以下、請求可能発明の実施例を、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記の実施例および変形例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
≪車両の構成≫
図1に、第1実施例のシリンダ装置を搭載したハイブリッド車両の駆動システムおよび制動システムを模式的に示す。車両には、動力源として、エンジン10と電気モータ12とが搭載されており、また、エンジン10の出力により発電を行う発電機14も搭載されている。これらエンジン10、電気モータ12、発電機14は、動力分割機構16によって互いに接続されている。この動力分割機構16を制御することで、エンジン10の出力を発電機14を作動させるための出力と、4つの車輪18のうちの駆動輪となるものを回転させるための出力とに振り分けたり、電気モータ12からの出力を駆動輪に伝達させることができる。つまり、動力分割機構16は、減速機20および駆動軸22を介して駆動輪に伝達される駆動力に関する変速機として、機能するのである。なお、「車輪18」等のいくつかの構成要素は、総称として使用するが、4つの車輪のいずれかに対応するものであることを示す場合には、左前輪,右前輪,左後輪,右後輪にそれぞれ対応して、添え字「FL」,「FR」,「RL」,「RR」を付すこととする。この表記に従えば、本車両における駆動輪は、車輪18RL,および車輪18RRである。
電気モータ12は、交流同期電動機であり、交流電力によって駆動される。車両にはインバータ24が備えられており、インバータ24は、電力を、直流から交流、あるいは、交流から直流に変換することができる。したがって、インバータ24を制御することで、発電機14によって出力される交流の電力を、バッテリー26に蓄えるための直流の電力に変換させたり、バッテリ26に蓄えられている直流の電力を、電気モータ12を駆動するための交流の電力に変換させることができる。発電機14は、電気モータ12と同様に、交流同期電動機としての構成を有している。つまり、本実施例の車両では、交流同期電動機が2つ搭載されていると考えることがき、一方が、電気モータ12として、主に駆動力を出力するために使用され、他方が、発電機14として、主にエンジン10の出力により発電するために使用されている。
また、電気モータ12は、車両の走行に伴う車輪18RL、18RRの回転を利用して、発電(回生発電)を行うことも可能である。このとき、車輪18RL、18RRに連結される電気モータ12では、電力が発生させられるとともに、電気モータ12の回転を制止するための抵抗力が発生する。したがって、その抵抗力を、車両を制動する制動力として利用することができる。つまり、電気モータ12は、電力を発生させつつ車両を制動するための回生ブレーキの手段として利用される。したがって、本車両は、回生ブレーキをエンジンブレーキや後述する液圧ブレーキとともに制御することで、制動されるのである。一方、発電機14は主にエンジン10の出力により発電をするが、インバータ24を介してバッテリ26から電力が供給されることで、電気モータとしても機能する。
本車両において、上記のブレーキの制御や、その他の車両に関する各種の制御は、複数の電子制御ユニット(ECU)によって行われる。複数のECUのうち、メインECU40は、それらの制御を統括する機能を有している。例えば、ハイブリッド車両は、エンジン10の駆動および電気モータ12の駆動によって走行することが可能とされているが、それらエンジン10の駆動と電気モータ12の駆動は、メインECU40によって総合的に制御される。具体的に言えば、メインECU40によって、エンジン10の出力と電気モータ12による出力の配分が決定され、その配分に基づき、エンジン10を制御するエンジンECU42、電気モータ12及び発電機14を制御するモータECU44に各制御についての指令が出力される。
メインECU40には、バッテリ26を制御するバッテリECU46も接続されている。バッテリECU46は、バッテリ26の充電状態を監視しており、充電量が不足している場合には、メインECU40に対して充電要求指令を出力する。充電要求指令を受けたメインECU40は、バッテリ26を充電させるために、発電機14による発電の指令をモータECU44に出力する。
また、メインECU40には、ブレーキを制御するブレーキECU48も接続されている。当該車両には、運転者によって操作されるブレーキ操作部材(以下、単に「操作部材」という場合がある)が設けられており、ブレーキECU48は、その操作部材の操作量であるブレーキ操作量(以下、単に「操作量」という場合がある)と、その操作部材に加えられる運転者の力であるブレーキ操作力(以下、単に「操作力」という場合がある)との少なくとも一方に基づいて目標制動力を決定し、メインECU40に対してこの目標制動力を出力する。メインECU40は、モータECU44にこの目標制動力を出力し、モータECU44は、その目標制動力に基づいて回生ブレーキを制御するとともに、それの実行値、つまり、発生させている回生制動力をメインECU40に出力する。メインECU40では、目標制動力から回生制動力が減算され、その減算された値によって、車両に搭載される液圧ブレーキシステム100において発生すべき目標液圧制動力が決定される。メインECU40は、目標液圧制動力をブレーキECU48に出力し、ブレーキECU48は、液圧ブレーキシステム100が発生させる液圧制動力が目標液圧制動力となるように制御するのである。
≪液圧ブレーキシステムの構成≫
このように構成された本ハイブリッド車両に搭載される液圧ブレーキシステム100について、図2を参照しつつ詳細に説明する。なお、以下の説明において、「前方」は図2における左方、「後方」は図2における右方をそれぞれ表している。また、「前側」、「前端」、「前進」や、「後側」、「後端」、「後進」等も同様に表すものとされている。以下の説明において[ ]の文字は、センサ等を図面において表わす場合に用いる符号である。
図2に、車両が備える液圧ブレーキシステム100を、模式的に示す。液圧ブレーキシステム100は、ブレーキ液を加圧するためのシリンダ装置110を有している。車両の運転者は、シリンダ装置110に連結された操作装置112を操作することでシリンダ装置110を作動させことができ、シリンダ装置110は、自身の作動によってブレーキ液を加圧する。その加圧されたブレーキ液は、シリンダ装置110に接続されるアンチロック装置114を介して、各車輪に設けられたブレーキ装置116に供給される。ブレーキ装置116は、加圧されたブレーキ液の圧力(以下、「出力圧」と呼ぶ)に依拠して、車輪18の回転を制止するための力、すなわち、液圧制動力を発生させる。
液圧ブレーキシステム100は、ブレーキ液の圧力を高圧にするための外部高圧源装置118を有している。その外部高圧源装置118は、増減圧装置120を介して、シリンダ装置110に接続されている。増減圧装置120は、外部高圧源装置118によって高圧とされたブレーキ液の圧力を制御する装置であり、シリンダ装置110へ入力されるブレーキ液の圧力(以下、「入力圧」と呼ぶ)を増加および減少させる。シリンダ装置110は、その入力圧の増減によって作動可能に構成されている。また、液圧ブレーキシステム100は、ブレーキ液を大気圧下で貯留するリザーバ122を有している。リザーバ122は、シリンダ装置110、増減圧装置120、外部高圧源装置118の各々に接続されている。
操作装置112は、操作部材としてのブレーキペダル150と、ブレーキペダル150に連結されるオペレーションロッド152とを含んで構成されている。ブレーキペダル150は、車体に回動可能に保持されている。オペレーションロッド120は、後端部においてブレーキペダル150に連結され、前端部においてシリンダ装置110に連結されている。また、操作装置112は、ブレーキペダル150の操作量を検出するための操作量センサ[SP]156と、操作力を検出するための操作力センサ[FP]158とを有している。操作量センサ156および操作力センサ158は、ブレーキECU48に接続されており、ブレーキECU48は、それらのセンサの検出値を基にして、目標制動力を決定する。
ブレーキ装置116は、液通路200、202を介してシリンダ装置110に接続されている。それら液通路200、202は、シリンダ装置110によって出力圧に加圧されたブレーキ液をブレーキ装置116に供給するための液通路である。液通路202には出力圧センサ[Po]204が設けられている。詳しい説明は省略するが、各ブレーキ装置116は、ブレーキキャリパと、そのブレーキキャリパに取り付けられたホイールシリンダ(ブレーキシリンダ)およびブレーキパッドと、各車輪とともに回転するブレーキディスクとを含んで構成されている。液通路200、202は、アンチロック装置114を介して、各ブレーキ装置116のブレーキシリンダに接続されている。ちなみに、液通路200が、前輪側のブレーキ装置116FL,116FRに繋がるようにされており、また、液通路202が、後輪側のブレーキ装置116RL、116RRに繋がるようにされている。ブレーキシリンダは、シリンダ装置110によって加圧されたブレーキ液の出力圧に依拠して、ブレーキパッドをブレーキディスクに押し付ける。その押し付けによって発生する摩擦によって、各ブレーキ装置116では、車輪の回転を制止する液圧制動力が発生し、車両は制動されるのである。
アンチロック装置114は、一般的な装置であり、簡単に説明すれば、各車輪に対応する4対の開閉弁を有している。各対の開閉弁のうちの1つは増圧用開閉弁であり、車輪がロックしていない状態では、開弁状態とされており、また、もう1つは減圧用開閉弁であり、車輪がロックしていない状態では、閉弁状態とされている。車輪がロックした場合に、増圧用開閉弁が、シリンダ装置110からブレーキ装置116へのブレーキ液の流れを遮断するとともに、減圧用開閉弁が、ブレーキ装置116からリザーバへのブレーキ液の流れを許容して、車輪のロックを解除するように構成されている。
外部高圧源装置118は、リザーバ122から増減圧装置120に至る液通路に設けられている。その外部高圧源装置118は、ブレーキ液の液圧を増加させる液圧ポンプ300と、増圧されたブレーキ液が溜められるアキュムレータ302とを含んで構成されている。ちなみに、液圧ポンプ300はモータ304によって駆動される。また、外部高圧源装置118は、高圧とされたブレーキ液の圧力を検出するための高圧源圧センサ[Pi]306を有している。ブレーキECU48は、高圧源圧センサ306の検出値を監視しており、その検出値に基づいて、液圧ポンプ300は制御駆動される。この制御駆動によって、外部高圧源装置118は、常時、設定された圧力以上のブレーキ液を増減圧装置120に供給する。
増減圧装置120は、入力圧を増加させる電磁式の増圧リニア弁250と、入力圧を低減させる電磁式の減圧リニア弁252とを含んで構成されている。増圧リニア弁250は、外部高圧源装置118からシリンダ装置110に至る液通路の途中に設けられている。一方、減圧リニア弁252は、リザーバ122からシリンダ装置110に至る液通路の途中に設けられている。なお、増圧リニア弁250および減圧リニア弁252のシリンダ装置110に接続される各々の液通路は、1つの液通路とされて、シリンダ装置110に接続されている。また、その液通路には、入力圧を検出するための入力圧センサ[Pc]256が設けられている。ブレーキECU48は、入力圧センサ256の検出値に基づいて、増減圧装置120を制御する。
上記増圧リニア弁250は、電流が供給されていない状態では、つまり、非励磁状態では、閉弁状態とされており、それに電流を供給することによって、つまり、励磁状態とすることで、その供給された電流に応じた開弁圧において開弁する。ちなみに、供給される電流が大きい程、開弁圧が高くなるように構成されている。一方、減圧リニア弁252は、電流が供給されていない状態では、開弁状態となり、通常時、つまり、当該システムへの電力の供給が可能である時には、設定された範囲における最大電流が供給されて閉弁状態とされ、供給される電流が減少させられることで、その電流に応じた開弁圧において開弁する。ちなみに、電流が小さくなるほど開弁圧が低くなるように構成されている。
≪シリンダ装置の構成≫
図2に示すように、シリンダ装置110は、シリンダ装置110の筐体であるハウジング400と、ブレーキ装置116に供給するブレーキ液を加圧する第1加圧ピストン402および第2加圧ピストン404と、外部高圧源装置118から入力される圧力によって前進する中間ピストン406と、運転者の操作が操作装置112を通じて入力される入力ピストン408とを含んで構成されている。なお、図2は、シリンダ装置110が動作していない状態、つまり、ブレーキ操作がされていない状態を示している。ちなみに、一般的なシリンダ装置がそうであるように、本シリンダ装置110も、内部にブレーキ液が収容されるいくつかの液室、それらの液室間,それらの液室と外部とを連通させるいくつかの連通路が形成されており、それらの液密を担保するため、構成部材間には、いくつかのシールが配設されている。それらのシールは一般的なものであり、明細書の記載の簡略化に配慮し、特に説明すべきものでない限り、それの説明は省略するものとする。
ハウジング400は、主に、2つの部材から、具体的には、第1ハウジング部材410、第2ハウジング部材412から構成されている。第1ハウジング部材410は、前端部が閉塞された概して円筒状を有し、後端部の外周にフランジ420が形成されており、そのフランジ420において車体に固定される。第1ハウジング部材410は、内径が互いに異なる3つの部分、具体的には、前方側に位置して内径の最も小さい前方小径部422、後方側に位置して内径の最も大きい後方大径部424、それら前方小径部422と後方大径部424との中間に位置しそれらの内径の中間の内径を有する中間部426に区分けされている。
第2ハウジング部材412は、前方側に位置して外径の大きい前方大径部430、後方側に位置して外径の小さい後方小径部432とを有する円筒形状をなしている。第2ハウジング部材412は、前方大径部430の前端部が第1ハウジング部材410の中間部426と後方大径部424との段差面に隙間を設けた状態で、その後方大径部424に嵌め込まれている。それら第1ハウジング部材410,第2ハウジング部材412は、第1ハウジング部材410の後端部の内周面に嵌め込まれたロック環434によって、互いに締結されている。
第1加圧ピストン402および第2加圧ピストン404は、それぞれ、後端部が塞がれた有底円筒形状をなしており、第1ハウジング部材410の前方小径部422に摺動可能に嵌め合わされている。第1加圧ピストン402は、第2加圧ピストン404の後方に配設されている。第1加圧ピストン402と第2加圧ピストン404との間には、2つの後輪に設けられたブレーキ装置116RL,RRに供給されるブレーキ液を加圧するための第1加圧室R1が区画形成されており、また、第2加圧ピストン404の前方には、2つの前輪に設けられたブレーキ装置116FL,FRに供給されるブレーキ液を加圧するための第2加圧室R2が区画形成されている。なお、第1加圧ピストン402と第2加圧ピストン404とは、第1加圧ピストン402の後端部に立設された有頭ピン460と、第2加圧ピストン404の後端面に固設されたピン保持筒462とによって、離間距離が設定範囲内に制限されている。また、第1加圧室R1内,第2加圧室R2内には、それぞれ、圧縮コイルスプリング(以下、「リターンスプリング」という場合がある)464、466が配設されており、それらスプリングによって、第1加圧ピストン402,第2加圧ピストン404はそれらが互いに離間する方向に付勢されるとともに、第2加圧ピストン404は後方に向かって付勢されている。
中間ピストン406は、前端部が塞がれて後端部が開口された有底円筒形状をなす本体部470と、その本体部470の後端部に設けられた鍔部472とを有する形状とされている。中間ピストン406は、第1加圧ピストン402の後方に配設され、本体部470の前方の部分が第1ハウジング部材410の前方小径部422の内周面の後部側に、鍔部472が中間部426の内周面に、それぞれ、摺動可能に嵌め合わされている。
中間ピストン406の前方において、第1加圧ピストン402の後端部との間には、外部高圧源装置118からのブレーキ液が供給される液室、つまり、高圧源装置118からの圧力が入力される液室(以下、「入力室」という場合がある)R3が区画形成されている。ちなみに、図2では、殆ど潰れた状態で示されている。また、ハウジング400の内部には、第2ハウジング部材412の内周面と中間ピストン406の本体部470の外周面との間に形成された空間が存在する。その空間が、中間ピストン406の鍔部472の前端面と、第1ハウジング部材410の前方小径部422と後方大径部424との段差面とによって区画されることで、環状の液室(以下、「反力室」という場合がある)R4が形成されている。また、鍔部472の後方には、第2ハウジング部材412の前端部との間に、中間ピストン406の前進に伴って容積が増大するとともに、入力室R3と同じ圧力とされる液室(以下、「後背室」という場合がある)R5が区画形成されている。
入力ピストン408は、前端部が開口して後方の部分が塞がった円筒形状をなしている。入力ピストン408は、ハウジング400の後端側から、第2ハウジング部材412の内周面に摺接する状態でハウジング400内に挿し込まれるとともに、中間ピストン406に挿し込まれており、中間ピストン406と入力ピストン408とは相対移動可能とされている。詳しく言えば、中間ピストン406には、それの内周面の後端部に環状のシールホルダ474が固定的に付設されており、入力ピストン408は、そのシールホルダ474に保持されたシールを介して、中間ピストン406の内周面に摺接しつつ、中間ピストン406に対して進退可能とされている。このように構成された入力ピストン408および中間ピストン406の内部には、中間ピストン406と入力ピストン408との相対移動によって自身の容積が変化する液室(以下「内部室」という場合がある)R6が区画形成されている。ちなみに、入力ピストン408と中間ピストン406との相対移動の範囲は、入力ピストン408の前端部がシールホルダ474,中間ピストン406の内周面に設けられた段差面のそれぞれによって係止されることで制限されている。また、中間ピストン406の後退も、シールホルダ474が第2ハウジング部材412の前端面に当接することで制限されている。
内部室R6には、中間ピストン406の内底面と入力ピストン408の内底面との間に、2つの圧縮コイルスプリングである第1反力スプリング480および第2反力スプリング482が配設されている。第1反力スプリング480は、第2反力スプリング482の後方に直列に配設されており、鍔付ロッド形状の浮動座484が、それらの反力スプリングに挟まれて浮動支持されている。第1反力スプリング480は、それの前端部が浮動座484の後方側のシート面に支持され、後端部が入力ピストン408の後端部に支持されている。第2反力スプリング482は、それの前端部が中間ピストン406の後端部に支持され、後端部が浮動座484の前方側のシート面に支持されている。このように配設された第1反力スプリング480および第2反力スプリング482は、入力ピストン408と中間ピストン406とを、それらが互いに離間する方向に、つまり、内部室R6の容積が拡大する方向に付勢している。シリンダ装置110は、第1反力スプリング480および第2反力スプリング482によって構成される弾性力付与機構、つまり、それらのばね反力によって、入力ピストン408と中間ピストン406とが互いに接近する方向、つまり、内部室R6の容積が減少する向きの入力ピストン408と中間ピストン406との相対移動に対抗する弾性力を、入力ピストン408と中間ピストン406とに付与する機構を備えている。また、浮動座484の後端部には、緩衝ゴム486が嵌め込まれており、その緩衝ゴム486が入力ピストン408の後端面に当接することで、浮動座484と入力ピストン408の接近は、ある範囲に制限されている。
入力ピストン408の後端部には、ブレーキペダル150操作力に加えられたを入力ピストン408に伝達すべく、また、ブレーキペダル150の操作量に応じて入力ピストン408を進退させるべく、オペレーションロッド152の前端部が連結されている。オペレーションロッド152には、円形の支持板492が付設されており、この支持板492とハウジング400との間にはブーツ494が渡されており、シリンダ装置110の後部の防塵が図られている。
第1加圧室R1は、開口が出力ポートとなる連通孔500を介して、アンチロック装置114に繋がる液通路202と連通しており、第1加圧ピストン402に設けられた連通孔502および開口がドレインポートとなる連通孔504を介して、リザーバ122に、非連通となることが許容された状態で連通している。一方、第2加圧室R2は、開口が出力ポートとなる連通孔506を介して、アンチロック装置114に繋がる液通路200と連通しており、第2加圧ピストン404に設けられた連通孔508および開口がドレインポートとなる連通孔510を介して、リザーバ122に、非連通となることが許容された状態で連通している。
第1加圧ピストン402は、第1ハウジング部材410の前方小径部422の内径よりある程度小さい外径とされており、それらの間にはある程度の流路面積を有する液通路512が形成されている。また、第1ハウジング部材410には、前方小径部422の内周から中間部426と後方大径部424との段差面に連通する液通路514が形成されている。入力室R3は、その液通路512、514、後背室R5および開口が連結ポートとなる連通孔516を介して、増減圧装置120に繋がれている。
反力室R4は、開口が連結ポートとなる連通孔518によって、外部に連通可能となっている。その連通孔518は、外部連通路520によって、増減圧装置120に連結されている。また、外部連通路520には、リリーフ弁524が設けられている。また、リリーフ弁524と連通孔518との間には、反力室R4のブレーキ液の圧力を検出するための圧力センサ[Pr]526が設けられている。
中間ピストン406には、それの外周面に設けられた開口がピストン側ポートP1となる連通孔528が設けられている。この連通孔528は内部室R6に繋がっており、連通孔528によって1つの連通路(以下、「第1連通路」という場合がある)が形成されている。また、中間ピストン402の外周面であって連通孔528の前後には、環状のシール530F、530Rが、比較的小さな間隔を置いて、それぞれ嵌め込まれている。また、第1ハウジング部材410の壁内に、連通路532が形成されており、この連通路532は、一端が前方小径部422の中間部の内周面に開口しており、第1加圧ピストン402の外周面と第ハウジング部材410の内周面との間を隙間を介して、連通孔504に連通している。一方、連通路532の他端は、前方小径部422の後端部の内周面に開口しており、この他端の開口は、ハウジング側ポートP2とされている。連通路532は、連通孔504を介して、リザーバ122に繋げられており、これら連通路532、連通孔504によって1つの連通路(以下、「第2連通路」という場合がある)が形成されている。
なお、外部高圧源装置118から、増減圧装置120を介して高圧のブレーキ液が入力室R3および後背室R5に供給される場合であっても、中間ピストン406は前進・後退させられない。詳しく説明すると、入力室R3を区画する本体部470前端の受圧面積と、後背室R5を区画するの鍔部472の後端の受圧面積とが略等しくされており、入力室R3の圧力によって中間ピストン406を後退させる力と、後背室R5の圧力によって中間ピストン406を前進させる力とが均衡することによって、中間ピストン406が進退しないようになっている。
≪シリンダ装置の作動≫
以下にシリンダ装置110の作動について説明するが、便宜上、通常時の作動を説明する前に、電気的失陥の場合、つまり、当該液圧ブレーキシステム100への電力供給が断たれた場合における作動を説明する。なお、失陥時には、増圧リニア弁250,減圧リニア弁252は、それぞれ、閉弁状態,開弁状態となっている。
失陥時において、ブレーキペダル150の踏込操作がされていない場合には、反力室R4は、リリーフ弁524が閉弁されているため、リザーバ122と連通しない反力室非連通状態が実現されている。その状態では、反力室R4は容積減少が禁止されており、中間ピストン806は、前進することができない。また、ピストン側ポートP1とハウジング側ポートP2とは、シール部材530Fと530Rとの間において向かい合っている。つまり、ピストン側ポートP1とハウジング側ポートP2とは、互いに連通されており、内部室R6とリザーバ122とが連通される内部室連通状態が実現されている。この状態で、入力ピストン408は、第1反力スプリング480および第2反力スプリング482を縮めつつ、中間ピストン406に対して前進し、その際、内部室R6の容積は、内部室R6のブレーキ液がリザーバ122へ流出されて減少する。
運転者によってブレーキペダル150の踏込操作が開始されると、入力ピストン408は前進を開始し、第1反力スプリング480および第2反力スプリング482のばね反力が増加する。これらのばね反力によって、中間ピストン406には前方への力が作用し、中間ピストン406の鍔部472によって、反力室R4におけるブレーキ液が加圧される。なお、第1反力スプリング480および第2反力スプリング482のばね反力は、入力ピストン408を後方に向かって付勢する力であるため、そのばね反力は、ブレーキペダル150の操作に対する操作反力として作用する。この操作反力の特性については、後述する。
運転者によってブレーキペダル150の踏込操作が進行し、反力室R4のブレーキ液の圧力がリリーフ弁524の開弁圧(以下、「設定開弁圧」という場合がある)に達すると、リリーフ弁524が開弁する。つまり、反力室R4がリザーバ122に連通されて、反力室R4のブレーキ液のリザーバ122への流出が許容されるとともに、中間ピストン406の前進が許容される。このような構造を有する本シリンダ装置110は、連通孔518、外部連通路520、増減圧装置120によって形成される連通路およびリリーフ弁524を含んで構成された機構、つまり、反力室R4とリザーバ122とが連通する反力室連通状態と連通しない反力室非連通状態とを選択的に実現する圧力依拠連通機構を備えているのである。なお、上記連通路は、反力室R4をリザーバ122に連通する圧力依拠連通機構用連通路として機能する。
中間ピストン406の前進によって、シール部材530Rがハウジング側ポートP2を通過すると、ピストン側ポートP1とハウジング側ポートP2との連通が断たれ、内部室非連通状態が実現される。したがって、内部室R6の容積変化が禁止され、入力ピストン408と中間ピストン406との相対移動が禁止されて、入力ピストン408と中間ピストン406とが一体となって前進させられる。このような構造を有する本シリンダ装置110は、第1連通路、第2連通路、ピストン側ポート、ハウジング側ポート、シール部材530F、530Rを含んで構成された機構、つまり、内部室R6とリザーバ122とが連通する内部室連通状態と連通しない内部室非連通状態とを選択的に実現する内部室連通状態切換機構を備えているのである。
また、シール部材530Rがハウジング側ポートP2を通過すると、反力室R4は、中間ピストン406と第1ハウジング部材410との間に形成される隙間を介して、第2連通路に連通される。詳しく言えば、その連通は、中間ピストン406が、ハウジング側ポートP2およびシール部材530Rの各々の位置によって設定される距離だけ前進し、反力室R4の容積が、その距離に応じた設定容積より小さくされた場合に実現されるのであり、反力室R4の容積が設定容積以上の場合には、その連通は実現されない。したがって、本シリンダ装置110は、反力室R4の容積が設定容積より小さい場合のみ開弁する反力室開閉弁を備えていると観念することができ、この反力室開閉弁は、ハウジング側ポートP2およびシール部材530Rを含んで構成されているのである。このような構造を有する本シリンダ装置110は、中間ピストン406と第1ハウジング部材410との間に形成される隙間と第2連通路とによって形成される連通路および反力室開閉弁とを含んで構成された機構、つまり、反力室R4とリザーバ122とが連通する反力室連通状態と連通しない反力室非連通状態とを選択的に実現する容積依拠連通機構を備えているのである。なお、上記連通路は、反力室R4をリザーバ122に連通する容積依拠連通機構用連通路として機能する。
中間ピストン406が前進することで、中間ピストン406は、第1加圧ピストン402に当接したままで第1加圧ピストン402を前進させる。また、内部室非連通状態が実現されているため、入力ピストン408と中間ピストン406とが一体とされており、ブレーキペダル150に加えられた操作力は、第1加圧ピストン402に直接伝達されることになる。したがって、運転者は、自身の力で、第1加圧ピストン402を押すことができるのである。それにより、第1加圧ピストン402は前進し、第1加圧室R1とリザーバ122の伝達が断たれ、第1加圧室R1のブレーキ液は、ブレーキペダル150に加えられた操作力によって加圧される。ちなみに、第1加圧室R1の加圧に伴って、第2加圧ピストン404も前進し、第1加圧室R1と同様、第2加圧室R2とリザーバ122との連通が断たれ、第2加圧室R2内のブレーキ液も加圧されることになる。このように、ブレーキペダル150に加えられる操作力によって、第1加圧室R1,第2加圧室R2のブレーキ液が加圧される操作力依存加圧状態が実現され、ブレーキ装置116に、運転者の操作力に応じた液圧が入力されることになる。
運転者がブレーキ操作を終了させると、つまり、操作力のブレーキペダル150への付与が解除されると、第1加圧ピストン402,第2加圧ピストン404、中間ピストン406は、リターンスプリング464、466によって、それぞれ、初期位置(図2に示す位置であり、中間ピストン406の後端が第2ハウジング部材412の前端部に当接する状態となる位置)に戻される。また、入力ピストン408は、オペレーションロッド152とともに、第1反力スプリング480および第2反力スプリング482によって、初期位置(図2に示す位置であり、前端部が、シールホルダ474によって係止される位置)に戻される。
通常時においては、ブレーキペダル150の操作量が後述する設定量を超えない段階で、入力室R3に、高圧源装置118からの圧力が入力される。そのため、入力圧の上昇によって、反力室R4の圧力が上記設定開弁圧となっても、リリーフ弁524は開弁されない。つまり、反力室R4とリザーバ122とが連通しない反力室非連通状態が維持され、反力室R4の密閉が維持されることで、中間ピストン406の前進が禁止される。また、この状態で、ブレーキペダル150の操作が進行して入力ピストン408が前進さされたとしても、中間ピストン406の前進が禁止されているため、内部室連通状態切換機構によって、内部室R6とリザーバ122とが連通されない反力室非連通状態が実現されることははい。したがって、通常時は、上述した失陥時の場合と異なり、入力ピストン408の中間ピストン406に対する前進は、常に、許容されることになる。入力ピストン408が前進する際、入力ピストン408には、弾性力付与機構、つまり、第1反力スプリング480および第2反力スプリング482による弾性力が、抵抗力として作用する。その弾性力は、ブレーキペダル150の操作に対する操作反力として作用することになる。
図3は、入力ピストン408の前進量、つまり、ブレーキぺダル150の操作量に対する操作反力の変化(以下、「操作反力勾配」という場合がある)を示すグラフである。言い換えれば、本シリンダ装置110の操作反力特性を示すグラフである。この図から解るように、ブレーキペダル150の操作量が増加するとそれにつれて操作反力は増加する。そして、設定量(以下、「反力勾配変化操作量」という場合がある)を超えてブレーキペダル150の操作量が増加すると、操作量の変化に対する操作反力の変化は大きくなる。すなわち、操作反力の増加勾配が大きくなるようにされているのである
図3に示す特性を有する操作反力の変化は、ブレーキペダル150の操作量が反力勾配変化操作量を超えた場合に、つまり、入力ピストン408の前進量が設定量を超えた場合に、2つの反力スプリング880,882の一方である第1反力スプリング480による加圧力が増加しないようにされていることで、実現されている。本シリンダ装置110では、第1反力スプリング480のばね定数が第2反力スプリング482のばね定数より相当小さくされている。そのため、比較的操作量が小さい範囲では、操作量の変化に対する操作反力の変化は相当に小さくなっている。詳しく説明すると、比較的操作量の小さい範囲では、第1反力スプリング480,第2反力スプリング482はともに圧縮変形するようにされている。それに対して、操作量が反力勾配変化操作量を超えると、緩衝ゴム486が入力ピストン408の後端部に当接して、第1反力スプリング480が弾性変形しなくなり、第2反力スプリング482のみが弾性変形する。このような機構により、設定量を超えたブレーキペダル150の操作を行った場合に、操作反力の増加勾配が大きくなるのである。このような操作反力特性により、ブレーキペダル150の操作感は良好なものとされる。
先に説明したように、本車両では、液圧ブレーキシステム100は、目標制動力のうちの回生制動力を超える分だけ液圧制動力を発生させればよい。極端に言えば、目標制動力を回生制動力で賄える限り、液圧ブレーキシステム100による液圧制動力を必要としない。本シリンダ装置110では、通常時において、発生させる液圧制動力に依存せずに、ブレーキペダル150の操作量に応じた操作反力が発生する構造とされている。極端に言えば、本シリンダ装置110は、第1加圧ピストン402,第2加圧ピストン404によるブレーキ液の加圧を行わない状態でのブレーキペダル150の操作を許容する機能を有している。つまり、本シリンダ装置110は、ハイブリッド車両に好適なストロークシミュレータを有しているのである。
上記ブレーキ操作の途中で液圧制動力を発生させるべく、第1加圧ピストン402,第2加圧ピストン404によって第1加圧室R1,第2加圧室R2のブレーキ液を加圧する場合には、高圧源装置118によって発生させられた圧力を、入力室R3に入力すればよい。具体的には、回生制動力を超える分の液圧制動力が得られるように、増減圧装置120によって制御された圧力が入力室R3に入力すればよい。本車両において回生ブレーキで得られる最大の回生制動力を利用可能最大回生制動力と定義すれば、目標制動力がその利用可能最大回生制動力を超えた時点から液圧制動力を発生させると仮定した場合において、その液圧制動力の発生が開始される時点のブレーキペダルの操作量は、概して、図3における最大回生時液圧制動開始操作量となる。液圧ブレーキシステム100では、この最大回生時液圧制動開始操作量は、前述の反力勾配変化操作量よりもやや大きく設定されている。ちなみに、バッテリ26の充電量等の関係で、目標制動力が利用可能最大回生制動力を超えない場合であっても、液圧制動力が必要となる場合があるため、その場合には、最大回生時液圧制動開始操作量に至らぬ段階で、入力室R3に高圧源装置118からの圧力を入力させればよい。
入力室R3に圧力が入力された場合、その圧力によって第1加圧ピストン402は、ブレーキペダル150に加えられた操作力に依存せずに、また、操作量に依存せずに前進して、第1加圧室R1のブレーキ液を加圧する。それに従って、第2加圧ピストン404によって第2加圧室R2のブレーキ液も加圧される。つまり、入力ピストン408の前進とは関係なく、高圧源からの圧力に依存して第1加圧室R1,第2加圧室R2におけるブレーキ液が加圧される高圧源圧依存加圧状態が実現される。このシリンダ装置110による制動力、すなわち、液圧制動力は、入力されたブレーキ液の圧力によって決まる。入力圧は、増減圧装置120によって制御され、必要な大きさの圧力が入力室R3に入力される。
通常時においても、ブレーキペダル150の操作を終了させれば、減圧リニア弁252が開弁状態とされ、第1加圧ピストン402,第2加圧ピストン404は、リターンスプリング464,466によって、それぞれ、初期位置に戻され、また、入力ピストン408は、第1反力スプリング480および第2反力スプリング482によって、初期位置に戻される。
ここで、失陥時の作動について補足する。上述したリリーフ弁524の設定開弁圧は、入力室R3への入力圧が大気圧となっている状態において、ブレーキペダル150の操作量が設定操作量となった場合における反力室R4の圧力に設定されている。その設定操作量は、図3における最大回生時液圧制動開始操作量を超えて設定されている。したがって、本シリンダ装置570では、失陥時に、その設定操作量を超えてブレーキペダル150が操作された場合に、リリーフ弁524が開弁して、操作力依拠加圧状態が実現される。
≪本シリンダ装置の特徴≫
本シリンダ装置110では、ブレーキペダル150にある程度以上の操作力が加わったときに、リリーフ弁524が開弁して反力室連通状態が実現される。一般的に、電磁式開閉弁に比較してリリーフ弁は安価であり、本シリンダ装置570は、比較的安価なシリンダ装置とされている。
リリーフ弁524の開弁によってのみ、環状室連通状態が実現されると仮定した場合、操作力によって中間ピストン406を前進させようとすると、反力室R4にリリーフ弁524の開弁圧に相当する残圧が存在するため、その残圧に応じた操作反力を受けた状態での操作が必要となる。このことは、失陥時において、操作力が、第1加圧ピストン402,第2加圧ピストン404による加圧以外に利用されるといったロスを生じさせる。そのことに鑑み、本シリンダ装置110では、中間ピストン406が設定量前進した場合に、つまり、反力室R4の容積が設定容積となった場合に反力室連通状態を実現するための機構、つまり、上述の容積依拠連通機構が設けられている。この機構によって連通状態が実現されることで、操作力のロスがなくなり、操作力の殆どが第1加圧ピストン402に伝達されることになる。つまり、シリンダ装置110によれば、失陥時において、ブレーキペダル150に加えられた操作力は、第1加圧ピストン402によるブレーキ液の加圧に有効に利用されるのである。
本シリンダ装置110では、ブレーキペダル150が操作されていない状態において、第1加圧ピストン402と中間ピストン406とが当接する程に入力室R3の容積を小さくされている。そのため、失陥時において、ブレーキペダル150が動き始めた直後から、ブレーキペダル150に加えられる操作力によって、第1加圧室R1および第2加圧室R2のブレーキ液を加圧することが可能とされている。したがって、シリンダ装置110では、失陥時において、ブレーキペダル150の操作範囲、つまり、操作ストロークが充分に確保されている。
また、本シリンダ装置110では、内部室非連通状態において、入力ピストン408と中間ピストン406との相対移動が禁止されることで、入力ピストン408と中間ピストン406とが一体となって前進する。この状態において、中間ピストン406が第1加圧ピストン402に当接することで、入力ピストン408の推進力、つまり、ブレーキペダル150に加えられた操作力が第1加圧ピストン402に直接伝達されることになる。本シリンダ装置110では、ブレーキペダル150の操作の初期の段階で内部室非連通状態を実現させ、ブレーキペダル150の操作可能範囲の殆ど全域にわたって、操作力によるブレーキ液の加圧が可能とされている。つまり、本シリンダ装置110では、このことによっても、失陥時における操作ストロークの確保が図られているのである。
なお、本シリンダ装置110では、内部室非連通状態を実現させる機構として、上述の機構を採用している。つまり、中間ピストン406に2つのシール部材530F、530Rを嵌め、その間にピストン側ポートP1を設けるとともに、中間ピストン406の移動に伴って、ピストン側ポートP1とハウジング側ポートP2との連通が断たれるよう構成されている。このような構成によって、中間ピストン406が、それの前進範囲のいずれの位置に位置している場合でも、ハウジングの内周面と2つのシール部材530F、530Rとによって区画される小さな空間によって、内部室R6が密閉される。したがって、シリンダ装置110の中間ピストン406の移動方向における寸法が小さくされており、コンパクト化が図られている。
また、本シリンダ装置110は、ストロークシミュレータを構成する第1反力スプリング480および第2反力スプリング482が、シリンダ装置110の内部に、詳しく言えば、内部室R6というデッドスペースに配設されている。そのことによっても、コンパクト化が図られている。
さらにまた、本シリンダ装置110は、入力ピストン408と中間ピストン406とが嵌め合わされた構造となっているため、入力ピストン406と係合させる必要のある高圧シールが少なくなっている。具体的には、図2に示すシール540とシール542の2つだけが入力ピストン406と係合する高圧シールである。そのため、高圧源依存加圧状態において、入力ピストン408の移動に対する摩擦抵抗が比較的少なく、摩擦抵抗がブレーキペダル150の操作感に与える影響、つまり、ブレーキ操作の操作感にに与える影響が小さくされている。
≪変形例≫
図4は、第1実施例のシリンダ装置110に代えて、変形例のシリンダ装置570を採用した液圧ブレーキシステム100を示す。シリンダ装置570は、大まかには第1実施例のシリンダ装置110と同じ構成とされている。以下の変形例の説明においては、第1実施例と異なる構成および作動について説明する。変形例における入力ピストン572は、それの中間部に鍔部574を有する円柱形状とされている。入力ピストン572の前端部の外周面には、環状のシール576F、576Rが、比較的小さな間隔を置いて、それぞれ嵌め込まれている。また、シール576Fと576Rは、ブレーキペダル150が操作されていない状態において、それらの間にハウジング側ポートP2が位置するように、入力ピストン572に嵌められている。つまり、本シリンダ装置570は、入力ピストンと中間ピストンとが一体的に形成され、中間ピストンと入力ピストンとの相対移動が禁止された態様とされている。したがって、本シリンダ装置570には、内部室連通状態切換機構および弾性力付与機構が設けられていない。
このように構成された本シリンダ装置570は、電気的失陥時において、運転者によってブレーキペダル150の踏込操作が開始されると、入力ピストン572には前方への力が作用し、鍔部574によって、反力室R4におけるブレーキ液が加圧される。その加圧された反力室R4のブレーキ液の圧力がリリーフ弁524の開弁圧に達すると、リリーフ弁524が開弁して、反力室連通状態が実現され、入力ピストン572の前進が許容される。また、入力ピストン572の前進によってシール部材530Rがハウジング側ポートP2を通過すると、反力室R4は、連通路532を介して、リザーバ122に連通される。このように、本シリンダ装置570も、反力室連通状態を実現させる機構として、圧力依拠連通機構,容積依拠連通機構という2つの機構を備えている。
図5に、第1実施例のシリンダ装置110に代えて、第2実施例のシリンダ装置600を採用した液圧ブレーキシステム100を示す。なお、この液圧ブレーキシステム100は、シリンダ装置を除いて、第1実施例のシリンダ装置110を採用した液圧ブレーキシステム100の略同じ構成であるので、以下の液圧ブレーキシステム100の説明は、シリンダ装置600についてのみ行うとこととする。
≪シリンダ装置の構成≫
図5に示すように、シリンダ装置600は、シリンダ装置600の筐体であるハウジング602と、ブレーキ装置116に供給するブレーキ液を加圧する第1加圧ピストン604および第2加圧ピストン606と、運転者の操作が操作装置112を通じて入力される入力ピストン608とを含んで構成されている。なお、図5は、シリンダ装置600が動作していない状態、つまり、ブレーキ操作がされていない状態を示している。
ハウジング602は、主に、2つの部材から、具体的には、第1ハウジング部材610、第2ハウジング部材612から構成されている。第1ハウジング部材610は、前端部が閉塞された概して円筒状を有し、後端部の外周にフランジ620が形成されており、そのフランジ620において車体に固定される。第1ハウジング部材610は、内径が互いに異なる2つの部分、具体的には、前方側に位置して内径の小さい前方小径部622、後方側に位置して内径の大きい後方大径部624に区分けされている。
第2ハウジング部材612は、前方側に位置して内径の大きい前方大径部630、後方側に位置して内径の小さい後方小径部632とを有する円筒形状をなしている。第2ハウジング部材612は、前方大径部630の前端部が第1ハウジング部材610の前方小径部622と後方大径部624との段差面に接する状態で、その後方大径部624に嵌め込まれている。それら第1ハウジング部材610,第2ハウジング部材612は、第1ハウジング部材610の後端部の内周面に嵌め込まれたロック環634によって、互いに締結されている。
第2加圧ピストン606は、後端部が塞がれた有底円筒形状をなしており、第1ハウジング部材610の前方小径部622に摺動可能に嵌め合わされている。第1加圧ピストン604は、円筒形状をなす本体部650と、その本体部650の後端部に設けられた鍔部652とを有する形状とされている。第1加圧ピストン604は、第2加圧ピストン606の後方に配設され、本体部650の前方の部分が第1ハウジング部材610の前方小径部622の内周面の後部側に、鍔部652が第2ハウジング部材612の前方大径部630の内周面に、それぞれ、摺動可能に嵌め合わされている。また、第1加圧ピストン604の本体部650の内部は、前後方向における中間位置に設けられた仕切壁部654によって、2つの部分に区画されている。つまり、第1加圧ピストン604は、前端,後端にそれぞれ開口する2つの有底穴を有する形状とされている。
第1加圧ピストン604と第2加圧ピストン606との間には、2つの後輪に設けられたブレーキ装置116RL,RRに供給されるブレーキ液を加圧するための第1加圧室R11が区画形成されており、また、第2加圧ピストン606の前方には、2つの前輪に設けられたブレーキ装置116FL,FRに供給されるブレーキ液を加圧するための第2加圧室R12が区画形成されている。なお、第1加圧ピストン604と第2加圧ピストン606とは、第1加圧ピストン604の仕切壁部654に螺着立設された有頭ピン660と、第2加圧ピストン606の後端面に固設されたピン保持筒662とによって、離間距離が設定範囲内に制限されている。また、第1加圧室R11内,第2加圧室R12内には、それぞれ、圧縮コイルスプリング(以下、「リターンスプリング」という場合がある)664、666が配設されており、それらスプリングによって、第1加圧ピストン604,第2加圧ピストン606はそれらが互いに離間する方向にされるとともに、第2加圧ピストン606は後方に向かって付勢されている。
一方、第1加圧ピストン604の後方、詳しくは、第1加圧ピストン604の鍔部652の後方には、第2ハウジング部材612の後端部との間に、外部高圧源装置118からのブレーキ液が供給される液室、つまり、高圧源装置118からの圧力が入力される液室(以下、「入力室」という場合がある)R13が区画形成されている。ちなみに、図2では、ほとんど潰れた状態で示されている。また、ハウジング602の内部には、第2ハウジング部材612の内周面と第1加圧ピストン604の本体部650の外周面との間に形成された空間が存在する。その空間が、第1加圧ピストン604の鍔部652の前端面と、第1ハウジング部材610の前方小径部622と後方大径部624との段差面とによって区画されることで、環状の液室が形成されている。この液室は、第1加圧ピストン604の鍔部652を挟んで入力室R13と対向する対向室R14とされている。
入力ピストン608は、前端部が開口されて後端部が塞がれている円筒形状の本体670と、入力ピストン608の前端部材であって、本体部670に対して突出・引込可能とされる補助ピストン672と、補助ピストン672を支持する第1反力スプリング674と、第1反力スプリング674の後方に直列に配設される第2反力スプリング676と、それらの反力スプリングに挟まれて浮動支持される鍔付ロッド形状の浮動座678とを含んで構成されている。ちなみに、第1反力スプリング674,第2反力スプリング676は、ともに圧縮コイルスプリングである。入力ピストン608は、ハウジング602の後端側から、第2ハウジング部材612の後方小径部632の内周面に摺接する状態でハウジング400内に挿し込まれるとともに、第1加圧ピストン604に、それの内周面に摺接する状態で挿し込まれており、入力ピストン608の前方には、第1加圧ピストン604との間に液室(以下「ピストン間室」という場合がある)R15が区画形成されている。
補助ピストン672は、それの前端面に孔が設けられた有底円筒状の外筒部材680と、その孔に固定的に嵌め込まれた筒状の内筒部材682と、内筒部材682の内部に収容されたボール684および付勢スプリング686とを含んで構成されている。内筒部材682の前端面は開口しており、その開口には、圧縮コイルスプリングである付勢スプリング686のばね反力によって、ボール684がその開口を塞ぐようにして前方に押しつけられている。補助ピストン672の前方に位置する仕切壁654には、内筒部材682の開口に挿し込まれることによってボール684と係合する係合ピン688が設けられている。したがって、補助ピストン672が前進し、補助ピストン672と仕切壁部654との距離が、設定距離以下になると、係合ピン688がボール684を後方に押し、内筒部材682の開口が開けられることになる。このように、補助ピストン672では、ボール684が内筒部材682の孔から離間することによって、ピストン間室R15と入力ピストン608の内部に区画形成された液室(以下、「内部室」と言う場合がある)R16とを連通させる開閉弁が構成されている。ちなみに、入力ピストン608の内部室R16は、常時、大気圧とされている。
第1反力スプリング674は、それの前端部が補助ピストン672の外筒部材680の前端部に支持され、後端部が浮動座678の前方側のシート面に支持されている。また、第2反力スプリング676は、それの後端部が入力ピストン608の本体670の後端部に支持され、後端部が浮動座678の後方側のシート面に支持されている。したがって、第1反力スプリング674および第2反力スプリング676は、補助ピストン672を、入力ピストン608の本体670から突出する方向に付勢しており、補助ピストン672を弾性的に支持している。ちなみに、補助ピストン672は、それの外筒部材680の後端の外周部に設けられた被係止環部が、入力ピストン608の本体部670の前端の内周部に設けられた段差に係止されることで、本体670からある程度以上前方に突出することが制限されている。また、浮動座678の前端部には、緩衝ゴム690が嵌め込まれており、その緩衝ゴム690が補助ピストン672の内筒部材682の後端面に当接することで、補助ピストン672と浮動座678との接近はある範囲に制限されている。
入力ピストン608の後端部には、ブレーキペダル150の操作力を入力ピストン608に伝達すべく、また、ブレーキペダル150の操作量に応じて入力ピストン608を進退させるべく、オペレーションロッド152の前端部が連結されている。ちなみに、入力ピストン608の後端部は、第2ハウジング部材612の後方小径部632の後端部によって係止されることで、後退が制限されている。また、オペレーションロッド152には、円板状のスプリングシート692が付設されており、このスプリングシート692と第2ハウジング部材612との間には圧縮コイルスプリング(以下、「リターンスプリング」という場合がある)694が配設されており、このリターンスプリング694によって、オペレーションロッド152は後方に向かって付勢されている。なお、スプリングシート692とハウジング602との間にはブーツ694が渡されており、シリンダ装置600の後部の防塵が図られている。
第1加圧室R11は、開口が出力ポートとなる連通孔700を介して、アンチロック装置114に繋がる液通路202と連通しており、第1加圧ピストン604に設けられた連通孔702および開口がドレインポートとなる連通孔704を介して、リザーバ122に連通可能とされている。一方、第2加圧室R12は、開口が出力ポートとなる連通孔706を介して、アンチロック装置114に繋がる液通路200と連通しており、第2加圧ピストン606に設けられた連通孔708および開口がドレインポートとなる連通孔710を介して、リザーバ122に連通可能とされている。また、入力ピストン608の内部室R16は、第1加圧ピストン604に設けられた連通孔712、第2ハウジング部材612に設けられた連通孔714、第1ハウジング部材610に設けられて開口がドレインポートとなる連通孔718を介して、リザーバ122に連通されている。第2ハウジング部材612の前方側に位置する部分は、第1ハウジング部材610の内径よりある程度小さい外径とされており、それらハウジング部材610,612間にはある程度の流路面積を有する液通路720が形成されている。入力室R13は、その液通路720,第2ハウジング部材612に設けられた連通孔722および開口が入力ポートとなる連通孔724を介して、増減圧装置120に繋がっている。
対向室R14は、第2ハウジング部材612に設けられた連通孔726および開口が連結ポートとなる連通孔728によって、外部に連通可能となっている。第1加圧ピストン604の本体部650は、第1ハウジング部材610の前方小径部622の内径よりある程度小さい外径とされており、それらの間にはある程度の流路面積を有する液通路730が形成されている。ピストン間室R15は、その液通路730,第1加圧ピストン604に設けられた連通孔732および開口が連結ポートとなる連通孔734を介して、外部に連通可能となっている。これら連通孔728の連結ポートと連通孔734の連結ポートとは、外部連通路736によって連通させられており、対向室R14とピストン間室R15とを連通させるための室間連通路が形成されている。つまり、本シリンダ装置600では、その室間連通路によって、対向室R14およびピストン間室R15は、1つの一体的な液室(以下、「反力室」という場合がある)R17とされている。
なお、第1加圧ピストン604と入力ピストン608との相対移動に伴って、ピストン間室R15の容積が増加・減少するとともに、対向室R14の容積が減少・増加する。上記室間連通路は、それら2つの液室の容積変化を互いに吸収し合うようにするための機能を有している。ちなみに、対向室R14の断面積はピストン間室R15の断面積と略等しくされており、入力ピストン608をハウジング602に対して移動させることなく、第1加圧ピストン604だけがハウジング602に対して移動可能とされている。
また、本シリンダ装置600では、入力ピストン608の内部室R16が、反力室R17からリザーバ122に至る連通路の一部を構成している。この連通路は、前述の補助ピストン672に設けられた開閉弁によって開閉させられる。
外部連通路736は、それの途中において分岐されており、その分岐された連通路は増減圧装置120に繋がっている。また、外部連通路736には、反力室R17の圧力が高い場合に、その圧力を増減圧装置120を通ってリザーバ122に開放するためのリリーフ弁738が設けられている。詳しく言えば、反力室R17は、リリーフ弁738および増減圧装置120が有する減圧リニア弁252を介してリザーバ122に連通可能とされているのである。なお、リリーフ弁738は、反力室R17の圧力が入力室R13に入力される圧力よりもある閾圧を超えて高い場合に開弁するようにされており、入力室R13に入力される圧力が大気圧である場合には、大気圧より上記閾圧を超えて反力室R17の圧力が増加した場合に、開弁するようになっている。上記構成により、本シリンダ装置600では、反力室R17とリザーバ122とを連通させるための上記連通路と、リリーフ弁738とによって、反力室R17の圧力が設定圧(以下、「設定開弁圧」という場合がある)を超えた場合にのみ反力室R17とリザーバ122とを連通させる連通状態切換機構とされているのである。
≪シリンダ装置の作動≫
まず、電気的失陥時のシリンダ装置600の作動を説明する。失陥時においては、運転者によってブレーキペダル150の踏込操作が開始されると、入力ピストン608の本体部670は前進を開始する。それによって、反力室R17の圧力が上記設定開弁圧となるまでは、反力室R17の圧力が上昇する。先に説明したように、ピストン間室R15の断面積と対向室R14の断面積とが略同じとされているため、入力ピストン608の前進によっても、第1加圧ピストン604は前進させられない。また、ピストン間室R15の容積変化は禁止された状態とるため、反力室R17の圧力、つまり、ピストン間室R15の圧力の上昇によって、補助ピストン672は、第1反力スプリング674および第2反力スプリング676を縮めつつ、本体部670の内部へと押し込まれる、言い換えれば、反力室R17の圧力に応じた量だけ、引き込む状態となる。
第1反力スプリング674および第2反力スプリング676の弾性変形量、つまり、圧縮量は、反力室R17の圧力の上昇に依存する。逆に言えば、第1反力スプリング674および第2反力スプリング676による弾性力に応じて、反力室R17は加圧され、その反力室R17の圧力に応じた操作反力が、入力ピストンを介して操作部材に付与される。つまり、2つのスプリング674,676による加圧力が、入力ピストン608の前進に対する抵抗力、つまり、ブレーキペダル150の操作に対する操作反力として作用することになるのである。このような構造を有する本シリンダ装置600は、補助ピストン672,第1反力スプリング674,第2反力スプリング676、浮動座678を含んで構成された機構、つまり、反力室R17内を第1反力スプリング674,第2反力スプリング676の弾性力に依拠して加圧可能な弾性力依拠加圧機構を備えているのである。
上記操作反力は、入力ピストン608の前進量、つまり、ブレーキペダル150の操作量に依存する。ブレーキペダルの操作量に対する操作反力の大きさは、本シリンダ装置600においても、先に説明した図3に示すような特性となる。この図から解るように、ブレーキペダル150の操作量が増加するとそれにつれて操作反力は増加し、反力勾配変化操作量を超えてブレーキペダル150の操作量が増加すると、操作量の変化に対する操作反力の変化は大きくなる。すなわち、操作反力の増加勾配が大きくなるようにされているのである。このような特性は、ブレーキペダル150の操作量が、反力勾配変化操作量を超えた場合に、2つの反力スプリング674,676の一方である第1反力スプリング674よる加圧力が増加しないようにされていることで、実現されている。具体的には、補助ピストン672の内筒部材682の後端面が、浮動座678に嵌め込まれた緩衝ゴム690に当接して、第1反力スプリング674が弾性変形しなくなり、第2反力スプリング676のみが弾性変形するようにされているのである。本シリンダ装置600では、第1反力スプリング674のばね定数が第2反力スプリング676のばね定数より相当小さくされている。そのため、操作反力の変化勾配は、比較的操作量が小さい範囲では小さくされ、操作量が反力勾配変化操作量を超えた場合に相当に大きくなるようになっている。
リリーフ弁738の設定開弁圧は、入力室R13に高圧源装置118からの圧力が入力されていない状態において、ブレーキペダル150の操作量が、図3における最大回生時液圧制動開始操作量よりある程度大きくなった場合における反力室R17の圧力に設定されている。ブレーキペダル150の操作量が増加し、ブレーキペダル150に加えられる操作力が設定閾操作力となった場合に、リリーフ弁738は開弁して、反力室R17は、開弁状態となっている減圧リニア弁252を介してリザーバ122と連通する。この連通状態が実現されると、反力室R17の圧力が設定開弁圧に維持されたまま、反力室R17の容積減少が許容された状態で入力ピストン608の前進が許容されることになる。このような構造を有する本シリンダ装置600において、反力室R17とリザーバ122とを連通させる上記連通状態切換機構は、反力室R17とリザーバ122とが連通する反力室連通状態と連通しない反力室非連通状態とを、反力室の圧力に依拠して、選択的に実現する圧力依拠連通機構とされているのである。また、この連通状態切換機構における連通路は、反力室R17をリザーバ122に連通する圧力依拠連通機構用連通路とされているのである。
その状態でブレーキペダル150の操作が進行すると、補助ピストン672が入力ピストン608とともにある程度まで前進する。そして、補助ピストン672と仕切壁部654との距離が設定距離以下となった場合に、仕切壁部654に設けられた係合ピン688が、補助ピストン672に設けられた開閉弁を構成するボール684を後方に押し込む。それにより、反力室R17は、入力ピストン608の内部室R16を介して、リザーバ122と連通することになる。このような構造を有する本シリンダ装置600は、反力室R17からリザーバ122に連通される連通路および反力室開閉弁とを含んで構成された機構、つまり、反力室R17とリザーバ122とが連通する反力室連通状態と連通しない反力室非連通状態とを、反力室の容積に依拠して、選択的に実現する容積依拠連通機構を備えているのである。また、この連通路は、反力室R17をリザーバ122に連通する容積依拠連通機構用連通路とされているのである。
上記容積依拠連通機構によって反力室連通状態が実現されることで、反力室R17は大気圧とされ、入力ピストン608は、比較的自由な前進が許容されて、仕切壁部654に当接し、第1加圧ピストン604を直接押すことなる。したがって、その状態では、ブレーキペダル150に加えられた運転者の操作力は、直接、第1加圧ピストン604に伝達され、運転者は、自身の操作力で、第1加圧ピストン604を押すことができるのである。なお、減圧リニア弁252は、開弁状態となっているため、入力室R13は、常時大気圧とされており、第1加圧ピストン604の前進に対する抵抗力を発生させない。
第1加圧ピストン604の前進により、第1加圧室R11とリザーバ122の伝達が断たれ、第1加圧室R11のブレーキ液は、運転者の操作力によって加圧される。ちなみに、第1加圧室R11の加圧に伴って、第2加圧ピストン606も前進し、第1加圧室R11と同様、第2加圧室R12とリザーバ122との連通が断たれ、第1加圧室R11内のブレーキ液も加圧されることになる。このように、ブレーキペダル150に加えられる操作力によって、第1加圧室R1,第2加圧室R2においてブレーキ液が加圧される操作力依存加圧状態が実現され、ブレーキ装置116に、運転者の操作力に応じた液圧が入力されることになる。
運転者がブレーキ操作を終了させると、つまり、操作力のブレーキペダル150への付与をやめると、第1加圧ピストン604,第2加圧ピストン606は、リターンスプリング664、666によって、それぞれ、初期位置(図5に示す位置であり、第1加圧ピストン604の後端が第2ハウジング部材の後端部に当接する状態となる位置)に戻される。また、入力ピストン608は、オペレーションロッド152とともに、リターンスプリング694によって、初期位置(図5に示す位置であり、後端が、第2ハウジング部材の後端部によって係止される位置)に戻される。
次に、通常時の作動について説明する。通常時においては、減圧リニア弁252には最大電流が供給されており、閉弁状態とされているものの、入力ピストン608の前進動作,反力室R17の圧力変化,弾性力依拠加圧機構の動作,ブレーキペダル150の操作量と操作反力との関係等については、上述の失陥時の場合と異ならない。通常時においては、ブレーキペダル150の操作量が上記最大回生時液圧制動開始操作量を超えない段階で、入力室R13に、高圧源装置118からの圧力が入力される。ちなみに、入力圧の上昇によって、反力室R17の圧力が上記設定開弁圧となっても、リリーフ弁738は開弁されない。
上記ブレーキ操作の途中で液圧制動力を発生させるべく、高圧源装置118によって発生させられた圧力を入力室R13に入力すれば、その圧力によって、第1加圧ピストン604,第2加圧ピストン606が前進させられて、第1加圧室R11,第2加圧室R12のブレーキ液が加圧される。入力室R13に入力される圧力に依存したブレーキ液の加圧の際には、反力室R17が密閉されていることから、上記最大回生時液圧制動開始操作量を超えない操作では、入力ピストン608の前端が、第1加圧ピストン604の仕切壁部654に当接することはない。また、第1加圧ピストン604の鍔部652の前端の受圧面積と、入力ピストン608の前端面の受圧面積とが略等しくされていることから、第1加圧ピストン604が前進したとしても、入力ピストン608の進退には影響を与えない。つまり、ブレーキペダル150の操作量、操作反力が変化しない構造とされているのである。
上記のような動作が行われることによって、入力室R13の圧力に依存するブレーキ液の加圧の際には、第1加圧ピストン604,第2加圧ピストン606は、ブレーキペダル150に加えられた操作力依存せずに、また、操作量に依存せずに前進して、第1加圧室R11,第2加圧室R12のブレーキ液を加圧する。つまり、入力ピストン608の前進とは関係なく、高圧源からの圧力に依存して第1加圧室R11,第2加圧室R12におけるブレーキ液が加圧される高圧源圧依存加圧状態が実現される。この場合のシリンダ装置600による制動力、すなわち、液圧制動力は、入力されたブレーキ液の圧力によって決まる。通常時、入力圧は増減圧装置120によって制御され、必要な大きさの圧力が入力室R13に入力される。
通常時においては、回生制動力を超える分の液圧制動力が得られるように、増減圧装置120によって制御された圧力を入力室R3に入力すればよい。多くの場合、目標制動力が上記利用可能最大回生制動力を超えた時点から液圧制動力を発生させるようにすればよい。ちなみに、バッテリ26の充電量等の関係で、目標制動力が利用可能最大回生制動力を超えない場合であっても、液圧制動力が必要となる場合があるため、その場合には、最大回生時液圧制動開始操作量に至らぬ段階で、入力室R13に高圧源装置118からの圧力を入力させればよい。
先に説明したように、本車両では、液圧ブレーキシステム100は、目標制動力のうちの回生制動力を超える分だけ液圧制動力を発生させればよい。極端に言えば、目標制動力を回生制動力で賄える限り、液圧ブレーキシステム100による液圧制動力を必要としない。本シリンダ装置600では、通常時において、発生させる液圧制動力に依存せずに、ブレーキペダル150の操作量に応じた操作反力が発生する構造とされている。極端に言えば、本シリンダ装置110は、第1加圧ピストン604,第2加圧ピストン606によるブレーキ液の加圧を行わない状態でのブレーキペダル150の操作を許容する機能を有している。つまり、本シリンダ装置600は、ハイブリッド車両に好適なストロークシミュレータを有しているのである。
通常時においても、ブレーキペダル150の操作を終了させれば、減圧リニア弁252が開弁状態とされ、第1加圧ピストン604,第2加圧ピストン606は、リターンスプリング664,666によって、それぞれ、初期位置に戻され、また、入力ピストン608は、リターンスプリング694によって、初期位置に戻される。
≪本シリンダ装置の特徴≫
本シリンダ装置600では、反力室R17をリザーバ122を連通させる機構として、上記圧力依拠連通機構が設けられており、その機構において、リリーフ弁738が採用されている。一般的に、電磁式開閉弁に比較してリリーフ弁は安価であり、本シリンダ装置600は、比較的安価とされている。
本シリンダ装置600では、圧力依拠連通機構によって実現された連通状態において、反力室の容積が設定容積より小さくなった場合に、容積依拠連通機構によって、反力室R17とリザーバ122とが連通させられる。したがって、この機構によって連通状態が実現されることで、失陥時において、操作力のロスがなくなり、操作力の殆どが第1加圧ピストン604に伝達されることになる。つまり、シリンダ装置600によれば、失陥時において、ブレーキペダル150に加えられた操作力は、第1加圧ピストン604によるブレーキ液の加圧に有効に利用されるのである。
シリンダ装置600では、入力ピストン608が、第1加圧ピストン604に設けられた有底穴に挿入されている。そのため、上記各液室を区画するために入力ピストン608と係合させる必要のある高圧シールは、第1加圧ピストン604の有底穴の内周面と入力ピストン608の外周面との間と、入力ピストン608の外周面と第2ハウジング部材612との間とに、それぞれ、1つずつしか配設されていない。具体的には、シール750とシール752である。そのため、入力ピストン608の移動に対する摩擦抵抗が比較的小さく、摩擦抵抗が操作部材の操作感に与える影響、つまり、ブレーキ操作の操作感に与える影響が小さくされている。
また、シリンダ装置600では、反力室R17を加圧する弾性力依拠加圧機構を含んでストロークシミュレータが構成されているため、ストロークシミュレータを構成する第1反力スプリング674および第2反力スプリング676をシリンダ装置600の内部に、詳しく言えば、入力ピストン608の内部に配設されているため、コンパクトなシリンダ装置とされている。
さらに、シリンダ装置600では、ピストン間室R15と対向室R14とが連通することで1つの反力室R17が形成されており、ピストン間室R15が比較的小さな容積とされている。つまり、入力ピストン608の前端と第1加圧ピストン604の有底穴の底との距離が、比較的小さくされているのである。したがって、入力ピストン608が第1加圧ピストン604に当接するまでの前進距離が小さくされている。そのことによって、シリンダ装置600では、失陥時等のブレーキ操作におけるガタ感を少なく、そのブレーキ操作の操作感が良好なものとされているのである。
また、シリンダ装置600では、ストロークシミュレータを構成する第1反力スプリング480および第2反力スプリング482が、当該シリンダ装置110の内部に、詳しく言えば、入力ピストン608の内部に配設されているため、配設されているため、コンパクトとされているのである。