Nothing Special   »   [go: up one dir, main page]

WO2007049546A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2007049546A1
WO2007049546A1 PCT/JP2006/321036 JP2006321036W WO2007049546A1 WO 2007049546 A1 WO2007049546 A1 WO 2007049546A1 JP 2006321036 W JP2006321036 W JP 2006321036W WO 2007049546 A1 WO2007049546 A1 WO 2007049546A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
throttle
ignition timing
target
engine
Prior art date
Application number
PCT/JP2006/321036
Other languages
English (en)
French (fr)
Inventor
Hideki Kubonoya
Yoshikazu Tanaka
Toshiya Oishi
Masami Kondo
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2007049546A1 publication Critical patent/WO2007049546A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/023Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine that controls engine torque by using both throttle control and ignition timing control.
  • the ignition timing target torque is obtained based on the throttle target torque. That is, it is obtained as a value power ignition timing target torque that can obtain an appropriate engine torque under the condition that the throttle target torque and the engine torque actually obtained by the throttle control coincide with each other.
  • the control structure of the throttle control is constructed after the relationship between the throttle target torque and the throttle opening at which the throttle target torque is realized is obtained. Nevertheless, it is extremely complicated to adapt the relationship between the throttle target torque and the target throttle opening to the relationship that matches the actual operating state of the control device over the entire engine operating range. Therefore, it is inevitable that a deviation occurs between the throttle target torque and the actually obtained engine torque. This deviation causes a torque difference corresponding to the deviation between the desired engine torque and the actual engine torque.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-180860
  • An object of the present invention is to provide a control device for an internal combustion engine that can suitably suppress a sudden change in torque.
  • a control device for an internal combustion engine calculates a throttle target torque for controlling the throttle valve of the internal combustion engine and an ignition timing target torque for controlling the ignition timing of the internal combustion engine.
  • the control device obtains the target throttle opening based on the throttle target torque and executes throttle control, and obtains the target ignition timing based on the ignition timing target torque and executes ignition timing control to adjust the engine torque.
  • the control device includes first calculation means and second calculation means.
  • the first calculating means calculates the throttle realization torque realized by the throttle control.
  • the second calculation means calculates the ignition timing target torque based on the throttle actualization torque calculated by the first calculation means.
  • the engine torque obtained by executing the throttle control based on the throttle target torque and the throttle target torque are compared with the configuration in which the ignition timing target torque is calculated based on the throttle target torque. -It is possible to accurately suppress a sudden change in torque due to the failure. As a result, it is possible to favorably suppress a sudden change in torque.
  • the first calculation means calculates the throttle realization torque based on an intake air amount of the internal combustion engine. According to this configuration, it is possible to accurately calculate the throttle realization torque, that is, the engine torque realized by throttle control based on the intake air amount that is the control target of the throttle control.
  • the first calculation means uses the ignition timing of the internal combustion engine as one of the calculation parameters of the throttle realization torque. Even if the control mode of the throttle control is the same, when the ignition timing of the internal combustion engine is different, the value of the throttle realization torque is different. According to the above configuration, a value corresponding to the ignition timing can be calculated as the throttle realization torque, and a value that is more realistic can be calculated.
  • the control device uses the throttle realization torque as a calculation parameter for the target ignition timing in addition to the ignition timing target torque. According to this configuration, the engine torque to be increased or decreased through the ignition timing control can be obtained from the relationship between the ignition timing target torque and the throttle realization torque, and the target ignition that can appropriately increase or decrease the engine torque. The time can be calculated accurately.
  • a transmission is connected to the internal combustion engine, and the control device automatically adjusts the engine torque when switching the shift stage of the transmission.
  • the control device that automatically adjusts the engine torque when the transmission speed of the transmission connected to the internal combustion engine is switched, if the ignition timing target torque is calculated based on the throttle target torque, the following is adopted: Problems arise. In other words, the engine torque obtained by executing the throttle control based on the throttle target torque does not match the throttle target torque, so that a deviation occurs between the actual engine torque and the desired engine torque. This deviation causes a shift shock and a delay in torque transmission when the transmission shifts. According to the above configuration, occurrence of such a shift shock and delay in torque transmission can be suitably suppressed.
  • FIG. 1 is a configuration diagram showing an outline of an internal combustion engine and peripheral devices to which an embodiment of the present invention is applied.
  • FIG. 2 is a flowchart showing a specific procedure of throttle control processing.
  • FIG. 3 is a flowchart showing a specific procedure for target torque calculation processing.
  • FIG. 4 is a flowchart showing a specific procedure for target ignition timing calculation processing.
  • FIG. 5] (a) to (d) are timing charts showing an example of changes in the state of engine operation during execution of various processes.
  • FIG. 1 schematically shows the configuration of an in-vehicle internal combustion engine to which the control device according to this embodiment is applied and its peripheral devices.
  • the combustion chamber 12 of the internal combustion engine 10 The intake pipe 16 is connected via the intake manifold 14.
  • the intake pipe 16 is provided with an air cleaner 18, a throttle valve 20, and a surge tank 22 in the order of upstream force in the direction of intake air flow!
  • a throttle motor 24 is connected to the throttle valve 20, and the opening degree of the throttle valve 20 is adjusted through drive control of the throttle motor 24.
  • the opening control of the throttle valve 20 throttle control
  • the pipe area of the intake pipe 16 is adjusted, and the amount of intake air passing through the intake pipe 16 and thus the amount of air sucked into the combustion chamber 12 is adjusted. Is done.
  • the intake manifold 14 is provided with a fuel injection valve 26. Fuel is injected into the intake manifold 14 (specifically, in the intake port) through the valve opening drive of the fuel injection valve 26. The intake air metered through the throttle control is sucked into the combustion chamber 12 together with the fuel injected through the valve opening drive of the fuel injection valve 26, and an air-fuel mixture is formed in the combustion chamber 12.
  • the internal combustion engine 10 is provided with a spark plug 28 corresponding to the combustion chamber 12.
  • the air-fuel mixture formed in the combustion chamber 12 is ignited and burned by driving the spark plug 28 (specifically, an igniter).
  • the crankshaft 30 is rotated by the high-temperature and high-pressure combustion gas generated at this time, and the driving force (engine torque) of the internal combustion engine 10 is obtained.
  • An automatic transmission 32 is connected to the crankshaft 30 of the internal combustion engine 10.
  • the automatic transmission 32 transmits the engine torque to the drive wheels 34 of the vehicle.
  • the automatic transmission 32 is a multi-stage type having a plurality of shift speeds, and the gear ratio is switched by switching those shift speeds. Such switching is a parameter that indicates the running state of the vehicle. This is done automatically.
  • the automatic transmission 32 incorporates a plurality of clutch mechanisms 36, and through the switching control of the operating state of the clutch mechanisms 36 (specifically, switching control between the engaged state and the released state of the clutch mechanism 36), The gear ratio is switched.
  • the control device includes various controls of the internal combustion engine 10, such as throttle control, drive control of the fuel injection valve 26 (fuel injection control), and drive control of the spark plug 28 (ignition timing control). ), And an electronic control unit 40 for controlling the operation of the automatic transmission 32 and the clutch mechanism 36 (shift control).
  • the electronic control unit 40 includes a CPU that executes arithmetic processing that is effective for the above various controls, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores arithmetic results of the CPU, In addition, an input port and an output port for inputting / outputting signals to / from the outside are provided.
  • Various sensors for detecting the operating state of the internal combustion engine 10 and the operating state of the vehicle are connected to the input port of the electronic control unit 40.
  • the intake air amount sensor 42 for detecting the amount of intake air GA passing through the intake pipe 16 and the opening of the throttle valve 20 (throttle opening TA) are detected.
  • a throttle sensor 44 and a crank sensor 46 for detecting the rotational speed of the crankshaft 30 (engine rotational speed NE) are connected.
  • an accelerator sensor 48 for detecting the amount of depression of an accelerator pedal and a vehicle speed sensor 50 for detecting the traveling speed of the vehicle are connected to the input port.
  • a throttle motor 24, a fuel injection valve 26 and a spark plug 28 are connected to the output port of the electronic control unit 40.
  • the electronic control unit 40 grasps the operating state of the internal combustion engine 10 and the vehicle based on the detection signals input from the various sensors. Further, the electronic control unit executes the various controls described above based on the grasped operation state of the engine, and controls the internal combustion engine 10 and the vehicle to meet the situation.
  • the electronic control unit 40 includes an engine ECU 40a that executes various controls on the internal combustion engine 10, and a transmission ECU 40b that executes various controls on the automatic transmission 32.
  • the engine ECU 40a and the transmission ECU 40b communicate with each other to exchange data.
  • the engine torque is automatically adjusted so as to smoothly perform this.
  • the engine torque is adjusted as follows. That is, the clutch mechanism 36 shifts to the released state, and the throttle opening TA is increased accordingly. After that, along with the increasing trend of the actual intake air amount GA, the retard amount of the ignition timing is gradually increased so as to keep the engine torque substantially constant by offsetting the increase in the engine torque accompanying the increase. Adjusted. The retard amount of the ignition timing is gradually decreased based on a predetermined pattern, and the clutch mechanism 36 shifts to the engaged state in accordance with this. The engine torque is adjusted in this way for the following reason.
  • the adjustment of the engine torque is executed as follows. That is, a throttle target torque for controlling the throttle valve 20 of the internal combustion engine 10 and an ignition timing target torque for controlling the ignition timing of the internal combustion engine 10 are calculated.
  • the throttle target torque is the target engine torque in the throttle control
  • the ignition timing target torque is the target engine torque for the ignition timing control.
  • a target value (target throttle opening Tta) of the throttle opening TA capable of realizing the throttle target torque is obtained, and throttle control is executed based on the target throttle opening Tta.
  • a target value of the ignition timing (target ignition timing T rt) capable of realizing the ignition timing target torque is obtained, and ignition timing control is executed based on the target ignition timing Trt.
  • the torque may change abruptly if the value power throttle target torque is a reference.
  • the engine torque (throttle actual torque) realized through throttle control is calculated, and the ignition timing target torque is calculated based on this throttle actual torque.
  • FIG. 2 is a flowchart showing a specific procedure for the process that is effective for the throttle control.
  • the series of processes shown in this flowchart is performed at predetermined intervals when the gear stage of the automatic transmission 32 is switched by the engine ECU 40a. Executed.
  • the throttle target torque is read (step S100). This throttle target torque is calculated by a process executed by the transmission ECU 40b (a target torque calculation process (FIG. 3) described later).
  • a target intake air amount Tga is calculated based on the throttle target torque and the ignition torque efficiency (step S102).
  • the relationship between the ignition timing and the engine torque is determined in advance for each engine operating region based on the results of experiments, simulations, etc., and the ignition torque efficiency is sequentially calculated based on such relationship. ing. This ignition torque efficiency is referred to when calculating the target intake air amount Tga.
  • the target intake air amount Tga a value corresponding to the intake air amount GA that can obtain an engine torque equal to the throttle target torque at the current ignition timing is calculated. Specifically, since the larger the throttle target torque, the more intake air is required, a higher value is calculated as the target intake air amount Tga. Further, since the intake air amount necessary for obtaining the same engine torque increases as the ignition timing is retarded, a higher value is calculated as the target intake air amount Tga.
  • the target throttle opening degree Tta is calculated from the intake air model (step S104).
  • a physical model intake model
  • an engine intake system including an intake manifold 14, an intake pipe 16, an air cleaner 18, a throttle valve 20, and a surge tank 22 is modeled.
  • the throttle opening (target throttle opening Tta) at which the target intake air amount Tga and the actual intake air amount GA coincide with each other is calculated through the intake model.
  • a model formula with the intake air amount G A, the engine speed NE and the throttle opening TA as variables is predetermined, and the target throttle opening Tta is calculated through the model formula.
  • the target throttle opening degree Tta a larger opening degree is calculated as the engine speed NE is smaller and as the target intake air amount Tga is larger.
  • step S106 After the target throttle opening degree Tta is calculated in this way, drive control of the throttle motor 24 is executed so that the target throttle opening degree Tta and the actual throttle opening degree TA coincide (step S106). . Then, this process is finished.
  • FIG. 3 is a flowchart showing a specific procedure of the target torque calculation process, and a series of processes shown in this flowchart is executed at predetermined intervals when the gear stage of the automatic transmission 32 is switched by the transmission ECU 40b. .
  • the throttle target torque and the ignition timing target torque are changed in advance after the control for switching the shift stage of the automatic transmission 32 is started.
  • the values at which the engine torque changes according to the pattern are calculated (steps S200 and S202).
  • the ignition timing target torque is a value based on the throttle actual torque calculated in the later-described process (target ignition timing calculation process (FIG. 4)), and in accordance with the above change pattern.
  • a value that changes the engine torque is calculated.
  • it functions as a second calculating means for calculating the ignition timing target torque based on the processing force throttle realization torque in step S202.
  • FIG. 4 is a flowchart showing a specific procedure of the target ignition timing calculation process. A series of processes shown in this flowchart is executed at predetermined intervals when the gear stage of the automatic transmission 32 is switched by the engine ECU 40a. .
  • the basic value of the throttle realization torque is calculated from the intake model based on the throttle opening degree TA, the intake air amount GA, and the engine speed NE (Ste S300). Specifically, for example, the engine torque in the steady operation state is obtained based on the intake air amount GA and the engine rotational speed NE, and the basic value is calculated by transiently correcting the engine torque through the intake model.
  • a value corresponding to the engine torque obtained at the current engine operating state, in other words, the current ignition timing is calculated as the basic value.
  • a throttle realization torque is calculated based on the basic value and the ignition torque efficiency (step S302).
  • the basic value is converted into a value corresponding to the engine torque obtained at an arbitrary ignition timing (reference ignition timing), and the throttle realization torque is calculated.
  • the throttle realization torque is calculated as follows. Throttle opening T Even if the control mode of throttle control, such as A and the mode of change thereof, is the same, the throttle actual torque becomes a different value when the ignition timing is different. Specifically, the engine torque when the actual ignition timing is changed to the reference ignition timing increases as the actual ignition timing is retarded. Therefore, a larger value is calculated as the throttle actualizing torque when the ignition timing is the retarded timing. In addition, the larger the basic value, the larger the calculated throttle actual torque.
  • the throttle realization torque that is, the engine torque realized by the throttle control is accurately determined based on the intake air amount GA that is the control target of the throttle control. Calculated well. Also, a value commensurate with the current ignition timing is calculated as the throttle actual torque.
  • the processing of steps S300 and S302 functions as a first calculation means for calculating the throttle realization torque realized by the throttle control.
  • the target ignition timing T rt is calculated based on the torque down rate ⁇ Tr and the ignition torque efficiency (step S308).
  • a retard amount that can reduce the engine torque by the amount corresponding to the torque down rate ATr is obtained based on the ignition torque efficiency.
  • the target ignition timing Trt is calculated by reflecting the retard amount in the reference ignition timing. After the target ignition timing Trt is calculated in this way, this process is temporarily terminated.
  • the ignition plug 28 is operated at the target ignition timing Trt calculated in this way, and an ignition operation is performed.
  • FIGS. 5 (a) to (d) show when the automatic adjustment of the engine torque is performed when the shift stage of the automatic transmission 32 is switched, that is, when the various processes described above are executed.
  • 2 shows an example of the transition of the operating state of the engine at the time.
  • Fig. 5 (a) shows the change in throttle opening TA
  • Fig. 5 (b) shows the change in intake air amount GA
  • Fig. 5 (c) shows the change in ignition timing
  • Fig. 5 (d) shows the engine. It shows the transition of torque.
  • Fig. 5 (a) first, the throttle opening TA increases (time tl). Thereby, as shown in FIG. 5 (b), the intake air amount GA thereafter increases (time tl to t2). On the other hand, as shown in FIG. 5 (c), the ignition timing is gradually retarded as the intake air amount GA increases. At this time, as shown in Fig. 5 (d), the increase in the engine torque due to the increase in the intake air amount GA is offset by the decrease in the engine torque due to the retard of the ignition timing, and the engine torque becomes substantially constant. Maintained.
  • the advance of the ignition timing is started at an arbitrary predetermined timing (time t3), and thereafter the ignition timing is gradually advanced with an arbitrary predetermined pattern (time t3).
  • time t3 to t4 the throttle opening TA is maintained at a constant opening.
  • the engine torque increases rapidly in accordance with the advance of the ignition timing, and the engine speed NE increases accordingly.
  • the ignition timing target torque is calculated based on the throttle realization torque, the rotational speed NCi of the input-side rotary shaft and the rotational speed NCo of the output-side rotary shaft are accurately matched. In this state, the shift to the engaged state of the clutch mechanism 36 is started, and the occurrence of the above-mentioned speed change shock and the delay in torque transmission are suppressed.
  • the throttle actual torque realized by the throttle control is calculated, and the ignition timing target torque is calculated based on the throttle actual torque. Therefore, compared with the conventional device in which the ignition timing target torque is calculated based on the throttle target torque, the same throttle torque as the engine torque obtained by executing the throttle control based on the throttle target torque. It is possible to accurately suppress a sudden change in torque due to the fact that the torque target torque does not match. Therefore, it is possible to suitably suppress a sudden change in torque.
  • the ignition timing target torque and the throttle actual torque are parameters for calculating the target ignition timing Trt
  • the engine torque to be increased or decreased through the ignition timing control is determined by the ignition timing target torque and the throttle actual torque. It can be obtained from the relationship. Therefore, it is possible to accurately calculate the target ignition timing Trt that can appropriately increase or decrease the engine torque.
  • the parameter for calculating the throttle actual torque may be changed as appropriate.
  • the intake air amount GA and the ignition timing can be specified based on other engine parameters. Therefore, by calculating the throttle actual torque based on such engine parameters, a value corresponding to the engine torque realized by the throttle control may be calculated as the throttle actual torque.
  • the intake air amount GA is specified by the throttle opening TA, the intake pipe pressure, or the engine rotational speed NE, and the ignition timing may be specified by, for example, the engine rotational speed NE or the intake air amount GA. .
  • the calculation parameter for the target ignition timing Trt may be arbitrarily changed as long as it includes at least the ignition timing target torque and the ignition timing (or its index value).
  • the target ignition timing Trt may be calculated through calculation based on the ignition timing target torque and the ignition torque efficiency without using the throttle realization torque.
  • an ignition timing or an engine parameter that can specify the ignition timing may be used as the calculation parameter.
  • the present invention is not limited to a control device that automatically adjusts the engine torque when switching the shift stage of the automatic transmission, but a control device that calculates the throttle target torque and the ignition timing target torque when adjusting the engine torque. If so, the present invention may be applied to a control device other than the control device according to the present embodiment.
  • the present invention also includes a control device for an internal combustion engine to which a multi-stage automatic transmission is connected, an internal combustion engine control apparatus to which a multi-stage manual transmission is connected, and a continuously variable automatic transmission.
  • the present invention may be applied to a control device for an internal combustion engine or a control device for an internal combustion engine in which these transmissions are not connected.
  • the present invention may be applied to an internal combustion engine other than an internal combustion engine mounted on a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 トルクが急激に変化することを好適に抑制することができる内燃機関の制御装置が提供される。この装置は、機関トルクの調節に際して先ず、内燃機関のスロットル弁を制御するためのスロットル目標トルクと、同内燃機関の点火時期を制御するための点火時期目標トルクとをそれぞれ算出する。そして、スロットル目標トルクに基づき目標スロットル開度が求められてスロットル制御が実行される。点火時期目標トルクに基づき目標点火時期が求められて点火時期制御が実行される。スロットル制御によって実現されているスロットル実現トルクが算出される。スロットル実現トルクに基づいて点火時期目標トルクが算出される。

Description

明 細 書
内燃機関の制御装置
技術分野
[0001] 本発明は、スロットル制御と点火時期制御とを併用して機関トルクを制御する内燃 機関の制御装置に関する。
背景技術
[0002] 従来、特許文献 1に記載の装置のように、スロットル制御と点火時期制御とを併用し て機関トルクを制御することが知られている。同装置では先ず、所望の機関トルクを 得るために、スロットル制御の目標トルク (スロットル目標トルク)と、点火時期制御の 目標トルク (点火時期目標トルク)とが求められる。そして、上記スロットル目標トルクに 見合うスロットル開度(目標スロットル開度)が求められて実際のスロットル開度が制御 されるととも〖こ、上記点火時期目標トルクに見合う点火時期の遅角量が求められて実 際の点火時期が制御される。
[0003] 上記装置では、スロットル目標トルクを基準に点火時期目標トルクが求められる。す なわち、スロットル目標トルクと前記スロットル制御によって実際に得られる機関トルク とが一致している条件のもとで適切な機関トルクが得られる値力 点火時期目標トル クとして求められる。
[0004] ここで、スロットル制御の制御構造は、スロットル目標トルクと、これが実現されるスロ ットル開度との関係が求められた上で構築される。とはいえ、全ての機関運転領域に わたってスロットル目標トルクと目標スロットル開度との関係を制御装置の実作動状態 に見合う関係に適合させる作業は極めて煩雑である。そのため、スロットル目標トルク と実際に得られる機関トルクとの間にずれが生じることは避けられない。そして、この ずれは、所望の機関トルクと実際の機関トルクとの間にそのずれ量に応じたトルク差 を生じさせる。
[0005] このずれ量は機関運転領域毎に異なることから、機関運転の状態の変化に伴うスロ ットル制御および点火時期制御の制御態様の変更に際して上記トルク差が変化する 。そのため機関トルクを円滑に移行させることができず、トルクが急激に変化するおそ れがある。
特許文献 1 :特開 2002— 180860号公報
発明の開示
[0006] 本発明の目的は、トルクが急激に変化することを好適に抑制することができる内燃 機関の制御装置を提供することにある。
本発明の一態様では、内燃機関の制御装置が提供される。この制御装置は、内燃 機関のスロットル弁を制御するためのスロットル目標トルクと、同内燃機関の点火時期 を制御するための点火時期目標トルクとをそれぞれ算出する。そして、制御装置は、 前記スロットル目標トルクに基づき目標スロットル開度を求めてスロットル制御を実行 する一方、前記点火時期目標トルクに基づき目標点火時期を求めて点火時期制御 を実行して機関トルクを調節する。制御装置は、第 1の算出手段と、第 2の算出手段 とを備えている。第 1の算出手段は、前記スロットル制御によって実現されているスロ ットル実現トルクを算出する。第 2の算出手段は、第 1の算出手段によって算出された スロットル実現トルクを基準に前記点火時期目標トルクを算出する。
[0007] この構成によれば、スロットル目標トルクを基準に点火時期目標トルクが算出される 構成と比較して、スロットル目標トルクに基づくスロットル制御の実行によって得られる 機関トルクと同スロットル目標トルクとがー致しないことに起因してトルクが急激に変化 することを的確に抑制することができる。その結果、トルクが急激に変化することを好 適に抑制することができる。
[0008] 好ましくは、第 1の算出手段は、前記内燃機関の吸入空気量に基づいて前記スロッ トル実現トルクを算出する。この構成によれば、スロットル実現トルク、すなわちスロット ル制御によって実現されて 、る機関トルクを、同スロットル制御の制御対象である吸 入空気量に基づいて精度よく算出することができる。
[0009] 好ましくは、第 1の算出手段は、前記内燃機関の点火時期を前記スロットル実現ト ルクの算出パラメータの一つとして用いる。スロットル制御の制御態様が同一であつ ても、内燃機関の点火時期が異なる場合には、前記スロットル実現トルクの値が異な る。上記構成によれば、スロットル実現トルクとして、そうした点火時期に見合った値を 算出することができ、より実態に即した値を算出することができる。 [0010] 好ましくは、制御装置は、前記点火時期目標トルクに加えて、前記スロットル実現ト ルクを前記目標点火時期の算出パラメータとして用いる。この構成によれば、点火時 期制御を通じて増減されるべき機関トルクを点火時期目標トルクとスロットル実現トル クとの関係から求めることができ、機関トルクを適正に増減させることが可能な目標点 火時期を精度よく算出することができる。
[0011] 好ましくは、内燃機関には変速機が連結され、制御装置は前記変速機の変速段の 切り替えに際して機関トルクを自動的に調節する。内燃機関に連結された変速機の 変速段の切り替えに際して機関トルクを自動的に調節する制御装置において、仮に スロットル目標トルクを基準に点火時期目標トルクが算出される構成が採用されると、 以下の問題が生じる。すなわち、スロットル目標トルクに基づくスロットル制御の実行 によって得られる機関トルクと、スロットル目標トルクとがー致しないことに起因して、 実際の機関トルクと所望の機関トルクとの間にずれが生じる。このずれは、変速機の 変速段の切り替えに際して、変速ショックの発生及びトルク伝達の遅延を招く。上記 構成によれば、そうした変速ショックの発生及びトルク伝達の遅延を好適に抑制する ことができる。
図面の簡単な説明
[0012] [図 1]本発明の一実施の形態が適用される内燃機関およびその周辺機器の概略を 示す構成図。
[図 2]スロットル制御処理の具体的な手順を示すフローチャート。
[図 3]目標トルク算出処理の具体的な手順を示すフローチャート。
[図 4]目標点火時期算出処理の具体的な手順を示すフローチャート。
[図 5] (a)〜(d)は、各種処理の実行時における機関運転の状態の推移の一例を示 すタイミングチャート。
発明を実施するための最良の形態
[0013] 以下、本発明にかかる内燃機関の制御装置を具体ィ匕した一実施の形態について 説明する。
図 1は、本実施の形態に力かる制御装置が適用される車載内燃機関およびその周 辺機器の構成の概略を示している。図 1に示すように、内燃機関 10の燃焼室 12には 、吸気マ-ホールド 14を介して吸気管 16が接続されている。吸気管 16には、吸入空 気の流れる方向における上流力 順に、エアクリーナ 18、スロットル弁 20、及びサー ジタンク 22が設けられて!/、る。スロットル弁 20にはスロットルモータ 24が連結されて おり、このスロットルモータ 24の駆動制御を通じてスロットル弁 20の開度が調節される 。こうしたスロットル弁 20の開度制御 (スロットル制御)を通じて吸気管 16の管路面積 が調節され、同吸気管 16を通過する吸入空気の量、ひいては燃焼室 12内に吸入さ れる空気の量が調節される。
[0014] 吸気マ二ホールド 14には燃料噴射弁 26が設けられている。この燃料噴射弁 26の 開弁駆動を通じて吸気マ-ホールド 14内(詳しくは吸気ポート内)に燃料が噴射され る。スロットル制御を通じて調量された吸入空気が、燃料噴射弁 26の開弁駆動を通 じて噴射された燃料とともに燃焼室 12内に吸入されて、同燃焼室 12内に混合気が 形成される。
[0015] 内燃機関 10には、上記燃焼室 12に対応して点火プラグ 28が設けられている。この 点火プラグ 28 (詳しくはィグナイタ)の駆動を通じて、燃焼室 12内部に形成された混 合気が着火されて燃焼する。このときに生じた高温及び高圧の燃焼ガスによってクラ ンク軸 30が回転され、内燃機関 10の駆動力 (機関トルク)が得られる。
[0016] 内燃機関 10のクランク軸 30には、自動変速機 32が連結されている。この自動変速 機 32によって、機関トルクが車両の駆動輪 34に伝達される。自動変速機 32は複数 の変速段を有する多段式であり、それらの変速段の切り替えを通じて変速比が切り替 えられる。こうした切り替えは、車両の走行状態を示すパラメータ、具体的にはァクセ
Figure imgf000006_0001
、て自動的に行われる。 自動変速機 32は複数のクラッチ機構 36を内蔵しており、それらのクラッチ機構 36の 作動状態の切り替え制御 (詳しくは、クラッチ機構 36の係合状態と開放状態との切り 替え制御)を通じて、上記変速比の切り替えが行われる。
[0017] 本実施の形態に力かる制御装置は、内燃機関 10の各種制御、例えばスロットル制 御、燃料噴射弁 26の駆動制御 (燃料噴射制御)、点火プラグ 28の駆動制御(点火時 期制御)、自動変速機 32およびクラッチ機構 36の作動制御 (変速制御)を行う電子 制御装置 40を備えている。 [0018] この電子制御装置 40は、上記各種制御に力かる演算処理を実行する CPU、その 制御に必要なプログラムおよびデータが記憶された ROM、 CPUの演算結果が一時 的に記憶される RAM、並びに外部との間で信号を入力または出力するための入力 ポートおよび出力ポートを備えて ヽる。
[0019] 電子制御装置 40の入力ポートには、内燃機関 10の運転状態および車両の運転状 態を検出するための各種センサが接続されている。具体的には、入力ポートには、吸 気管 16を通過する吸入空気の量 GAを検出するための吸入空気量センサ 42、スロッ トル弁 20の開度 (スロットル開度 TA)を検出するためのスロットルセンサ 44、及びクラ ンク軸 30の回転速度 (機関回転速度 NE)を検出するためのクランクセンサ 46が接続 されている。その他、入力ポートには、例えばアクセルペダルの踏み込み量を検出す るためのアクセルセンサ 48、及び車両の走行速度を検出するための車速センサ 50も 接続されている。一方、電子制御装置 40の出力ポートには、スロットルモータ 24、燃 料噴射弁 26および点火プラグ 28が接続されている。
[0020] 電子制御装置 40は、上記各種センサから入力された検出信号に基づき内燃機関 10及び車両の運転状態を把握する。更に、電子制御装置は、把握された機関の運 転状態に基づいて上述した各種制御を実行して、内燃機関 10および車両を状況に 見合うように制御する。電子制御装置 40は、内燃機関 10についての各種制御を実 行する機関 ECU40aと、自動変速機 32についての各種制御を実行する変速機 EC U40bとを備えている。それらの機関 ECU40aと変速機 ECU40bとは、互いに交信 してデータの交換を行って 、る。
[0021] 本実施の形態では、上記変速制御において自動変速機 32の変速段の切り替えが 行われる際に、これを円滑に行うべく機関トルクが自動的に調節される。この機関トル クの調節は次のように行われる。すなわち、クラッチ機構 36が開放状態に移行し、こ れに合わせてスロットル開度 TAが拡大される。その後、実際の吸入空気量 GAの増 加傾向に併せて、その増加に伴う機関トルクの上昇分を相殺して機関トルクを略一定 に維持するように、点火時期の遅角量が徐々に大きく調節される。そして、点火時期 の遅角量が予め定められたパターンに基づいて徐々に減少され、これに合わせてク ラッチ機構 36が係合状態に移行する。 [0022] このように機関トルクが調節されるのは、以下の理由による。すなわち、自動変速機 32の変速段が切り替えられる場合、所望のタイミングおよびパターンで速や力ゝに機 関トルクを増大させたいといった要求がある。ここで仮に、そうした機関トルクの増大 がスロットル開度 TAの拡大のみを通じて行われると、スロットル開度 TAの変化に対 する吸入空気量 GAの変化の感度が低 、ことから、上記要求に的確に応えることは 困難である。これに対し、本実施の形態では、点火時期の遅角量を減少させることに よって機関トルクを増大させることにより、点火時期の進角に対する機関トルク増大の 感度が高 、ことから、上記要求に的確に応えることが可能となる。
[0023] こうした機関トルクの調節は、具体的には以下のように実行される。すなわち、内燃 機関 10のスロットル弁 20を制御するためのスロットル目標トルクと、同内燃機関 10の 点火時期を制御するための点火時期目標トルクとがそれぞれ算出される。スロットル 目標トルクはスロットル制御において目標となる機関トルクのことであり、点火時期目 標トルクは点火時期制御にぉ 、て目標となる機関トルクのことである。
[0024] そして、スロットル目標トルクを実現可能なスロットル開度 TAの目標値(目標スロット ル開度 Tta)が求められ、同目標スロットル開度 Ttaに基づいてスロットル制御が実行 される。また、点火時期目標トルクを実現可能な点火時期の目標値(目標点火時期 T rt)が求められ、同目標点火時期 Trtに基づいて点火時期制御が実行される。
[0025] 前述したように、点火時期目標トルクが算出される際に、その基準となる値力スロット ル目標トルクであるとトルクが急激に変化するおそれがある。この点をふまえ、本実施 の形態では、スロットル制御を通じて実現されて 、る機関トルク (スロットル実現トルク) が算出され、このスロットル実現トルクを基準に上記点火時期目標トルクが算出される
[0026] 以下、自動変速機 32の変速段の切り替えに際して機関トルクを自動的に調節する 制御について説明する。先ず、本実施の形態に力かるスロットル制御の処理手順に ついて図 2を参照しつつ説明する。図 2はスロットル制御に力かる処理の具体的な手 順を示すフローチャートであり、このフローチャートに示される一連の処理は、機関 E CU40aにより、自動変速機 32の変速段の切り替えに際して所定周期毎に実行され る。 [0027] 図 2に示すように、この処理では先ず、前記スロットル目標トルクが読み込まれる(ス テツプ S100)。このスロットル目標トルクは、変速機 ECU40bにより実行される処理( 後述する目標トルク算出処理(図 3) )にお 、て算出されて 、る。
[0028] その後、スロットル目標トルクおよび点火トルク効率に基づ 、て、 目標吸気量 Tgaが 算出される (ステップ S102)。本実施の形態では、実験、シミュレーションの結果等に 基づいて点火時期と機関トルクとの関係が機関運転領域毎に予め定められており、 上記点火トルク効率は、そうした関係をもとに逐次算出されている。そして、この点火 トルク効率が目標吸気量 Tgaの算出に際して参照される。
[0029] 目標吸気量 Tgaとして、具体的には現状の点火時期において上記スロットル目標ト ルクと等しい機関トルクが得られる吸入空気量 GAに相当する値が算出される。詳しく は、スロットル目標トルクが大きいほど多くの吸入空気が必要になることから、 目標吸 気量 Tgaとして高い値が算出される。また、点火時期が遅角側の時期であるときほど 同一の機関トルクを得るために必要な吸入空気量が多くなることから、 目標吸気量 T gaとして高い値が算出される。
[0030] そして、上記目標吸気量 Tgaおよび機関回転速度 NEに基づ 、て、吸気モデルか ら目標スロットル開度 Ttaが算出される (ステップ S 104)。本実施の形態では、吸気マ 二ホールド 14、吸気管 16、エアクリーナ 18、スロットル弁 20並びにサージタンク 22か らなる機関吸気系をモデルィ匕した物理モデル(吸気モデル)が構築されている。そし て、その吸気モデルを通じて上記目標吸気量 Tgaと実際の吸入空気量 GAとが一致 するスロットル開度(目標スロットル開度 Tta)が算出される。詳しくは、吸入空気量 G A、機関回転速度 NEおよびスロットル開度 TAを変数とするモデル式が予め定めら れており、同モデル式を通じて目標スロットル開度 Ttaが算出される。 目標スロットル 開度 Ttaとして、機関回転速度 NEが小さいときほど、また目標吸気量 Tgaが多いとき ほど大きい開度が算出される。
[0031] このように目標スロットル開度 Ttaが算出された後、同目標スロットル開度 Ttaと実際 のスロットル開度 TAとが一致するようにスロットルモータ 24の駆動制御が実行される (ステップ S106)。そして、本処理はー且終了される。
[0032] 次に、スロットル目標トルクと点火時期目標トルクとを算出する処理(目標トルク算出 処理)の手順について図 3を参照しつつ説明する。図 3は目標トルク算出処理の具体 的な手順を示すフローチャートであり、このフローチャートに示される一連の処理は、 変速機 ECU40bにより、自動変速機 32の変速段の切り替えに際して所定周期毎に 実行される。
[0033] 図 3に示すように、この処理では、スロットル目標トルクおよび点火時期目標トルクと して、 自動変速機 32の変速段の切り替えにかかる制御が開始された後において予 め定められた変化パターンのとおりに機関トルクが変化する値がそれぞれ算出される (ステップ S200, S202)。点火時期目標トルクとして、後述する処理(目標点火時期 算出処理(図 4) )において算出されるスロットル実現トルクに基づいて、同スロットル 実現トルクを基準とする値であり、且つ上記変化パターンのとおりに機関トルクが変化 する値が算出される。本実施の形態では、ステップ S202の処理力 スロットル実現ト ルクを基準に点火時期目標トルクを算出する第 2の算出手段として機能する。
[0034] 次に、本実施の形態に力かる点火時期制御 (詳しくは、 目標点火時期 Ttrの算出に かかる処理)の手順につ 、て図 4を参照しつつ説明する。図 4は目標点火時期算出 処理の具体的な手順を示すフローチャートであり、このフローチャートに示される一連 の処理は、機関 ECU40aにより、自動変速機 32の変速段の切り替えに際して所定 周期毎に実行される。
[0035] 図 4に示すように、この処理では先ず、スロットル開度 TA、吸入空気量 GAおよび 機関回転速度 NEに基づ 、て、前記吸気モデルからスロットル実現トルクの基本値が 算出される (ステップ S300)。詳しくは、例えば吸入空気量 GAおよび機関回転速度 NEに基づいて定常運転状態での機関トルクが求められ、同機関トルクが吸気モデ ルを通じて過渡補正されることにより上記基本値が算出される。ここでは基本値として 、現状の機関の運転状態、言い換えれば現状の点火時期において得られる機関トル クに相当する値が算出される。
[0036] そして、基本値および前記点火トルク効率に基づいてスロットル実現トルクが算出さ れる (ステップ S302)。ここでは、上記基本値が任意の点火時期(基準点火時期)に おいて得られる機関トルクに相当する値に変換されて、スロットル実現トルクが算出さ れる。具体的には、スロットル実現トルクは以下のように算出される。スロットル開度 T A、及びその変化の態様などのスロットル制御の制御態様が同一であっても、点火時 期が異なる場合には、スロットル実現トルクが異なる値となる。詳しくは、実際の点火 時期が遅角側の時期であるときほど、実際の点火時期を基準点火時期に変更した場 合における機関トルクは大きくなる。そのため上記スロットル実現トルクとして、点火時 期が遅角側の時期であるときほど大きい値が算出される。また、基本値が大きいほど スロットル実現トルクとして大きい値が算出される。
[0037] 本実施の形態では、これらステップ S300, S302の処理を通じて、スロットル実現ト ルク、すなわちスロットル制御によって実現されている機関トルクが同スロットル制御 の制御対象である吸入空気量 GAに基づいて精度よく算出される。またスロットル実 現トルクとして、現状の点火時期に見合った値が算出される。本実施の形態では、ス テツプ S300, S302の処理が、スロットル制御によって実現されているスロットル実現 トルクを算出する第 1の算出手段として機能する。
[0038] また、前記点火時期目標トルク(図 3のステップ S202)が読み込まれる(図 4のステ ップ S304)。そして、点火時期目標トルクとスロットル実現トルクとの関係から、点火時 期制御を通じて機関トルクを減少させる際のトルクダウン率 ΔΤι:が算出される。具体 的には、点火時期目標トルクをスロットル実現トルクによって除算した値(=点火時期 目標トルク Ζスロットル実現トルク)がトルクダウン率 ΔΤι:として算出される (ステップ S 306)。
[0039] その後、トルクダウン率 Δ Trおよび前記点火トルク効率に基づ 、て目標点火時期 T rtが算出される (ステップ S308)。ここでは、トルクダウン率 ATrに相当する分だけ機 関トルクを減少させることが可能な遅角量が点火トルク効率に基づいて求められる。 更に、該遅角量を前記基準点火時期に反映させることによって目標点火時期 Trtが 算出される。このように目標点火時期 Trtが算出された後、本処理は一旦終了される 。そして点火時期制御では、このように算出された目標点火時期 Trtにおいて点火プ ラグ 28が作動されて点火動作が行われる。
[0040] 以下、本実施の形態による作用につ 、て、図 5 (a)〜(d)に示すタイミングチャート を参照しつつ説明する。図 5 (a)〜 (d)は自動変速機 32の変速段の切り替えに際し て機関トルクの自動調節が行われるとき、すなわち上述した各種処理が実行されると きにおける機関の運転状態の推移の一例を示している。図 5 (a)はスロットル開度 TA の推移を示し、図 5 (b)は吸入空気量 GAの推移を示し、図 5 (c)は点火時期の推移 を示し、図 5 (d)は機関トルクの推移を示している。
[0041] 図 5 (a)に示すように、先ずスロットル開度 TAが大きくなる(時刻 tl)。これにより、図 5 (b)に示すように、その後において吸入空気量 GAが増加する(時刻 tl〜t2)。一方 、図 5 (c)に示すように、そうした吸入空気量 GAの増加に合わせて点火時期が徐々 に遅角される。このとき、図 5 (d)に示すように、吸入空気量 GAの増加による機関トル クの増加分が点火時期の遅角による機関トルクの減少分によって相殺されて、機関ト ルクは略一定に維持される。
[0042] そして、吸入空気量 GAの増加が止まると(時刻 t2)点火時期の遅角も停止され、そ の後においてスロットル開度 TAおよび点火時期が一定に維持されて機関トルクが略 一定に維持される(時刻 t2〜t3)。
[0043] その後、予め定められた任意のタイミングにおいて点火時期の進角が開始され (時 刻 t3)、その後において点火時期がこれも予め定められた任意のパターンをもって徐 々に進角される(時刻 t3〜t4)。このときスロットル開度 TAは一定の開度に維持され る。このとき点火時期の進角に合わせて機関トルクが速やかに増加し、これに伴って 機関回転速度 NEが上昇する。
[0044] そして、このように機関回転速度 NEが上昇する過程の任意のタイミング、詳しくはク ラッチ機構 36の入力側(内燃機関 10側)の回転軸の回転速度 NCiと出力側 (駆動輪 34側)の回転軸の回転速度 NCoとが略一致するタイミングにおいて、クラッチ機構 3 6の開放状態力 係合状態への移行が開始される。
[0045] ここで、仮にスロットル目標トルクを基準に点火時期目標トルクを算出する従来の構 成が採用された場合、スロットル目標トルクに基づくスロットル制御の実行によって得 られる機関トルクと同スロットル目標トルクとがー致しないことに起因して、実際の機関 トルクと所望の機関トルクとの間にずれが生じるおそれがある。図 5 (c)及び (d)中の 一点差線は、所望の機関トルクに対して実際の機関トルクが不足している場合の一 例を示している。
[0046] そうしたずれが生じた場合、入力側の回転軸の回転速度 NCiと出力側の回転軸の 回転速度 NCoとが一致しない状態でクラッチ機構 36が係合状態に移行され、次のよ うな不都合が生じる。すなわち、上記入力側の回転軸の回転速度 Ναよりも出力側 の回転軸の回転速度 NCoが低いときには (NCi>NCo)、クラッチ機構 36の係合状 態への移行開始に際して出力側の回転軸に大きな回転トルクが付与されることから、 いわゆる変速ショックが発生する。逆に、上記入力側の回転軸の回転速度 Ναよりも 出力側の回転軸の回転速度 NCoが高いときには (NCiく NCo)、クラッチ機構 36の 係合状態への移行に際して一時的に出力側の回転軸力 入力側の回転軸に回転ト ルクが伝達されることから、クランク軸 30から駆動輪 34へのトルク伝達の遅延が発生 する。
[0047] 本実施の形態では、スロットル実現トルクを基準に点火時期目標トルクが算出され ることから、入力側の回転軸の回転速度 NCiと出力側の回転軸の回転速度 NCoとを 精度よく一致させた状態でクラッチ機構 36の係合状態への移行が開始され、上記変 速ショックの発生及びトルク伝達の遅延が抑制される。
[0048] また、上述のように実際の機関トルクと所望の機関トルクとの間にずれが生じる場合 には、機関トルクの自動的な調節の実行の開始に際して(時刻 tl)、その開始時にお ける機関トルクを開始直前の機関トルクと一致させることができな 、ことから、トルクが 急激に変化する(図 5の一点鎖線参照)。一方、機関トルクの自動的な調節の実行の 停止の際には(時刻 t5)、その停止直前における機関トルクを停止時における機関ト ルクに一致させることができないことから、やはりトルクが急激に変化する。
[0049] 本実施の形態では、機関トルクが自動的に調節される際に、実際の機関トルクが所 望の機関トルクと一致するように精度よく調節されることから、そうした自動的な調節 の実行開始時および実行停止時においてトルクが急激に変化することが抑制される
[0050] 以上説明したように、本実施の形態によれば、以下に記載する効果が得られる。
(1)スロットル制御によって実現されているスロットル実現トルクが算出されるとともに 、同スロットル実現トルクを基準に点火時期目標トルクが算出される。そのため、スロッ トル目標トルクを基準に点火時期目標トルクが算出される従来の装置と比較して、ス ロットル目標トルクに基づくスロットル制御の実行によって得られる機関トルクと同スロ ットル目標トルクとがー致しないことに起因してトルクが急激に変化することを的確に 抑制することができる。そのため、トルクが急激に変化することを好適に抑制すること ができる。
[0051] (2)スロットル実現トルク、すなわちスロットル制御によって実現されている機関トル クを、同スロットル制御の制御対象である吸入空気量 GAに基づいて精度よく算出す ることがでさる。
[0052] (3)点火時期がスロットル実現トルクの算出パラメータの一つであることから、同スロ ットル実現トルクとして、そうした点火時期に見合った値を算出することができ、より実 態に即した値を算出することができる。
[0053] (4)点火時期目標トルクとスロットル実現トルクとが目標点火時期 Trtの算出パラメ ータであることから、点火時期制御を通じて増減させるべき機関トルクを、点火時期目 標トルクとスロットル実現トルクとの関係から求めることができる。そのため、機関トルク を適正に増減させることの可能な目標点火時期 Trtを精度よく算出することができる。
[0054] 上記実施の形態は、以下のように変更されてもよい。
必ずしも吸入空気量 GA及び点火時期に基づいてスロットル実現トルクが算出され る必要はなぐ同スロットル実現トルクの算出パラメータが適宜変更されてもよい。吸 入空気量 GA及び点火時期は、それら以外の機関パラメータに基づき特定され得る 。したがって、そうした機関パラメータに基づいてスロットル実現トルクが算出されるこ とにより、同スロットル実現トルクとして、スロットル制御によって実現されている機関ト ルクに相当する値が算出されてもよい。具体的には、例えばスロットル開度 TA、吸気 管圧力、又は機関回転速度 NEによって吸入空気量 GAが特定され、例えば機関回 転速度 NE、又は吸入空気量 GAによって点火時期が特定されてもよい。
[0055] 上記実施の形態において、 目標点火時期 Trtの算出パラメータは、少なくとも点火 時期目標トルクおよび点火時期(またはその指標値)を含むのであれば、任意に変更 されもよい。例えば、スロットル実現トルクを用いずに、点火時期目標トルクおよび点 火トルク効率に基づく演算を通じて目標点火時期 Trtが算出されてもよい。また点火 トルク効率に代えて、点火時期、或いは同点火時期を特定可能な機関パラメータが 上記算出パラメータとして用いられてもよ 、。 [0056] 本発明は、自動変速機の変速段の切り替えに際して機関トルクを自動的に調節す る制御装置に限らず、機関トルクの調節に際してスロットル目標トルクおよび点火時 期目標トルクを算出する制御装置であれば、本実施の形態にかかる制御装置以外 の制御装置に適用されてもよい。また本発明は、多段式の自動変速機が連結された 内燃機関の制御装置の他、多段式の手動変速機が連結された内燃機関の制御装 置、無段式の自動変速機が連結された内燃機関の制御装置、又はそれら変速機が 連結されな 、内燃機関の制御装置に適用されてもょ ヽ。
[0057] 本発明は、車両に搭載される内燃機関以外の内燃機関に適用されてもよい。

Claims

請求の範囲
[1] 内燃機関のスロットル弁を制御するためのスロットル目標トルクと、同内燃機関の点火 時期を制御するための点火時期目標トルクとをそれぞれ算出し、前記スロットル目標 トルクに基づき目標スロットル開度を求めてスロットル制御を実行する一方、前記点火 時期目標トルクに基づき目標点火時期を求めて点火時期制御を実行して機関トルク を調節する内燃機関の制御装置において、
前記スロットル制御によって実現されているスロットル実現トルクを算出する第 1の算 出手段と、該第 1の算出手段によって算出されたスロットル実現トルクを基準に前記 点火時期目標トルクを算出する第 2の算出手段とを備えることを特徴とする内燃機関 の制御装置。
[2] 前記第 1の算出手段は、前記内燃機関の吸入空気量に基づいて前記スロットル実現 トルクを算出することを特徴とする請求項 1に記載の内燃機関の制御装置。
[3] 前記第 1の算出手段は、前記内燃機関の点火時期を前記スロットル実現トルクの算 出パラメータの一つとして用いることを特徴とする請求項 1または 2に記載の内燃機関 の制御装置。
[4] 前記点火時期目標トルクに加えて、前記スロットル実現トルクを前記目標点火時期の 算出パラメータとして用いる請求項 1〜3のいずれか一項に記載の内燃機関の制御 装置。
[5] 前記内燃機関には変速機が連結され、前記制御装置は前記変速機の変速段の切り 替えに際して機関トルクを自動的に調節する請求項 1〜4のいずれか一項に記載の 内燃機関の制御装置。
PCT/JP2006/321036 2005-10-24 2006-10-23 内燃機関の制御装置 WO2007049546A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-308860 2005-10-24
JP2005308860A JP2007113555A (ja) 2005-10-24 2005-10-24 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2007049546A1 true WO2007049546A1 (ja) 2007-05-03

Family

ID=37967658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321036 WO2007049546A1 (ja) 2005-10-24 2006-10-23 内燃機関の制御装置

Country Status (2)

Country Link
JP (1) JP2007113555A (ja)
WO (1) WO2007049546A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8688357B2 (en) 2009-01-15 2014-04-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389990B2 (ja) 2007-10-05 2009-12-24 トヨタ自動車株式会社 車両駆動ユニットの制御装置
JP5012766B2 (ja) * 2008-11-11 2012-08-29 トヨタ自動車株式会社 内燃機関の吸気制御装置
JP5949583B2 (ja) * 2013-01-29 2016-07-06 トヨタ自動車株式会社 異常検出装置
JP6168479B2 (ja) * 2015-09-30 2017-07-26 マツダ株式会社 エンジンの制御装置
JP6168480B2 (ja) * 2015-09-30 2017-07-26 マツダ株式会社 エンジンの制御装置
JP6168484B2 (ja) * 2015-11-20 2017-07-26 マツダ株式会社 エンジンの制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163996A (ja) * 1991-12-11 1993-06-29 Mazda Motor Corp エンジンの制御装置
JPH08218911A (ja) * 1995-02-14 1996-08-27 Honda Motor Co Ltd 車両用内燃エンジン制御装置
JP2003155941A (ja) * 2001-11-20 2003-05-30 Toyota Motor Corp 車両の総合制御装置
JP2005113877A (ja) * 2003-10-10 2005-04-28 Denso Corp 内燃機関の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900598B2 (ja) * 1990-11-26 1999-06-02 日産自動車株式会社 エンジンのスロットル制御装置
JP2636498B2 (ja) * 1990-11-29 1997-07-30 日産自動車株式会社 エンジンの制御装置
JP4019866B2 (ja) * 2002-09-10 2007-12-12 日産自動車株式会社 内燃機関の制御装置
JP2004263647A (ja) * 2003-03-04 2004-09-24 Hitachi Ltd 車両の発進制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163996A (ja) * 1991-12-11 1993-06-29 Mazda Motor Corp エンジンの制御装置
JPH08218911A (ja) * 1995-02-14 1996-08-27 Honda Motor Co Ltd 車両用内燃エンジン制御装置
JP2003155941A (ja) * 2001-11-20 2003-05-30 Toyota Motor Corp 車両の総合制御装置
JP2005113877A (ja) * 2003-10-10 2005-04-28 Denso Corp 内燃機関の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8688357B2 (en) 2009-01-15 2014-04-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2007113555A (ja) 2007-05-10

Similar Documents

Publication Publication Date Title
JP3741721B2 (ja) 内燃機関のトルクの制御方法および装置
JP4404079B2 (ja) 内燃機関の出力制御装置
WO2007049546A1 (ja) 内燃機関の制御装置
US7606652B2 (en) Torque based crank control
JP2009133276A (ja) 内燃機関の制御装置
JP4065236B2 (ja) 車両駆動機関の運転方法および装置
EP2146081A1 (en) Controller of internal combustion engine
JP4470954B2 (ja) 車両の駆動力制御装置
JP5012766B2 (ja) 内燃機関の吸気制御装置
JP4638847B2 (ja) 車両の制御装置
JP2008095579A (ja) 内燃機関制御装置
JP6335432B2 (ja) エンジンの制御装置
JP4765887B2 (ja) 内燃機関の制御装置
JP6275179B2 (ja) 内燃機関の制御装置
JP6922311B2 (ja) 車両の制御装置
JP2007514092A (ja) 駆動ユニットの運転方法および装置
JP5376171B2 (ja) 車両の出力制御装置
JP2021116704A (ja) 車両の制御装置
JP4353022B2 (ja) 内燃機関の制御装置
JP2004124743A (ja) 内燃機関用制御装置
JP2006112384A (ja) トルクダウン制御装置
JP4760793B2 (ja) 内燃機関の制御装置
JP4591400B2 (ja) エンジンのアイドル状態判定装置
JP2008249017A (ja) 無段変速機の変速制御装置およびその変速制御方法
JPH03107556A (ja) エンジンのアイドル回転数制御装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822056

Country of ref document: EP

Kind code of ref document: A1