Nothing Special   »   [go: up one dir, main page]

WO2013114852A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2013114852A1
WO2013114852A1 PCT/JP2013/000444 JP2013000444W WO2013114852A1 WO 2013114852 A1 WO2013114852 A1 WO 2013114852A1 JP 2013000444 W JP2013000444 W JP 2013000444W WO 2013114852 A1 WO2013114852 A1 WO 2013114852A1
Authority
WO
WIPO (PCT)
Prior art keywords
sipe
tread
depth
land portion
land
Prior art date
Application number
PCT/JP2013/000444
Other languages
English (en)
French (fr)
Inventor
俊彦 吉川
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012020137A external-priority patent/JP5894450B2/ja
Priority claimed from JP2012118984A external-priority patent/JP6185696B2/ja
Priority claimed from JP2012118974A external-priority patent/JP2013244811A/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201380007836.8A priority Critical patent/CN104105604B/zh
Priority to US14/375,712 priority patent/US9566829B2/en
Priority to EP13744301.6A priority patent/EP2810793B1/en
Priority to RU2014135390/11A priority patent/RU2588329C2/ru
Publication of WO2013114852A1 publication Critical patent/WO2013114852A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C2011/129Sipe density, i.e. the distance between the sipes within the pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C2011/129Sipe density, i.e. the distance between the sipes within the pattern
    • B60C2011/1295Sipe density, i.e. the distance between the sipes within the pattern variable

Definitions

  • This invention relates to a pneumatic tire having a land portion on a tread and provided with one or more sipes on the land portion.
  • Patent Document 1 the sipe formed on the land portion is bent a plurality of times from the tread surface side to the tire radial inner side to extend in a zigzag shape, thereby suppressing the falling deformation of the land portion and improving the grounding property. Proposed maintained pneumatic tires.
  • Patent Document 1 when considering application to tires for all-season used not only on icy and snowy road surfaces but also on dry road surfaces having a high friction coefficient and a large force input, the sipe shape of Patent Document 1 is particularly dry. When inputting on the road surface, the sipe edge in the vicinity of the tread surface may be caught between the tread surface and the road surface, and the sipe edge may be lost.
  • Patent Document 2 As shown in FIG. 7, a vertical portion extending in a normal direction from the tread surface S of the land portion, and a land portion while bending in the front-rear direction of the tangent line of the tread surface S following the vertical portion It has been proposed to use a sipe having a bend extending in the bottom direction. According to such a configuration, it is possible to suppress the collapse of the land portion at the bent portion and to suppress the loss of the sipe edge at the vertical portion.
  • the present invention provides a pneumatic tire in which one or more sipes are provided in the land portion of the tread, and suppresses the occurrence of sipe edge defects, while sufficiently suppressing the collapse of the land portion and improving the ground contact property of the land portion. It is an object of the present invention to improve the braking performance and driving performance on both ice and snow road surfaces and dry road surfaces.
  • the wall surfaces of the sipe come into contact with each other at the bent portion 101 and the bent portion 102, and the right side of the drawing. Will support the fall of the land.
  • the location that supports the falling of the land portion varies across the sipe depth direction.
  • the support portion for the fall of the land portion is both the bent portion 101 and the bent portion 102, and the support portion is the sipe depth. Will be dispersed in the direction.
  • the inventor conducted further research based on the idea that if the support effect can be prevented from spreading in the sipe depth direction, the fall of the land portion can be more effectively suppressed.
  • the sipe is bent at the center region of the sipe depth, and is provided with two relatively large inclined surfaces in the center region of the sipe depth, depending on the input direction to the land portion. It is possible to realize the support of the land part at the same depth position regardless of the input direction, and to concentrate the support depth position in the central area of the sipe depth, As a result, the present inventors have found that braking / driving performance or cornering performance at the time of turning can be remarkably improved by effectively suppressing the tilting deformation of the vehicle.
  • the gist of the present invention is as follows. (1) In a pneumatic tire in which at least one sipe is provided in a land portion formed on a tread, the sipe is drawn from the opening center of the sipe in a sipe depth direction from a tread surface of the land portion. A vertical portion extending along the normal line of the tread surface, and a bent portion that bends in one and the other in the width direction of the sipe across the normal line, the bent portion from the tread surface of the sipe When the depth is D, the first secondary bending point is at a depth of D / 7 or more and D / 2 or less from the tread, and the depth is D / 4 or more and 3D / 4 or less from the tread.
  • the sipe is drawn from the opening center of the sipe in a sipe depth direction from a tread surface of the land portion.
  • a vertical portion extending along the normal line of the tread surface, and a bent portion that bends in one and the other in the width direction of the sipe across the normal line, the bent portion from the tread surface of the sipe.
  • the first secondary bending point is at a depth of D / 7 or more and D / 2 or less from the tread, and the depth is D / 4 or more and 3D / 4 or less from the tread.
  • a second inclined portion is formed between the main bending point and the second sub bending point, and the first inclined portion
  • the ratio a1 / A of the extension area a1 in the longitudinal direction of the sipe and the projection area A of the orthographic projection from the width direction of the sipe, and the extension area a2 in the longitudinal direction of the sipe of the second inclined portion A pneumatic tire (second invention), wherein the ratio a2 / A to the projected area A of the orthographic projection from the sipe width direction is 0.1 or more.
  • the concave and convex portions facing each other across the sipe mesh with each other, and the land portion can be prevented from falling down.
  • two slopes are formed in the center area of the sipe depth over an appropriate area, and the slopes of the land are supported on each side. Therefore, the degree of restraint is almost the same without depending on the input direction from the tread.
  • the land portion is supported in the central region of the land portion, the effect of suppressing the collapse can be remarkably improved.
  • the vertical portion it is possible to prevent the land portion tread from being caught when the tire is in contact with the ground, and to avoid the loss of the sipe edge.
  • the “vertical portion extending along the normal line of the tread surface drawn from the center of the opening of the sipe” does not need to be strictly orthogonal to the tread surface in a mathematical sense. It only needs to extend in the normal direction within a range in which the sipe edge can be avoided by preventing the tread from being caught. Therefore, the angle formed between the extending direction of the vertical portion and the tread surface can be set to, for example, 80 ° or more and 90 ° or less as measured from the acute angle side.
  • the sipe width direction is the direction of the opening width (sipe width) of the sipe that has a width of 0.1 to 1.0 mm along the sipe longitudinal direction.
  • the land portions facing each other across the sipe mesh more effectively, and the land portion can be more effectively prevented from falling.
  • the land portion is provided with two or more sipes, and the shortest distance between adjacent sipes in the orthogonal direction to the longitudinal direction of the sipes on the tread is D or more, (1) or (2 ) Pneumatic tires.
  • Such a configuration is advantageous in improving braking performance and driving performance not only on snowy and snowy road surfaces but also on dry road surfaces.
  • the above functions by the vertical part and the bent part of the sipe can be more effectively exhibited.
  • the sipe density TL / R which indicates the ratio of the total length R of the sipe with respect to the total area R of the land portion, to the total length R in the longitudinal direction of the tread, is 0.1 / mm or less.
  • the wall surface of the land tends to bulge and deform, and the adjacent land Contact each other. Therefore, by applying the sipe shape characteristic of the present invention to the land portion having a relatively low sipe density as described above, the effect of suppressing the collapse of the land portion due to the sipe shape can be more effectively exhibited. It becomes possible.
  • the total value TL C in all sipe is, until the sipes density TL C / R C showing the ratio of the total area R C of the land portion 0.25 / mm or less, and the tread end from the quarter point in the shoulder region of the longitudinal length in the tread sipes total value TL S in all the sipe, the sipe density TL S / R S indicating the ratio of the total area R S of the land portion is 0.2 /
  • the effect of the present invention can be further exhibited by defining the sipe density for each region.
  • the sipe is a flat region in which the bent portion is continuous in the longitudinal direction of the sipe and a flat region in which the vertical portion is continuous in the longitudinal direction on either one side or both sides of the longitudinal direction of the bent region.
  • this flat area constitutes a sipe portion that extends linearly without bending, the limit of falling down is reduced compared to the bending area on an icy and snowy road, and a scratching effect at the edge is expected. Therefore, the braking performance and drive performance not only on the dry road surface but also on the icy and snowy road surface can be improved by making either one side or both sides of the end portion in the longitudinal direction of the sipe a flat area. Furthermore, the formation of the sipe in the vulcanizing process of the tire can be facilitated by providing the flat region at the end portion in the longitudinal direction of the sipe.
  • the ratio is within such a range, the falling of the land portion in the flat region can sufficiently suppress the falling of the land portion in the bent region while sufficiently obtaining the scratching effect of the edge portion of the tread. Excessive falling can be avoided. In this way, the performance on the snow and snow is improved at the longitudinal end of the sipe, and at the same time, the dry performance can be improved by suppressing the falling of the land at the center in the longitudinal direction of the sipe.
  • the braking performance and the driving performance can be made compatible at a high level.
  • the occurrence of a sipe edge defect is suppressed, and the land portion's falling-down deformation is sufficiently suppressed and the land portion is grounded.
  • the braking performance and driving performance can be further improved on both ice and snow road surfaces and dry road surfaces.
  • FIG. 3 is an enlarged view of one of the sipes of FIG. 2.
  • (A) is the figure which showed the sipe shape which concerns on this invention over the longitudinal direction of this sipe.
  • B) is a projection surface obtained by orthographic projection of (A) from the sipe width direction.
  • (A) is the figure which showed the other sipe shape which concerns on this invention over the longitudinal direction of this sipe.
  • (B) is a projection surface obtained by orthographic projection of (A) from the sipe width direction.
  • (A) is the figure which showed the other sipe shape which concerns on this invention over the longitudinal direction of this sipe.
  • (B) is a projection surface obtained by orthographic projection of (A) from the sipe width direction. It is sectional drawing at the time of cut
  • FIG. 1 is a partial development view of a tread 2 of a pneumatic tire 1 (hereinafter also referred to as a tire) according to the first invention.
  • the tire 1 has a left and right sidewall and a crown portion having a tread 2 extending between both sidewalls, the one sidewall portion passing through the crown portion, and the other sidewall.
  • a carcass made of an organic fiber cord or a steel cord ply extending over the portion and a belt made of a steel cord layer disposed between the carcass and the tread are provided.
  • the tread 2 has a land portion 3 having a rib shape, a rug shape, or a block shape.
  • a circumferential groove 4 extending in the tire circumferential direction (Y direction shown in FIG. 1) and a plurality of grooves extending in the tire width direction (X direction shown in FIG. 1) intersecting the circumferential groove 4.
  • a plurality of block-like land portions 3 are formed by the lateral grooves 5.
  • a block-like land portion defined by the circumferential groove 4 and the lateral groove 5 is shown, but the land portion 3 is a rib that is formed only by the circumferential groove 4 and is continuous in the tire circumferential direction. It may be a land portion.
  • the land portion 3 may be a rug-like land portion formed only by the lateral groove 5 and continuous in the tire width direction.
  • the circumferential groove 4 is a straight line in the illustrated example, but may be a non-linear shape such as a zigzag shape, a sawtooth shape, or a wave shape.
  • the lateral groove 5 extends in a straight line in a direction that is completely parallel to the tire width direction, in other words, perpendicular to the tire circumferential direction. It may extend in an inclined manner, or may be non-linear, such as a zigzag shape, a sawtooth shape, or a wave shape.
  • one or more sipes 6, here, four sipes 6 a to 6 d extending in the tire width direction (X direction) are landed from one circumferential groove 4 to the other circumferential groove 4. It is formed so as to cross the part 3 and at a predetermined interval in the tire circumferential direction (Y direction).
  • the sipe 6 referred to in the present invention refers to a cut having a width of 0.1 to 1.0 mm in which at least a part of the groove walls of the sipe are in contact with each other (closed) when the land portion 3 is grounded.
  • the length of the sipe 6 in the tire width direction is equal to the length of the land portion in the tire width direction, and the land portion 3 is arranged so as to be divided in the circumferential direction by the sipe 6.
  • the length in the longitudinal direction may be shorter than the length in the tire width direction of the land portion 3.
  • one end of the sipe opens on one side of the land portion 3 and the other end stops in the land portion, or both ends stop in the land portion.
  • FIG. 2 is a cross-sectional view when the land portion 3 of FIG. 1 is cut along the width direction surface of the sipe 6.
  • 2 is a cross-sectional view of the sipe 6 shown in FIG. 1 along the line AA.
  • the sipe 6 has a vertical portion 10 extending along a normal line of the tread surface drawn from the center of the sipe opening of the tread surface S, and a bent portion 11 bent to one side and the other side of the normal line.
  • the land portion 3 is continuously formed up to the vicinity of the bottom portion of the land portion 3 so as to be divided in the tire circumferential direction.
  • the bent portion 11 is formed so as to be folded and inclined with respect to the vertical portion 10 in the front-rear direction of the tire circumferential direction, in the illustrated example, in the left-right direction.
  • FIG. 3 is an enlarged cross-sectional view of one of the sipes 6a to 6d in FIG.
  • the configuration of the vertical portion 10 of the sipe 6 and the bent portion 11 which is a feature of the present invention will be described more specifically with reference to FIG.
  • each dimension of the sipe 6 described below is defined by the width direction center line C (one-dot chain line) of the sipe 6, as shown in FIG.
  • “points” and “parts” on the cross section of FIG. 3 actually form “lines” and “surfaces”, respectively. Therefore, the sipe 6 has a sipe width cross section. It demonstrates as what has the three-dimensional structure which extended the shape to a longitudinal direction.
  • the bent portion 11 in the tire width direction cross section is sequentially from the tread surface S of the land portion in the depth direction.
  • a first auxiliary bending point Q 1 located in D / 7 or D / 2 or less of the depth region
  • the main bending point P located from the tread surface S to D / 4 or more 3D / 4 less depth region
  • the tread surface S a second sub bending point Q 2 and has a first inclined portion 12 between the first sub bending point Q 1 and the main bending point P located in the D / 2 or 6D / 7 or less deep regions from a second angled portion 13 between the main bending point P and the second sub bending point Q 2
  • the acute angle ⁇ 1 formed by the first inclined portion 12 and the tangential direction Y of the tread surface S at the opening end of the sipe 6 is 30 ° ⁇ ⁇ 1 ⁇ 60 °
  • the second inclined portion 13 is the opening of the sipe 6. It is essential that the angle ⁇ 2 on the acute angle side formed with the tangential direction Y of the tread surface S at the end satisfies 30 ° ⁇ ⁇ 2 ⁇ 60 °.
  • the vertical portion 10 opens to the tread surface S of the land portion 3 in the region of D / 4 from the tread surface S to the sipe depth direction. It is formed in a straight line shape along the normal direction (Z direction shown in FIG. 3) toward the bottom of the plate. Then, in a depth region of D / 4 or more and D / 3 or less from the tread surface S, a surface inclined from the vertical portion 10 toward one side with respect to the normal direction of the tread surface S, in this case, toward the lower right side of the drawing. An inclined portion 14 that is inclined is formed.
  • the sipe width direction is the direction of the opening width (sipe width K) of the sipe having a width of 0.1 to 1.0 mm along the sipe longitudinal direction. Is substantially constant from the tread surface S to the sipe depth D.
  • the sipe 6 has a shape that bends in the tangential direction of the tread surface S via the bending points of the main bending point P, the first sub bending point Q 1 , and the second sub bending point Q 2 .
  • the opposing wall surfaces separated by the sipe 6 can be brought into contact with each other, and the land portion can be prevented from falling down.
  • the sipe 6 has two relatively large surfaces formed by the three bending points in the central region of the depth D of the sipe 6, that is, the first inclined portion 12 and the second inclined portion. 13, the wall surfaces of the sipe 6 are in strong contact with each other on these surfaces, and the falling of the land portion is suppressed. That is, if it demonstrates using FIG. 3, when the land part 3 receives the input of the direction which goes to the right from the paper surface from a road surface, the land part divided by the sipe 6 by the 1st inclination part 12 will be described. The wall surfaces come into strong contact with each other, and the frictional force supports the land portion on the input side from the road surface, here the left side of the paper surface, and the collapse deformation is suppressed.
  • the wall surfaces of the land portion divided by the sipe 6 at the second inclined portion 13 are in strong contact with each other, and the friction The force supports the land side on the input side from the road surface, here the right side of the page, and the collapse deformation is suppressed.
  • the sipe 6 has the main bending point P located in the region of the depth D / 4 to 3D / 4 in the central region of the land portion 3 from the depth D / 7 to 6D / 7, respectively. It has two large inclined surfaces formed by bending only once. And in the sipe 6, each surface of this inclined surface is supporting the fall of the land part by the input from two directions, respectively. Therefore, the input from either side can support the falling of the land part in the central region in the depth direction of the land part, and the degree of suppression of the falling deformation between the input directions can be made comparable. . In other words, it is possible to suppress the falling deformation of the land portion to the same extent in both directions without depending on the rotation direction.
  • the support position of the land portion is near the center of the depth of the land portion 3 in any input direction, the support position is not dispersed in the depth direction as in the prior art.
  • the effect of suppressing the falling is remarkably improved, the rigidity of the land portion is secured, the grounding property is increased, and the braking / driving performance of the entire tire can be enhanced.
  • each of the inclination angles ⁇ 1 and ⁇ 2 of the first inclined portion 12 and the second inclined portion 13 a certain angle or more so that the acute angle formed with the tread surface S is 60 ° or less. Since the meshing effect between the wall surfaces of the divided land portions can be effectively exhibited, the frictional force on the contact surface increases, and the land portion can fall down more effectively. Further, if the angle is set to 30 ° or more, it is possible to prevent the mold from being easily pulled out after the tire vulcanization, which is advantageous in manufacturing.
  • the sipe 6, the first auxiliary bending point Q 1 and the second sub bending point Q 2 is provided, even in other than the main bending point P, by forming a portion meshing between the wall of the shed land portion, The wall surfaces of the first inclined portion 12 and the second inclined portion 13 come into strong contact with each other, and the falling-down deformation can be more effectively suppressed.
  • the first sub bending point Q 1 is D / 2 in the area from the depth D / 7 from the tread surface
  • the second sub bending point Q 2 is there a depth of D / 2 from the tread surface to 6D / 7 in the region
  • the sipe 6 has the vertical portion 10, the rigidity in the vicinity of the tread surface S is ensured, and the edge of the sipe can be prevented from being caught between the tread surface and the road surface even when the tire is in contact with the ground. it can. Accordingly, it is possible to avoid sipe edges from being lost not only on icy and snowy road surfaces but also on dry road surfaces with a high friction coefficient and a large force.
  • FIG. 4A is a view showing the sipe 6 (see FIG. 3) provided in the land portion of the tread over the longitudinal direction of the sipe 6. That is, the sipe is a space formed by being surrounded by both wall surfaces of the tread land portion under a certain opening width.
  • the shape of the sipe 6 at the center line C in the width direction is defined as the sipe 6. It represents as a surface formed over the longitudinal direction. Then, when the shape of the sipe 6 is viewed from the front of the page, the trough portion of the sipe 6 is indicated by a solid line, and the peak portion is indicated by a broken line.
  • FIG. 4B is a projection surface of the sipe shape shown in FIG. 4A that is an orthographic projection from the sipe width direction.
  • the sipe depth D is multiplied by the longitudinal length L of the sipe.
  • the area obtained in this way is designated as the projected area A of the sipe.
  • the ratio a1 / A of the area a1 of the first inclined portion 12 and the projected area A of the sipe and the ratio a2 / A of the area a2 of the second inclined portion 13 and the projected area A of the sipe are both 0.1 or more
  • the main bending point P is in the central region of the D / 4 or more 3D / 4 or less depth from the tread surface S, D / 7 or D / 2 or less of the depth from the first sub bending point Q 1 is the tread surface S in the region, the second sub bending point Q 2 is there from the tread surface S to D / 2 or 6D / 7 or less deep region, and a ratio of the projected area a of the areas a1 and sipes of the first inclined portion Only when the ratio a2 / A and the ratio a2 / A between the area a2 of the second inclined portion and the projected area A of the sipe are both 0.1 or more, the above-described effect, that is, in the input direction, is satisfied. It is possible to suppress the falling without depending on it and sufficiently improve the braking / driving performance of the tire.
  • the ratio a1 / A of the area a1 of the first inclined portion and the projected area A of the sipe and the ratio a2 / A of the area a2 of the second inclined portion and the projected area A of the sipe are both 0.1 or more.
  • the effect of the present invention can be further enhanced.
  • the distance W 1 of the first inclined portion 12 in the tangential direction of the tread surface S that is, the distance W 1 perpendicular to the longitudinal direction of the sipe is 0 ⁇ W 1 ⁇
  • the distance in the tangential direction of the tread surface S of the second inclined portion 13, that is, the distance W 2 in the direction orthogonal to the longitudinal direction of the sipe, is preferably 0 ⁇ W 2 ⁇ D / 3. preferable.
  • the distances W 1 and W 2 By making the distances W 1 and W 2 greater than 0, the first inclined portion 12 and the second inclined portion 13 that are in contact with each other across the sipe are formed, and the land portion collapses as described above. It is because it can suppress. Moreover, the reason why the distances W 1 and W 2 are set to D / 3 or less is that it is possible to prevent the mold from being easily removed after vulcanization of the tire, which is advantageous in manufacturing.
  • the above-described sipe shape has an arrangement interval of the sipe 6 that is the shortest distance between adjacent sipes on the tread surface S when two or more sipes 6 are provided for one land portion 3. It is particularly effective when it is D or more.
  • the sipes 6 are arranged at a predetermined interval or more, it is possible to provide a vertical portion that prevents the land tread from being caught, and at the same time, sufficiently secure a bent portion that suppresses the collapse of the land portion. it can.
  • the rigidity of the tire surface is prevented from being lowered due to the mutual distance between the sipes 6 being too narrow, and the gist of the present invention is excellent in dry performance, not only in snowy and snowy road surfaces but also in braking performance and This is also for fully exhibiting the effect of improving the driving performance.
  • the arrangement interval is preferably 10D or less.
  • the length H in the normal direction of the tread S of the vertical portion 10 is preferably D / 7 or more.
  • the longitudinal direction of the sipe 6 is preferably the tire width direction. That is, as shown in the developed view of FIG. 1, when the sipe 6 extends in a state of being completely parallel to the tire width direction, it is possible to improve the driving / braking performance of the tire particularly during straight running. Moreover, the sipe 6 may be inclined and extended in the tire width direction, and in this case, driving / braking performance during straight traveling and turning can be improved.
  • the ratio of the value TL which is the sum of the lengths in the longitudinal direction of the tread surface S of the sipe 6 for all the sipes, to the total area R of the land portion is shown.
  • the sipe density TL / R is 0.1 / mm or less.
  • the sipe density TL / R is preferably within the above range and 0.0001 / mm or more.
  • the tread S of the land portion 3 receives a ground reaction force from the road surface during tire rotation, especially when the sipe density in the land portion is relatively small, the wall surface of the land portion is likely to bulge and deform easily. Adjacent land portions can easily come into contact with each other. Therefore, the above-mentioned effect of suppressing the falling deformation of the land portion of the characteristic sipe shape of the present invention having the bent portion 11 is particularly that the disposition interval of the above sipe with respect to the land portion 3 is D or more. Further, when the sipe 6 is provided at such a sipe density of 0.1 / mm or less, it works advantageously.
  • the sipe 6 of the present invention which can increase the sipe density in the land portion without increasing the sipe density of the tread S, works effectively.
  • the total length of the sipe treads in the center area spanning between the half point between the tread ends and the quarter point between the tread ends is totaled for all sipes.
  • the sipe density TL C / RC of the center region is in the above range and 0.0001 / mm or more
  • the sipe density TL S / R S of the shoulder region is in the above range and 0.0001 / mm or more.
  • the effect of the present invention can be further exhibited by defining the sipe density for each region.
  • the sipe 6 is a bent region formed by extending a vertical portion 10 and a bent portion 11 formed from the tread surface S toward the sipe depth direction in the longitudinal direction of the sipe.
  • M and flat regions N 1 and N 2 each having a straight line portion 9 extending linearly from the tread surface S toward the sipe depth direction are provided on both ends in the longitudinal direction of the bent region M.
  • it is indicated by one-dot chain line a boundary between the bent region M and tabular region N 1 and N 2. What is also shown in dashed lines are not visible from the paper front hiding flat region N 1, a portion of the bent portion 11.
  • the sipe 6 has a bent region M in the longitudinal center of the sipe, a flat region N 1 and N 2 at both ends in the longitudinal direction of the sipe, the.
  • the vertical portion 10 is provided in the vicinity of the tread surface, and the edge of the sipe is prevented from being caught between the road surface and the road surface when the tire contacts the ground.
  • the bending part 11 suppresses the falling deformation of the land part 3 and maintains the ground contact property, the braking performance and the driving performance on the dry road surface can be improved.
  • the sipe portion that extends linearly without bending is configured, so that the land portion collapse limit is reduced compared to the bending area, The scratching effect by the edge portion can be sufficiently obtained, and the braking performance and driving performance on the icy and snowy road surface can be improved.
  • FIG. 6 shows an example in which a flat area N is provided only on one side of the bending area M.
  • the sipe 6 shown in FIG. 5 has the flat areas N 1 and N 2 at both ends in the longitudinal direction of the sipe, but only one end in the longitudinal direction of the sipe as shown in FIG. Can also have a flat area N. Even in such a configuration, the same effect as in the case of having the flat areas N 1 and N 2 can be expected.
  • the sipe depth of the flat area N is equal to the depth of the bent area M, but the sipe depth of the flat area may be different from the depth of the bent area M. .
  • the length in the longitudinal direction of the flat region N is 1% or more and 95% or less of the length L in the longitudinal direction of the sipe.
  • the falling of the land portion can be suppressed in the bent region while sufficiently obtaining the scratching effect of the edge portion of the tread. Falling down can be avoided.
  • the fall performance of the land portion is suppressed and the dry performance is enhanced.
  • the braking performance and driving performance can be improved in a well-balanced manner.
  • the longitudinal direction length of the sipe 6 is shorter than the length of the tread surface S in the same direction, that is, when the longitudinal end portion of the sipe 6 does not open in the vertical groove 4 and stops in the land portion, the end It is advantageous to provide a flat area on the part side. This is because after the vulcanization molding, the mold can be reliably removed from the product tire without damaging around the sipe, which is beneficial in manufacturing.
  • the length of the plate-like region N in the longitudinal direction means a length obtained by adding the two plate-like regions N 1 and N 2 .
  • the flat plate with respect to the length L in the longitudinal direction of the sipe The preferable range of the length of the state area N is the same.
  • the sipe 6 has a portion 16 that is linear along the normal direction from the land bottom side end of the inclined portion 15 toward the bottom of the land portion. Without the portion 16, it may be linear from the second auxiliary bending point Q 2 toward the bottom of the land portion.
  • the sipe 6 has a straight shape on the tread surface S, but may have other shapes such as a zigzag shape and a wave shape.
  • 1 shows an example in which four sipes are provided for one land portion 3, the number of sipes 6 may be 1 to 3, 5 or more.
  • FIG. 1 shows an example in which the sipe 6 opens at both ends of the land portion 3, but at least one end of the sipe 6 may be terminated in the land portion 3.
  • inventive tires 1-1 to 1-5 according to the first invention, the conventional tire according to the conventional example, and the comparative tires 1-1 to 1-3 are made as trial samples. The performance evaluation was performed.
  • the invention example tire 1-1 has a tire size of 205 / 55R16, has the tread pattern of FIG. 1 in the tread portion, and the embodiment shown in FIGS. 2 and 3 with respect to one block-shaped land portion.
  • the specifications of Sipe are as shown in Table 1-1.
  • Invention Example Tires 1-2 to 1-5 are the same as Invention Example Tire 1-1 except that the specifications of each sipe are changed as shown in Table 1-1.
  • the sipe shape in the cross-sectional view when the land portion is cut by a plane orthogonal to the longitudinal direction of the sipe in the tread is the conventional sipe shape shown in FIG. It is the same.
  • the comparative example tires 1-1 and 1-2 are the same as the inventive example tire 1-1 except that the specifications of the sipe are changed as shown in Table 1-1.
  • the comparative tire 1-3 has a sipe shape that has a bent portion that is bent six times in the sipe depth direction from the tread surface side without providing a vertical portion, and extends in a zigzag shape (a triangular wave shape with a constant amplitude). Except for the above, it is the same as the tire 1 of the invention.
  • the angle formed between the sipe bending direction and the direction perpendicular to the normal is 30.256 °, and the sipe extends along the normal direction from the land bottom side end of the bending part toward the land bottom. And has a length of 0.49D.
  • the tire braking / driving performance was evaluated by comparing the land friction coefficient exhibited by contact between the sipe wall surfaces when a large shear force was applied under a constant load condition.
  • the shear force from both directions is given to the land portion, that is, the shear force is given so as to be input from both the right and left sides of the paper with the sipe shown in FIGS.
  • the friction coefficients were compared.
  • Table 1-2 Note that the friction coefficient shown in Table 1-2 is expressed as an index with the conventional example being 100, and the larger the value, the better the performance.
  • inventive tires 2-1 to 2-15 according to the second invention were prototyped. Performance evaluation was performed.
  • the invention example tire 2-1 has a tire size of 205 / 55R16, has the tread pattern of FIG. 1, and 4 sipes of the embodiment shown in FIGS. 2 and 3 for one block-shaped land portion. Tires are formed one by one. As shown in FIG. 1, the sipe extends straight in the tire width direction on the tread.
  • the specifications of Sipe are as shown in Tables 2-1 and 2-2.
  • Invention Example Tires 2-2 to 2-15 are the same as Invention Example Tire 2-1 except that the specifications of the sipe are changed as shown in Tables 2-1 and 2-2.
  • the conventional tire is the same as the inventive tire 2-1, except that the sipe shape of the cross-section obtained by cutting the land portion along the width direction surface of the sipe is the conventional sipe shape shown in FIG.
  • Comparative example tires 2-1 to 2-8 are the same as example tire 2-1 except that the specifications of sipes were changed as shown in Tables 2-1 and 2-2.
  • Comparative tire 2-9 is the same tire as comparative tire 1-3 of Example 1.
  • the above-mentioned prototype tire is assembled on the rim of the application rim, filled with the specified air pressure, and then given a large shear force under a constant load condition, the land portion that is exhibited by contact between the sipe wall surfaces
  • the braking performance and driving performance of the tire were evaluated by comparing the friction coefficients.
  • the shear force from both directions is given to the land portion, that is, the shear force is given so as to be input from both the right and left sides of the paper, with the sipe shown in FIG. Compared.
  • the results are shown in Table 2-3. Note that the friction coefficient shown in Table 2-3 is expressed in index notation with the conventional example being 100, and the larger the value, the better the performance.
  • the inventive tires 2-1 to 2-15 had a larger average coefficient of friction than the conventional tires. From this, it was confirmed that all the inventive tires had higher braking / driving performance and the like than the conventional tires. Further, since the average friction coefficients of the comparative tires 2-1 to 2-9 are small, the main bending portion is in a depth region of D / 4 or more and 3D / 4 or less from the tread of the land portion, and the first slope The ratio a1 / A of the area a1 of the portion and the projection area A of the orthographic projection from the sipe width direction, and the ratio of the area a2 of the second inclined portion and the projection area A of the orthographic projection from the sipe width direction It was confirmed that the braking performance and the driving performance can be improved particularly when a2 / A is 0.1 or more. Furthermore, in the comparative tire 2-9, occurrence of sipe edge defects was confirmed.
  • the inventive tires 3-1 to 3-25 according to the second invention and A conventional tire according to the conventional example and comparative tires 3-1 to 3-12 were prototyped and the performance of each tire was evaluated.
  • the invention example tire 3-1 has a tire size of 205 / 55R16, has the tread pattern of FIG. 1, and 4 sipes of the embodiment shown in FIGS. 2 and 3 for one block-shaped land portion. Tires are formed one by one. As shown in FIG. 1, the sipe extends straight in the tire width direction on the tread. The specifications of Sipe are as shown in Table 1.
  • Invention Example Tires 3-2 to 3-25 are the same as Invention Example Tire 3-1, except that the specifications of the sipe are changed as shown in Tables 3-1 and 3-2.
  • the conventional tire is the same as the inventive tire 3-1, except that the sipe shape of the cross section obtained by cutting the land portion along the width direction surface of the sipe is the conventional sipe shape shown in FIG.
  • Comparative Example Tires 3-1 to 3-12 are the same as Invention Example Tire 1 except that the specifications of the sipe are changed as shown in Tables 3-1 and 3-2. Comparative tire 3-12 is the same tire as comparative tire 1-3 of Example 1.
  • the inventive tires 3-1 to 3-25 have better average friction coefficient and better performance on ice and snow than the conventional tires. From this, it has been confirmed that the inventive tires have higher braking / driving performance and the like on the dry road surface and the icy / snow road surface than the conventional tires.
  • the main bent portion is in the depth region of D / 4 or more and 3D / 4 or less from the tread of the land portion.
  • the sipe disposed on the tread has portions of the tread surface of the land portion that are bent to one and the other in the width direction of the sipe across a normal drawn from the opening center of the sipe.
  • the braking performance and the driving performance can be improved in the case of having a bent area continuous to the flat area and a flat area continuous to either one side or both sides in the longitudinal direction of the bent area. Further, in the comparative tire 3-12, occurrence of a sipe edge defect was confirmed.
  • the present invention in a pneumatic tire in which one or more sipes are provided in the land portion of the tread, the occurrence of a sipe edge defect is suppressed, and the land portion collapses and the ground portion is sufficiently grounded. It is possible to improve braking performance and driving performance on both ice and snow road surfaces and dry road surfaces, and the present invention is applied to tires with a relatively small number of sipes such as all-season tires. Is particularly suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 陸部にサイプを設けた空気入りタイヤにおいて、サイプエッジの欠損の発生を抑制しつつ、氷雪路面及び乾燥路面の双方において、制動・駆動性能等をより向上させる。 トレッドに陸部を複数有し、該陸部にサイプを設けた空気入りタイヤであって、サイプの幅方向断面において、サイプは、陸部の踏面Sからサイプ深さ方向に向かって、垂直部と、一方側及び他方側に屈曲する屈曲部とを有し、該屈曲部は、深さ方向に順に、D/7以上D/2以下の深さに第1副屈曲点Qと、D/4以上3D/4以下の深さに主屈曲点Pと、D/2以上6D/7以下の深さに第2副屈曲点Qとを有するとともに、第1傾斜部及び第2傾斜部とを形成し、角度θを30°≦θ≦60°、角度θを30°≦θ≦60°とするか、又は第1傾斜部及び第2傾斜部の面積と、サイプ幅方向からの正投影の投影面積Aとの比a1/A及びa2/Aを、ともに0.1以上とする。

Description

空気入りタイヤ
 この発明は、トレッドに陸部を有し、該陸部に1本以上のサイプを設けた空気入りタイヤに関する。
 従来、空気入りタイヤにおいて、氷雪路面上で良好な走行性能を発揮するために、トレッドに設けられた陸部に対して複数本のサイプを設けて、エッジ成分を増加させることが行われている。
 しかし、サイプの本数を増加させると、エッジ成分は増加するものの、陸部の剛性が低下してしまう。そうすると、制動・駆動又は旋回時にタイヤへ荷重負荷がかかった際、陸部に倒れ込み変形が生じ、タイヤと路面との接地面積が減少して、接地性が悪化するという問題が生じる。
 そこで、特許文献1では、陸部に形成するサイプを、踏面側からタイヤ径方向内側に複数回屈曲してジグザグ状に延びる形状にすることで、陸部の倒れ込み変形を抑制して接地性を維持した、空気入りタイヤを提案している。
 ところが、氷雪路面上のみならず、摩擦係数が高くて大きな力が入力される乾燥路面上でも使用するオールシーズン用タイヤへの適用を考慮した場合には、特許文献1のサイプ形状では、特に乾燥路面での入力時、踏面近傍のサイプエッジが踏面と路面との間に巻き込まれて、サイプエッジが欠損してしまう場合がある。
 これに対し特許文献2では、図7に示すような、陸部の踏面Sから法線方向に延びる垂直部と、該垂直部に続いて踏面Sの接線の前後方向に屈曲しながら陸部の底部方向に延びる屈曲部とを有するサイプを使用することを提案している。かかる構成によれば、屈曲部にて陸部の倒れ込み変形を抑制するとともに、垂直部にてサイプエッジの欠損を抑制することができる。
特開平11-170817号公報 特開2006-341816号公報
 ここで近年、氷雪路面及び乾燥路面の双方における走行性能をより高い次元で向上させることが切望されており、陸部に設けるサイプ形状にあっては、さらなる改善の余地が残されていた。
 そこで本発明は、トレッドの陸部に1本以上のサイプを設けた空気入りタイヤにおいて、サイプエッジの欠損の発生を抑制しつつ、陸部の倒れ込み変形を十分に抑制して陸部の接地性を向上させ、氷雪路面及び乾燥路面の双方において、制動性能及び駆動性能をより向上させることを目的とする。
 発明者が、上記目的を達成すべく鋭意研究を重ねたところ、特許文献2のサイプ形状では、タイヤ転動時に、陸部に対する踏面からの入力方向によって、陸部の倒れ込みを支え合う箇所がタイヤ径方向であるサイプ深さ方向で異なり、支え合いの効果が分散することを発見した。
 すなわち、特許文献2のサイプ形状にあっては、図7に示すように、陸部が、踏面Sからの接地反力のもと、図面左から右へ向かう方向に入力を受けた場合は、深さ中央部の屈曲部100でサイプの壁面同士が接触し、紙面左側の陸部の倒れ込みを支える。一方、陸部が、踏面Sからの接地反力のもと、図面右から左へ向かう方向に入力を受けた場合は、屈曲部101及び屈曲部102でサイプの壁面同士が接触し、紙面右側の陸部の倒れ込みを支えることになる。このように、踏面からの入力方向に依存して、陸部の倒れ込みを支持する箇所はサイプ深さ方向に亘って異なることになる。特に、図示例において、陸部が図面右から左へ向かう方向に入力を受けた場合には、陸部の倒れ込みの支持箇所は屈曲部101と屈曲部102の両者となり、支持箇所がサイプ深さ方向で分散してしまうことになる。
 そこで発明者は、支え合いの効果がサイプ深さ方向に分散することを回避できれば、より有効に陸部の倒れ込みを抑制できるとの着想に基づき、さらに研究を重ねた。その結果、サイプを、サイプ深さの中央領域で屈曲させて、サイプ深さの中央領域にて2つの比較的大きな傾斜面を設ける形状とすることによれば、陸部への入力方向に依存することなく、どちらの入力方向であっても同程度の深さ位置で陸部の支え合いを実現できること、しかも、支え合う深さ位置をサイプ深さの中央領域に集中させることで、陸部の倒れ込み変形を有効に抑制して、制動・駆動性能又は旋回時のコーナリング性能を格段に向上できることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は以下の通りである。
 (1)トレッドに形成した陸部に、1本以上のサイプを設けた空気入りタイヤにおいて、前記サイプは、前記陸部の踏面からサイプ深さ方向に向かって、前記サイプの開口中心から引いた前記踏面の法線に沿って延びる垂直部と、該法線を挟んで前記サイプの幅方向の一方及び他方にそれぞれ屈曲する屈曲部とを有し、前記屈曲部は、前記サイプの前記踏面からの深さをDとした場合、前記踏面からD/7以上D/2以下の深さに在る第1副屈曲点と、前記踏面からD/4以上3D/4以下の深さに在る主屈曲点と、前記踏面からD/2以上6D/7以下の深さに在る第2副屈曲点を介して、前記第1副屈曲点及び前記主屈曲点の間に第1傾斜部並びに、前記主屈曲点及び前記第2副屈曲点の間に第2傾斜部とを形成し、前記第1傾斜部が、前記サイプの開口端における前記踏面の接線方向と成す鋭角側の角度θは30°≦θ≦60°であり、前記第2傾斜部が、前記サイプの開口端における前記踏面の接線方向と成す鋭角側の角度θは30°≦θ≦60°であることを特徴とする空気入りタイヤ(第1発明)。
 (2)トレッドに形成した陸部に、1本以上のサイプを設けた空気入りタイヤにおいて、前記サイプは、前記陸部の踏面からサイプ深さ方向に向かって、前記サイプの開口中心から引いた前記踏面の法線に沿って延びる垂直部と、該法線を挟んで前記サイプの幅方向の一方及び他方にそれぞれ屈曲する屈曲部とを有し、前記屈曲部は、前記サイプの前記踏面からの深さをDとした場合、前記踏面からD/7以上D/2以下の深さに在る第1副屈曲点と、前記踏面からD/4以上3D/4以下の深さに在る主屈曲点と、前記踏面からD/2以上6D/7以下の深さに在る第2副屈曲点を介して、前記第1副屈曲点及び前記主屈曲点の間に第1傾斜部並びに、前記主屈曲点及び前記第2副屈曲点の間に第2傾斜部とを形成し、前記第1傾斜部の前記サイプの長手方向の延在面積a1と、前記サイプの幅方向からの正投影の投影面積Aとの比a1/A及び、前記第2傾斜部の前記サイプの長手方向の延在面積a2と、前記サイプの幅方向からの正投影の投影面積Aとの比a2/Aが、ともに0.1以上であることを特徴とする空気入りタイヤ(第2発明)。
 本発明の空気入りタイヤによれば、タイヤ転動時、サイプを挟んで対向する凹凸部同士が噛み合い、陸部の倒れ込みを抑制することができる。しかも、サイプの深さ中央領域に2つの傾斜面が適切な面積にわたって形成され、各面で陸部の倒れ込みを支持するため、倒れ込み抑制程度を、踏面からの入力方向に依存することなく同程度にできるとともに、陸部の深さ中央領域で陸部を支持することから、倒れ込み抑制の効果を格段に向上させることが可能となる。
 一方、垂直部では、タイヤ接地時における陸部踏面の巻き込みを防止して、サイプエッジの欠損を回避することができる。
 なお、本発明において、「サイプの開口中心から引いた前記踏面の法線に沿って延びる垂直部」は、数学的な意味で厳密に踏面と直交している必要はなく、タイヤ接地時における陸部踏面の巻き込みを防止してサイプエッジの欠損を回避することができる範囲内で、法線方向に向かって延びていれば良い。従って、垂直部の延在方向と踏面とのなす角度は、鋭角側から測定して、例えば80°以上90°以下とすることもできる。
 なお、サイプの幅方向とは、サイプ長手方向に沿って幅0.1~1.0mmを有して開口する該サイプの、開口幅(サイプ幅)の向きである。
 (3)前記比a1/A及び前記比a2/Aが、ともに0.5以下である、前記(2)に記載の空気入りタイヤ。
 このように、前記比に上限を設けて、前記第1傾斜部及び前記第2傾斜部の面積を適切な範囲に維持することによって、本発明の効果を十分に発揮させることができる。
 (4)前記第1傾斜部の、前記踏面の接線方向の距離Wは0<W≦D/3であり、前記第2傾斜部の、前記踏面の接線方向の距離Wは0<W≦D/3である、前記(1)または(2)に記載の空気入りタイヤ。
 かかる構成によれば、サイプを挟んで対向する陸部同士がより有効に噛み合って、陸部の倒れ込みをより効果的に抑制することができる。
 (5)前記陸部には前記サイプが2本以上設けられ、隣接するサイプ間の、前記踏面における、サイプの長手方向に対する直交方向の最短距離はD以上である、前記(1)または(2)に記載の空気入りタイヤ。
 かかる構成によれば、氷雪路面のみならず、乾燥路面においても、制動性能及び駆動性能をより向上させるのに有利である。
 (6)前記垂直部の前記踏面の法線方向の長さは、D/7以上である、前記(1)または(2)に記載の空気入りタイヤ。
 かかる構成によれば、サイプ内に、陸部踏面の巻き込みを防止する垂直部を設けつつ、同時に、陸部の倒れ込みを抑制する屈曲部を充分に確保することができる。
 (7)前記サイプの長手方向は、タイヤ幅方向である、前記(1)または(2)に記載の空気入りタイヤ。
 かかる構成によれば、サイプの垂直部及び屈曲部による上記の機能を、より効果的に発揮することができる。
 (8)前記サイプの前記踏面における長手方向長さを全サイプで合計した値TLの、前記陸部の総面積Rに対する割合を示す、サイプ密度TL/Rが、0.1/mm以下である、前記(1)または(2)に記載の空気入りタイヤ。
 一般に、タイヤ回転時に陸部の踏面が路面からの接地反力を受けた場合、特に、陸部内のサイプ密度が比較的小さいと、陸部の壁面が大きく膨出変形し易く、隣接する陸部同士が接触する。従って、上記のようにサイプ密度の比較的小さい陸部に対し、本発明に特徴的なサイプ形状を適用することで、サイプ形状による陸部の倒れ込み変形の抑制効果をより有効に発揮させることが可能となる。
 (9)前記トレッドの端部相互間の中点である1/2点と前記トレッド端との中点である1/4点相互間に跨るセンター領域における、前記サイプの前記踏面における長手方向長さを全サイプで合計した値TLの、前記陸部の総面積Rに対する割合を示すサイプ密度TL/Rが0.25/mm以下、且つ前記1/4点から前記トレッド端までのショルダー領域における、前記サイプの前記踏面における長手方向長さを全サイプで合計した値TLの、前記陸部の総面積Rに対する割合を示すサイプ密度TL/Rが0.2/mm以下である、前記(1)または(2)に記載の空気入りタイヤ。
 一般に、トレッドのセンター領域のサイプ密度は、ショルダー領域のサイプ密度に比べて大きいため、サイプ密度を領域毎に規定することで、本発明の効果をより発揮することができる。
 (10)前記サイプは、前記屈曲部が該サイプの長手方向へ連続する屈曲域と、該屈曲域の長手方向のいずれか一方側又は両側に、前記垂直部が前記長手方向へ連なる平板状域とを有する、前記(1)または(2)に記載の空気入りタイヤ。
 この平板状域は、屈曲することなく直線状に延びるサイプ部分を構成するため、氷雪路において、屈曲域に比べて倒れ込み制限が少なくなり、エッジ部での引っ掻き効果が期待される。そのため、サイプの長手方向端部のいずれか一方側又は両側を平板状域にすることにより、乾燥路面のみならず、氷雪路面での制動性能及び駆動性能を向上させることができる。さらに、該平板状域をサイプの長手方向端部に設けることで、タイヤの加硫工程におけるサイプの成形を容易にすることもできる。
 (11)前記平板状域の前記長手方向の長さが、前記サイプの長手方向長さの1%以上95%以下である、前記(10)に記載の空気入りタイヤ。
 前記割合をかかる範囲内にすると、平板状域における陸部の倒れ込みによってトレッドのエッジ部の引っ掻き効果を十分に得ながら、屈曲域では陸部の倒れ込みを抑制できるため、トレッド全体において、陸部の過剰な倒れ込みを回避することができる。このようにして、前記サイプの長手方向端部にて氷雪上性能を改善すると同時に、サイプの長手方向中央では、陸部の倒れ込みを抑制してドライ性能を高められるため、氷雪路面及び乾燥路面双方における制動性能及び駆動性能を、高い次元で両立させることができる。
 本発明によれば、トレッドの陸部に1本以上のサイプを設けた空気入りタイヤにおいて、サイプエッジの欠損の発生を抑制しつつ、陸部の倒れ込み変形を十分に抑制して陸部の接地性を向上させ、氷雪路面及び乾燥路面の双方において、制動性能及び駆動性能をより向上させることができる。
本発明に従う空気入りタイヤの一実施形態の、トレッドの部分展開図である。 図1の陸部を、サイプの幅方向面で切断した際の断面図である。 図2のサイプのうちの1つの、拡大図である。 (A)は、本発明に係るサイプ形状を、該サイプの長手方向にわたって示した図である。(B)は、(A)をサイプの幅方向から正投影した投影面である。 (A)は、本発明に係る他のサイプ形状を、該サイプの長手方向にわたって示した図である。(B)は、(A)をサイプの幅方向から正投影した投影面である。 (A)は、本発明に係る他のサイプ形状を、該サイプの長手方向にわたって示した図である。(B)は、(A)をサイプの幅方向から正投影した投影面である。 従来の空気入りタイヤの陸部を、サイプの幅方向面で切断した際の断面図である。
 以下、本発明に従う空気入りタイヤの実施形態を、第1発明から順に図面を参照しながら説明する。
 図1は、第1発明に従う空気入りタイヤ1(以下、タイヤとも称する)のトレッド2の部分展開図を示す。
 なお、図示は省略するが、このタイヤ1は、左右のサイドウォールと、両サイドウォール間に跨ってトレッド2を備えるクラウン部が連なり、一方のサイドウォール部からクラウン部を通り、他方のサイドウォール部にわたって延びる、有機繊維コード或いはスチールコードのプライからなるカーカスと、このカーカスとトレッド間に配置したスチールコード層からなるベルトを備える。
 トレッド2は、リブ状、ラグ状又はブロック状の陸部3を有する。図1の例では、タイヤ周方向(図1で示すY方向)に延びる周方向溝4と、この周方向溝4と交差してタイヤ幅方向(図1で示すX方向)に延びる複数本の横溝5とによって、ブロック状の陸部3が複数区画形成されている。
 なお、図示例では、周方向溝4及び横溝5によって区画されるブロック状の陸部を示しているが、陸部3は、周方向溝4のみによって形成される、タイヤ周方向に連続するリブ状陸部であってもよい。また、陸部3は、横溝5のみによって形成される、タイヤ幅方向に連続するラグ状陸部であってもよい。なお、周方向溝4は、図示例では直線であるが、例えば、ジグザグ状、鋸歯状、波状等の非直線状であってもよい。
 また、横溝5は、図示例では、タイヤ幅方向と完全に平行、換言すればタイヤ周方向に対して垂直な方向に直線状に延在しているが、横溝5は、タイヤ幅方向に対し傾斜して延在していてもよく、また、例えば、ジグザグ状、鋸歯上、波状等の非直線状であってもよい。
 そして、陸部3には、1本以上のサイプ6、ここではタイヤ幅方向(X方向)に延びる4本のサイプ6a~6dが、一方の周方向溝4から他方の周方向溝4まで陸部3を横断するように、且つ、タイヤ周方向(Y方向)に一定の間隔を空けて形成されている。
 ここで、本発明で言うサイプ6とは、陸部3の接地時にサイプの溝壁の少なくとも一部が互いに接触する(閉じる)、幅0.1~1.0mmの切込みのことを言う。
 なお、図1では、サイプ6のタイヤ幅方向長さと陸部のタイヤ幅方向長さとが等しく、陸部3が、サイプ6によって周方向に分断されるように配設されているが、サイプ6の長手方向長さは該陸部3のタイヤ幅方向長さよりも短くてもよい。この場合、当該サイプは、その一端が陸部3の片側に開口して他端が陸部内に止まるか、両端が陸部内に止まることになる。
 図2は、図1の陸部3を、サイプ6の幅方向面で切断した際の断面図である。すなわち、図2は、図1に示すサイプ6の、A-A線に沿う断面図である。
 サイプ6は、踏面Sの、サイプの開口中心から引いた前記踏面の法線に沿って延びる垂直部10及び、前記法線を挟んで一方及び他方にそれぞれ屈曲する屈曲部11を有しており、陸部3をタイヤ周方向に分割するように、陸部3の底部近傍まで連続して形成されている。屈曲部11は、垂直部10に対してタイヤ周方向の前後方向、図示例で言えば、左右方向に傾斜して折り返すように形成されている。
 次に示す図3は、図2のサイプ6a~6dのうちの1つ、サイプ6aの拡大断面図である。この図3を用いてサイプ6の垂直部10、そして、本発明において特徴となる屈曲部11の構成をより具体的に説明する。
 なお、以下で説明するサイプ6の各寸法は、図3で示すように、サイプ6の幅方向中央線C(一点鎖線)により規定されるものである。また、以下の説明における図3の断面上の「点」、「部」は、実際には、それぞれ「線」、「面」を成すものであり、よって、当該サイプ6は、サイプ幅の断面形状を長手方向に延在させてなる三次元構造を有するものとして説明する。
 第1発明のタイヤにあっては、サイプ6のタイヤ径方向深さをDとした場合に、タイヤ幅方向断面において、屈曲部11が、深さ方向に向かって順に、陸部の踏面SからD/7以上D/2以下の深さ領域に在る第1副屈曲点Qと、踏面SからD/4以上3D/4以下の深さ領域に在る主屈曲点Pと、踏面SからD/2以上6D/7以下の深さ領域に在る第2副屈曲点Qとを有し、第1副屈曲点Q及び主屈曲点Pの間に第1傾斜部12と、主屈曲点P及び第2副屈曲点Qの間に第2傾斜部13と、を形成することが肝要である。
 さらに、第1傾斜部12が、サイプ6の開口端における踏面Sの接線方向Yと成す鋭角側の角度θが30°≦θ≦60°、第2傾斜部13が、サイプ6の開口端における踏面Sの接線方向Yと成す鋭角側の角度θが30°≦θ≦60°を満たすことが肝要である。
 具体的に、図3に示すサイプ6aでは、まず、垂直部10が、踏面Sからサイプ深さ方向にD/4の領域にて、陸部3の踏面Sに開口し、踏面Sから陸部の底部に向かって法線方向(図3で示すZ方向)に沿って直線状に形成されている。
 そして、踏面SからD/4以上D/3以下の深さ領域にて、垂直部10から、踏面Sの法線方向に対し一方側に向かって傾斜する面、ここでは紙面右下側に向かって傾斜する傾斜部14が形成されている。続いて、踏面SからD/3以上D/2以下の深さ領域にて、深さD/3の位置に在る第1副屈曲点Qを介して、前記一方側とは反対の他方側に向かって傾斜する面、ここでは紙面左下側に向かって傾斜する第1傾斜部12が形成されている。続いて、踏面SからD/2以上2D/3以下の深さ領域にて、深さD/2の位置に在る主屈曲点Pを介して前記一方側に傾斜する面、ここでは紙面右下側に向かって傾斜する第2傾斜部13が形成されている。続いて、踏面Sから2D/3以上3D/4以下までの深さ領域にて、深さ2D/3の位置に在る第2副屈曲点Qを介して、前記他方側に向かって傾斜する面、ここでは紙面左下側に向かって傾斜する傾斜部15が形成されている。さらに、傾斜部15の陸部底部側端から陸部の底部に向かって、法線方向(Z方向)に沿って直線状となる部分16が形成されている。
 上述したとおり、サイプの幅方向とは、サイプ長手方向に沿って幅0.1~1.0mmを有して開口する該サイプの、開口幅(サイプ幅K)の向きであり、該サイプ幅は、踏面Sからサイプ深さDに亘ってほぼ一定である。
 このように、サイプ6は、主屈曲点P、第1副屈曲点Q、第2副屈曲点Qの屈曲点を介して、踏面Sの接線方向に屈曲する形状を有するため、タイヤの転動時に、サイプ6により分断された対向する壁面同士が互いに接触して、陸部の倒れ込みを抑制することができる。
 そして本発明にあっては、サイプ6が、サイプ6の深さDの中央領域において、上記3つの屈曲点により形成される比較的大きな2つの面、すなわち第1傾斜部12及び第2傾斜部13を有し、これらの面でサイプ6の壁面同士が強く接触し合って、陸部の倒れ込みが抑制されることになる。
 つまり、図3を用いて説明すれば、陸部3が、路面から、紙面左から右へ向かう方向の入力を受けた場合には、第1傾斜部12でサイプ6により分断された陸部の壁面同士が強く接触し、その摩擦力によって、路面からの入力側、ここでは紙面左側の陸部が支えられて、倒れ込み変形が抑制される。一方、陸部3が、路面から、紙面右から左へ向かう方向の入力を受けた場合には、第2傾斜部13でサイプ6により分断された陸部の壁面同士が強く接触し、その摩擦力によって、路面からの入力側、ここでは紙面右側の陸部が支えられて、倒れ込み変形が抑制される。
 このように、サイプ6は、陸部3の深さD/7から6D/7の中央領域内に、深さD/4から3D/4の領域内に在る主屈曲点Pを挟んでそれぞれ1回のみ屈曲することで形成される大きな2つの傾斜面を有している。そして、サイプ6では、この傾斜面の各面で、2方向からの入力による陸部の倒れ込みを、それぞれ支持している。従って、どちら側からの入力であっても、陸部の深さ方向中央領域において陸部の倒れ込みを支持することができ、入力方向間での倒れ込み変形の抑制程度を同程度とすることができる。換言すれば、回転方向に依存することなく、双方向とも同程度に、陸部の倒れ込み変形を抑制することができる。しかも、いずれの入力方向であっても、陸部の支持位置が陸部3の深さ中央付近となるため、従来のように、支持位置が深さ方向に分散してしまうことがない。その結果、倒れ込み抑制の効果が格段に向上し、陸部の剛性を確保して接地性が増して、タイヤ全体の制動・駆動性能を高めることが可能となるのである。
 さらに、第1傾斜部12及び第2傾斜部13の各傾斜角度θ及びθが、踏面Sと成す鋭角側の角度が60°以下となるように、一定以上の角度を与えることで、分断された陸部の壁面間での噛み合い効果を有効に発揮させることができるため、接触面での摩擦力が増加し、陸部の倒れ込み変形をより有効に抑制することができる。また、前記角度を30°以上とすれば、タイヤ加硫後に、金型が抜け難くなるのを回避することができ、製造上有利である。
 また、サイプ6内に、第1副屈曲点Q及び第2副屈曲点Qを設け、主屈曲点P以外でも、分断された陸部の壁面間での噛み合い箇所を形成することで、第1傾斜部12及び第2傾斜部13の壁面同士が強く接触し合うこととなり、倒れ込み変形をより効果的に抑制することができる。
 以上の通り、主屈曲点Pが踏面からの深さD/4から3D/4の領域内に、第1副屈曲点Qが踏面からの深さD/7からD/2の領域内に、第2副屈曲点Qが踏面からの深さD/2から6D/7の領域内に在り、且つ、30°≦θ≦60°及び30°≦θ≦60°であることを全て満たした場合に初めて、製造上の問題もなく、上述の効果、すなわち、入力方向に依存することなく倒れ込みを抑制し、タイヤの制動・駆動性能を十分向上させることが可能となる。
 さらに、サイプ6は、垂直部10を有しているため、踏面S付近の剛性が確保され、タイヤ接地時においても、サイプのエッジが踏面と路面との間に巻き込まれるのを防止することができる。従って、氷雪路面のみならず、摩擦係数が高く大きな力が入力される乾燥路面においても、サイプエッジが欠損するのを回避することが可能となる。
 次に、上記した第2発明について、図4以降の図面を用いて説明する。この第2発明は、図1~3を用いて説明した基本的構成を有するものである。
 図4(A)は、トレッドの陸部に設けられたサイプ6(図3参照)を、該サイプ6の長手方向にわたって示した図である。すなわち、サイプとは、一定の開口幅の下にトレッド陸部の両壁面に囲まれることで形成される空間であるが、ここでは、サイプ6の幅方向中心線Cにおける形状を、該サイプ6の長手方向にわたって形成される面として表している。そして、サイプ6の形状を紙面手前から見た際の、サイプ6の谷部を実線で示し、山部を破線で示している。
 ここに、第1傾斜部12の面積、すなわち、第1傾斜部12の端辺長さEと、第1傾斜部12の長手方向長さLとを乗じて求まる面積をa1とし、同様にして、第2傾斜部13の面積、すなわち、第2傾斜部13の端辺長さFと、第2傾斜部13の長手方向長さLとを乗じて求まる面積をa2とする。また、図4(B)は、図4(A)に示したサイプ形状の、サイプ幅方向からの正投影の投影面であり、サイプ深さDと、サイプの長手方向長さLとを乗じて得た面積を、サイプの投影面積Aとする。
 ここにおいて、第2発明のタイヤにあっては、第1傾斜部12の面積a1と該サイプの投影面積Aとの比a1/A及び、第2傾斜部13の面積a2と該サイプの投影面積Aとの比a2/Aを、ともに0.1以上とすることが肝要である。
 第1傾斜部12の面積a1とサイプの投影面積Aとの比a1/A及び、第2傾斜部13の面積a2とサイプの投影面積Aとの比a2/Aを、ともに0.1以上に設定し、両傾斜部の面積を十分に確保することで、入力時に、傾斜部の壁面同士が接触する際に生じる摩擦力が増加し、陸部の倒れこみ変形をより有効に抑制することができる。
 このように、主屈曲点Pが踏面SからD/4以上3D/4以下の深さの中央領域内に、第1副屈曲点Qが踏面SからD/7以上D/2以下の深さ領域内に、第2副屈曲点Qが踏面SからD/2以上6D/7以下の深さ領域内に在り、且つ、第1傾斜部の面積a1とサイプの投影面積Aとの比a1/A及び、第2傾斜部の面積a2とサイプの投影面積Aとの比a2/Aがともに0.1以上であることを全て満たした場合に初めて、上述の効果、すなわち、入力方向に依存することなく倒れ込みを抑制し、タイヤの制動・駆動性能を十分向上させることが可能となる。
 さらに、第1傾斜部の面積a1とサイプの投影面積Aとの比a1/A及び、第2傾斜部の面積a2とサイプの投影面積Aとの比a2/Aとが、ともに0.1以上であることに加えて、0.5以下であることを満たす場合、本発明の効果をより高めることができる。
 また、上記した第1発明及び第2発明のサイプ6において、第1傾斜部12の、踏面Sの接線方向の距離、すなわちサイプの長手方向に対する直交方向の距離Wは、0<W≦D/3であることが好ましく、第2傾斜部13の、踏面Sの接線方向の距離、すなわちサイプの長手方向に対する直交方向の距離Wは、0<W≦D/3であることが好ましい。
 距離W及びWを0より大きくすることで、サイプを挟んで対向する陸部同士が接触する第1傾斜部12及び第2傾斜部13が形成され、上記の通り、陸部の倒れ込み変形を抑制することができるからである。また、距離W及びWをD/3以下とするのは、タイヤ加硫後に、金型が抜け難くなるのを回避することができ、製造上有利だからである。
 また、上述のサイプ形状は、1つの陸部3に対してサイプ6が2本以上設けられている場合に、踏面Sにおける隣接するサイプ相互間の最短距離である、サイプ6の配設間隔がD以上である際に、特に効果的である。
 このように、サイプ6を一定以上の間隔で配設すれば、陸部踏面の巻き込みを防止する垂直部を設けつつ、同時に、陸部の倒れこみを抑制する屈曲部を十分に確保することができる。また、サイプ6の相互間隔が狭くなりすぎることでタイヤ表面の剛性が低下するのを防ぎ、本発明の主旨である、ドライ性能に優れて、氷雪路面のみならず乾燥路面においても、制動性能及び駆動性能を向上させる効果を十分に発揮させるためでもある。
 一方で、サイプの配設間隔の低減に伴うエッジ成分の減少を抑制する観点から、上記配設間隔は10D以下とすることが好ましい。
 また、垂直部10の踏面Sの法線方向の長さHは、D/7以上であることが好ましい。
 垂直部10の踏面Sからの法線方向の長さHが、サイプ6の深さDの1/7より短い場合には、サイプエッジ付近の剛性が不足して、巻き込み変形によりサイプエッジが欠損する恐れがあるからである。
 また、サイプ6の長手方向は、タイヤ幅方向であることが好ましい。すなわち、図1の展開図のように、サイプ6がタイヤ幅方向と完全に平行な状態で延在している場合、特に直進走行時のタイヤの駆動・制動性能を向上させることができる。また、サイプ6はタイヤ幅方向に傾斜して延在していてもよく、この場合、直進走行時および旋回時の駆動・制動性能を良好にすることができる。
 また、サイプ6の配設間隔をD以上とした上で、本発明では、サイプ6の踏面Sにおける長手方向長さを全サイプで合計した値TLの、陸部の総面積Rに対する割合を示す、サイプ密度TL/Rを0.1/mm以下とする。特には、サイプ密度TL/Rが前記の範囲かつ0.0001/mm以上であることが好ましい。
 一般的に、タイヤ回転時に陸部3の踏面Sが路面からの接地反力を受けた場合、特に、陸部内のサイプ密度が比較的小さいと、陸部の壁面が大きく膨出変形し易く、隣接する陸部同士が接触し易くなる。従って、屈曲部11を有する本発明の特徴的なサイプ形状の、陸部の倒れ込み変形を抑制するという上述までの効果は、特に、陸部3に対して上記のサイプの配設間隔がD以上、且つ、かかるサイプ密度が0.1/mm以下にてサイプ6を設けた場合に、有利に作用する。
 つまり、踏面Sにおけるサイプ間隔が大きい、又は、踏面Sに占めるサイプの割合が小さい場合、従来の、踏面の法線方向に直線状に延びるサイプを配設すると、陸部内におけるサイプ密度も小さくなるため、陸部の壁面の倒れこみ変形を回避することが難しい。そこで、このような条件下では、踏面Sのサイプ密度を大きくせずとも、陸部内部のサイプ密度を大きくすることのできる、本発明のサイプ6が有効に作用するということである。
 さらに、トレッド端相互間の中点である1/2点と該トレッド端との中点である1/4点相互間に跨るセンター領域における、サイプの踏面における長手方向長さを全サイプで合計した値TLの、陸部の総面積Rに対する割合を示すサイプ密度TL/Rが0.25/mm以下、且つ1/4点からトレッド端までのショルダー領域における、サイプの踏面における長手方向長さを全サイプで合計した値TLの、陸部の総面積Rに対する割合を示すサイプ密度TL/Rが0.2/mm以下とする。
 特には、センター領域のサイプ密度TL/Rが前記の範囲かつ0.0001/mm以上であり、ショルダー領域の前記サイプ密度TL/Rが前記の範囲かつ0.0001/mm以上であることが好ましい。
 一般的に、トレッドのセンター領域のサイプ密度は、ショルダー領域のサイプ密度に比べて大きいため、サイプ密度を領域毎に規定することで、本発明の効果をより発揮することができる。
 また、図5(A)に示す例では、サイプ6は、踏面Sからサイプ深さ方向に向かって形成される垂直部10及び屈曲部11を、サイプの長手方向に延在させて成る屈曲域Mと、この屈曲域Mの長手方向の両端側に、踏面Sからサイプ深さ方向に向かって直線状に延びる直線部9を連ねて成る平板状域N及びNと、を有する。なお、同図では、屈曲域Mと平板状域N及びNとの境界を一点鎖線で表している。また、破線で示されるのは、平板状域Nに隠れて紙面手前からは見えない、屈曲部11の部分である。
 このように、サイプ6は、サイプの長手方向中央に屈曲域Mと、サイプの長手方向両端に平板状域N及びNと、を有している。
 かかる構成によれば、サイプの長手方向中央一帯に位置する屈曲域Mでは、踏面付近に垂直部10を設けて、タイヤ接地時にサイプのエッジが路面と路面との間に巻き込まれるのを防止することにより、氷雪路面のみならず、摩擦係数が高く大きな力が入力される乾燥路面においても、サイプエッジが欠損するのを回避することができる。また、屈曲部11にて陸部3の倒れ込み変形を抑制して接地性を維持するため、乾燥路面における制動性能及び駆動性能を向上させることができる。
 また、サイプの長手方向端部に位置する平板状域N及びNでは、屈曲することなく直線状に延びるサイプ部分を構成するため、屈曲域に比べて陸部の倒れ込み制限が少なくなり、エッジ部による引っ掻き効果が十分に得られ、氷雪路面における制動性能及び駆動性能を向上させることができる。
 次に、図6に示すのは、屈曲域Mの片側にのみ平板状域Nを設けた例である。
 上述したように、図5に示したサイプ6は、サイプの長手方向両端に平板状域N及びNを有しているが、図6に示すように、サイプの長手方向の一方端のみに平板状域Nを有することもできる。かかる構成においても、平板状域N及びNを有する場合と同様の効果が期待できる。
 また、図5及び図6において、平板状域Nのサイプ深さは、屈曲域Mの深さに等しいが、該平板状域のサイプ深さは、屈曲域Mの深さと異なっていてもよい。
 さらに、平板状域Nの長手方向長さが、前記サイプの長手方向長さLの1%以上95%以下とすることが好ましい。
 かかる構成によれば、平板状域における陸部の倒れ込みによって、トレッドのエッジ部の引っ掻き効果を十分に得ながら、屈曲域では陸部の倒れ込みを抑制できるため、トレッド全体において、陸部の過剰な倒れ込みを回避することができる。このようにして、前記サイプの長手方向端部にて氷雪上性能を改善すると同時に、サイプの長手方向中央では、陸部の倒れ込みを抑制してドライ性能高められるため、氷雪路面及び乾燥路面双方における制動性能及び駆動性能を、バランス良く向上させることができる。
 また、サイプ6の長手方向長さが、踏面Sの同方向の長さよりも短い場合、すなわち、サイプ6の長手方向端部が縦溝4に開口せず陸部内に止まる場合には、該端部側に平板状域を設けることが有利である。なぜなら、加硫成型後に、製品タイヤから金型を確実に且つ、サイプ周りを欠損することなく抜くことができ、製造上有益であるからである。
 なお、平板状域Nがサイプ長手方向両端部にある場合において、平板状域Nの長手方向長さとは、2つの平板状域N及びNを足した長さを意味する。よって、平板状域Nがサイプの長手方向の一方端にのみある場合も、平板状域NがN及びNに分かれて両端にある場合も、サイプの長手方向の長さLに対する、平板状域Nの長さの好適範囲は同じである。
 なお、図2及び図3に示す例では、サイプ6は、傾斜部15の陸部底部側端から陸部の底部に向かって、法線方向に沿って直線状となる部分16を有するが、当該部分16を有することなく、第2副屈曲点Qから、陸部の底部に向かって直線状であってもよい。
 また、これまで、タイヤ幅方向に延びるサイプに本発明のサイプ形状を適用した実施形態について述べてきたが、本発明のサイプ形状をタイヤ周方向に延在するサイプに適用してもよい。この場合、特に旋回時のコーナリング性能を向上させることができる。
 さらに、図1では、サイプ6は踏面S上でストレート状であるが、他の形状、例えばジグザグ型、波型であってもよい。また、図1では、1つの陸部3に対して4本のサイプを設けた例を示しているが、サイプ6の本数は、1~3本、5本以上であってもよい。さらに図1では、サイプ6が、陸部3の両端に開口する例を示しているが、サイプ6は、少なくとも一方の端が陸部3内で終端していてもよい。
 本発明の効果を確認するため、第1発明に従う発明例タイヤ1-1~1-5と、従来例に従う従来例タイヤと、比較例タイヤ1-1~1-3とを試作し、各タイヤの性能評価を行った。
 発明例タイヤ1-1は、タイヤサイズ205/55R16であって、トレッド部に図1のトレッドパターンを有し、1つのブロック状の陸部に対し、図2及び図3に示した実施形態のサイプを4本ずつ形成したタイヤである。サイプは、図1に示すように、踏面上でタイヤ幅方向にストレート状に延びている。サイプの各諸元は、表1-1に示す通りである。
 発明例タイヤ1-2~1-5は、サイプの各諸元を表1-1の通りに変化させたこと以外は、発明例タイヤ1-1と同様である。
 従来例タイヤは、陸部を、踏面におけるサイプの長手方向と直交する面で切断した際の断面図におけるサイプ形状が、図7に示す、従来のサイプ形状であること以外は、発明例タイヤ1と同様である。
 比較例タイヤ1-1及び1-2は、サイプの各諸元を表1-1の通りに変化させたこと以外は、発明例タイヤ1-1と同様である。
 また、比較例タイヤ1-3は、サイプの形状を、垂直部を設けることなく踏面側からサイプ深さ方向に6回屈曲してジグザグ状(振幅一定の三角波形状)に延びる屈曲部を有する形状としたこと以外は、発明例タイヤ1と同様である。なお、サイプの屈曲方向と、法線に直交する方向とのなす角度は30.256°であり、サイプは、屈曲部の陸部底部側端から陸部の底部に向かって法線方向に沿って延びる長さ0.49Dの部分を有している。
Figure JPOXMLDOC01-appb-T000001
 性能評価としては、一定荷重条件下で大きなせん断力を与えたときに、サイプ壁面同士の接触により発揮される陸部摩擦係数を比較することにより、タイヤの制動・駆動性能評価を行った。この際、陸部に対して双方向からのせん断力、すなわち、図3及び図4に示すサイプを境界に、紙面右側及び左側の双方向からの入力となるようにせん断力を与え、その平均摩擦係数を比較した。
 結果を表1-2に示す。なお、表1-2に示す摩擦係数は、従来例を100とする指数表示で表したものであり、数値が大きいほど性能が良いことを示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、発明例タイヤ1-1~1-5はいずれも、従来例タイヤに比べて、平均摩擦係数が大きくなった。このことから、発明例タイヤ1-1~1-5はいずれも、従来例タイヤに比べて、制動・駆動性能等が高くなることが確認できた。また、比較例タイヤ1-1及び1-2は、平均摩擦係数が小さいことから、主屈曲部が陸部の踏面からD/4以上3D/4以下の深さ領域に在る場合に、特に、制動・駆動性能等を向上できることが確認された。更に、比較例タイヤ1-3では、サイプエッジの欠損の発生が確認された。
 本発明の効果を確認するため、第2発明に従う発明例タイヤ2-1~2-15と、従来例に従う従来例タイヤと、比較例タイヤ2-1~2-9を試作し、各タイヤの性能評価を行った。
 発明例タイヤ2-1は、タイヤサイズ205/55R16であって、図1のトレッドパターンを有し、1つのブロック状の陸部に対し、図2及び図3に示した実施形態のサイプを4本ずつ形成したタイヤである。サイプは、図1に示すように、踏面上でタイヤ幅方向にストレート状に延びている。サイプの各諸元は、表2-1及び2-2に示す通りである。
 発明例タイヤ2-2~2-15は、サイプの各諸元を表2-1及び2-2の通りに変化させたこと以外は、発明例タイヤ2-1と同様である。
 従来例タイヤは、陸部を、サイプの幅方向面で切断した断面のサイプ形状が、図7に示す、従来のサイプ形状であること以外は、発明例タイヤ2-1と同様である。
 比較例タイヤ2-1~2-8は、サイプの各諸元を表2-1及び2-2の通りに変化させたこと以外は、発明例タイヤ2-1と同様である。
 また、比較例タイヤ2-9は、実施例1の比較例タイヤ1-3と同様のタイヤである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 性能評価としては、上記の試作タイヤを適用リムにリム組みして規定の空気圧を充填した後、一定荷重条件下で大きなせん断力を与えたときに、サイプ壁面同士の接触により発揮される陸部摩擦係数を比較することにより、タイヤの制動性能及び駆動性能評価を行った。この際、陸部に対して双方向からのせん断力、すなわち、図3に示すサイプを境界に、紙面右側及び左側の双方向からの入力となるようにせん断力を与え、その平均摩擦係数を比較した。
 結果を表2-3に示す。なお、表2-3に示す摩擦係数は、従来例を100とする指数表示で表したものであり、数値が大きいほど性能が良いことを示す。
Figure JPOXMLDOC01-appb-T000005
 表2-3から分かるように、発明例タイヤ2-1~2-15はいずれも、従来例タイヤに比べて、平均摩擦係数が大きくなった。このことから、発明例タイヤはいずれも、従来例タイヤに比べて、制動・駆動性能等が高くなることが確認できた。また、比較例タイヤ2-1~2-9の平均摩擦係数が小さいことから、主屈曲部が陸部の踏面からD/4以上3D/4以下の深さ領域に在り、且つ、第1傾斜部の面積a1と、サイプの幅方向からの正投影の投影面積Aとの比a1/A及び、第2傾斜部の面積a2と、サイプの幅方向からの正投影の投影面積Aとの比a2/Aが、ともに0.1以上である場合に、特に、制動性能及び駆動性能を向上できることが確認された。さらに、比較例タイヤ2-9では、サイプエッジの欠損の発生が確認された。
 第2発明に従うサイプであって、該サイプの長手方向の一方側または両側に平板状域を配設したタイヤの効果を確認するため、第2発明に従う発明例タイヤ3-1~3-25と、従来例に従う従来例タイヤと、比較例タイヤ3-1~3-12とを試作し、各タイヤの性能評価を行った。
 発明例タイヤ3-1は、タイヤサイズ205/55R16であって、図1のトレッドパターンを有し、1つのブロック状の陸部に対し、図2及び図3に示した実施形態のサイプを4本ずつ形成したタイヤである。サイプは、図1に示すように、踏面上でタイヤ幅方向にストレート状に延びている。サイプの各諸元は、表1に示す通りである。
 発明例タイヤ3-2~3-25は、サイプの各諸元を表3-1及び3-2の通りに変化させたこと以外は、発明例タイヤ3-1と同様である。
 従来例タイヤは、陸部を、サイプの幅方向面で切断した断面のサイプ形状が、図7に示す、従来のサイプ形状であること以外は、発明例タイヤ3-1と同様である。
 比較例タイヤ3-1~3-12は、サイプの各諸元を表3-1及び3-2の通りに変化させたこと以外は、発明例タイヤ1と同様である。また、比較例タイヤ3-12は、実施例1の比較例タイヤ1-3と同様のタイヤである。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(制動及び駆動性能)
 上記の試作タイヤを適用リムにリム組みして規定の空気圧を充填した後、一定荷重条件下で大きなせん断力を与えた。この時に、サイプ壁面同士の接触により発揮される陸部摩擦係数を比較することにより、タイヤの制動性能及び駆動性能評価を行った。この際、陸部に対して双方向からのせん断力、すなわち、図3に示すサイプを境界に、紙面右側及び左側の双方向からの入力となるようにせん断力を与え、その平均摩擦係数を比較した。
(氷雪上性能)
 氷雪上性能は、車両を雪路面上に設置し、車両の静止状態からアクセルを全開にし、50m走行するまでの時間(加速タイム)を計測する、雪上加速試験を行うことにより評価した。
 結果を表3-3に示す。なお、表3-3に示す摩擦係数及び氷雪上性能は、従来例を100とする指数表示で表したものであり、各数値が大きいほど性能が良いことを示す。
Figure JPOXMLDOC01-appb-T000008
  表3-3から分かるように、発明例タイヤ3-1~3-25はいずれも、従来例タイヤに比べて、平均摩擦係数及び氷雪上性能の数値が良好になった。このことから、発明例タイヤはいずれも、従来例タイヤに比べて、乾燥路面及び氷雪路面における制動・駆動性能等が高くなることが確認できた。また、比較例タイヤ3-1~3-12の平均摩擦係数及び氷雪上性能の数値が小さいことから、主屈曲部が陸部の踏面からD/4以上3D/4以下の深さ領域に在り、且つ、トレッドに配設するサイプは、前記陸部の踏面の、前記サイプの開口中心から引いた法線を挟んでサイプの幅方向の一方及び他方にそれぞれ屈曲する部分が前記サイプの長手方向へ連続する屈曲域と、前記屈曲域の前記長手方向のいずれか一方側又は両側に連なる平板状域とを有する場合に、特に、制動性能及び駆動性能を向上できることが確認された。さらに、比較例タイヤ3-12では、サイプエッジの欠損の発生が確認された。
産業上利用可能性
 この発明によれば、トレッドの陸部に1本以上のサイプを設けた空気入りタイヤにおいて、サイプエッジの欠損の発生を抑制しつつ、陸部の倒れ込み変形を抑制して陸部の接地性を十分に向上させ、氷雪路面及び乾燥路面の双方において、制動性能及び駆動性能をより向上させることが可能となり、本発明は、オールシーズン用タイヤ等、サイプの配置数が比較的少ないタイヤに適用した場合に特に好適である。
 1     空気入りタイヤ
 2     トレッド
 3     陸部
 4     周方向溝
 5     横溝
 6     サイプ
 9     直線部
 10    垂直部
 11    屈曲部
 12    第1傾斜部
 13    第2傾斜部
 14、15 傾斜部
 A     サイプの幅方向からの正投影の面積
 C     サイプの幅方向中央線
 D     サイプ深さ
 E     第1傾斜部12の長さ
 F     第2傾斜部13の長さ
 K     サイプ幅
 L     サイプの長手方向長さ
 M     屈曲域
 N、N、N 平板状域
 P     主屈曲点
 Q    第1副屈曲点
 Q    第2副屈曲点
 S     陸部3の踏面
 W    第1傾斜部12の、サイプ幅方向の距離
 W    第2傾斜部13の、サイプ幅方向の距離
 H     垂直部10の踏面Sからの法線方向の長さ
 X     タイヤ幅方向
 Y     タイヤ周方向
 Z     踏面Sから陸部の底部に向かう法線方向(タイヤ径方向)
 a1    第1傾斜部12の、サイプ長手方向の延在面積
 a2    第2傾斜部13の、サイプ長手方向の延在面積

Claims (11)

  1.  トレッドに形成した陸部に、1本以上のサイプを設けた空気入りタイヤにおいて、
     前記サイプは、前記陸部の踏面からサイプ深さ方向に向かって、前記サイプの開口中心から引いた前記踏面の法線に沿って延びる垂直部と、該法線を挟んで前記サイプの幅方向の一方及び他方にそれぞれ屈曲する屈曲部とを有し、
     前記屈曲部は、前記サイプの前記踏面からの深さをDとした場合、前記踏面からD/7以上D/2以下の深さに在る第1副屈曲点と、前記踏面からD/4以上3D/4以下の深さに在る主屈曲点と、前記踏面からD/2以上6D/7以下の深さに在る第2副屈曲点を介して、前記第1副屈曲点及び前記主屈曲点の間に第1傾斜部並びに、前記主屈曲点及び前記第2副屈曲点の間に第2傾斜部とを形成し、
     前記第1傾斜部が、前記サイプの開口端における前記踏面の接線方向と成す鋭角側の角度θは30°≦θ≦60°であり、前記第2傾斜部が、前記サイプの開口端における前記踏面の接線方向と成す鋭角側の角度θは30°≦θ≦60°であることを特徴とする空気入りタイヤ。
  2.  トレッドに形成した陸部に、1本以上のサイプを設けた空気入りタイヤにおいて、
     前記サイプは、前記陸部の踏面からサイプ深さ方向に向かって、前記サイプの開口中心から引いた前記踏面の法線に沿って延びる垂直部と、該法線を挟んで前記サイプの幅方向の一方及び他方にそれぞれ屈曲する屈曲部とを有し、
     前記屈曲部は、前記サイプの前記踏面からの深さをDとした場合、前記踏面からD/7以上D/2以下の深さに在る第1副屈曲点と、前記踏面からD/4以上3D/4以下の深さに在る主屈曲点と、前記踏面からD/2以上6D/7以下の深さに在る第2副屈曲点を介して、前記第1副屈曲点及び前記主屈曲点の間に第1傾斜部並びに、前記主屈曲点及び前記第2副屈曲点の間に第2傾斜部とを形成し、
     前記第1傾斜部の前記サイプの長手方向の延在面積a1と、前記サイプの幅方向からの正投影の投影面積Aとの比a1/A及び、前記第2傾斜部の前記サイプの長手方向の延在面積a2と、前記サイプの幅方向からの正投影の投影面積Aとの比a2/Aが、ともに0.1以上であることを特徴とする空気入りタイヤ。
  3.  前記比a1/A及び前記比a2/Aが、ともに0.5以下である、請求項2に記載の空気入りタイヤ。
  4.  前記第1傾斜部の、前記踏面の接線方向の距離Wは0<W≦D/3であり、前記第2傾斜部の、前記踏面の接線方向の距離Wは0<W≦D/3である、請求項1または2に記載の空気入りタイヤ。
  5.  前記陸部には前記サイプが2本以上設けられ、隣接するサイプ間の、前記踏面における、サイプの長手方向に対する直交方向の最短距離はD以上である、請求項1または2に記載の空気入りタイヤ。
  6.  前記垂直部の前記踏面の法線方向の長さは、D/7以上である、請求項1または2に記載の空気入りタイヤ。
  7.  前記サイプの長手方向は、タイヤ幅方向である、請求項1または2に記載の空気入りタイヤ。
  8.  前記サイプの前記踏面における長手方向長さを全サイプで合計した値TLの、前記陸部の総面積Rに対する割合を示す、サイプ密度TL/Rが、0.1/mm以下である、請求項1または2に記載の空気入りタイヤ。
  9.  前記トレッドの端部相互間の中点である1/2点と前記トレッド端との中点である1/4点相互間に跨るセンター領域における、前記サイプの前記踏面における長手方向長さを全サイプで合計した値TLの、前記陸部の総面積Rに対する割合を示すサイプ密度TL/Rが0.25/mm以下、且つ前記1/4点から前記トレッド端までのショルダー領域における、前記サイプの前記踏面における長手方向長さを全サイプで合計した値TLの、前記陸部の総面積Rに対する割合を示すサイプ密度TL/Rが0.2/mm以下である、請求項1または2に記載の空気入りタイヤ。
  10.  前記サイプは、前記屈曲部が該サイプの長手方向へ連続する屈曲域と、該屈曲域の長手方向のいずれか一方側又は両側に、前記垂直部が前記長手方向へ連なる平板状域とを有する、請求項1または2に記載の空気入りタイヤ。
  11.  前記平板状域の前記長手方向の長さが、前記サイプの長手方向長さの1%以上95%以下である、請求項10に記載の空気入りタイヤ。
PCT/JP2013/000444 2012-02-01 2013-01-29 空気入りタイヤ WO2013114852A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380007836.8A CN104105604B (zh) 2012-02-01 2013-01-29 充气轮胎
US14/375,712 US9566829B2 (en) 2012-02-01 2013-01-29 Pneumatic tire
EP13744301.6A EP2810793B1 (en) 2012-02-01 2013-01-29 Pneumatic tire
RU2014135390/11A RU2588329C2 (ru) 2012-02-01 2013-01-29 Пневматическая шина

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-020137 2012-02-01
JP2012020137A JP5894450B2 (ja) 2012-02-01 2012-02-01 空気入りタイヤ
JP2012118984A JP6185696B2 (ja) 2012-05-24 2012-05-24 空気入りタイヤ
JP2012-118974 2012-05-24
JP2012-118984 2012-05-24
JP2012118974A JP2013244811A (ja) 2012-05-24 2012-05-24 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2013114852A1 true WO2013114852A1 (ja) 2013-08-08

Family

ID=48904899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000444 WO2013114852A1 (ja) 2012-02-01 2013-01-29 空気入りタイヤ

Country Status (4)

Country Link
US (1) US9566829B2 (ja)
EP (1) EP2810793B1 (ja)
CN (1) CN104105604B (ja)
WO (1) WO2013114852A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066291A1 (en) * 2015-09-09 2017-03-09 Bridgestone Corporation Tire

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2009980C2 (en) * 2012-12-13 2014-06-16 Ct Voor Tech Informatica B V A method of producing glass products from glass product material and an assembly for performing said method.
JP6317356B2 (ja) * 2013-08-28 2018-04-25 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP6329010B2 (ja) * 2014-06-13 2018-05-23 株式会社ブリヂストン 空気入りタイヤ
EP3490816B1 (en) * 2016-07-27 2022-03-09 Bridgestone Americas Tire Operations, LLC Three-dimensional tire sipe
JP6828386B2 (ja) * 2016-11-11 2021-02-10 住友ゴム工業株式会社 タイヤ
US11458774B2 (en) * 2017-06-19 2022-10-04 Bridgestone Corporation Tire
CN107791753A (zh) * 2017-11-10 2018-03-13 正新橡胶(中国)有限公司 一种充气轮胎及其三维刀槽
JP7013878B2 (ja) * 2018-01-11 2022-02-01 横浜ゴム株式会社 空気入りタイヤ
JP6720997B2 (ja) * 2018-04-10 2020-07-08 横浜ゴム株式会社 ランフラットタイヤ
JP6844590B2 (ja) * 2018-07-09 2021-03-17 横浜ゴム株式会社 空気入りタイヤ
CN110239286A (zh) * 2019-05-09 2019-09-17 正新橡胶(中国)有限公司 一种充气轮胎
JP7199311B2 (ja) 2019-06-19 2023-01-05 株式会社ブリヂストン 空気入りタイヤ
JP7518750B2 (ja) * 2020-12-16 2024-07-18 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166816A (ja) * 1996-12-11 1998-06-23 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH11170817A (ja) 1997-12-08 1999-06-29 Bridgestone Corp 空気入りタイヤ
JP2000006618A (ja) * 1998-04-22 2000-01-11 Bridgestone Corp 空気入りタイヤ
JP2000255219A (ja) * 1999-03-05 2000-09-19 Bridgestone Corp 空気入りタイヤ
JP2003025812A (ja) * 2001-07-18 2003-01-29 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその加硫金型
JP2005271792A (ja) * 2004-03-25 2005-10-06 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2005297845A (ja) * 2004-04-14 2005-10-27 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006341816A (ja) 2005-06-10 2006-12-21 Bridgestone Corp 空気入りタイヤ
WO2009005056A1 (ja) * 2007-07-05 2009-01-08 Bridgestone Corporation 空気入りラジアルタイヤ
JP2010188922A (ja) * 2009-02-19 2010-09-02 Toyo Tire & Rubber Co Ltd 空気入りタイヤ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275406A (ja) 1987-05-08 1988-11-14 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH0335803U (ja) 1989-08-09 1991-04-08
JP3222953B2 (ja) * 1992-11-05 2001-10-29 横浜ゴム株式会社 空気入りタイヤ
US6427737B1 (en) 1998-04-22 2002-08-06 Bridgestone Corporation Pneumatic tire having at least four sipes
FR2826911A1 (fr) * 2001-07-09 2003-01-10 Michelin Soc Tech Bande de roulement pourvue d'incisions
WO2005030502A1 (ja) * 2003-09-29 2005-04-07 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
US8646499B2 (en) * 2004-08-06 2014-02-11 Kabushiki Kaisha Bridgestone Pneumatic tire and manufacturing process thereof
JP2007186053A (ja) * 2006-01-12 2007-07-26 Bridgestone Corp 空気入りタイヤ
JP4325874B2 (ja) 2006-08-01 2009-09-02 東洋ゴム工業株式会社 空気入りタイヤ
JP2008087648A (ja) 2006-10-03 2008-04-17 Bridgestone Corp 空気入りタイヤ
JP5249627B2 (ja) * 2008-04-25 2013-07-31 株式会社ブリヂストン 空気入りタイヤ
JP5291398B2 (ja) 2008-06-24 2013-09-18 株式会社ブリヂストン 空気入りタイヤ
JP4894968B1 (ja) * 2011-01-19 2012-03-14 横浜ゴム株式会社 空気入りタイヤ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166816A (ja) * 1996-12-11 1998-06-23 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH11170817A (ja) 1997-12-08 1999-06-29 Bridgestone Corp 空気入りタイヤ
JP2000006618A (ja) * 1998-04-22 2000-01-11 Bridgestone Corp 空気入りタイヤ
JP2000255219A (ja) * 1999-03-05 2000-09-19 Bridgestone Corp 空気入りタイヤ
JP2003025812A (ja) * 2001-07-18 2003-01-29 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその加硫金型
JP2005271792A (ja) * 2004-03-25 2005-10-06 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2005297845A (ja) * 2004-04-14 2005-10-27 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2006341816A (ja) 2005-06-10 2006-12-21 Bridgestone Corp 空気入りタイヤ
WO2009005056A1 (ja) * 2007-07-05 2009-01-08 Bridgestone Corporation 空気入りラジアルタイヤ
JP2010188922A (ja) * 2009-02-19 2010-09-02 Toyo Tire & Rubber Co Ltd 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2810793A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066291A1 (en) * 2015-09-09 2017-03-09 Bridgestone Corporation Tire
US10576791B2 (en) * 2015-09-09 2020-03-03 Bridgestone Corporation Tire

Also Published As

Publication number Publication date
EP2810793B1 (en) 2017-03-08
CN104105604A (zh) 2014-10-15
US9566829B2 (en) 2017-02-14
CN104105604B (zh) 2016-09-14
US20150013865A1 (en) 2015-01-15
EP2810793A1 (en) 2014-12-10
RU2014135390A (ru) 2016-03-27
EP2810793A4 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2013114852A1 (ja) 空気入りタイヤ
JP5603966B2 (ja) タイヤ
JP4138688B2 (ja) 空気入りタイヤ
JP6106183B2 (ja) 空気入りタイヤ
JP4377649B2 (ja) 空気入りタイヤ
JP5875814B2 (ja) 空気入りタイヤ
JP6657587B2 (ja) 空気入りタイヤ
JP5200520B2 (ja) 空気入りタイヤ
KR101808870B1 (ko) 공기 타이어
JP5803859B2 (ja) 空気入りタイヤ
JP6211414B2 (ja) 空気入りタイヤ
JP6139843B2 (ja) 空気入りタイヤ
JP5560894B2 (ja) 空気入りタイヤ
JP4656638B2 (ja) 空気入りタイヤ
JP2007186053A (ja) 空気入りタイヤ
WO2017043071A1 (ja) タイヤ
JP6185696B2 (ja) 空気入りタイヤ
JP2008290521A (ja) 空気入りタイヤ
WO2014083758A1 (ja) 空気入りタイヤ
JP2013244811A (ja) 空気入りタイヤ
WO2011125293A1 (ja) 空気入りタイヤ
JP2006341816A (ja) 空気入りタイヤ
JP5894450B2 (ja) 空気入りタイヤ
JP5521856B2 (ja) 空気入りタイヤ
JP5104046B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375712

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013744301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013744301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014135390

Country of ref document: RU