Nothing Special   »   [go: up one dir, main page]

WO2014137152A1 - 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법 - Google Patents

국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법 Download PDF

Info

Publication number
WO2014137152A1
WO2014137152A1 PCT/KR2014/001799 KR2014001799W WO2014137152A1 WO 2014137152 A1 WO2014137152 A1 WO 2014137152A1 KR 2014001799 W KR2014001799 W KR 2014001799W WO 2014137152 A1 WO2014137152 A1 WO 2014137152A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
cartridge
absorbance
measuring
target sample
Prior art date
Application number
PCT/KR2014/001799
Other languages
English (en)
French (fr)
Inventor
김기범
Original Assignee
(주)플렉센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)플렉센스 filed Critical (주)플렉센스
Priority to US14/773,304 priority Critical patent/US20160161406A1/en
Publication of WO2014137152A1 publication Critical patent/WO2014137152A1/ko
Priority to US14/863,238 priority patent/US10060851B2/en
Priority to US16/053,631 priority patent/US20190094143A1/en
Priority to US17/188,197 priority patent/US20220018769A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N2021/5903Transmissivity using surface plasmon resonance [SPR], e.g. extraordinary optical transmission [EOT]

Definitions

  • the present invention relates to a cartridge for analyzing a sample such as a biological or low molecular weight compound and an analysis method using the same. More specifically, the change in effective refractive index due to the difference in the degree of reaction between samples such as biological or low molecular weight compounds on the surface where the metal nanoparticles are fixed is determined by the absorption wavelength representing the change in absorbance or the maximum signal magnitude based on the local surface plasmon resonance. It relates to a method for producing a cartridge to be measured at a rate of change of value and a method for analyzing a sample.
  • LSPR Localized Surface Plasmon Resonance
  • a method of measuring the concentration of a sample by measuring optical absorbance using visible light-ultraviolet spectroscopy is to measure the absorbance by passing light of a constant intensity through a material and then comparing the intensity of light before and after passage. Since the optical absorbance measurement method measures only the concentration of a specific functional group included in a sample, an additional analysis method should be applied to quantitatively analyze the reactivity and activity of a specific binding material according to a biological reaction.
  • Enzymatic immunoassay which is generally used to quantitatively analyze the reactivity and activity of a specific sample, involves chemical reaction of enzymes such as peroxidase or galactosidase to the antibody in the antigen-antibody reaction of a specific target. After binding to the labeled antibody to detect the quantitative analysis.
  • enzymes such as peroxidase or galactosidase
  • immunofluorescence is used to analyze a sample material by fluorescence microscopy by labeling antibodies or antigens with fluorescent dyes such as fluorescein and rhodamine.
  • Such analytical methods are widely used because they can analyze the reactivity or activity according to the combination of the target material and the reactant of the sample with excellent detection sensitivity.
  • the time or cost may be increased due to complicated sample preparation process, labeling of the sample or target, or expensive detectors. There was a problem that it takes a lot.
  • enzyme immunoassay or fluorescence immunoassay requires the use of a separate antibody according to the target material and has a long analysis time, making it difficult to quickly screen a large amount of libraries during drug development or biomarker development.
  • the present invention seeks to provide a simple and inexpensive analysis method for the reaction between biological samples or between biological and non-biological, e.g., low molecular weight compounds, which does not require a separate sample pretreatment step. do.
  • the present invention provides a cartridge using a local surface plasmon resonance phenomenon, comprising: a sample injection unit into which a target sample or a reaction sample is injected; A sample channel part and a material expressing a local surface plasmon resonance phenomenon are fixed to a substrate by connecting the sample injector and the measurement part to introduce a target sample or a reaction sample into the measurement part, and a thin film layer is formed and the analyte is fixed on the thin film layer.
  • a cartridge for sample analysis including a measurement unit.
  • the cartridge is a cuvette fixing device installed in the sample mounting portion of the transmittance meter for measuring the transmittance of visible light.
  • the present invention in the sample analysis method using the local surface plasma resonance phenomenon, the step of injecting the target sample to the sample injection portion of the cartridge, the change in absorbance according to the wavelength change of the target sample fixed to the measurement unit of the cartridge Measuring a maximum value or maximum absorption wavelength, injecting a reaction sample to react with a target sample into the cartridge sample injection unit, and a change value of absorbance according to a wavelength change of the reaction sample reacting with the target sample to the measurement unit of the cartridge.
  • a method of analyzing a sample comprising analyzing the reactivity of a target sample and a reaction sample with a difference in maximum absorption wavelength values is provided. The.
  • the present invention unlike the immunoassay, which required the complicated steps of labeling sample molecules with chromophores, was able to quantitatively analyze samples at low cost and simple detection without labeling based on local surface plasmon resonance. It can be applied to existing transmittance (absorbance) measuring instruments without additional detection equipment. Accordingly, the present invention has been completed in view of the fact that the sample can be analyzed quantitatively relatively simply and inexpensively while using a relatively simple instrument compared to the conventional surface plasmon resonance analysis.
  • the local surface plasmon resonance analysis used in the present invention uses a concentration of a sample by using a change in absorbing wavelength value indicating maximum absorbance or absorbance of metal nanoparticles, which is changed according to the local refractive index of a sample molecule caused by reaction with a target.
  • the present invention provides a widely used transmittance (absorbance) without the need for additional equipment for the detection device, compared to the conventional local plasmon analysis method using a disposable cartridge and an expensive dedicated detection device.
  • Using a measuring instrument has the advantage of providing a low cost local plasmon resonance analysis to the user.
  • the reactivity or activity of the sample to the target material can be measured using an existing visible light transmittance (absorbance) measuring device without using an additional sample quantitative analysis device, and thus, existing multi-stage without the need for expensive additional equipment.
  • the reactivity measurement that has been performed can be simplified, and thus can be widely used for various sample analysis such as screening of drug candidates.
  • FIG. 1 is a perspective view of a cartridge according to an embodiment of the present invention.
  • FIG. 2 is an exploded view of a cartridge according to an embodiment of the present invention.
  • FIG. 3 is a black and white optical image of a cartridge for a spectrometer according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a cartridge having two measurement windows according to another embodiment of the present invention.
  • 5 is a graph showing the change in absorbance of each wavelength band of the absorbance spectrum of the sample using the cartridge according to an embodiment of the present invention.
  • Figure 6 is a graph showing the change in absorbance at a specific wavelength different from the effective refractive index increase of the sample using the cartridge according to an embodiment of the present invention.
  • 7A and 7B are graphs showing selective reactivity of samples with anti-BSA using a cartridge according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of a cartridge according to an embodiment of the present invention
  • Figure 2 is an exploded view of the cartridge according to an embodiment of the present invention.
  • a cartridge according to an embodiment of the present invention uses a local surface plasma resonance phenomenon, and includes a sample injection unit 110 into which a target sample or a reaction sample is injected;
  • the sample channel unit 120 and the material expressing the local surface plasmon resonance phenomenon are fixed to the substrate 131 by connecting the sample injecting unit and the measuring unit to introduce the target sample or the reaction sample into the measuring unit.
  • the material may include the measuring unit 130 fixed on the thin film layer.
  • the cartridge is mounted on a cuvette fixing device for holding a sample of a device for measuring light transmittance or absorbance, and the transmittance or absorbance meter may be a device capable of measuring the transmittance or absorbance of visible light.
  • the transmittance (absorbance) measuring device may be a device capable of measuring the transmittance or absorbance of at least one of visible light, ultraviolet light, and infrared light, may be a spectroscopic analyzer.
  • the cartridge may analyze the reactivity between the target sample and the reaction sample.
  • the cartridge is a sample outlet (not shown) is further configured under the measuring unit 130 may be discharged the sample material that is not combined with the target material.
  • the substrate 131 of the measuring unit 130 is polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polystyrene (PS, polystyrene), polycarbonate (PC, polycarbonate), cyclic olefin It is preferable that it is an optical polymer substrate composed of at least one selected from the group consisting of a polymer (COC, cyclic olefin copolymer).
  • the upper plate 132 of the measuring unit 130 may be any composition capable of measuring the absorbance of the sample.
  • the cartridge may be fixed by the upper holder 141 and the lower holder 142 to be mounted on the cuvette fixing device for holding the sample in the transmittance (absorbance) measuring device.
  • the target sample may be blood, saliva, nosebleed, tears, feces, tissue extract or cell culture, and more preferably, any one or more of antigen, antibody, protein, DNA, RNA and PNA.
  • the reaction sample may be any one or more of a small molecule compound, an antigen, an antibody, a protein, DNA, RNA, and PNA, but is not limited thereto as long as it is a substance capable of detecting the target sample.
  • the material expressing the surface plasmon resonance phenomenon of the measurement unit 130 may be a metal nanoparticles, the metal nanoparticles may be gold, silver, copper, nickel or a mixture thereof.
  • FIG. 3 is a black and white optical image of a cartridge for a spectrometer according to an embodiment of the present invention.
  • a gray portion at the center of FIG. 3 is a portion coated with a material expressing surface plasmon resonance on the substrate 131 of the measurement unit 130, and the upper and lower black portions.
  • the part shown is the upper holder 141 and the lower holder 141. Since the material expressing the surface plasmon resonance phenomenon is coated on the transparent substrate 131, the substrate may be identified as purple by visual observation.
  • the material expressing the surface plasmon resonance may be metal nanoparticles, as described above.
  • the sample included in the measuring unit 130 can be analyzed using the surface plasmon resonance phenomenon by the metal nanoparticles coated on the substrate 131, and the experimental results of the analytical method and the experimental example according to the analytical method are shown in FIG. 7B will be described in detail later.
  • the cartridge according to another embodiment of the present invention may include two separate measurement windows 133 and 134, and connect the measurement windows 133 and 134 to the sample injection unit 110.
  • a sample channel unit (not shown) may be introduced to the target sample or reaction sample introduced into the sample injection unit 110 into the respective measurement windows 133 and 134.
  • Other elements constituting the cartridge may refer to the foregoing description with reference to FIGS. 1 and 2.
  • the sample may be injected into only one of two windows separated through the sample injection unit 110.
  • the target sample and the reaction sample may be injected only into the first measurement window 133 on the thin film layer, and the target sample and the reaction sample may not be injected into the second measurement window 134.
  • the second measurement window 134 in which the sample is not injected may measure the absorbance in a state where the sample is not present, and thus the absorbance and the simultaneous measurement of the first measurement window 133 in which the samples are injected may be possible. Therefore, the quantitative measurement of the sample is made possible by comparing the absorbance in which the sample is not injected into the two measurement windows and the absorbance in which the sample is injected.
  • the first measurement window 133 may be a high contrast portion C H in which a material exhibiting a higher effective refractive index value R H than the target sample or the reaction sample is fixed on the thin film layer.
  • the measurement window 134 may be a low contrast part C L having a material showing an effective refractive index value R L lower than that of the target sample or the reaction sample.
  • background noise may be included in the measurement of the absorbance (A) or the maximum absorption wavelength ( ⁇ ) of the sample, depending on the conditions inside or outside the sample.
  • noise removal is essential for accurate quantitative analysis of the sample, and noise is included in the high contrast part, the low contrast part, and the sample measurement part in the same manner.
  • the noise removal method and the quantitative analysis method are described in the detailed description of the following method.
  • the first measurement window 133 may be formed by fixing a material expressing local surface plasmon resonance on a substrate to form a thin film layer, and the second measurement window 134 may be formed of only a substrate.
  • the first measurement window 133 is fixed to the sample to allow a thorough analysis of the sample, the second measurement window 134 made of a substrate only can measure the absorbance of a typical sample without using a local surface plasmon phenomenon Do.
  • the present invention is a sample analysis method using a local surface plasma resonance phenomenon
  • analyzing the reactivity of the target sample and the reaction sample by the difference in absorbance change values or the maximum absorption wavelength values measured in step 5) provides a sample analysis method comprising a.
  • the cartridge may be a cuvette installed in a sample measuring unit of a visible light transmittance meter or an absorbance meter, and the absorbance measurement may be performed using a device capable of measuring the transmittance of visible light.
  • the substrate 131 of the measurement unit is polyethylene terephthalate (PET, polyethyleneterephthalate), polymethylmethacrylate (PMMA, polymethylmethacylate), polystyrene (PS, polystyrene), polycarbonate (PC, polycarbonate), cyclic olefin
  • PET polyethylene terephthalate
  • PMMA polymethylmethacrylate
  • PS polystyrene
  • PC polycarbonate
  • cyclic olefin It may be an optical polymer substrate made of any one or more selected from the group consisting of a polymer (COC, cyclic olefin copolymer).
  • the target sample may be blood, saliva, nosebleed, tears, feces, George extract or cell culture fluid, and more preferably the target sample is any one or more of antigen, antibody, protein, DNA, RNA and PNA.
  • the reaction sample is at least one of a low molecular compound, an antigen, an antibody, a protein, DNA, RNA and PNA.
  • the material expressing the local surface plasmon resonance phenomenon of the measurement unit may be metal nanoparticles, and more preferably, the metal nanoparticles may be gold, silver, copper, nickel or a mixture thereof.
  • it may further comprise the step of measuring the absorbance of the cartridge before injecting the target sample in step 1).
  • a material having a cartridge having two additional measuring windows at any one of the steps 1) to 6 one of which has a higher refractive index value (R H ) than the target sample or the reaction sample.
  • the high contrast portion fixed on the thin film layer (C H ) and the other is a low contrast portion (R L ) fixed on the thin film layer material exhibiting a lower effective refractive index value (R L ) than the target sample or the reaction sample.
  • the method may further comprise measuring a correction factor (CF) with a. have.
  • CF correction factor
  • the measurement of the absorbance or the maximum absorption wavelength of the sample may include noise (N).
  • a correction factor of the high contrast part or the low contrast part may be measured by fixing a material having a larger or smaller effective refractive index value than the target sample or the reaction sample.
  • CF corrected correction factor
  • the concentration (C) of the sample on the surface where the local plasmon phenomenon is expressed is proportional to the effective refractive index size (N s ) of the sample, and the absorbance value (A S ) or the absorption wavelength value ( The relationship of S ) can be expressed as
  • a S represents the absorbance change or absorption wavelength change of the local surface plasmon resonance according to the difference in effective refractive index. Since a is a fixed value determined according to the molecular structure and surface density of a sample in a given surface environment, the difference in absorbance values (aA S ) of a material having a known effective refractive index on a surface expressing local surface plasmon resonance, or The maximum absorption wavelength difference (a S ) can be measured using the low and high contrast portions, and the S value can be measured to determine the concentration value of the sample, that is, C S.
  • the absorbance or the absorption wavelength value from the sample is measured, and then the absorbance or the absorption wavelength only of the low-contrast portion is measured to contribute to the change in absorbance from other substances included in the sample.
  • the absorbance or the absorption wavelength only of the low-contrast portion is measured to contribute to the change in absorbance from other substances included in the sample.
  • the target sample is fixed to a detection window expressing a local surface plasmon shape, and then the wavelength value indicating the absorbance or the maximum absorption wavelength at the predetermined wavelength is measured and then reacted with the target sample.
  • the sample is further injected into the detection window of the measuring unit, and then the wavelength value indicating the absorbance or the maximum absorption wavelength at the predetermined wavelength is measured.
  • the relative reactivity or activity of the sample to the target material may be measured by the difference in absorbance value at a predetermined wavelength before injecting the reaction sample, or the difference in wavelength value indicating the maximum absorbance.
  • the background caused by other substances co-existing with the sample should be reduced or eliminated.
  • the low and high contrast portions may be configured and used in the measurement unit of a separate cartridge.
  • the material exhibiting a lower effective refractive index value (R L ) is a low contrast portion (R L ) fixed on the thin film layer, and the maximum absorption wavelength value ( ⁇ 3 ) or absorbance value (A 3 ) of the high contrast portion is low contrast.
  • the effective refractive index change is measured by measuring the maximum absorption wavelength value ( ⁇ 4 ) or the absorbance value (A 4 ) of the negative part and using the effective refractive index value (R H ) of the high contrast part and the effective refractive index value (R L ) of the low contrast part. It is possible to measure the correction factor (CF) or a rate of change in absorbance (a 3 -A 4) - the rate of change (43) at the maximum absorption wavelength values for the (R H -R L).
  • the response of the local plasmon resonance signal of the sample may be measured and used to measure the relative difference value of the local plasmon signal strength of the sample, that is, the absolute value of the reactivity, and to remove the background signal.
  • a calibration curve indicating a relationship between the effective refractive index and the absorbance or the relationship between the effective refractive index and the maximum absorption wavelength is calculated through the correction factor, and the absorbance value of the target sample or the reaction sample is calculated through the calculated calibration curve. Analyze the sample quantitatively by checking the effective refractive index value for the maximum absorption wavelength.
  • the reactivity between the target sample and the reaction sample is taken as the difference in absorbance, and the reactivity of the target sample and the reaction sample is quantitatively analyzed by providing the concentration of the sample that has been finally reacted.
  • the rate of change in absorption wavelength values representing the rate of change in absorbance with respect to the change in refractive index or the maximum signal magnitude for the change in effective refractive index can be calculated and used to determine the reactivity or activity of the sample to the target.
  • a cartridge for application to a spectrometer of Genesys 10A Spectrophotometer of Thermo-Fisher was manufactured. Gold nanoparticles were uniformly coated on a polymer substrate (PET or PMMA, Polycarbonate) of 250 and then cut to size to be mounted on the cuvette fixing device of the spectrometer.
  • a flow path including a sample injection part and a channel part was manufactured and fixed between the metal substrates having two metal nanoparticles fixed thereon.
  • 3 is a real picture showing a manufactured cartridge.
  • the manufactured cartridge was applied to the spectrometer, but the cartridge may be applied without limitation as long as it is a device for measuring absorbance or transmittance of visible light.
  • the cartridge was injected with increasing concentration of sodium chloride solution in aqueous solution to increase the refractive index of the sample from 1.3333 to 1.3795, and the change in absorbance was measured.
  • the absorbance value increased with the increase of the effective refractive index in the wavelength band of about 560 nm is represented as shown in FIG. 6.
  • the thin film of the metal nanoparticles of the cartridge manufactured by the experimental example through FIG. 6 can be seen that the absorbance increases linearly as the effective refractive index value of the sample changes, which indicates that the cartridge has a local surface plasmon resonance phenomenon. It shows a linear response as the refractive index changes. Therefore, using the cartridge manufactured according to the experimental example of the present invention, there is shown an example that can measure the local surface plasmon resonance phenomenon using a conventional spectrometer, without the need for expensive dedicated detection equipment.
  • FIG. 7A and 7B are graphs showing the results of measuring selective reactivity of a sample using absorbance.
  • BSA Bovin Serum Albumin
  • SA Anti-BSA antibody
  • SA Streptavidin
  • sample B is a sample that selectively recognizes only BSA
  • absorbance is expected to increase when BSA is injected as compared to when SA is injected into a target sample, and the result is shown in FIG. Referring to FIG. 7A, it can be seen that the absorbance of the curve D for the sample D indicating the absorbance when the BSA is injected is significantly increased than the curve C for the sample C indicating the absorbance when the SA is injected.
  • FIG. 7B shows the absorbance spectrum curve B, curve C, and curve D measured after injection of the sample and the target in order to more clearly display the absorbance increase according to the detection of the selective sample, subtracting the curve A, the absorption spectrum when only PBS is filled.
  • the graph is shown as curve B ', curve C' and curve D ', respectively.
  • the absorbance value (anti-BSA only) measured after the sample (anti-BSA) is fixed to the cartridge can be seen to increase by about 0.01 in the 575 nm region compared to the PBS.
  • the absorbance value measured after injecting a non-response target of 0.1 / SA (anti-BSA / SA) increased by 0.001, but as shown in curve D',
  • the absorbance value (anti-BSA / BSA) at 575 nm increased about 0.07. Therefore, it can be seen that the selective reactivity shown in the reaction target is increased by about 70 times as the absorbance value compared to the change in absorbance at the non-reaction target.
  • the reactivity between the target sample and the reaction sample using the cartridge of the present invention can be quantitatively analyzed by the difference in absorbance change values or maximum absorption wavelength values.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 생물학적 또는 저분자 화합물 등의 시료분석을 위한 카트리지 및 이를 이용한 분석방법에 관한 것으로 보다 상세하게는 분광분석기에 있어서 금속나노입자가 고정된 표면에 생물학적 또는 저분자 화합물 등의 시료들간의 반응정도에 따른 국소 표면 플라스몬 공명현상에 따른 유효 굴절률 변화에 대한 흡광도 변화율 또는 유효 굴절율 변화에 대한 최대 신호 크기를 나타내는 흡수 파장값 변화율을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법에 관한 것이다.

Description

국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법
본 발명은 생물학적 또는 저분자 화합물 등의 시료분석을 위한 카트리지 및 이를 이용한 분석방법에 관한 것이다. 보다 상세하게는 금속나노입자가 고정된 표면에 생물학적 또는 저분자 화합물 등의 시료들간의 반응정도의 차이에 의한 유효 굴절률 변화를 국소 표면 플라스몬 공명현상에 기반된 흡광도 변화율 또는 최대 신호 크기를 나타내는 흡수 파장값 변화율로 측정하는 카트리지를 제작하는 방법 및 시료의 분석방법에 관한 것이다.
국소 표면 플라즈몬 공명분석법(LSPR : Localized Surface Plasmon Resonance)은 금속나노입자를 이용하여 투명한 기질표면위에 박막을 형성하여 광원으로부터 금속막에서 반사 또는 투과되는 빛의 세기 또는 파장 변화를 측정하여 시료의 농도에 따라 변화되는 굴절률 변화를 측정하는 방법이다. 최근 이러한 공명분석법을 이용한 생물학적 또는 비생물학적 시료의 분석방법이 많이 시도 또는 연구되고 있다.
기존의 핵산 또는 단백질 등의 생물학적 시료의 분석을 위하여 크게 두 단계의 분석법이 이용되고 있다. 먼저 가시광-자외선 분광분석법을 이용하여 광학적 흡광도를 측정함으로써 시료의 농도를 측정하는 방법으로, 일정한 세기의 빛을 물질에 통과시킨 후 통과전후의 빛의 세기를 비교하여 흡광도를 측정하는 것이다. 이러한 광학적 흡광도 측정방법은 시료에 포함된 특정 작용기의 농도만을 측정하므로 생물학적 반응에 따른 특정결합물질을 반응도 및 활성도를 정량적으로 분석하기 위하여 추가의 분석방법이 적용되어야 한다. 특정 시료의 반응도 및 활성도를 정량적으로 분석하기 위하여 일반적으로 이용되어지고 있는 효소면역분석법은 특정대상의 항원-항체반응에서 퍼옥시다아제(peroxidase)나 갈락토시다제(galactosidase)등의 효소를 항체에 화학적으로 결합시킨 후 표지항체로 검출하여 정량 분석하는 방법이다. 또는 항체나 항원에 플루오레세인이나 로다민과 같은 형광색소를 표지한 것을 이용하여 형광현미경으로 시료물질을 분석하는 면역형광법도 이용되고 있다.
이러한 분석방법은 시료의 타겟 물질과 반응물질의 결합에 따른 반응도 또는 활성도를 뛰어난 검출감도로 분석할 수 있어 넓게 이용되고 있지만 복잡한 시료 전처리 공정, 시료 또는 타겟의 라벨링 또는 고가의 검출기 등으로 시간 또는 비용이 많이 소요된다는 문제가 있었다. 특히, 효소면역분석법 또는 형광면역분석법 등은 타겟물질에 따른 별도의 항체를 사용하여야 하고 분석시간이 길어 의약개발 또는 바이오마커 개발과정 중 다량의 라이브러리를 신속하게 스크리닝 하는 데 어려움이 있었다.
따라서, 본 발명은 생물학적 시료들간의 반응 또는 생물학적과 비생물학적 간의 반응, 예를 들어 저분자 화합물들 간의 반응도 또는 활성도를 별도의 시료 전처리 공정을 필요로 하지 않는 간단하면서 비용소요가 적은 분석방법을 제공하고자 한다. 특히, 핵산 등의 생물학적 시료와 이와 반응할 단백질 또는 저분자 화합물 등의 농도측정과 동시에 반응도를 분석할 수 있는 높은 감도를 가지는 새로운 분석 방법을 제공하는 것을 목적으로 한다.
본 발명은 상기의 목적을 달성하기 위하여, 국소 표면 플라즈몬 공명현상을 이용한 카트리지에 있어서, 분석대상 물질인 타겟시료 또는 반응시료가 주입되는 시료주입부; 상기 시료 주입부와 측정부를 연결하여 타겟시료 또는 반응시료를 측정부로 유입되게 하는 시료 채널부 및 국소 표면 플라즈몬 공명현상을 발현하는 물질이 기판에 고정되어 박막층이 형성되고 분석 대상물질이 박막층 위에 고정되는 측정부를 포함하는 시료 분석을 위한 카트리지를 제공한다. 바람직하게는 상기 카트리지는 가시광의 투과도를 측정하는 투과도 측정기의 시료장착부에 설치되는 큐벳(cuvette)고정장치인 것이다.
또한, 본 발명은 국소 표면플라즈마 공명현상을 이용한 시료 분석방법에 있어서, 상기 카트리지의 시료주입부에 타겟시료를 주입하는 단계, 상기 카트리지의 측정부에 고정된 타겟시료의 파장변화에 따른 흡광도의 변화값 또는 최대 흡수파장값을 측정하는 단계, 타겟시료와 반응할 반응시료를 상기 카트리지 시료주입부에 주입하는 단계, 카트리지의 측정부에 타겟시료와 반응한 반응시료의 파장변화에 따른 흡광도의 변화값 또는 최대 흡수파장값을 측정하는 단계, 상기 타겟시료와 반응시료의 파장변화에 따른 흡광도의 변화값들의 차이 또는 최대 흡수파장값들의 차이를 측정하는 단계, 및 상기 단계에서 측정된 흡광도 변화값들 또는 최대 흡수파장값들의 차이로 타겟시료와 반응시료의 반응도를 분석하는 단계를 포함하는 시료 분석 방법을 제공한다.
본 발명은 기존의 시료분자를 발색단으로 라벨링하는 복잡한 단계가 필요했던 면역 효소진단법과는 달리 국소 표면 플라스몬 공명현상을 기반으로 라벨링이 필요없는 간단한 검출과정과 저렴한 비용으로 시료를 정량적으로 분석할 수 있으며, 추가의 검출장비 구비없이 기존의 투과도(흡광도) 측정기에 적용할 수 있다. 따라서 기존 표면 플라즈몬 공명 분석법에 비해 비교적 간단한 기구를 이용하면서도 상대적으로 간단하며 저렴하게 시료를 정량적으로 분석할 수 있다는 점에 착안하여 본 발명은 완성하게 되었다. 본 발명에 사용된 국소 표면 플라즈몬 공명분석법은 시료분자가 타겟과 반응하여 야기되는 주변의 국소 굴절률에 따라 변화되는 금속 나노입자의 흡광도 또는 최대 신호세기를 나타내는 흡수 파장 값의 변화를 이용하여 시료의 농도를 정량적으로 측정하는 방법으로, 일회용 카트리지와 고가의 전용 검출장치를 구비하여 사용하는 기존의 국소 플라즈몬 분석방법에 비해 본 발명은 전용검출장비의 추가구비가 필요 없이 일반적으로 광범위하게 사용되는 투과도(흡광도) 측정기를 이용하여 저가의 국소플라즈몬 공명분석법을 사용자에게 제공할 수 있는 장점이 있다.
본 발명은 생물학적 시료의 분자구조나 분자 구조체의 서열이 활성도 또는 반응도에 직접적인 영향을 주는 생물학적 시료의 정량적 분석을 수행할 경우, 국소플라즈몬 공명현상을 발현할 수 있도록 기존 자외선-가시광흡광분석기의 시료고정부에 장착될 수 있는 별도의 카트리지를 제공함으로써 국소 플라즈몬 공명현상을 측정할 수 있다.
따라서, 추가의 시료정량분석 장치를 사용하지 않고 시료의 타겟물질에 대한 반응도 또는 활성도를 기존의 가시광 투과도(흡광도) 측정기를 이용하여 측정할 수 있으므로, 고가의 추가장비의 구비가 필요없이 기존의 다단계로 수행되었던 반응도 측정을 간단히 할 수 있어 의약 후보물질의 스크리닝 등 다양한 시료분석용으로 폭넓게 이용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 카트리지의 사시도이다.
도 2는 본 발명의 일 실시예에 따른 카트리지의 분해도이다.
도 3은 본 발명의 일 실시예에 따른 분광분석기용 카트리지의 흑백 광학 이미지이다.
도 4은 본 발명의 다른 실시예에 따른 두 개의 측정창을 가지는 카트리지의 사시도이다.
도 5는 본 발명의 일 실시예에 따른 카트리지를 이용한 시료의 흡광스펙트럼의 파장대별 흡광도변화를 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 따른 카트리지를 이용한 시료의 유효굴절률 증가에 다른 특정파장에서의 흡광도변화를 나타낸 그래프이다.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 카트리지를 이용하여 샘플들의 anti-BSA와의 선택적 반응도를 도시한 그래프이다.
이하에서, 본 발명은 상세히 설명한다.
도 1 은 본 발명의 일 실시예에 따른 카트리지의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 카트리지의 분해도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 카트리지는 국소 표면 플라즈마 공명현상을 이용하며, 분석대상 물질인 타겟시료 또는 반응시료가 주입되는 시료주입부(110); 상기 시료 주입부와 측정부를 연결하여 타겟시료 또는 반응시료를 측정부로 유입되게 하는 시료 채널부(120) 및 국소 표면 플라즈몬 공명현상을 발현하는 물질이 기판(131)에 고정되어 박막층이 형성되고 분석 대상물질이 박막층 위에 고정되는 측정부(130)를 포함할 수 있다. 상기 카트리지는 광의 투과도 또는 흡광도를 측정하는 장치의 시료를 담는 큐벳(cuvette)고정장치에 장착되는 것이며, 상기 투과도 또는 흡광도 측정기는 가시광의 투과도 또는 흡광도를 측정할 수 있는 장치일 수 있다. 또한, 상기 투과도(흡광도) 측정기는 가시광선, 자외선, 및 적외선 중 적어도 어느 하나의 투과도 또는 흡광도를 측정할 수 있는 장치일 수 있고, 분광분석기일 수 있다.
상기 카트리지는 타겟시료 및 반응시료간의 반응도를 분석할 수 있다. 또한, 상기 카트리지는 측정부(130) 아래에 시료 배출구(미도시)가 추가로 구성되어 타겟물질과 결합되지 않은 시료물질이 배출될 수 있다. 측정부(130)의 기판(131)은 폴리에틸렌 테레프탈레이트(PET, polyethyleneterephthalate), 폴리메틸메타크릴레이트(PMMA, polymethylmethacylate), 폴리스티렌(PS, polystyrene), 폴리카보네이트(PC, polycarbonate), 사이클릭올레핀고폴리머(COC, cyclic olefin copolymer)로 이루어진 군으로부터 선택된 어느 하나이상으로 이루어진 광학용 고분자 기질인 것이 바람직하다. 측정부(130)의 상판(132)은 시료의 흡광도 측정이 가능한 어떠한 것이라도 조성이라도 가능하다. 또한, 투과도(흡광도) 측정기에 시료를 담는 큐벳고정장치에 장착이 가능하도록 상부홀더(141)와 하부홀더(142)에 의하여 카트리지가 고정될 수 있다.
상기 타겟시료는 혈액, 타액, 코피, 눈물, 배설물, 조직 추출액 또는 세포 배양액일 수 있으며, 더 바람직하게는 항원, 항체, 단백질, DNA, RNA 및 PNA 중에서 어느 하나 이상일 수 있다. 또한, 반응시료는 저분자 화합물, 항원, 항체, 단백질, DNA, RNA 및 PNA 중에서 어느 하나 이상일 수 있으나, 상기 타겟시료를 검출할 수 있는 물질이면 이에 한정되지는 아니한다. 또한, 측정부(130)의 표면 플라즈몬 공명현상을 발현하는 물질은 금속나노입자일 수 있고, 상기 금속나노입자들은 금, 은, 구리, 니켈 또는 이들의 혼합물일 수 있다.
도 3은 본 발명의 일 실시예에 따른 분광분석기용 카트리지의 흑백 광학 이미지이다. 도 3을 도 1과 함께 참조하면, 도 3의 중앙에 회색으로 나타난 부분은 측정부(130)의 기판(131) 상에 표면 플라즈몬 공명현상을 발현하는 물질이 코팅된 부분이고, 상하단의 검은색으로 나타난 부분은 상부홀더(141) 및 하부홀더(141)이다. 투명 기판(131) 상에 상기 표면 플라즈몬 공명현상을 발현하는 물질이 코팅됨으로써, 육안상으로는 기판이 보라색으로 식별될 수 있다. 상기 표면 플라즈몬 공명현상을 발현하는 물질은, 서술한 바와 같이, 금속나노입자일 수 있다. 측정부(130)에 포함된 시료는 기판(131)에 코팅된 금속나노입자에 의한 표면 플라즈몬 공명현상을 이용하여 분석이 가능하고, 상기 분석 방법 및 상기 분석 방법에 따른 실험예의 실험 결과는 도 5 내지 도 7b를 참조하여 상세히 후술하기로 한다.
도 4는 본 발명의 다른 실시예에 따른 두 개의 측정창을 가지는 카트리지의 사시도이다. 도 4를 참조하면, 본 발명의 다른 실시예에 따른 카트리지는, 분리된 두 개의 측정창(133, 134)를 포함할 수 있고, 측정창(133, 134)와 시료 주입부(110)를 연결하여 시료 주입부(110)로 인입된 타겟시료 또는 반응시료를 각각의 측정창(133, 134)로 유입되게 하는 시료 채널부(미도시)를 포함할 수 있다. 상기 카트리지를 구성하는 다른 요소들은 도 1 및 도 2를 참조하여 상술된 내용을 참조할 수 있다. 일부 실시예에서, 시료는 시료 주입부(110)를 통하여 분리된 두 개의 창 중 선택적으로 하나에만 주입될 수 있다. 예를 들면, 제 1 측정창(133)에만 타겟시료 및 반응시료가 박막층위에 주입되고 제 2 측정창(134)에는 타겟시료 및 반응시료가 주입되지 아니할 수 있다. 이 경우, 시료가 주입되지 않은 제 2 측정창(134)은 시료가 없는 상태의 흡광도를 측정할 수 있어, 시료들이 주입된 제 1 측정창(133)의 흡광도와 동시측정이 가능할 수 있다. 따라서, 분리된 두 개의 측정창으로 시료가 주입되지 않는 상태의 흡광도와 시료가 주입된 흡광도를 비교함으로써 시료의 정량적 측정이 가능하도록 한 것이다.
또한, 다른 실시예에서는, 제 1 측정창(133)은 타겟시료 또는 반응시료보다 높은 유효굴절률 값(RH)을 나타내는 물질이 박막층 상에 고정된 고대조부(CH)일 수 있고, 제 2 측정창(134)는 타겟시료 또는 반응시료 보다 낮은 유효굴절률 값(RL)을 나타내는 물질이 박막층 상에 고정된 저대조부(CL)일 수 있다.
시료를 정량분석하는 데 있어서 시료 내부 또는 외부의 조건에 의하여 시료에 대한 흡광도(A) 또는 최대 흡수파장값(λ)의 측정에 노이즈(background noise, N)가 포함될 수 있다. 이러한 노이즈 제거는 시료의 정확한 정량분석을 위하여 필수적인 것이며, 노이즈는 상기 고대조부, 저대조부 및 시료측정부에 동일하게 포함되는 것이다. 노이즈 제거방법 및 정량분석 방법은 하기의 방법의 구체적인 기술에서 설명한다.
또 다른 실시 예에서는, 제 1 측정창(133)은 기판 상에 국소 표면 플라즈몬 공명현상을 발현하는 물질이 고정되어 박막층을 형성하고, 제 2 측정창(134)은 기판만으로 이루어진 것일 수 있다. 제 1 측정창(133)은 시료가 고정되어 시료의 정략분석이 가능하도록 하며, 기판만으로 이루어진 제 2 측정창(134)은 국소 표면 플라즈몬 현상을 이용하지 않고 통상의 시료에 대한 흡광도 측정만이 가능하다.
또한 본 발명은 국소 표면 플라즈마 공명현상를 이용한 시료 분석방법에 있어서,
1) 제1항의 카트리지의 시료주입부에 타겟시료를 주입하는 단계;
2) 상기 카트리지의 측정부에 고정된 타겟시료의 파장변화에 따른 흡광도의 변화값(A1) 또는 최대 흡수파장값(λ1)을 측정하는 단계;
3) 타겟시료와 반응할 반응시료를 단계 1)의 카트리지 시료주입부에 주입하는 단계;
4) 카트리지의 측정부에 타겟시료와 반응한 반응시료의 파장변화에 따른 흡광도의 변화값(A2) 또는 최대 흡수파장값(λ2)을 측정하는 단계;
5) 단계 2) 및 단계 4)에서 측정한 흡광도 변화값들의 차이(A2-A1) 또는 최대 흡수파장값들의 차이(λ21)를 측정하는 단계; 및
6) 5)단계에서 측정된 흡광도 변화값들 또는 최대 흡수파장값들의 차이로 타겟시료와 반응시료의 반응도를 분석하는 단계;를 포함하는 시료 분석 방법을 제공한다.
상기 카트리지는 가시광의 투과도 측정기 또는 흡광도 측정기의 시료장착부에 설치되는 큐벳(cuvette)일 수 있으며, 흡광도 측정은 가시광의 투과도를 측정할 수 있는 장치를 이용하는 것일 수 있다.
바람직하게는 상기 측정부의 기판(131)은 폴리에틸렌 테레프탈레이트(PET, polyethyleneterephthalate), 폴리메틸메타크릴레이트(PMMA, polymethylmethacylate), 폴리스티렌(PS, polystyrene), 폴리카보네이트(PC, polycarbonate), 사이클릭올레핀고폴리머(COC, cyclic olefin copolymer)로 이루어진 군으로부터 선택된 어느 하나이상으로 이루어진 광학용 고분자 기질일 수 있다. 상기 타겟시료는 혈액, 타액, 코피, 눈물, 배설물, 조지추출액 또는 세포배양액일 수 있으며, 더 바람직하게는 상기 타겟시료는 항원, 항체, 단백질, DNA, RNA 및 PNA중에서 어느 하나 이상인 것이다.
또한, 상기 반응시료는 저분자 화합물, 항원, 항체, 단백질, DNA, RNA 및 PNA중에서 어느 하나이상인 것이다. 상기 측정부의 국소 표면 플라즈몬 공명현상을 발현하는 물질은 금속 나노입자들일 수 있으며, 더 바람직하게는 상기 금속나노입자들은 금, 은, 구리, 니켈 또는 이들의 혼합물일 수 있다.
상기 분석방법에 있어서, 1) 단계에서 타겟시료를 주입하기 전에 카트리지의 흡광도를 측정하는 단계를 추가로 포함하는 것일 수 있다.
또한, 다른 실시 예에서는 상기 1) 내지 6) 단계 중 어느 단계에 추가의 두 개의 측정창을 가지는 카트리지를 포함하고 그 중 하나는 타겟시료 또는 반응시료보다 높은 유효굴절률 값(RH)을 나타내는 물질이 박막층 위에 고정된 고대조부(CH)이고 다른 하나는 타겟시료 또는 반응시료 보다 낮은 유효굴절률 값(RL)을 나타내는 물질이 박막층 위에 고정된 저대조부(RL)인 것인 것이며, 고대조부의 최대 흡수파장값(3) 또는 흡광도값(A3)과 저대조부의 최대 흡수파장값(4) 또는 흡광도값(A4)을 측정하고 상기 미리 알고 있는 고대조부의 유효굴절율 값(RH) 및 저대조부의 유효굴절율 값(RL)을 이용하여 유효굴절률 변화(RH-RL)에 대한 최대흡수파장값의 변화율(3-4) 또는 흡광도값의 변화율(A3-A4)로 보정인자(CF)를 측정하는 단계를 추가로 포함할 수 있다.
전술한 바와 같이 시료의 흡광도 또는 최대 흡수파장값의 측정에는 노이즈(N)가 포함될 수 있다. 노이즈를 제거하기 위하여 타겟시료 또는 반응시료보다 유효굴절율 값이 크거나 작은 물질을 고정하여 고대조부 또는 저대조부의 보정인자를 측정할 수 있다. 이러한 측정된 보정인자(CF)를 이용하여 상기 단계 4)에서 측정된 흡광도의 변화값(A2)에 연산하여 타겟시료와 반응시료의 반응도를 정량분석하는 것이다.
국소플라즈몬 현상이 발현되는 표면에서의 시료의 농도(C)는 시료의 유효굴절률 크기(Ns)에 비례하며, 유효굴절률의 크기와 국소플라즈몬 공명에 의한 흡광도값(AS) 또는 흡수파장값(S)의 관계는 아래와 같이 표현될 수 있다.
<식 1>
CS=aNS,
NS=SAS 또는 NS=SS
CS=aSAS 또는 CS=aSS
즉,
CS=S(aAS)또는 CS=S(aS)
여기서 a는 시료의 농도변화에 따른 유효굴절률 값의 변화율을 나타낸다.
S는 유효굴절률 차이에 따른 국소 표면플라즈몬 공명현상의 흡광도 변화값 또는 흡수파장 변화값을 나타낸다. a는 주어진 표면환경에서의 시료의 분자구조 및 표면밀도에 따라 정해지는 고정된 값이므로, 국소표면 플라즈몬 공명현상을 발현하는 표면에서 유효굴절률을 미리 알고 있는 물질의 흡광도의 값 차이(aAS) 또는 최대 흡수파장 값 차이(aS)를 저대조부 및 고대조부를 이용하여 측정하고, S값을 측정하여 시료의 농도 값 즉 CS를 측정할 수 있다. 상대적인 시료의 타겟에 대한 반응도 또는 활성도를 측정하기 위해서는 시료로 부터의 흡광도 또는 흡광파장 값을 측정한 다음, 저대조부의 흡광도 또는 흡광파장 만을 측정하여 시료에 포함되어있는 기타 물질로 부터의 흡광도 변화 기여분 또는 흡광파장 변화 기여분을 제거하여 다수의 시료들 간의 상대적인 반응도 차이 또는 활성도 차이를 비교할 수 있다.
시료의 표면 농도를 측정하기 위해서는 먼저 국소표면플라즈몬 형상을 발현하는 검출창에 타겟시료를 고정한 후, 그 정해진 파장에서의 흡광도 또는 최대 흡수파장을 나타내는 파장 값을 측정한 다음, 타겟시료와 반응할 반응시료를 측정부의 검출창에 추가로 주입한 다음 정해진 파장에서의 흡광도 또는 최대 흡수파장을 나타내는 파장 값을 측정한다. 시료의 타겟물질에 대한 상대적인 반응도 또는 활성도는 반응시료를 주입하기 전의 정해진 파장에서의 흡광도 값 차이, 또는 최대 흡광도를 나타내는 파장 값의 차이로 측정할 수 있다.
정확한 정량분석을 위하여 시료와 공존하는 기타물질에 의한 백그라운드를 감소시키거나 제거하여야 한다. 시료의 반응도 또는 활성도를 정략적으로 측정하기 위해서는 별도의 카트리지의 측정부에 저대조부 및 고대조부를 구성하여 사용할 수 있다.
두 개의 측정창으로 이루어진 측정부를 가지는 카트리지에서 하나는 타겟시료 또는 반응시료보다 높은 유효굴절률 값(RH)을 나타내는 물질이 박막층 위에 고정된 고대조부(CH)이고 다른 하나는 타겟시료 또는 반응시료 보다 낮은 유효굴절률 값(RL)을 나타내는 물질이 박막층 위에 고정된 저대조부(RL)인 것인 것이며, 고대조부의 최대 흡수파장 값(λ3) 또는 흡광도 값(A3)과 저대조부의 최대 흡수파장 값(λ4) 또는 흡광도 값(A4)을 측정하고 상기 미리 알고 있는 고대조부의 유효굴절률 값(RH) 및 저대조부의 유효굴절률 값(RL)을 이용하여 유효굴절률 변화(RH-RL)에 대한 최대흡수파장 값의 변화율(3-4) 또는 흡광도 값의 변화율(A3-A4)로 보정인자(CF)를 측정할 수 있다.
<식 2>
CF = (A3-A4)/(RH-RL) 또는
=(λ34)/(RH-RL)
시료의 국소 플라즈몬공명 신호의 응답도 즉, 플라즈몬 신호 세기의 기울기를 측정하여 시료의 국소 플라즈몬 신호세기의 상대적 차이 값, 즉 반응도의 절대값을 측정하고 백그라운드 신호를 제거하는 데 사용할 수도 있다. 상기 보정 인자를 통하여 유효 굴절률과 흡광도와의 관계 또는 유효 굴절률과 최대 흡수파장 값과의 관계를 나타내는 보정곡선(calibration curve)을 산출하고 그 산출된 보정곡선을 통하여 타겟시료 또는 반응시료의 흡광도 값 또는 최대 흡수파장 값에 대한 유효굴절률 값을 확인하여 시료를 정량적으로 분석한다. 특히, 타겟시료와 반응시료간의 반응도를 흡광도 차이 값으로 하여 타겟시료와 반응시료의 반응도를 최종 반응한 시료의 농도를 제공함으로써 정량적으로 분석한다.
상기 타겟시료 또는 반응시료의 반응도 측정부, 고대조부 및 저대조부의 측정부를 통하여 측정된 각각 타겟시료의 제1광신호(흡광도값 A1,최대 흡수파장값 λ1); 반응시료의 제2광신호(흡광도값 A2,최대 흡수파장값 λ2); 고대조부의 제3광신호(흡광도값 A3,최대 흡수파장값 λ3); 및 저대부의 제4광신호(흡광도값 A4,최대 흡수파장값 λ4) 그리고 고대조부 및 저대조부로 사용된 미리 정해 놓은 유효 굴절률 값(RL,RH)을 이용하여 보정 인자인 유효 굴절률 변화에 대한 흡광도 변화율 또는 유효 굴절률 변화에 대한 최대 신호 크기를 나타내는 흡수 파장 값 변화율을 연산하고 그 값을 이용하여 시료의 타겟에 대한 반응도 또는 활성도를 측정할 수 있다.
이하 본 발명을 실험예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실험예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실험예에 국한되는 것은 아니다.
실험예
1. 카트리지 제작
본 발명의 시료분석을 위하여 Thermo-Fisher사의 Genesys 10A Spectrophotometer의 분광분석기에 적용하기 위한 카트리지를 제작하였다. 250 의 고분자 기질(PET 또는 PMMA, Polycarbonate)에 금나노입자를 균일하게 코팅한 후 상기 분광분석기의 큐벳고정장치에 장착될 수 있는 크기로 제단 하였다. 시료가 주입될 수 있도록 시료주입부와 채널부를 포함한 유로를 제작하여 두 개의 금속나노입자가 고정된 제단된 고분자 기질 사이에 고정하였다. 도 3은 제작된 카트리지를 보여주는 실제 사진이다. 실험예에서는 제작된 카트리지를 분광분석기에 적용하였으나, 상기 카트리지는 가시광의 흡광도 또는 투과도를 측정하는 장치라면 제한없이 적용가능하다.
2. 유효굴절율에 따른 흡광도 측정
상기 카트리지에 수용액의 염화나트륨 용액의 농도를 증가시며 주입하여 시료의 굴절률을 1.3333에서 1.3795까지 증가시키며 흡광도의 변화를 측정하였고 그 결과를 도 5에 나타내었다. 도 5는 흡광스펙트럼의 파장대별 흡광도 변화량만을 표시하기 위해 염화나트륨이 포함되어 있는 증류수의 흡광스펙트럼에서 증류수(굴절률=1.3333)에서 측정된 흡광스펙트럼의 값을 뺀 값을 보여주고 있는데, 기술 되었듯이 금속나노입자 박막에서 국소 표면플라즈몬 공명현상의 발현에 의해 유효굴절률이 증가함에 따라 흡광도가 증가함을 볼 수가 있었다.
도 5에 나타난 스펙트럼중 약 560 nm 파장대에서 유효굴절률의 증가에 따라 증가하는 흡광도 값을 도시하면 도 6과 같이 표시되었다. 도 6을 통해 실험예에 의하여 제작된 카트리지의 금속나노입자 박막은 시료의 유효굴절율 값이 변화함에 따라 흡광도가 직선적으로 증가하는 것을 확인할 수 있으며, 이는 상기 카트리지는 국소 표면플라즈몬 공명현상이 시료의 유효굴절률 변화에 따라 직선적으로 응답하는 것을 보여주는 것이다. 따라서, 본 발명의 실험예에 따라 제작된 카트리지를 이용하면, 고가의 전용검출장비가 필요 없이, 기존의 분광분석기를 사용하여 국소 표면플라즈몬 공명현상을 측정할 수 있는 예를 보여주고 있다.
3. BSA 를 이용한 anti-BSA와의 선택적 반응도 분석
도 7a 및 도 7b는 흡광도를 이용한 시료의 선택적 반응도를 측정한 결과를 나타내는 그래프이다. 선택적인 시료의 반응도를 측정하기 위하여 타겟시료로 Bovin Serum Albumin(BSA),반응시료로서는 Anti-BSA 항체, 그리고 Streptavidin (SA)을 비 타겟(non-target)으로 준비하였다.
먼저 상기 카트리지를 분광분석기(Thermo-Fisher사의 Genesys 10A Spectrophotometer)에 장착한 후 타겟시료를 주입하기 전 스펙트럼을 확인하기 위하여 PBS(phosphate buffered saline) 0.1M(이하, 샘플 A)로 채워진 측정부의 흡광도를 측정하였고 그 결과는 도 7a에서 곡선 A로 표기되어 있다. 그 다음 카트리지에 0.1 mg/ml 시료(anti-BSA)를 더 주입한 샘플 B의 흡광도 변화를 측정하였으며 그 결과는 도 7(a)에서 곡선 B로 표기되어 있다. 그 뒤를 이어 0.1 mg/ml의 SA 50 ul를 카트리지에 더 주입한 샘플 C의 흡광도를 측정하였고, 이는 도 7a에 곡선 C로 도시되었다. 또한, 0.1 mg/ml의 SA 50 ul 대신 타겟인 0.1 mg/ml BSA 50 ul를 카트리지에 더 주입한 샘플 D의 흡광도를 측정하였으며, 그 결과는 도 7a에 곡선 D로 도시하였다.
샘플 B는 BSA만을 선택적으로 인식하는 시료이므로 타겟시료로 SA가 주입되었을 경우에 비해 BSA가 주입되었을 경우 흡광도가 증가할 것으로 예상되며, 도7(a)에 그 결과가 나타남을 확인할 수 있다. 도 7a를 참조하면, SA가 주입되었을 경우의 흡광도를 나타내는 샘플 C에 대한 곡선 C보다 BSA가 주입되었을때의 흡광도를 나타내는 샘플 D에 대한 곡선 D의 흡광도가 크게 증가됨을 확인할 수 있다.
도 7b는 선택적 시료의 검출에 따른 흡광도증가량을 더욱 명확히 표시하기 위해서 시료 및 타겟을 주입한 뒤 측정한 흡광도 스펙트럼 곡선 B, 곡선 C 및 곡선 D에서 PBS만이 채워져 있을 때의 흡광스펙트럼인 곡선 A를 뺀 그래프를 곡선 B', 곡선 C' 및 곡선 D'로 각각 도시하였다.
도 7b를 참조하면, 선택적 시료의 검출에 따른 흡광도의 증가량을 더욱 명확하게 알 수 있다. 곡선 B'에서 도시된 바와 같이, 시료(anti-BSA)가 카트리지에 고정된 뒤 측정된 흡광도 값(anti-BSA only)은 PBS에 비해 575 nm 영역에서 약 0.01정도 증가하는 것을 확인할 수 있다. 곡선 C'에 도시된 바와 같이, 비 반응타겟인 0.1 /의 SA (anti-BSA/SA)를 주입한 뒤 측정한 흡광도 값은 0.001정도 증가하지만, 곡선 D'에 도시된 바와 같이, 반응 타겟인 0.1 mg/ml의 BSA 시료를 주입하였을 때 575 nm에서의 흡광도 값(anti-BSA/BSA)은 약 0.07 정도 증가한 것을 확인할 수 있다. 그러므로, 비반응 타겟에서 나타나는 흡광도 변화값에 비해 반응타겟에서 나타나는 선택적 반응도는 흡광도 값으로 약 70배의 증가로 나타남을 알 수 있다.
상기에서와 같이 본 발명의 카트리지를 이용하여 타겟시료와 반응시료간의 반응도를 흡광도 변화값들 또는 최대 흡수파장값들의 차이로 정량분석할 수 있음을 확인하였다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사항의 범위에 속한다고 할 것이다.

Claims (27)

  1. 국소 표면 플라즈마 공명현상을 이용한 카트리지에 있어서,
    분석대상 물질인 타겟시료 또는 반응시료가 주입되는 시료주입부;
    상기 시료 주입부와 측정부를 연결하여 타겟시료 또는 반응시료를 측정부로 유입되게 하는 시료 채널부; 및
    표면 플라즈마 공명현상을 발현하는 물질이 기판에 고정되어 박막층이 형성되고 분석 대상물질이 박막층 위에 고정되는 측정부를 포함하는 시료 분석을 위한 카트리지.
  2. 제1항에 있어서,
    상기 카트리지는 투과도 측정기의 시료를 담는 큐벳(cuvette)고정장치에 장착되는 것을 특징으로 하는 카트리지.
  3. 제2항에 있어서,
    상기 투과도 측정기는 가시광의 투과도를 측정하는 것을 특징으로 하는 카트리지.
  4. 제1항에 있어서,
    상기 분석은 타겟시료 및 반응시료간의 반응도를 분석하는 것을 특징으로 하는 카트리지.
  5. 제1항에 있어서,
    상기 측정부와 연결되고, 상기 타겟물질과 결합되지 않은 시료물질을 배출시키는 시료 배출구를 더 포함하는 것을 특징으로 하는 카트리지.
  6. 제1항에 있어서,
    상기 측정부의 기판은 폴리에틸렌 테레프탈레이트(PET, polyethyleneterephthalate), 폴리메틸메타크릴레이트(PMMA, polymethylmethacylate), 폴리스티렌(PS, polystyrene), 폴리카보네이트(PC, polycarbonate), 사이클릭올레핀고폴리머(COC, cyclic olefin copolymer)로 이루어진 군으로부터 선택된 어느 하나이상으로 이루어진 광학용 고분자 기질인 것을 특징으로 하는 카트리지.
  7. 제1항에 있어서,
    상기 타겟시료는 혈액, 타액, 코피, 눈물, 배설물, 조직추출액 또는 세포 배양액인 것을 특징으로 하는 카트리지.
  8. 제1항에 있어서,
    상기 타겟시료는 항원, 항체, 단백질, DNA, RNA 및 PNA 중에서 어느 하나 이상인 것을 특징으로 하는 카트리지.
  9. 제1항에 있어서,
    상기 반응시료는 저분자 화합물, 항원, 항체, 단백질, DNA, RNA 및 PNA 중에서 어느 하나 이상인 것을 특징으로 하는 카트리지.
  10. 제1항에 있어서,
    상기 측정부의 표면 플라즈마 공명현상을 발현하는 물질은 금속나노입자들인 것을 특징으로 카트리지.
  11. 제10항에 있어서,
    금속나노입자들은 금, 은, 구리, 니켈 또는 이들의 혼합물인 것을 특징으로 하는 카트리지.
  12. 제1항에 있어서,
    상기 측정부는 분리된 두 개의 제 1 측정창 및 제 2 측정창으로 이루어진 것을 특징으로 하는 카트리지.
  13. 제12항에 있어서,
    상기 제 1 측정창은 타겟시료 및 반응시료가 박막층위에 주입되고,
    상기 제 2 측정창은 타겟시료 및 반응시료가 주입되지 아니한 것을 특징으로 하는 카트리지.
  14. 제12항에 있어서,
    상기 제 1 측정창은 타겟시료 또는 반응시료보다 높은 유효굴절률 값(RH)을 나타내는 물질이 박막층 위에 고정된 고대조부(CH)이고,
    상기 제 2 측정창은 타겟시료 또는 반응시료 보다 낮은 유효굴절률 값(RL)을 나타내는 물질이 박막층 위에 고정된 저대조부(RL)인 것을 특징으로 하는 카트리지.
  15. 제12항에 있어서,
    상기 제 1 측정창은 기판에 표면 플라즈마 공명현상을 발현하는 물질이 고정되어 박막층을 형성하고,
    상기 제 2 측정창은 기판만으로 이루어진 것을 특징으로 하는 카트리지.
  16. 국소 표면 플라즈마 공명현상를 이용한 시료 분석방법에 있어서,
    1) 제1항의 카트리지의 시료주입부에 타겟시료를 주입하는 단계;
    2) 상기 카트리지의 측정부에 고정된 타겟시료의 파장변화에 따른 흡광도의 변화값(A1) 또는 최대 흡수파장값(λ1)을 측정하는 단계;
    3) 타겟시료와 반응할 반응시료를 단계 1)의 카트리지 시료주입부에 주입하는 단계;
    4) 카트리지의 측정부에 타겟시료와 반응한 반응시료의 파장변화에 따른 흡광도의 변화값(A2) 또는 최대 흡수파장값(λ2)을 측정하는 단계;
    5) 단계 2) 및 단계 4)에서 측정한 흡광도 변화값들의 차이(A2-A1) 또는 최대 흡수파장값들의 차이(λ21)를 측정하는 단계; 및
    6) 5)단계에서 측정된 흡광도 변화값들 또는 최대 흡수파장값들의 차이로 타겟시료와 반응시료의 반응도를 분석하는 단계;를 포함하는 시료 분석 방법.
  17. 제16항에 있어서,
    상기 카트리지는 가시광의 투과도 측정기의 시료를 담는 큐벳(cuvette) 고정장치에 장착되는 것을 특징으로 하는 방법.
  18. 제16항에 있어서,
    흡광도 측정은 가시광의 투과도를 측정할 수 있는 장치를 이용하는 것을 특징으로 하는 방법.
  19. 제16항에 있어서,
    상기 측정부의 기판은 폴리에틸렌 테레프탈레이트(PET, polyethyleneterephthalate), 폴리메틸메타크릴레이트(PMMA, polymethylmethacylate), 폴리스티렌(PS, polystyrene), 폴리카보네이트(PC, polycarbonate), 사이클릭올레핀고폴리머(COC, cyclic olefin copolymer)로 이루어진 군으로부터 선택된 어느 하나이상으로 이루어진 광학용 고분자 기질인 것을 특징으로 하는 방법.
  20. 제16항에 있어서,
    상기 타겟시료는 혈액, 타액, 코피, 눈물, 배설물, 조지추출액 또는 세포배양액인 것을 특징으로 하는 방법.
  21. 제16항에 있어서,
    상기 타겟시료는 항원, 항체, 단백질, DNA, RNA 및 PNA중에서 어느 하나이상인 것을 특징으로 하는 방법.
  22. 제16항에 있어서,
    상기 반응시료는 저분자 화합물, 항원, 항체, 단백질, DNA, RNA 및 PNA 중에서 어느 하나 이상인 것을 특징으로 하는 방법.
  23. 제16항에 있어서,
    상기 측정부의 표면 플라즈마 공명현상을 발현하는 물질은 금속 나노입자들인 것을 특징으로 하는 방법.
  24. 제23항에 있어서,
    상기 금속 나노입자들은 금, 은, 구리, 니켈 또는 이들의 혼합물인 것을 특징으로 하는 방법.
  25. 제16항에 있어서,
    상기 1) 단계에서 타겟시료를 주입하기 전에 카트리지의 흡광도를 측정하는 단계를 추가로 포함하는 것을 특징으로 하는 방법.
  26. 제16항에 있어서,
    상기 1) 내지 6) 단계 중 어느 한 단계에 추가의 제 1 측정창 및 제 2 측정창을 포함하는 두 개의 측정창을 가지는 카트리지를 포함하고,
    상기 제 1 측정창은 타겟시료 또는 반응시료보다 높은 유효굴절률 값(RH)을 나타내는 물질이 박막층 위에 고정된 고대조부(CH)이고,
    상기 제 2 측정창은 타겟시료 또는 반응시료 보다 낮은 유효굴절률 값(RL)을 나타내는 물질이 박막층 위에 고정된 저대조부(RL)이며,
    상기 고대조부의 최대 흡수파장값(λ3) 또는 흡광도값(A3)과 상기 저대조부의 최대 흡수파장값(λ4) 또는 흡광도값(A4)을 측정하고, 상기 미리 알고 있는 고대조부의 유효굴절율 값(RH) 및 저대조부의 유효굴절율 값(RL)을 이용하여 유효굴절률 변화(RH-RL)에 대한 최대흡수파장값의 변화율(λ34) 또는 흡광도값의 변화율(A3-A4)로 보정인자(CF)를 측정하는 단계를 추가로 포함하는 것을 특징으로 하는 방법.
  27. 제26항에 있어서,
    측정된 보정인자(CF)를 이용하여 상기 단계 4)에서 측정된 흡광도의 변화값(A2)에 연산하여 타겟시료와 반응시료의 반응도를 정량분석하는 것을 특징으로 하는 방법.
PCT/KR2014/001799 2013-03-05 2014-03-05 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법 WO2014137152A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/773,304 US20160161406A1 (en) 2013-03-05 2014-03-05 Cartridge for analyzing specimen by means of local surface plasmon resonance and method using same
US14/863,238 US10060851B2 (en) 2013-03-05 2015-09-23 Surface plasmon detection apparatuses and methods
US16/053,631 US20190094143A1 (en) 2013-03-05 2018-08-02 Surface plasmon detection apparatuses and methods
US17/188,197 US20220018769A1 (en) 2013-03-05 2021-03-01 Surface plasmon detection apparatuses and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0023326 2013-03-05
KR1020130023326A KR101328190B1 (ko) 2013-03-05 2013-03-05 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008182 Continuation-In-Part WO2014171597A1 (ko) 2013-03-05 2013-09-10 나노 입자 어레이의 제조 방법, 표면 플라즈몬 공명 기반의 센서, 및 이를 이용한 분석 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/773,304 A-371-Of-International US20160161406A1 (en) 2013-03-05 2014-03-05 Cartridge for analyzing specimen by means of local surface plasmon resonance and method using same
US14/863,238 Continuation-In-Part US10060851B2 (en) 2013-03-05 2015-09-23 Surface plasmon detection apparatuses and methods

Publications (1)

Publication Number Publication Date
WO2014137152A1 true WO2014137152A1 (ko) 2014-09-12

Family

ID=49857468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001799 WO2014137152A1 (ko) 2013-03-05 2014-03-05 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법

Country Status (3)

Country Link
US (1) US20160161406A1 (ko)
KR (1) KR101328190B1 (ko)
WO (1) WO2014137152A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016072307A1 (ja) * 2014-11-07 2017-08-24 コニカミノルタ株式会社 検出装置および検出方法
US10060851B2 (en) 2013-03-05 2018-08-28 Plexense, Inc. Surface plasmon detection apparatuses and methods
US10359362B2 (en) 2013-04-15 2019-07-23 Plexense, Inc. Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796021B1 (ko) 2016-01-25 2017-12-01 주식회사 수젠텍 스트립 홀더
EP3411819A4 (en) * 2016-02-05 2019-10-23 Seegene, Inc. METHOD FOR REDUCING DATA SET NOISE LEVEL FOR A TARGET ANALYTE
KR101793074B1 (ko) * 2016-05-17 2017-11-02 (주)플렉센스 바이오센서 및 이를 이용한 시료 분석방법
KR101796920B1 (ko) * 2016-09-26 2017-12-12 한국기계연구원 유체칩 일체형 큐벳 및 이를 포함하는 분광 분석 장치
KR102001553B1 (ko) * 2016-10-20 2019-07-17 (주)플렉센스 바이오센서
CN107203081B (zh) * 2017-05-08 2020-01-07 东南大学 一种等离激元宽光谱调控的智能变色玻璃
WO2019117648A1 (ko) * 2017-12-13 2019-06-20 (주)플렉센스 바이오센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662021B1 (ko) * 2005-12-30 2006-12-27 주식회사 인포피아 바이오 카트리지
JP4220879B2 (ja) * 2003-10-17 2009-02-04 日立ソフトウエアエンジニアリング株式会社 吸光度測定装置及び吸光度測定方法
KR20100063316A (ko) * 2008-12-03 2010-06-11 한국전자통신연구원 바이오 물질 검출 장치 및 이를 이용한 바이오 물질 검출 방법
KR20110124489A (ko) * 2010-05-11 2011-11-17 부산대학교 산학협력단 면역측정법을 위한 자기영동 나노바이오센서
KR20130000583A (ko) * 2011-06-23 2013-01-03 주식회사 아이센스 광학 분석용 셀

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60214118T2 (de) * 2001-12-21 2007-03-01 Interuniversitair Micro-Elektronica Centrum Verfahren zum Nachweis eines Analyten
EP1728065A1 (en) * 2003-11-28 2006-12-06 Lumiscence A/S An examination system for examination of a specimen; sub-units and units therefore, a sensor and a microscope
US7915053B2 (en) * 2005-12-22 2011-03-29 Canon Kabushiki Kaisha Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor
US8045141B2 (en) * 2006-05-12 2011-10-25 Canon Kabushiki Kaisha Detecting element, detecting device and detecting method
JP2010071693A (ja) * 2008-09-16 2010-04-02 Fujifilm Corp センシング方法、センシング装置、検査チップおよび検査キット
KR101093203B1 (ko) * 2009-10-20 2011-12-12 한국과학기술원 Lspr 광학특성 기반 구리 증착형 나노입자 배열 바이오칩 및 그 용도
US10228372B2 (en) * 2012-07-05 2019-03-12 The Brigham And Women's Hospital Detection, capture and quantification of biological moieties from unprocessed bodily fluids using nanoplasmonic platform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220879B2 (ja) * 2003-10-17 2009-02-04 日立ソフトウエアエンジニアリング株式会社 吸光度測定装置及び吸光度測定方法
KR100662021B1 (ko) * 2005-12-30 2006-12-27 주식회사 인포피아 바이오 카트리지
KR20100063316A (ko) * 2008-12-03 2010-06-11 한국전자통신연구원 바이오 물질 검출 장치 및 이를 이용한 바이오 물질 검출 방법
KR20110124489A (ko) * 2010-05-11 2011-11-17 부산대학교 산학협력단 면역측정법을 위한 자기영동 나노바이오센서
KR20130000583A (ko) * 2011-06-23 2013-01-03 주식회사 아이센스 광학 분석용 셀

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060851B2 (en) 2013-03-05 2018-08-28 Plexense, Inc. Surface plasmon detection apparatuses and methods
US10359362B2 (en) 2013-04-15 2019-07-23 Plexense, Inc. Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same
JPWO2016072307A1 (ja) * 2014-11-07 2017-08-24 コニカミノルタ株式会社 検出装置および検出方法

Also Published As

Publication number Publication date
KR101328190B1 (ko) 2013-11-13
US20160161406A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2014137152A1 (ko) 국소 표면플라즈몬 공명현상을 이용한 시료분석을 위한 카트리지 및 이를 이용한 분석방법
Rivnak et al. A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood
Akama et al. Droplet-free digital enzyme-linked immunosorbent assay based on a tyramide signal amplification system
Zhao et al. Single-step, wash-free digital immunoassay for rapid quantitative analysis of serological antibody against SARS-CoV-2 by photonic resonator absorption microscopy
Song et al. Machine learning-based cytokine microarray digital immunoassay analysis
WO2017111194A1 (ko) 바이오 센서용 광학 표지자, 이를 포함하는 광학 바이오센서 및 상기 바이오 센서용 광학 표지자의 제조방법
WO2013165065A1 (ko) 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 장치
WO2017200225A1 (ko) 바이오센서 및 이를 이용한 시료 분석방법
CN110806401A (zh) 波长/角度调制自由转换偏光荧光成像表面等离子共振仪
CN202916200U (zh) 医用荧光定量分析仪
WO2012144859A2 (ko) 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 방법 및 장치
Ahmadsaidulu et al. Microfluidic point-of-care diagnostics for multi-disease detection using optical techniques: a review
WO2011145895A2 (ko) 반사식 흡광도 측정 장치 및 이를 포함하는 반사식 흡광도 및 측방유동 분석 일체형 장치
JP2001041881A (ja) 偏光を用いたspr装置及びspr測定方法
Fagúndez et al. An electrochemical biosensor for rapid detection of anti-dsDNA antibodies in absolute scale
JP4972295B2 (ja) 免疫分析方法及びバイオチップ
WO2018074832A1 (ko) 바이오센서
WO2020040509A1 (ko) 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
KR20200102033A (ko) 입자와 용액의 동시 이동에 의한 분석물질을 검출하는 장치 및 이를 이용한 검출방법
WO2020213803A1 (ko) 생체물질의 분석 방법
Zhang et al. Detection of kappa light chain protein in human urine by surface plasmon resonance
JP2018537652A (ja) 生化学検査と免疫反応検査を行うマルチユニット、及びこれを用いた検査方法
JP2012042233A (ja) Spfs(表面プラズモン励起増強蛍光分光法)により測定される蛍光シグナルの補正方法およびこれを用いたアッセイ方法、並びにこれらの方法に用いられる構造体および表面プラズモン共鳴センサー
CN114814243B (zh) 应用于蛋白质抗原的定量检测试剂盒及方法
KR20170137284A (ko) 국소 표면 플라즈몬 공명센서를 이용한 시료 분석방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14773304

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.01.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14760444

Country of ref document: EP

Kind code of ref document: A1