(Pt), 스트론튬(Sr), 텅스텐(W) 또는 카드뮴(Cd), 탄탈륨(Ta), 타이타늄(Ti), 타이타늄(Ti) 또는 이들의 합금일 수 있다.
상기 도전성 금속 산화물로서, 인듐 틴 옥사이드(ITO), 인듐 아연 옥사이드(IZO), 알루미늄 도프된 아연 산화물(AZO), 갈륨 인듐 아연 산화물(GIZO) 또는 아연 산화물(ZnO)이 비제한적으로 예시될 수 있다. 또한, 상기 도전성 질화물로서, 텅스텐 질화물(WN)이 비제한적으로 예시될 수 있다.
혼합 용액(40) 내에는 혼합 용액(40)의 총 중량에 대하여 이온성 바인더(20)가 0.01 중량% 내지 0.3 중량%로 첨가되고, 도전성 나노 입자들(30)이 0.1 중량% 내지 0.3 중량 %로 첨가될 수 있으며, 나머지 중량%는 용매로 채워질 수 있다. 전술한 중량%는 이온성 바인더(20)와 도전성 나노 입자들(30)의 종류에 따라 결정될 수 있으며, 본 발명이 이에 제한되는 것은 아니다. 일부 실시예에서는, 알긴산, 알긴산 유도체 및 이들의 혼합물로 적합한 분산 안정제 또는 붕산, 오르토인산, 아세트산, 아스코르브산 및 구연산과 같은 pH 조절제가 첨가될 수도 있다. 또는, 광감성 이온성 바인더의 경우에는 가교 반응을 위해 광개시제가 가첨될 수도 있다.
도 1a와 함께 도 2b를 참조하면, 혼합 용액(40) 내에 기판(50)을 침지한다. 기판(50)은 적합한 기구에 의해 용기 내에 고정될 수 있으며, 2 이상의 기판이 침지될 수 있다. 기판(50)은 침지 이전에 세정 또는 표면 처리될 수 있다.
기판(50)은 투명 또는 불투명 기판일 수 있으며, 바람직하게는 투명 기판이다. 이들 기판의 두께는 50 ㎛ 내지 2 mm의 범위 내일 수 있다. 상기 투명 기판은, 예를 들면, 유리 또는 광학적으로 85% 이상의 투광도를 갖는 고분자 재료를 포함할 수 있다. 예를 들면, 상기 고분자 재료는, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 트라아세틸셀룰로오스, 환상올레핀, 폴리에틸렌테레프탈레이트, 폴리아릴레이트, 폴리아크릴레이트, 폴리에틸렌 나프탈레이트, 폴리부틸렌테레프타레이트, 또는 폴리이미드를 포함할 수 있으며, 본 발명이 이들 예에 한정되는 것은 아니다. 상기 불투명 기판은 사파이어 또는 실리콘 단결정을 포함할 수 있으며, 본 발명이 이에 한정되는 것은 아니다. 또한, 다른 실시예에서, 기판(50)은 실리콘 고무, 라텍스, 또는 자성 재료를 포함할 수도 있다.
도 1a와 함께 도 2c를 참조하면, 기판(50)이 침지된 상태에서 혼합 용액에 전기장(E)을 인가한다. 일부 실시예에서, 전계의 방향은 기판(50)의 코팅 주면, 즉, 도전성 나노 입자들이 주로 코팅되어야 하는 면에 따라 결정될 수 있다. 예를 들면, 도 2c에 도시된 바와 같이 기판(50)의 상면에 주로 도전성 나노 입자들을 코팅하고자 한다면, 양이온성 바인더가 사용된 경우 연직 하방으로 전계를 형성할 수 있다. 반대로, 음이온성 바인더가 사용되는 경우, 연직 상방으로 전계를 형성할 수 있다.
전기장(E)에 의해 이온성 바인더에 결합된 도전성 나노 입자들(30)이 기판으로 가속되어 전기영동함으로써, 기판(50)으로의 도전성 나노 입자들(30)의 방향성 있는 흐름(flux)이 발생할 수 있다. 상기 흐름은 전기장(E)에 의해 가속되어, 더 큰 운동에너지를 가지면서 활성화되어, 기판(50) 주면으로의 도전성 나노 입자들(30)의 코팅 속도가 향상될 뿐만 아니라, 도전성 나노 입자들(30)의 고정력이 향상되고 기판(50) 상에 도전성 나노 입자들(30)을 고밀도로 코팅할 수 있다.
본 발명의 실시예에 따르면, 기판(50)이 절연체이기 때문에, 기판(50)은 전기적으로 플로팅 상태에 있으며, 전기장(E)은 혼합 용액(40)의 외부에서 형성되고, 혼합 용액(40) 내부로 관통된다. 전기장(E)은 정전기장, 교류 전기장 또는 다른 파형을 가질 수 있으며, 본 발명이 이에 한정되는 것은 아니다. 전술한 전기장(E)은 챔버 내에서의 플라즈마 방전에 의해 생성될 수 있으며, 이에 관하여는 도 3을 참조하여 후술하도록 한다.
이후, 기판(50) 상으로 도전성 나노 입자들(30)이 충분히 고정되면, 혼합 용액(40)으로부터 기판(50)을 회수한다. 이후, 회수된 기판(50)의 건조 단계를 수행하거나, 바인더의 가교 반응을 위해 자외선 또는 열을 조사할 수도 있다. 일부 실시예에서는, 기판(50)에 대한 세정이 이루어질 수 있다. 상기 세정에 의해 미고정된 도전성 나노 입자들이 제거되고, 이후 건조 공정에 의해 이온성 바인더의 수축이 일어날 수 있다.
도 2d를 참조하면, 도전성 나노 입자들(30)이 양이온성 바인더로부터 유래된 고분자 바인더층(10')에 의해 기판(50) 상에 고정된다. 도전성 나노 입자들은 단일층의 나노 입자 어레이를 형성할 수 있다. 일부 실시예에서는, 고분자 바인더층(10')이 수축되면서 도전성 나노 입자들(30)의 상부 표면이 노출되어, 후술하는 바와 같이 표면 플라즈몬 기반의 센서 또는 LSPR 로서 사용될 수 있다. 일부 실시예에서, 상기 고분자 바인더층(10')은 유전체일 수 있다.
도 2e를 참조하면, 일부 실시예에서는, 도전성 나노 입자들(30) 상에 측정할 타겟 물질과 특이적 결합이 가능한 고정 물질(L)을 더 형성할 수도 있다. 고정 물질은 도전성 나노 입자들(30)의 표면뿐만 아니라 도전성 나노 입자들(30) 사이의 바인더 표면 상에도 형성될 수 있다. 고정 물질(L)은 상기 타겟 물질과 결합 가능한 저분자 화합물, 항원, 항체, 단백질, 펩타이드, DNA, RNA, PNA, 효소, 효소 기질, 호르몬, 호르몬 수용체, 관능기를 포함하는 합성 시약 중 어느 하나, 이의 모사물, 또는 이들의 조합을 포함할 수 있으며, 이의 고정 방법에 관하여는 공지의 기술이 참조될 수 있다.
도 3은 본 발명의 일 실시예에 따른 나노 입자 어레이의 제조 장치(1000)를 도시한다.
도 3을 참조하면, 제조 장치(1000)는 도 2c를 참조하여 전술한 전기장(E) 발생 장치이다. 제조 장치(1000)는 전계 발생을 위한 2 개의 전극, 즉, 애노드(AE)와 캐소드(CE)를 가질 수 있다. 또한, 제조 장치(1000)는 기체 방전을 위한 적합한 가스 유량 조절기를 더 포함할 수 있다.
애노드(AE)와 캐소드(CE) 사이에 의해 정의되는 공간으로 가스(P)가 화살표 A로 지시한 바와 같이 인입되고, 연속적으로 화살표 B로 나타낸 바와 같이 방출된다. 다른 실시예에서, 가스(P)는 애노드(AE)와 캐소드(CE) 중 어느 하나 또는 이들 모두로부터 제공될 수 있으며, 이를 위하여, 애노드(AE)와 캐소드(CE)는 샤워 헤드와 유사한 모양의 관통홀을 가질 수 있다.
상기 가스는 헬륨(He), 네온(Ne), 아르곤(Ar), 질소(N2), 및 공기 중 어느 하나 또는 이들의 혼합 기체를 포함할 수 있다. 그러나, 이는 예시적이며, 가스(P)는 다른 반응성 가스일 수도 있다.
캐소드(CE)에는 가스(P)의 기체 방전, 즉 플라즈마 발생을 위한 교류 발생기(RF generator)가 전기적으로 결합될 수 있으며, 애노드(AE)는 접지될 수 있다. 또는, 위와 같은 교류 방전이 아닌 직류 방전을 위해 애노드(AE)에는 양의 전압이 인가되고, 캐소드(CE)에는 음의 전압이 인가될 수도 있다. 캐소드(CE)와 애노드(AE) 사이에 혼합 용액(30) 내에 기판(50)이 침지된 용기(60)를 재치한 후, 플라즈마 발생을 위해 애노드(AE) 및/또는 캐소드(CE)에 전원이 공급된 채로 수초 내지 수분간 나노 입자들의 고정 공정을 수행한다. 애노드(AE)로부터 용기(60) 사이의 거리는 0.5 cm 내지 40 cm 간격을 유지할 수 있다.
도 3의 제조 장치(1000)에서는 캐소드(CE)의 교류 발생기에 전원이 인가되면, 캐소드(CE)는 셀프 바이어스(self-bias)에 의해 음의 전위를 갖게 되고, 이로써, 접지된 애노드(AE)와 캐소드(CE) 사이에 화살표 방향의 전기장(E)이 생성된다. 이에 의해 혼합 용액 내의 도전성 나노 입자들과 이온성 바인더의 흐름이 발생하고, 이를 수초 내지 수분 지속함으로써, 기판(50) 상에 도전성 나노 입자들을 고정할 수 있다.
도시된 애노드(AE)와 캐소드(CE)의 위치는 서로 반대일 수도 있다. 또한, 애노드(AE)은 평평한 것에 한하지 않고, 뚜껑과 같이 측벽을 가짐으로써 기체 방전 공간을 한정하거나 챔버의 본체일 수도 있다. 일부 실시예에서, 상기 기체 방전을 위한 상기 공간의 압력은 상압이거나 상압 미만의 진공 상태일 수 있으며, 이를 위해 제조 장치(1000)에 진공 펌프가 제공될 수도 있다.
나노 어레이의 제조
전술한 이온성 바인더로서 0.01 중량%의 전해질 고분자와 0.01 %의 안정제를 첨가하고, 도전성 나노 입자로서 0.05 중량%의 금 나노 입자들을 증류수에 첨가하고 교반하여 혼합 용액이 제조되었다. 상기 도전성 나노 입자가 코팅될 기판으로서 고분자 필름인 폴리에틸테레프탈레이트(PET) 또는 폴리카보네이트(PC)를 증류수로 세정 및 표면 처리한 후, 상기 혼합 용액 내에 침지하였다. 이후, 이온성 바인더에 결합된 도전성 나노 입자가 상기 기판에 빠르고 균일하게 코팅될 수 있도록 상기 혼합 용액을 전기장 발생 장치 내에 재치하고 전기장을 상기 혼합 용액 내로 투과시켜 코팅 반응을 진행하여 나노 어레이를 제조하였다.
전술한 바와 같이, 전기장을 인가한 경우(실시예라 함)와 동일 혼합 용액에 대하여 전기장을 인가하지 않은 경우(비교예라 함)의 코팅 시간을 비교하기 위해, 도전성 나노 입자가 코팅된 상태에서 흡광도 측정이 수행되었다. 실시예에 따르면, 약 5분 이내 흡광도 0.5를 가져 적합한 코팅 밀도 코팅 공정이 완료되었으나, 비교예의 경우에는 적어도 12시간 이상의 시간이 경과하여야 비로소 흡광도 0.2를 갖는 코팅 밀도를 얻게 되었다.
도 4a 및 도 4b는 각각 위 실시예와 비교예에 따라 제조된 금 나노 입자들의 어레이의 광학 사진 이미지의 흑백 변환 이미지이다. 사용된 기판은 폴리에틸테레프탈레이트(PET)이다. 도 4a 및 도 4b를 참조하면, 실시예에 따른 경우가 비교예에 따른 경우에 비해 더 짙은 색을 띰을 알 수 있다. 이것은 실시예에 따른 경우가, 비교예보다 더 고밀도로 금 나노 입자들이 코팅되었음을 나타낸다.
도 5a 및 도 5b는 각각 실시예와 비교예에 따라 제조된 금 나노 입자들의 어레이의 주사전자현미경(SEM) 이미지이다. 사용된 기판은 폴리카보네이트(PC)이다.
도 5a 및 도 5b를 참조하면, 실시예에 따른 경우가 비교예에 따른 경우에 비해 금 나노 입자들이 더 균일하고 고밀도로 기판 상에 코팅됨을 확인할 수 있다.
이들 결과들로부터, 본 발명의 실시예에 따르면, 습식 방법으로 더 짧은 시간에도 고밀도로 기판 상에 금 나노 입자들을 코팅할 수 있다. 전술한 실험예는 금 나노 입자에 관한 것이지만, 바인더에 대한 도전성 나노 입자들의 특징적인 결합이 반드시 요구되는 것은 아니어서 전술한 다른 도전성 나노 입자들에 대하여도 적용될 수 있으며, 본 발명이 상기 실시예에 한정되지 않음을 이해하여야 한다.
전기장(정전기장 또는 교류 전기장, 바람직하게는 교류 전기장) 내에서 습식으로 도전성 나노 입자들을 코팅하는 경우, 도전성 나노 입자들과 이온성 바인더가 분산된 혼합 용액 내에서 이온성 고분자와 함께 이에 결합된 도전성 나노 입자들은 전기장에 의해 운동 에너지를 가지면서 활성화될 수 있다. 이와 같이, 활성화된 이온성 고분자나 도전성 나노 입자들은 기판의 표면으로 전달되는 이들의 흐름(flux)을 증대시키고 고분자 기판의 표면에서 강한 고정력을 제공할 수 있다. 그에 따라, 전기장 유도된 습식 공정에서는, 금속 나노 입자의 코팅 속도가 향상되고 기판 상에 고밀도로 코팅될 수 있다. 또한, 본 발명의 실시예에 따르면, 습식 공정으로 진행되기 때문에, 대량 생산이 가능하고, 저온 공정이 가능하여 내열성이 취약한 고분자 기판이 사용될 수도 있어 경량화되고 경제적인 센서 제조가 가능하다. 이러한 이점은 이하에서 더욱 분명해질 것이다.
본 발명의 실시예에 따라 도 2d에 도시된 바와 같은 SPR 기반의 분광 분석용 센서를 제작하였으며, 도 6a에 도시된 구성을 기본적 구성으로 하는 Thermo-Fisher사의 Genesys 10A 자외선-가시광 분광 분석 장치(2000)를 사용하여 도 6a에 도시된 구성으로 흡광도 변화를 측정하였다. 또한, 분광 분석용 센서(100)는 도 6b에 도시된 바와 같은 분광 분석용 큐벳(300A)으로 제조될 수 있다.
도 6a를 참조하면, 분광 분석 장치(2000)는 발광부(2000_1), 투명 기판(50), 및 투명 기판(50)의 주 표면 상에 형성된 도전성 나노 입자들의 어레이(30L)를 포함하는 SPR 또는 LSPR 센서(100), 및 수광부(2000_2)를 포함한다. 발광부(2000_1)는 투명 기판(50)을 경과하는 광을 방출할 수 있다. 바람직하게는 투명 기판(50)과 수직인 방향으로 광이 방출될 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 일부 실시예에서, 센서(100)를 기준으로 발광부(2000_1)와 수광부(2000_2)는 대향되는 방향에 위치할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 투과광 또는 반사광의 측정 모드에 따라, 또는 적합한 반사판 또는 렌즈와 같은 광학계가 결합되어 수광부(2000_1)와 발광부(2000_2)가 서로 대향하지 않는 구성을 가질 수도 있다. 상기 광은 자외선 영역에서 가시광선 영역을 포함하는 380 nm 내지 1,500 nm 범위 내의 파장을 가질 수 있다.
센서(100)는 발광부(2000_1)로부터 수광부(2000_2)까지의 광 경로 상에 단일하게 또는 2 개 이상 배치될 수 있다. 2 개 이상이 배치된 구성에 관하여는 도 8을 참조하여 후술하도록 한다. 분광 분석 장치(2000)는 발광부(2000_1)로부터 방출된 광과 수광부(2000_2)로부터 입사되는 광으로부터 산출되는 흡광도 변화율 또는 최대 신호 크기를 갖는 흡수 파장값의 변화율을 측정하여 분석한다.
상기 흡광도 변화율 및 흡수 파장값의 변화율은 도전성 나노 입자들의 LSPR 현상에 기초하는 것으로서, 상기 도전성 나노 입자들과 접하는 시료 내의 생물학적 또는 비생물학적 물질의 반응도에 따른 도전성 나노 입자들 주변의 유효 굴절률의 변화로부터 유도된다. 이러한 흡광도 변화율 및 흡수 파장값의 변화율은 전술한 바와 같이 도전성 나노 입자들을 고밀도화함으로써 그 감도가 향상될 수 있다. 분광 분석 장치(2000)는 상기 타겟 물질을 분석하는 분석 모듈(도시하지 아니함)을 더 포함할 수 있다. 상기 분석 모듈은 통상의 마이크로프로세서, 메모리, 및 저장 장치와 같은 컴퓨팅 시스템을 포함할 수 있으며, 본 발명이 이에 한정되는 것은 아니다.
도 6b를 참조하면, 큐벳(300A)은 투명한 재료로 형성되어 발광부로부터 광(Lin)이 입사되어 센서(100)를 통과하는 광(Lout)은 수광부로 전달될 수 있다. 도시하지는 아니하였으나, 큐벳(40)은 그 내부에 센서(100)를 고정하기 위한 고정부를 더 포함할 수 있으며, 분석하고자 하는 타겟 물질이 포함된 반응 시료를 주입시킬 수 있는 주입부를 더 포함할 수 있다.
도 7은 분광 분석 장치(도 6a의 2000)를 사용하여 측정된 실시예와 비교예에 따른 센서의 응답도를 도시하는 그래프이다.
도 7을 참조하면, 측정 센서의 굴절률 증가값의 변화에 대한 흡광도 증가값의 변화율은 실시예에 따른 경우, 비교예에 비해 43% 이상 향상되어, 그 만큼 측정 감도가 향상됨을 확인할 수 있으며, 이는 코팅된 도전성 나노 입자들의 고밀도화에 기인한다.
도 8은 본 발명의 다른 실시예에 따른 큐벳(300B)을 도시하는 사시도이다.
도 8을 참조하면, 큐벳(300B)은 분광 분석 장치(도 6a의 2000)의 발광부와 수광부 사이의 광 경로 상에 배치되는 2 개의 SPR 및 LSPR 기반의 서브 센서들(100_1, 100_2)을 포함한다. 이 경우, 이들 서브 센서들(100_1, 100_2) 상의 도전성 나노 입자들의 어레이(30L) 각각은 코팅 밀도와 코팅 두께에 있어 서로 동일하거나 서로 다를 수 있다. 서로 다른 특성을 갖는 도전성 나노 입자들의 어레이를 각각 포함하는 복수의 센서들을 이용하는 경우, 다른 광학적 특징을 갖는 파장에 대한 흡광도를 동시에 획득하여 2 이상의 물질을 검출하기 위한 분석에 이용될 수 있다.
다른 실시예에서, 각각의 센서들(100_1, 100_2)은 동일하거나 각각 서로 다른 타겟 물질에 결합하는 고정 물질을 포함함으로써, 동시에 여러 개의 동종 시료들 또는 이종 시료들을 분광 분석하기 위해 이용될 수도 있다.
전술한 실시예들에 따르면, SPR 또는 LSPR 기반의 분석법에 의해 발광부로부터 수광부까지 광 경로를 따라 공간적으로 적층 배치되는 복수의 센서들을 이용함으로써, 광이 투과되는 단위 면적당 도전성 나노 입자들의 밀도를 실질적으로 증가시키는 효과를 통해, 그 측정 감도를 사용된 센서들의 개수 만큼 실질적으로 쉽게 증폭시킬 수 있다.
도 9a 및 9b는 본 발명의 일 실시예에 따른 서로 다른 굴절률을 갖는 시료에 대해 1 개 내지 3 개의 LSPR 기반의 센서를 이용하여 측정된 흡광 스펙트럼의 파장대별 흡광도 및 파장대별 흡광도의 변화율을 나타내는 그래프이다.
도 9a를 참조하면, 상온의 증류수에서의 굴절률(RI: Refractive Index)은 1.3333이고, 40% 글리세롤에서의 굴절률은 1.3841으로, LSPR 센서가 1 개인 경우와 2 개 또는 3개로 구성된 경우에 모두 동일하다. 그러나, 특정 범위 내의 파장에 대한 흡광도(Absorbance)의 증가량, 즉 LSPR 검출 신호의 증가량은 단일 센서로부터 측정된 경우에 비하여 2 개의 센서로 측정한 경우 약 2 배 가까이 더 증가되며, 3 개의 센서가 포함된 경우 약 3 배 가까이 더 증가된다.
따라서, 복수의 센서를 공간적으로 적층하여 광 경로 상에 배치하면 흡광도가 약 2 배 또는 그 이상으로 증가함을 알 수 있다. 그 결과, 본 발명의 실시예에 따르면, 복수 개의 센서를 이용함으로써 SPR 기반의 분광 분석시 검출 감도를 쉽게 향상시킬 수 있다.
하기 표 1은 해당 논문에 기재된 도전성 나노 입자들을 이용하는 SPR 기반의 분광 분석 실험으로부터 얻어진 검출 감도(비교예 1 및 2)와 본 발명의 실시예에 따라 분석칩 개수를 증가시키면서 측정되는 검출 감도(실시예 1 내지 3)를 표시한 것이다.
표 1
실험예 센서 검출 감도(흡광도변화/굴절률변화)
실시예 1 1 개의 센서 1.0
실시예 2 2 개의 센서들 2.0
실시예 3 3 개의 센서들 2.6
비교예 1(Anal Chem 2004, 76, 5370-5378) 유리 기판 상의 나노 구조들 1.2
비교예 2(Microelectronic Engineering 86 (2009) 2437-2441) 유리 기판 상의 나노 구조들 0.7
비교예 3(Anal Chem 2002, 74, 504-509) 유리 기판 상의 나노 구조들 0.5
표 1를 참조하면, 분광 분석 장치의 종류 및 센서의 개수에 따라 검출 감도, 즉, LSPR 신호의 크기가 다르게 측정됨을 알 수 있다. 특히, 본 발명의 실시예에 따르면, 광 경로 상의 센서의 개수가 증가할수록 LSPR 신호의 크기(단위굴절률 변화에 대한 흡광도 변화의 비율)가 대략 복수 배 증가함을 알 수 있고, 2 개 이상의 센서를 이용하는 경우, 비교예 1 및 2에 따라 분석시 얻어지는 반응 기울기보다 더 큰 반응 기울기를 보임을 알 수 있다. 따라서, 본 발명의 실시예에 따르면, 동일 매질에서 반응 기울기가 증가하기 때문에, 타겟 물질을 더 민감하고 더 정화하게 감지할 수 있다.
도 9b를 참조하면, 도 9a의 그래프와 유사하게, 동일한 굴절률을 갖는 매질을 이용하는 경우, 다양한 범위의 파장에 있어서 2 개의 센서를 이용할 때 단일 센서를 이용하는 경우보다 광학적 흡수 스펙트럼 내에서 흡광도 변화량이 대략 2 배 이상 증가하고, 3 개의 센서를 이용할 때는 단일 센서를 이용할 때보다 흡광도 변화량이 3 배 이상 증가됨을 확인할 수 있다.
도 10은 단일 또는 2 개의 LSPR 센서를 이용하여 측정되는 굴절률 변화율과 흡광도 변화율 사이의 관계를 나타내는 그래프이다.
도 10을 참조하면, 단일 LSPR 센서의 경우에는 굴절률 변화율에 대한 흡광도 변화율의 비율이 약 1.0 이지만, 2 개의 LSPR 센서의 경우에는 상기 비율이 약 2.0 이며, 3 개의 LSPR 센서의 경우에는 상기 비율이 약 2.6로 향상되는 것을 확인할 수 있다.
전술한 다양한 실시예들에서, 분광 분석 장치는 다음과 같이 변형될 수 있으며, 이 또한 본 발명의 범위 내에 포함된다. 예를 들면, 웰-플레이트 리더 및 마이크로플레이트 리더를 상기 센서와 함께 이용하기 위해서, 발광부와 수광부는 도 6a에 도시된 것과 달리, 평탄하게 놓여진 웰 플레이트를 기준으로 위 아래로 각각 정렬될 수 있다. 이 경우, 상기 센서들은 웰 플레이트의 각 웰마다 담지될 수 있을 정도의 소형 크기로 제작되어, 상기 웰에 각각 동시에 담지될 수 있도록 어레이 형태로 배열될 수 있다.
또한, 센서들의 각 기판들은 상하로 배치된 발광부와 수광부에 대응하여 수평 방향으로 어레이될 수 있으며, 2 이상의 센서들을 단일 웰에 적용하기 위해서, 각 센서들은, 예를 들면, 2 장씩 공간적으로 이격되어 수직 방향으로 적층될 수 있다. 또 다른 실시예에서는, 복수의 LSPR 센서들은 미세유체소자(microfluidic device)와 같이 서로 대향 부착되어 다양한 유동적인 통로를 제공하도록 스페이서를 사이에 두고 서로 반복하여 적층될 수 있다. 또 다른 실시예에서, 상기 LSPR 센서는 LSPR 현상에 의한 흡광도를 수 배로 증폭하기 위해 어레이 중 최상층 및/또는 최하층에만 선택적으로 이용될 수도 있다.
본 발명의 실시예에 따르면, 습식 저온 공정이 가능하므로, 그 성형과 가공이 용이한 고분자 재료의 기판이 사용되어 제조 비용이 감소될 수 있다. 또한, 본 발명의 실시예에 따르면, LSPR 현상을 이용하여 발색단과 같은 표지 물질의 형성을 위한 전처리 단계 없이도 타겟 물질들의 분석이 가능하므로 다량의 물질의 신속한 분석이 가능하다.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (34)

  1. 이온성 바인더 및 도전성 나노 입자들의 혼합 용액을 제공하는 단계;
    상기 혼합 용액 내에 기판을 침지하는 단계; 및
    상기 도전성 나노 입자들이 상기 기판 상에 코팅되는 것을 유도하도록 상기 기판이 침지된 상기 혼합 용액에 전기장을 인가하는 단계를 포함하는 나노 입자 어레이의 제조 방법.
  2. 제 1 항에 있어서,
    상기 이온성 바인더 및 도전성 나노 입자들은 상기 혼합 용액 내에서 겔 상태를 갖는 나노 입자 어레이의 제조 방법.
  3. 제 1 항에 있어서,
    상기 이온성 바인더는 폴리다이알릴다이메틸암모늄 클로라이드(poly diallydimethylammonium chloride), 폴리알릴아민 하이드로클로라이드(poly allylamine hydrochloride), 폴리비닐벤질트리메틸 암모늄 클로라이드(poly 4-vinylbenzyltrimethyl ammonium chloride), 폴리에틸렌이민(polyethyleneimine) 중 어느 하나 또는 이들의 혼합물을 포함하는 양이온성 고분자, 또는 폴리아크릴산(poly acrylic acid), 폴리소디움 스티렌 술포네이트(poly sodium 4-styrene sulfonate), 폴리비닐술포닉산(poly vinylsulfonic acid), 폴리소디움염(poly sodium salt), 폴리아미노산 (poly amino acids) 중 어느 하나 또는 이들의 혼합물을 포함하는 음이온성 고분자를 포함하는 나노 입자 어레이의 제조 방법.
  4. 제 1 항에 있어서,
    상기 기판은 투명한 재료를 포함하는 나노 입자 어레이의 제조 방법.
  5. 제 1 항에 있어서,
    상기 기판은 고분자 기판을 포함하는 나노 입자 어레이의 제조 방법.
  6. 제 1 항에 있어서,
    상기 전기장은 정전기장 또는 교류 전기장인 나노 입자 어레이의 제조 방법.
  7. 제 1 항에 있어서,
    상기 전기장은 플라즈마 방전에 의해 생성되는 나노 입자 어레이의 제조 방법.
  8. 제 6 항에 있어서,
    상기 기체는, 헬륨(He), 네온(Ne), 아르곤(Ar), 질소(N2), 및 공기 중 어느 하나 또는 이들의 혼합 기체를 포함하는 나노 입자 어레이의 제조 방법.
  9. 제 1 항에 있어서,
    상기 기판은 전기적으로 플로팅되어 있는 나노 입자 어레이의 제조 방법.
  10. 제 1 항에 있어서,
    상기 도전성 나노 입자들은 구형, 나노 튜브, 나노 컬럼, 나노 로드, 나노 기공 및 나노 와이어 중 어느 하나 또는 이들이 조합된 형상을 갖는 나노 입자 어레이의 제조 방법.
  11. 제 1 항에 있어서,
    상기 도전성 나노 입자들은 다공질 또는 중공형인 나노 입자 어레이의 제조 방법.
  12. 제 1 항에 있어서,
    상기 도전성 나노 입자들은 탄소, 흑연, 준금속, 금속, 도전성 금속 산화물, 또는 금속 질화물의 입자들을 포함하거나, 절연성 비드 상에 상기 입자들이 코팅된 코어 쉘 구조의 입자 또는 이들의 조합을 포함하는 나노 입자 어레이의 제조 방법.
  13. 제 12 항에 있어서,
    상기 준금속은, 안티몬(Sb), 게르마늄(Ge) 및 비소(As) 중 어느 하나 또는 이들의 합금을 포함하고,
    상기 금속은 금속, 전이 금속 또는 전이후 금속으로서, 타이타늄(Ti), 아연(Zn), 알루미늄(Al), 스탄튬(Sc), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 인듐(In), 주석(Sn), 이트륨(Y), 지르코늄(Zr), 네오븀(Nb), 몰리브데늄(Mo), 루테늄(Ru), 로듐(Rh), 파라듐(Pd), 금(Au), 은(Ag), 백금(Pt), 스트론튬(Sr), 텅스텐(W) 또는 카드뮴(Cd), 탄탈륨(Ta), 타이타늄(Ti), 타이타늄(Ti) 또는 이들의 합금을 포함하며,
    상기 도전성 금속 산화물은 인듐 틴 옥사이드(ITO), 인듐 아연 옥사이드(IZO), 알루미늄 도프된 아연 산화물(AZO), 갈륨 인듐 아연 산화물(GIZO), 아연 산화물(ZnO) 또는 이들의 혼합물을 포함하는 나노 입자 어레이의 제조 방법.
  14. 기판;
    상기 기판 상에 코팅된 고분자 바인더층; 및
    상기 고분자 바인더층 상에 분산 고정된 도전성 나노 입자들을 포함하는 표면 플라즈몬 기반의 분광 분석용 센서.
  15. 제 14 항에 있어서,
    상기 고분자 바인더층은 유전체인 표면 플라즈몬 기반의 분광 분석용 센서.
  16. 제 14 항에 있어서,
    상기 고분자 바인더층은 이온성 고분자를 포함하는 분광 분석용 센서.
  17. 제 14 항에 있어서,
    상기 도전성 나노 입자들은 전파되는 표면 플라즈몬 폴라리톤(SPP) 파장 및 국소 표면 플라즈몬 공명(LSPR) 모드와 결합하도록 구성되는 분광 분석용 센서.
  18. 제 14 항에 있어서,
    상기 도전성 나노 입자들은 탄소, 흑연, 준금속, 금속, 도전성 금속 산화물, 또는 금속 질화물의 입자들을 포함하거나, 절연성 비드 상에 상기 입자들이 코팅된 코어 쉘 구조의 입자 또는 이들의 조합을 포함하는 분광 분석용 센서.
  19. 제 14 항에 있어서,
    상기 준금속은, 안티몬(Sb), 게르마늄(Ge) 및 비소(As) 중 어느 하나 또는 이들의 합금을 포함하고,
    상기 금속은 금속, 전이 금속 또는 전이후 금속으로서, 타이타늄(Ti), 아연(Zn), 알루미늄(Al), 스탄튬(Sc), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 인듐(In), 주석(Sn), 이트륨(Y), 지르코늄(Zr), 네오븀(Nb), 몰리브데늄(Mo), 루테늄(Ru), 로듐(Rh), 파라듐(Pd), 금(Au), 은(Ag), 백금(Pt), 스트론튬(Sr), 텅스텐(W) 또는 카드뮴(Cd), 탄탈륨(Ta), 타이타늄(Ti), 타이타늄(Ti) 또는 이들의 합금을 포함하며,
    상기 도전성 금속 산화물은 인듐 틴 옥사이드(ITO), 인듐 아연 옥사이드(IZO), 알루미늄 도프된 아연 산화물(AZO), 갈륨 인듐 아연 산화물(GIZO), 아연 산화물(ZnO) 또는 이들의 혼합물을 포함하는 분광 분석용 센서.
  20. 제 14 항에 있어서,
    상기 도전성 나노 입자들은 구형, 나노 튜브, 나노 컬럼, 나노 로드, 나노 기공 및 나노 와이어 중 어느 하나 또는 이들이 조합된 형상을 갖는 분광 분석용 센서.
  21. 제 14 항에 있어서,
    상기 도전성 나노 입자들은 다공질 또는 중공형인 분광 분석용 센서.
  22. 제 14 항에 있어서,
    상기 도전성 나노 입자들 상에 타겟 물질과 특이적 결합이 가능한 고정 물질을 더 포함하는 분광 분석용 센서.
  23. 제 22 항에 있어서,
    상기 고정 물질은 상기 타겟 물질과 결합하는 저분자 화합물, 항원, 항체, 단백질, 펩타이드, DNA, RNA, PNA, 효소, 효소 기질, 호르몬, 호르몬 수용체, 관능기를 포함하는 합성 시약 중 어느 하나, 이의 모사물, 또는 이들의 조합을 포함하는 분광 분석용 센서.
  24. 제 14 항에 있어서,
    상기 기판은 절연성인 분광 분석용 센서.
  25. 제 14 항에 있어서,
    상기 기판은 유리, 실리콘, 실리콘 고무, 라텍스, 전이 금속 플레이트, 자성 재료, 실리콘 산화물, 고분자 재료를 포함하는 분광 분석용 센서.
  26. 제 25 항에 있어서,
    상기 고분자 재료는, 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 트라아세틸셀룰로오스, 환상올레핀, 폴리에틸렌테레프탈레이트, 폴리아릴레이트, 폴리아크릴레이트, 폴리에틸렌 나프탈레이트, 폴리부틸렌테레프타레이트, 또는 폴리이미드를 포함하는 분광 분석용 센서.
  27. 타겟 물질이 분산된 용액 내에 분광 분석용 센서를 침지하는 단계; 및
    SPR 또는 LSPR을 이용하여 상기 센서 표면에서의 반사광 또는 투과광의 변화를 검출하는 단계를 포함하며,
    상기 분광 분석용 센서는, 제 14 항 기재의 것인 분광 분석 방법.
  28. 제 27 항에 있어서,
    상기 반사광 또는 투과광의 변화로부터 흡광도 및 굴절률의 변화 중 적어도 어느 하나를 산출하는 단계를 더 포함하는 분광 분석 방법.
  29. 제 27 항에 있어서,
    상기 분광 분석용 센서의 가시 광선 흡광도는 순수(deionized water) 내에서 0.5 내지 1의 범위 내인 분광 분석 방법.
  30. 제 27 항에 있어서,
    상기 분광 분석용 센서는 상기 용액 내 광 경로 상에 배치되는 2 개 이상의 센서들을 포함하는 것을 특징으로 하는 분광 분석 방법.
  31. 타겟 물질이 분산된 용액 내에 서로 공간적으로 이격 적층된 2 이상의 센서들을 침지하는 단계; 및
    상기 센서들에 광을 입사시켜 SPR 또는 LSPR 모드로 결합된 반사광 또는 투과광의 변화를 검출하는 단계를 포함하는 분광 분석 방법.
  32. 제 31 항에 있어서,
    상기 반사광 또는 투과광의 변화로부터 흡광도 및 굴절률의 변화 중 적어도 어느 하나를 산출하는 단계를 더 포함하는 분광 분석 방법.
  33. 제 1 기판; 및 상기 제 1 기판의 주면 상의 도전성 나노 입자들의 어레이를 포함하는 제 1 서브 센서; 및
    상기 제 1 기판의 상기 주면과 평행 이격 배치된 주면을 갖는 제 2 기판; 및 상기 제 2 기판의 상기 주면 상에 분산 고정된 도전성 나노 입자들의 어레이를 포함하는 제 2 서브 센서가 결합된 분광 분석용 센서.
  34. 제 33 항에 있어서,
    상기 제 1 서브 센서와 상기 제 2 서브 센서의 각 도전성 나노 입자들의 어레이들은 코팅 밀도와 코팅 두께에 있어 서로 동일하거나 서로 다른 분광 분석용 센서.
PCT/KR2013/008182 2013-03-05 2013-09-10 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법 WO2014171597A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/784,569 US10359362B2 (en) 2013-04-15 2013-09-10 Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
US14/863,238 US10060851B2 (en) 2013-03-05 2015-09-23 Surface plasmon detection apparatuses and methods
US16/053,631 US20190094143A1 (en) 2013-03-05 2018-08-02 Surface plasmon detection apparatuses and methods
US16/513,231 US20190339200A1 (en) 2013-04-15 2019-07-16 Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
US17/185,737 US20220018768A1 (en) 2013-04-15 2021-02-25 Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
US17/188,197 US20220018769A1 (en) 2013-03-05 2021-03-01 Surface plasmon detection apparatuses and methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0041228 2013-04-15
KR20130041228 2013-04-15
KR20130083142 2013-07-15
KR10-2013-0083142 2013-07-15

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US14/784,569 A-371-Of-International US10359362B2 (en) 2013-04-15 2013-09-10 Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
US14/773,304 Continuation-In-Part US20160161406A1 (en) 2013-03-05 2014-03-05 Cartridge for analyzing specimen by means of local surface plasmon resonance and method using same
PCT/KR2014/001799 Continuation-In-Part WO2014137152A1 (ko) 2013-03-05 2014-03-05 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법
US14/863,238 Continuation-In-Part US10060851B2 (en) 2013-03-05 2015-09-23 Surface plasmon detection apparatuses and methods
US16/513,231 Continuation US20190339200A1 (en) 2013-04-15 2019-07-16 Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same

Publications (1)

Publication Number Publication Date
WO2014171597A1 true WO2014171597A1 (ko) 2014-10-23

Family

ID=51731516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008182 WO2014171597A1 (ko) 2013-03-05 2013-09-10 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법

Country Status (3)

Country Link
US (3) US10359362B2 (ko)
KR (1) KR101592241B1 (ko)
WO (1) WO2014171597A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101768664B1 (ko) * 2015-09-07 2017-08-17 주식회사 엠셀 마이크로 어레이 기판 제조방법 및 마이크로 어레이 기판 제조장치
CN107203081A (zh) * 2017-05-08 2017-09-26 东南大学 一种等离激元宽光谱调控的智能变色玻璃
CN107249758A (zh) * 2014-12-15 2017-10-13 福莱森斯有限公司 表面等离子体检测装置及方法
US10060851B2 (en) 2013-03-05 2018-08-28 Plexense, Inc. Surface plasmon detection apparatuses and methods
CN109154566A (zh) * 2016-05-17 2019-01-04 福莱森斯有限公司 生物传感器和使用其分析样品的方法
US10359362B2 (en) 2013-04-15 2019-07-23 Plexense, Inc. Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
WO2024125254A1 (zh) * 2022-12-15 2024-06-20 中国科学院深圳先进技术研究院 Lspr传感芯片、制备方法、lspr传感器及应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568850B (zh) * 2014-12-25 2018-06-05 中北大学 一种利用表面等离子芯片的计算芯片成像生物传感平台
CN104568848B (zh) * 2014-12-25 2018-10-12 中北大学 一种用于生物传感器的表面等离子芯片及其制备方法
EP3051273A1 (en) * 2015-02-02 2016-08-03 Nokia Technologies OY A mechanical deformation sensor based on plasmonic nanoparticles
US11499248B2 (en) * 2017-03-15 2022-11-15 Lawrence Livermore National Security, Llc Electric field driven assembly of ordered nanocrystal superlattices
CN110945344B (zh) * 2017-06-01 2023-09-12 港大科桥有限公司 具有梯度纳米结构的传感器及其使用方法
US11377342B2 (en) * 2018-03-23 2022-07-05 Wayne Fueling Systems Llc Fuel dispenser with leak detection
US11245044B2 (en) * 2020-01-14 2022-02-08 Hoon Kim Plasmonic field-enhanced photodetector and image sensor
US20230129378A1 (en) * 2020-02-24 2023-04-27 The Texas A&M University System Systems and methods for detection of analytes
WO2021231264A1 (en) * 2020-05-12 2021-11-18 The Regents Of The University Of Michigan Localized surface plasmon resonance sensor systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480340B1 (ko) * 2002-11-02 2005-03-31 한국전자통신연구원 정렬된 나노 크기의 금속 구조체들을 사용하는 국소 표면플라즈몬 센서 및 그 제조 방법
KR100787046B1 (ko) * 2006-02-09 2007-12-21 연세대학교 산학협력단 나노 크기의 정렬된 금속 구조체들을 사용하는 국소 표면플라즈몬 센서
KR20120013770A (ko) * 2010-08-06 2012-02-15 삼성전자주식회사 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광 소자 및 그 제조 방법
KR20120014206A (ko) * 2009-07-01 2012-02-16 한국과학기술연구원 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템
KR101145133B1 (ko) * 2009-11-17 2012-05-14 한국과학기술원 금속 나노입자 전자 이동을 이용한 플라즈몬 센서 및 그 제조 방법

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102139A (ja) 1985-10-30 1987-05-12 Canon Inc センサ−
JPS62187248A (ja) 1986-02-13 1987-08-15 Toyama Pref Gov 薄膜aeセンサ−
US6818259B1 (en) 1989-10-31 2004-11-16 The United States Of America As Represented By The National Aeronautics And Space Administration Porous article with surface functionality and method for preparing same
JPH0747265A (ja) 1993-08-09 1995-02-21 Maruyoshi:Kk 高分子ゲルによるメカノケミカル素子及び該素子の制御 方法
KR0136144B1 (ko) 1994-12-26 1998-07-01 김만제 도포안정성이 우수한 무방향성 전기강판 표면의 절연피막 형성용 피복조성물 및 이를 이용한 절연피막 제조방법
JPH10307104A (ja) 1997-05-07 1998-11-17 Shimadzu Corp Sprセンサ
KR100265692B1 (ko) 1997-07-03 2000-09-15 윤덕용 에이에프엠을이용한비휘발성메모리소자와해당메모리소자의운영방법
DE19802971C2 (de) 1998-01-27 1999-12-02 Fraunhofer Ges Forschung Plasmareaktor
US6429023B1 (en) 1998-07-20 2002-08-06 Shayda Technologies, Inc. Biosensors with polymeric optical waveguides
AU769571B2 (en) 1999-04-28 2004-01-29 Universitat Zurich Polyionic coatings in analytic and sensor devices
DE19963378A1 (de) 1999-12-28 2001-07-12 Alstom Power Schweiz Ag Baden Verfahren zur Herstellung von Isolierungen elektrischer Leiter mittels Pulverbeschichtung
JP2004506530A (ja) * 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ ポリマー巻き付け単層カーボンナノチューブ
US6770721B1 (en) 2000-11-02 2004-08-03 Surface Logix, Inc. Polymer gel contact masks and methods and molds for making same
ES2208530T3 (es) 2001-04-27 2004-06-16 European Community Metodo y aparato para el tratamiento secuencial por plasma.
JP2002357540A (ja) 2001-05-31 2002-12-13 Suzuki Motor Corp プラズモンセンサ及びこれを用いた測定方法
AU2002365255A1 (en) 2001-10-02 2003-09-02 The Regents Of The University Of California Nanoparticle assembled hollow spheres
US7455757B2 (en) * 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US7352468B2 (en) 2001-12-12 2008-04-01 Trustees Of Princeton University Cavity ring-down detection of surface plasmon resonance in an optical fiber resonator
DE60214118T2 (de) 2001-12-21 2007-03-01 Interuniversitair Micro-Elektronica Centrum Verfahren zum Nachweis eines Analyten
JP3897703B2 (ja) 2002-01-11 2007-03-28 キヤノン株式会社 センサ装置およびそれを用いた検査方法
JP3730652B2 (ja) 2002-01-16 2006-01-05 株式会社東芝 光導波路型グルコースセンサ
KR100465278B1 (ko) 2002-04-03 2005-01-13 한국과학기술연구원 자외선 경화형 젤형 고분자 전해질을 이용한 전기이중층캐패시터
JP2004234865A (ja) 2003-01-28 2004-08-19 Sony Corp カーボンナノチューブ配列材料とその製造方法、炭素繊維配列材料とその製造方法、及び電界放出表示素子
RU2005131013A (ru) 2003-03-07 2006-03-20 Филип Моррис Продактс С.А. (Ch) Способ электростатической обработки полимерных композиций и устройство для его осуществления
EP1636829B1 (en) 2003-06-12 2016-11-23 Georgia Tech Research Corporation Patterned thin film graphite devices
JP4773955B2 (ja) 2003-06-30 2011-09-14 ロウステック プロプライエタリー リミテッド 空間選択的堆積によるミクロスケール及びナノスケールの加工及び製造
US7687239B2 (en) 2003-07-12 2010-03-30 Accelrs Technology Corporation Sensitive and rapid determination of antimicrobial susceptibility
GB0316926D0 (en) 2003-07-18 2003-08-27 Eastman Kodak Co Method of coating
JP4220879B2 (ja) 2003-10-17 2009-02-04 日立ソフトウエアエンジニアリング株式会社 吸光度測定装置及び吸光度測定方法
DE10349963A1 (de) 2003-10-24 2005-06-02 Leonhard Kurz Gmbh & Co. Kg Verfahren zur Herstellung einer Folie
EP1728065A1 (en) 2003-11-28 2006-12-06 Lumiscence A/S An examination system for examination of a specimen; sub-units and units therefore, a sensor and a microscope
JP4224641B2 (ja) 2003-11-28 2009-02-18 国立大学法人東京工業大学 局在化表面プラズモンセンサ、センシング装置およびセンシング方法
GB0423686D0 (en) 2004-10-25 2004-11-24 Attana Ab Surface preparation method
DE102004057155B4 (de) 2004-11-26 2007-02-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur chemischen Funktionalisierung von Oberflächen durch Plasmapolymerisation
JP2008527169A (ja) 2005-01-10 2008-07-24 イシウム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ イエルサレム 金属ナノ粒子の水系分散物
KR20060094409A (ko) 2005-02-24 2006-08-29 주식회사 에이디피엔지니어링 유도 결합 플라즈마 처리장치
JP4481967B2 (ja) 2005-09-05 2010-06-16 キヤノン株式会社 センサ装置
JP2009525891A (ja) 2005-12-05 2009-07-16 スリーエム イノベイティブ プロパティズ カンパニー 超吸収ナノ粒子組成物
US7915053B2 (en) 2005-12-22 2011-03-29 Canon Kabushiki Kaisha Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor
KR100662021B1 (ko) 2005-12-30 2006-12-27 주식회사 인포피아 바이오 카트리지
US7652760B1 (en) 2006-04-05 2010-01-26 Electronic Design To Market, Inc. System for detecting coatings on transparent or semi-transparent materials
US7923053B2 (en) 2006-04-28 2011-04-12 Kitching Kathryn J Wettable ePTFE medical devices
US7393699B2 (en) * 2006-06-12 2008-07-01 Tran Bao Q NANO-electronics
US7731826B2 (en) 2006-08-17 2010-06-08 Electronic Bio Sciences, Llc Controlled translocation of a polymer in an electrolytic sensing system
JP2010515566A (ja) 2007-01-12 2010-05-13 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 組成物の塗布方法
JP2008175615A (ja) 2007-01-17 2008-07-31 Fdk Corp 表面プラズモン共鳴センサ
JP5397577B2 (ja) 2007-03-05 2014-01-22 オムロン株式会社 表面プラズモン共鳴センサ及び当該センサ用チップ
JP2008232853A (ja) 2007-03-20 2008-10-02 Tohoku Univ 局在表面プラズモン励起型超薄膜発光型センサー
US8039379B1 (en) * 2007-07-02 2011-10-18 Novellus Systems, Inc. Nanoparticle cap layer
KR100860958B1 (ko) 2007-08-08 2008-09-30 전남대학교산학협력단 광학센서막 부착형 다채널 소형 생물반응기
EP2194027A4 (en) 2007-09-03 2011-04-27 Kawamura Inst Chem Res METHOD FOR PRODUCING A STRUCTURE COATED WITH A NANOSTRUCTURE COMPOSITE, A STRUCTURE COATED WITH A NANOSTRUCTURE COMPOUND AND A NANOSTRUCTURED COMPOSITE STRUCTURE REACTOR
JP4413252B2 (ja) 2007-09-03 2010-02-10 財団法人川村理化学研究所 ナノ構造複合体被覆型構造物及びその製造方法
KR100928546B1 (ko) 2007-11-26 2009-11-24 연세대학교 산학협력단 국소 표면 플라즈몬 센서 및 상기 센서를 이용하여 시료를분석하는 방법
KR100987993B1 (ko) 2007-11-28 2010-10-18 충남대학교산학협력단 전기전도도 및 광 투과율이 우수한 탄소나노튜브 필름, 및이로부터 얻어진 전자 소자 및 광 투과형 전극
KR20090060635A (ko) 2007-12-10 2009-06-15 한국전자통신연구원 나노입자를 이용한 바이오 센서 및 그 제조 방법
KR100962290B1 (ko) 2008-02-13 2010-06-11 성균관대학교산학협력단 금 나노입자의 국지화된 표면 플라즈몬 공명 센서를 이용한 생체물질 검출 방법
KR101081336B1 (ko) 2008-04-17 2011-11-08 충남대학교산학협력단 나노기공을 가지는 고분자 전해질막을 주형기질로 사용한 금속이나 졸-겔의 나노 입자의 합성과 그의 바이오 센서에의 응용
EP2128598B1 (en) 2008-05-29 2017-08-23 Leibniz-Institut für Polymerforschung Dresden e.V. Method for detecting analytes or other stimuli by stimuli-responsive polymer brushes
KR100991011B1 (ko) 2008-06-10 2010-10-29 한국화학연구원 금속 나노입자가 고정화된 탄소나노튜브를 포함하는 바이오센서 및 그 제조방법
KR101029115B1 (ko) 2008-07-10 2011-04-13 한국과학기술원 금속 증착형 다공성 산화 알루미늄 바이오칩 및 그 제조방법
US20110281070A1 (en) 2008-08-21 2011-11-17 Innova Dynamics, Inc. Structures with surface-embedded additives and related manufacturing methods
KR100996450B1 (ko) 2008-08-21 2010-11-25 한국과학기술연구원 표면 플라즈몬 공명의 원리를 이용한 산소센서와 표면 플라즈몬 공명의 원리를 이용한 산소센서가 포함된 산소투과도 측정장치
JP2010071693A (ja) 2008-09-16 2010-04-02 Fujifilm Corp センシング方法、センシング装置、検査チップおよび検査キット
TWI383139B (zh) 2008-11-20 2013-01-21 Nat Chung Cheng University Inv Tubular waveguide type plasma resonance sensing device and sensing system
KR20100061603A (ko) 2008-11-29 2010-06-08 한국전자통신연구원 바이오 물질 감지용 나노 입자 및 이를 이용한 바이오 센서
KR20100063316A (ko) 2008-12-03 2010-06-11 한국전자통신연구원 바이오 물질 검출 장치 및 이를 이용한 바이오 물질 검출 방법
KR101079271B1 (ko) 2008-12-16 2011-11-03 한국세라믹기술원 나노하이브리드 복합체의 제조방법
JP2010155218A (ja) 2008-12-27 2010-07-15 Osaka Univ 微粒子単層膜付き基板の製造方法及び微粒子単層膜付き基板
WO2010078662A1 (en) 2009-01-09 2010-07-15 Optotune Ag Electroactive optical device
EP2391657A1 (de) 2009-01-30 2011-12-07 Philipps-Universität Marburg Verfahren zur herstellung von mit polymeren umhüllten metallhaltigen nanopartikeln und daraus erhältliche partikel
CN101823355B (zh) 2009-03-03 2013-09-25 E.I.内穆尔杜邦公司 聚合物叠层膜和使用该叠层膜的太阳能电池板
KR101027795B1 (ko) 2009-04-10 2011-04-07 주식회사 케이엔더블유 평판 디스플레이 모듈 및 이를 포함하는 전자 장치
KR101017994B1 (ko) 2009-05-01 2011-03-02 서울대학교산학협력단 전기 방사를 이용한 나노 패터닝 장치 및 방법
US8557275B2 (en) 2009-07-23 2013-10-15 U.S. Nutraceuticals, LLC Composition and method to alleviate joint pain using a mixture of fish oil and fish oil derived, choline based, phospholipid bound fatty acid mixture including polyunsaturated EPA and DHA
KR101097882B1 (ko) 2009-09-25 2011-12-23 한국과학기술원 과산화효소 활성을 가지는 자성 나노입자와 효소가 다공성 실리카의 기공 내에 고정되어 있는 다공성 실리카 복합체 및 그 제조방법
KR101084211B1 (ko) 2009-11-20 2011-11-17 삼성에스디아이 주식회사 배터리 팩, 및 배터리 팩의 충전 제어 방법
KR101145660B1 (ko) 2009-12-22 2012-05-24 전자부품연구원 나노자성입자 및 나노센서를 포함하는 질병진단용 기기 및 그 검사방법
KR101134349B1 (ko) 2009-12-31 2012-04-09 웅진케미칼 주식회사 편광필름의 제조방법 및 그로부터 제조되는 편광필름
US8476007B2 (en) 2010-02-19 2013-07-02 Indian Institute Of Technology Bombay Optical fiber probe
KR101169418B1 (ko) 2010-05-11 2012-07-27 부산대학교 산학협력단 면역측정법을 위한 자기영동 나노바이오센서
KR101124618B1 (ko) 2010-05-20 2012-03-20 한국기계연구원 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지
KR101175977B1 (ko) 2010-06-23 2012-08-22 한국기계연구원 국소표면 플라즈몬공명의 유도를 위한 금속 나노구조 어레이 제작방법
KR20100106263A (ko) 2010-08-27 2010-10-01 주식회사 나노브릭 전하를 갖는 입자를 이용한 광 투과 및 반사 조절 방법
KR20100101549A (ko) 2010-08-16 2010-09-17 주식회사 나노브릭 반사광을 제어하기 위한 표시 방법
KR101238551B1 (ko) 2010-09-29 2013-03-04 한국과학기술원 나노입자 어레이 제조방법, 이에 의하여 제조된 나노입자 어레이, 플라즈몬 나노입자를 포함하는 바이오 센서의 제조방법, 이에 의하여 제조된 바이오 센서 및 이를 이용한 바이오 물질 센싱방법
JP2012098211A (ja) 2010-11-04 2012-05-24 Konica Minolta Holdings Inc 金属薄膜の光学特性測定方法及び金属薄膜の光学特性測定装置
KR101239356B1 (ko) 2010-12-21 2013-03-05 한국원자력연구원 소수성 고분자로 표면처리된 세라믹 나노 분말의 제조방법 및 이에 따라 제조되는 세라믹 나노 분말
JP2012132886A (ja) 2010-12-24 2012-07-12 Konica Minolta Holdings Inc 金属薄膜上誘電体の光学特性測定方法及び金属薄膜上誘電体の光学特性測定装置
KR101279586B1 (ko) 2011-01-20 2013-06-27 한국과학기술연구원 플렉서블 광전극과 그 제조방법, 및 이를 이용한 염료감응 태양전지
KR101319908B1 (ko) 2011-02-16 2013-10-18 한국과학기술원 고 굴절률 메타물질
KR101254666B1 (ko) 2011-03-02 2013-04-15 포항공과대학교 산학협력단 탄소 섬유 표면에 대한 접착력이 향상된 탄소 섬유-탄소 나노튜브 복합체와 그 제조 방법
US20120263793A1 (en) * 2011-04-14 2012-10-18 Franco Vitaliano Bio-nano-plasmonic elements and platforms
EP2711689B1 (en) 2011-05-19 2020-01-01 Konica Minolta, Inc. Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using same
KR101336867B1 (ko) 2011-06-10 2013-12-04 고려대학교 산학협력단 중기공성 실리카 나노입자에 고정된 아조피리딘계 화합물을 포함하는 신경작용제 검출용 화학 센서
KR101271418B1 (ko) 2011-06-10 2013-06-05 고려대학교 산학협력단 중기공성 실리카 나노입자에 고정된 비스인돌 유도체를 포함하는 시안화이온 검출용 화학 센서
KR101275742B1 (ko) 2011-06-23 2013-06-17 주식회사 아이센스 광학 분석용 셀
KR20130006169A (ko) 2011-07-08 2013-01-16 경희대학교 산학협력단 미세 격자 구조물을 갖는 국소 표면 플라즈몬 공명 센서칩 및 이를 갖는 바이오센서
CN103930472B (zh) 2011-07-29 2016-01-06 艾德昂有限责任公司 一种通过电子束辐射、并通过气体产生的等离子和紫外辐射进行固化组合物的方法
KR20130015806A (ko) 2011-08-05 2013-02-14 전자부품연구원 산화 실리콘 나노 입자 제조 방법
KR101360281B1 (ko) 2012-01-12 2014-02-12 한국과학기술원 다중 진공 여과 방법을 이용한 단일벽 탄소나노튜브 포화 흡수체 제작법
EP2700455A1 (de) 2012-08-23 2014-02-26 Bayer MaterialScience AG Nasslackapplikation auf Kunststoffsubstraten mit Plasmahärtung
KR101335032B1 (ko) 2012-11-06 2013-12-02 (주)플렉센스 시료의 정량적 분석을 위한 시료측정 카트리지 및 시료 정량 분석 장치
WO2014171597A1 (ko) 2013-04-15 2014-10-23 (주)플렉센스 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법
US10060851B2 (en) 2013-03-05 2018-08-28 Plexense, Inc. Surface plasmon detection apparatuses and methods
KR101328190B1 (ko) 2013-03-05 2013-11-13 (주)플렉센스 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법
KR101474844B1 (ko) 2014-04-09 2014-12-22 주식회사 리온 분광 분석 센서 및 이의 제조 방법
JP6441500B2 (ja) 2014-12-15 2018-12-19 プレクセンス・インコーポレイテッド 表面プラズモン検出装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480340B1 (ko) * 2002-11-02 2005-03-31 한국전자통신연구원 정렬된 나노 크기의 금속 구조체들을 사용하는 국소 표면플라즈몬 센서 및 그 제조 방법
KR100787046B1 (ko) * 2006-02-09 2007-12-21 연세대학교 산학협력단 나노 크기의 정렬된 금속 구조체들을 사용하는 국소 표면플라즈몬 센서
KR20120014206A (ko) * 2009-07-01 2012-02-16 한국과학기술연구원 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템
KR101145133B1 (ko) * 2009-11-17 2012-05-14 한국과학기술원 금속 나노입자 전자 이동을 이용한 플라즈몬 센서 및 그 제조 방법
KR20120013770A (ko) * 2010-08-06 2012-02-15 삼성전자주식회사 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광 소자 및 그 제조 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060851B2 (en) 2013-03-05 2018-08-28 Plexense, Inc. Surface plasmon detection apparatuses and methods
US10359362B2 (en) 2013-04-15 2019-07-23 Plexense, Inc. Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
CN107249758A (zh) * 2014-12-15 2017-10-13 福莱森斯有限公司 表面等离子体检测装置及方法
EP3233303A4 (en) * 2014-12-15 2018-08-22 Plexense, Inc. Surface plasmon detection apparatuses and methods
KR101768664B1 (ko) * 2015-09-07 2017-08-17 주식회사 엠셀 마이크로 어레이 기판 제조방법 및 마이크로 어레이 기판 제조장치
CN109154566A (zh) * 2016-05-17 2019-01-04 福莱森斯有限公司 生物传感器和使用其分析样品的方法
EP3460454A4 (en) * 2016-05-17 2020-01-01 Plexense, Inc. BIOSENSOR AND METHOD OF ANALYZING A SPECIMEN USING THE BIOSENSOR
CN107203081A (zh) * 2017-05-08 2017-09-26 东南大学 一种等离激元宽光谱调控的智能变色玻璃
WO2024125254A1 (zh) * 2022-12-15 2024-06-20 中国科学院深圳先进技术研究院 Lspr传感芯片、制备方法、lspr传感器及应用

Also Published As

Publication number Publication date
US20160146733A1 (en) 2016-05-26
US20190339200A1 (en) 2019-11-07
KR20140124316A (ko) 2014-10-24
US20220018768A1 (en) 2022-01-20
US10359362B2 (en) 2019-07-23
KR101592241B1 (ko) 2016-02-05

Similar Documents

Publication Publication Date Title
WO2014171597A1 (ko) 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법
US7403287B2 (en) Sensing element used in sensing device for sensing target substance in specimen by using plasmon resonance
US8525129B2 (en) Gas sensing device
US9683991B2 (en) Method of generating a metamaterial, and a metamaterial generated thereof
WO2015041442A1 (ko) 표면 증강 라만 분광용 기판 및 이의 제조방법
WO2015156617A1 (ko) 분광 분석 센서 및 이의 제조 방법
WO2011002117A1 (ko) 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템
JP2007017432A (ja) プラズモン共鳴を利用して検体中の標的物質を検知するための検知装置に用いられる検知素子及びその製造方法
TWI500921B (zh) 光學感測晶片
JP2005144569A (ja) 二次元配列構造体基板および該基板から剥離した微粒子
US20070264154A1 (en) Chemical sensor element and method for fabricating the same
ITTO20010801A1 (it) Metodo e dispositivo per analisi biomolecolari integrate.
CN104764732A (zh) 基于特异材料超吸收体的表面增强拉曼散射基底及其制备方法
Yin et al. Plasmonic and sensing properties of vertically oriented hexagonal gold nanoplates
Iarossi et al. High‐Density Plasmonic Nanopores for DNA Sensing at Ultra‐Low Concentrations by Plasmon‐Enhanced Raman Spectroscopy
Tan et al. Honeycomb meshed working electrodes based on microsphere lithography for high-resolution chemical image sensor
Dong et al. Plasmonic alloy nanochains assembled via dielectrophoresis for ultrasensitive SERS
CN104697969B (zh) 传感器及其制造方法
KR101759894B1 (ko) 랩온어칩 및 이의 제조 방법
CN115939718A (zh) 一种谐振芯片及其制作方法
WO2024076193A1 (ko) 감도가 개선된 국소 표면 플라즈몬 공명 센서 및 이의 제조방법
WO2010021509A2 (en) Quantification method of biochemical substances using ion scattering spectroscopy and specific-binding efficiency quantification method of biochemical substances using ion scattering spectroscopy
CN114199828B (zh) 一种基于金属-石墨烯杂化超表面生物传感器及其制备方法
CN109557072B (zh) Sers基底结构、制备方法及检测方法
Li et al. Template‐Electrodeposited Plasmonic Metasurfaces for High‐Sensitivity Biomolecular Detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14784569

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13882252

Country of ref document: EP

Kind code of ref document: A1