Nothing Special   »   [go: up one dir, main page]

JP4021746B2 - Circuit board mounting structure for power supply coil components - Google Patents

Circuit board mounting structure for power supply coil components Download PDF

Info

Publication number
JP4021746B2
JP4021746B2 JP2002336342A JP2002336342A JP4021746B2 JP 4021746 B2 JP4021746 B2 JP 4021746B2 JP 2002336342 A JP2002336342 A JP 2002336342A JP 2002336342 A JP2002336342 A JP 2002336342A JP 4021746 B2 JP4021746 B2 JP 4021746B2
Authority
JP
Japan
Prior art keywords
substrate
mounting
coil component
hole
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002336342A
Other languages
Japanese (ja)
Other versions
JP2004172361A (en
Inventor
哲夫 杉森
誠 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosel Co Ltd
Original Assignee
Cosel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosel Co Ltd filed Critical Cosel Co Ltd
Priority to JP2002336342A priority Critical patent/JP4021746B2/en
Publication of JP2004172361A publication Critical patent/JP2004172361A/en
Application granted granted Critical
Publication of JP4021746B2 publication Critical patent/JP4021746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、コイル部品を種々の電子機器用電源装置のプリント基板に取り付けて成る電源装置用コイル部品の基板実装構造に関する。
【0002】
【従来の技術】
【特許文献1】
特公平8−8180号公報
従来、電子機器の薄型化に伴いコイル部品も薄型のものが求められ、商品化されている。しかしながら、コイル部品自体を薄くしすぎると、所定の性能を得るために床面積が大きくならざるを得ない。このような課題を解決するため、例えば図6に示すように、基板1の所定位置に取付用透孔2が設けられ、取付用透孔2にコイル部品3が落とし込まれて設けられた基板実装構造があった。このコイル部品3は、ボビン4の軸に巻線5が巻き回され、ボビン4と巻線5の中心及び外側にコア6が取り付けられている。巻線5の各引出線5aは、ボビン4の両側に設けられた端子7に接続されている。端子7は、基板1の表側面1aに折り曲げられて重ねられ、基板1の表側面1aに所定形状に印刷された回路パターン8に接続されている。そして基板1は、所定位置にスル−ホール9が設けられて、基板1の表側面1aと裏側面1bの回路パターン8同士が電気的に接続されている。そして、基板1の表側面1aと裏側面1bに、各種の電子部品10,11が載置され回路パターン8に接続されている。
【0003】
また、その他に図7に示すように、基板1の取付用透孔2にコイル部品12が落とし込まれて設けられているものもある。このコイル部品12は、ブロック状のベース14が設けられ、ベース14には端子16,18がインサート成形されている。ベース14にはコア20が設けられ、コア20の周囲に巻線5が巻き回されている。巻線5の各引き出し線5aは、端子16,18に接続され、端子16,18は、基板1の裏側面1bで取付用透孔2に延出するとともに、基板1の裏側面1bに所定形状に印刷された回路パターン8に接続されている。
【0004】
また、製品の小型化に対応するため、できるだけ巻数を減少させ、作動周波数を高くするため、各巻線を分割して相互を重ね合わせたサンドイッチ構造にして、巻線間の結合係数を大きくする工夫がなされているものとして、特公平8−8108号公報に開示されている基板実装用小形変成器がある。
【0005】
【発明が解決しようとする課題】
上記従来の図6、図7に示す技術の場合、端子は基板1の一方の面のみに複数本が設けられ、基板1の表裏面の電極端子の設置スペースを多く必要としていた。さらに、取り付け強度確保のために端子はあまり細くできず、一定の太さが必要である一方で、端子同士の絶縁を確保するためには、一定間隔を離すことが必要であった。従って、限られた実装スペースでは、端子の数を増やすことができず、高密度化の妨げとなっていた。さらに、基板1の表裏面の電子部品10,11に通電するためにスルーホール9が必要であり、スルーホール9の形成箇所には他の電子部品を実装することができず、小型化の妨げとなっていた。さらに、スルーホール9に大電流を流すことになり、発熱する恐れがあり、損失増加や信頼性の低下の恐れがあった。
【0006】
また、特公平8−8108号公報の基板実装用小形変成器の場合も、基板の片面にのみコイル巻線の引き出し線が接続されるため、端子のスペースを多く必要とし、スルーホールも必要とし上記と同様の問題がある。さらに、汎用的なプリント基板の銅箔厚は約100μm以下であるという制約により、基板コイルの等価直列抵抗が大きくなり、損失が増加し効率が低下するという問題もある。また、回路数を増やすには層数が多いプリント基板を採用する必要があるが、コストアップに繋がるものである。各層のコイルを直列接続して巻き数を増やす場合、直列接続のためにスルーホールが必要となり、上記と同様にスルーホールに大きな電流が流れることにより発熱する恐れがあり、損失増加や信頼性の低下の恐れがある。
【0007】
この発明は、上記従来の技術の問題点に鑑みてなされたものであり、簡単な構造で信頼性が高く、小型化が容易に可能な電源装置用コイル部品の基板実装構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明は、所定形状の回路パターンが表裏面に設けられた絶縁性の基板と、上記基板の所定位置に形成された取付用透孔と、上記取付用透孔にゆとりを有して嵌合されるコイル部品とから成り、上記コイル部品は、各々複数の端子を備えた複数のボビンが上記基板の取付用透孔に挿入されて配置され、複数のコイル巻線の各引出線が上記取付用透孔に挿通されて上記ボビンの各端子に巻き付けられ、上記複数のボビンの各端子が上記取付用孔の周囲の上記基板表裏の電極に各々接続されて固定され、上記複数のボビンのコイル巻線に上記基板表裏面側からE型コアが貫通し磁気結合して一つのコイル部品に形成されている電源装置用コイル部品の基板実装構造である。
【0009】
【発明の実施の形態】
以下、この発明の実施形態について図面に基づいて説明する。図1,図2はこの発明の第一実施形態について説明したものであり、この実施形態の、電源装置用コイル部品の基板実装構造21は、絶縁性の基板22が設けられ、基板22の表側面22aと裏側面22bには、所定形状の回路パターン24が設けられている。
【0010】
基板22の所定位置には後述するコイル部品35が落とし込まれて取り付けられる矩形の取付用透孔26が形成されている。基板22の表側面22aには、取付用透孔26の一方の縁部26a近傍に、回路パターン24に接続された電極端子28が2個設けられている。取付用透孔26の縁部26aに対して対向する縁部26b近傍には、回路パターン24に接続された電極端子28が3個設けられている。さらに、基板22の裏側面22bにも同様に、取付用透孔26の縁部26a近傍に電極端子28が2個と、縁部26b近傍に電極端子28が3個設けられている。そして、基板22の取付用透孔26の、縁部26aの外側には、基板22を貫通するスルーホール30が設けられ、スルーホール30の内周面には導体が設けられて基板22の表側面22aと裏側面22bの回路パターン24を電気的に接続している。基板22の表側面22aと裏側面22bの所定位置には、各種の電子部品32,34がそれぞれ回路パターン24に接続されて取り付けられている。
【0011】
取付用透孔26の中には、コイル部品35が落とし込まれて設けられている。コイル部品35は、コイル巻線37が巻かれた空心コイル36が、複数個重ね合わされて筒状に設けられている。空心コイル36は、変形を防ぐために融着コイルでもよい。重ねられた空心コイル36の中心には、E型コア38が基板22の表裏から貫通して取り付けられている。E型コア38は、空心コイル36の中心軸方向に同形の一対を取り付け、互いに端面を接続させて設けられ、磁気結合して一つのコイル部品35を構成するようにしている。複数の空心コイル36の各引出線40は、所定の電極端子28に取付用透孔26を挿通して接続されている。電極端子28の接続は、ハンダ付け等適宜選択される。
【0012】
次に実装構造21の組立方法は、コイル部品35を、空心コイル23の軸方向が取付用透孔26挿通方向に一致させるように落とし込み、引出線40を取付用透孔26を経て電極端子28に接続した後、空心コイル36にE型コア38を取り付ける。または、空心コイル36にE型コア38を予め取り付けてから、引出線40を電極端子28に接続してもよい。さらに、E型コア38は、取付用透孔26の内周面に、接着剤42で適宜固定してもよい。
【0013】
この実施形態の実装構造21によれば、大きな電流がスルーホール30に流れないように、引出線40を、所定の電子部品32,34がある側の基板22の面に、取付用透孔26を挿通させて配置し、基板22の表側面22aと裏側面22bのいずれかの電極端子28を選択することができる。これにより、スルーホール30に空心コイル36からの大きな電流を流さなくても良く、スルーホール30での発熱を抑えてエネルギー損失を少なくし、信頼性が向上する。さらに、電極端子28の数を、片面のみの場合の約2倍に増やせるため、回路数が多い多機能トランスを小型の基板により実現することができる。例えば、一つのトランスで多くの出力を取り出すことが可能となり、容易に多出力電源装置を構成することができる。また、制御用の補助コイルを一体に多数設けることもできるので、回路部品の削減が可能となり、電源装置の小型化を図ることができる。
【0014】
次にこの発明の第二実施形について図3に基づいて説明する。ここで上記実施形態と同様の構成は同一符号を付して説明を省略する。この実施形態の実装構造44は、基板22の取付用透孔26に、コイル部品46が落とし込まれて取り付けられている。コイル部品46は、一対のボビン48,50が軸方向に並んで設けられ、ボビン48,50の軸にはコイル巻線37がそれぞれ巻き回されている。
【0015】
ボビン48,50の側方には、両側の側方へ突出した板状の複数の端子52が一体に設けられている。そして、ボビン48,50の外側には、コイル巻線37の引出線40が引き出され、取付用透孔26を挿通して各端子52に巻き回されて接続されている。各端子52は、基板22の表側面22a及び裏側面22bの回路パターン24の電極に各々接続されてハンダ付け等により固定されている。一対のボビン48,50は、軸方向に重ねられ、ボビン48,50の外側から、E型コア38が取り付けられている。E型コア38は、ボビン48,50の中心を貫通し、互いに端面を接続させて設けられ、磁気結合して一つのコイル部品46を構成するようにしている。
【0016】
この実施形態の実装構造44によっても、上記実施の形態と同様の効果を有し、小型化と薄型化が可能であり、また信頼性を向上させることができる。
【0017】
次にこの発明の第三実施形態について図4,図5に基づいて説明する。ここで上記実施形態と同様の構成は同一符号を付して説明を省略する。この実施形態の実装構造54は、基板22の取付用透孔26に、コイル部品56が落とし込まれて取り付けられている。コイル部品56は、平角線58で作られた空心コイル60が複数個重ねあわされて筒状に設けられている。重ねられた各空心コイル60の外側には、E型コア38が取り付けられている。E型コア38は、空心コイル60の中心軸方向に同形の一対を取り付け、互いに端面を接続させて設けられ、磁気結合して一つのコイル部品56を構成するようにしている。
【0018】
コイル部品56は、空心コイル60の軸方向を取付用透孔26の挿通方向に一致させて落とし込まれて設けられ、複数の空心コイル60の各引出線62は、所定の電極端子28に取付用透孔26を挿通して、スポット溶接等により接続されている。
【0019】
この実施形態の実装構造54によれば、平角線58のコイル60においても上記実施の形態と同様の効果を有し、小型化と薄型化が可能であり、また信頼性を向上させることができる。
【0020】
なお、この発明の電源装置用コイル部品の基板実装構造は、上記各実施の形態に限定されず、適宜変更可能である。コイル部品の巻線の素材、形状、コイルの数など自由に設定することができる。
【0021】
【発明の効果】
この発明の電源装置用コイル部品の基板実装構造は、コイル部品の取付用透孔を挿通するようにして巻線の引出線が電極端子に取り付けられているので、スルーホールを経由せずに基板の反対側の電子部品にコイル巻線の引出線を接続することが可能であり、簡単な構造で、信頼性が高く、基板実装構造を薄型にすることもできる。さらに、基板に取り付ける電極端子の数を、片面のみの場合よりも多くすることができるため、回路数が多い多機能電源装置を実現することができる。
【図面の簡単な説明】
【図1】 この発明の一実施形態の電源装置用コイル部品の基板実装構造の縦断面図である。
【図2】 この実施形態の電源装置用コイル部品の基板実装構造の平面図である。
【図3】 この発明の第二実施形態の電源装置用コイル部品の基板実装構造の縦断面図である。
【図4】 この発明の第三実施形態の電源装置用コイル部品の基板実装構造の縦断面図である。
【図5】 この実施形態の電源装置用コイル部品の基板実装構造の平面図である。
【図6】 従来の技術の電源装置用コイル部品の基板実装構造の縦断面図である。
【図7】 従来の技術の電源装置用コイル部品の基板実装構造の縦断面図である。
【符号の説明】
21 基板実装構造
22 基板
24 回路パターン
26 取付用透孔
28 電極端子
30 スルーホール
32,34 電子部品
35 コイル部品
36 空心コイル
37 コイル巻線
38 E型コア
40 引出線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate mounting structure for a coil component for a power supply device in which the coil component is attached to a printed circuit board of a power supply device for various electronic devices.
[0002]
[Prior art]
[Patent Document 1]
JP, 8-8180, A Conventionally, with the thinning of electronic equipment, a thin coil component is demanded and commercialized. However, if the coil component itself is made too thin, the floor area must be increased in order to obtain a predetermined performance. In order to solve such a problem, for example, as shown in FIG. 6, a mounting through-hole 2 is provided at a predetermined position of the substrate 1, and the coil component 3 is dropped into the mounting through-hole 2. There was a mounting structure. In the coil component 3, a winding 5 is wound around a shaft of a bobbin 4, and a core 6 is attached to the center and outside of the bobbin 4 and the winding 5. Each lead wire 5 a of the winding 5 is connected to terminals 7 provided on both sides of the bobbin 4. The terminals 7 are folded and overlapped on the front side surface 1a of the substrate 1 and connected to a circuit pattern 8 printed on the front side surface 1a of the substrate 1 in a predetermined shape. The substrate 1 is provided with through holes 9 at predetermined positions, and the circuit patterns 8 on the front side surface 1a and the back side surface 1b of the substrate 1 are electrically connected to each other. Various electronic components 10 and 11 are placed on the front side surface 1 a and the back side surface 1 b of the substrate 1 and connected to the circuit pattern 8.
[0003]
In addition, as shown in FIG. 7, a coil component 12 is provided by being dropped into the mounting through hole 2 of the substrate 1. The coil component 12 is provided with a block-shaped base 14, and terminals 16 and 18 are insert-molded on the base 14. A core 20 is provided on the base 14, and a winding 5 is wound around the core 20. Each lead wire 5 a of the winding 5 is connected to terminals 16 and 18, and the terminals 16 and 18 extend to the mounting through-hole 2 on the back side surface 1 b of the substrate 1 and are also provided on the back side surface 1 b of the substrate 1. The circuit pattern 8 printed on the shape is connected.
[0004]
In order to reduce the number of turns and increase the operating frequency in order to cope with the miniaturization of the product, a device that increases the coupling coefficient between the windings by using a sandwich structure in which the windings are divided and overlapped with each other. There is a small transformer for mounting on a substrate disclosed in Japanese Patent Publication No. 8-8108.
[0005]
[Problems to be solved by the invention]
In the conventional techniques shown in FIGS. 6 and 7, a plurality of terminals are provided only on one surface of the substrate 1, and a large installation space for electrode terminals on the front and back surfaces of the substrate 1 is required. Furthermore, the terminals cannot be made very thin in order to secure the attachment strength, and a certain thickness is required. On the other hand, in order to ensure insulation between the terminals, it is necessary to keep a certain distance. Therefore, in a limited mounting space, the number of terminals cannot be increased, which hinders high density. Furthermore, a through hole 9 is necessary to energize the electronic components 10 and 11 on the front and back surfaces of the substrate 1, and other electronic components cannot be mounted at the place where the through hole 9 is formed, which hinders downsizing. It was. In addition, a large current is caused to flow through the through-hole 9, which may cause heat generation, which may increase loss and reduce reliability.
[0006]
Also, in the case of the small transformer for mounting on a board disclosed in Japanese Examined Patent Publication No. 8-8108, since the lead wire of the coil winding is connected only to one side of the board, it requires a lot of terminal space and also requires a through hole. There is a problem similar to the above. Further, due to the restriction that the copper foil thickness of a general-purpose printed board is about 100 μm or less, there is a problem that the equivalent series resistance of the board coil increases, loss increases, and efficiency decreases. In order to increase the number of circuits, it is necessary to employ a printed circuit board having a large number of layers, which leads to an increase in cost. When the number of turns is increased by connecting the coils of each layer in series, a through hole is required for the series connection, and there is a risk that heat will be generated due to a large current flowing through the through hole in the same manner as described above. There is a risk of decline.
[0007]
The present invention has been made in view of the above-described problems of the prior art, and provides a substrate mounting structure for a coil component for a power supply device that has a simple structure, is highly reliable, and can be easily downsized. Objective.
[0008]
[Means for Solving the Problems]
The present invention has an insulating substrate having a circuit pattern of a predetermined shape provided on the front and back surfaces, a mounting through hole formed at a predetermined position of the substrate, and a space in the mounting through hole. The coil parts are arranged by inserting a plurality of bobbins each having a plurality of terminals into the mounting through holes of the substrate, and the lead wires of the plurality of coil windings are attached to the mounting parts. is inserted is wound to each terminal of the bobbin YoToruana, each terminal of the plurality of bobbins are fixed are respectively connected to the substrate front and back surfaces of electrodes around the mounting Toru holes, the plurality of bobbin This is a board mounting structure of a coil component for a power supply device in which an E-type core penetrates and is magnetically coupled to the coil winding from the front and back surfaces of the substrate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 illustrate a first embodiment of the present invention. A substrate mounting structure 21 of a coil component for a power supply device according to this embodiment is provided with an insulating substrate 22, and a surface of the substrate 22 is illustrated. A circuit pattern 24 having a predetermined shape is provided on the side surface 22a and the back side surface 22b.
[0010]
A rectangular mounting through hole 26 is formed at a predetermined position of the substrate 22 to which a coil component 35 described later is dropped and mounted. Two electrode terminals 28 connected to the circuit pattern 24 are provided on the front side surface 22 a of the substrate 22 in the vicinity of one edge portion 26 a of the mounting through hole 26. Three electrode terminals 28 connected to the circuit pattern 24 are provided in the vicinity of the edge portion 26 b facing the edge portion 26 a of the mounting through hole 26. Further, the back side surface 22b of the substrate 22 is similarly provided with two electrode terminals 28 in the vicinity of the edge portion 26a of the mounting through hole 26 and three electrode terminals 28 in the vicinity of the edge portion 26b. A through hole 30 that penetrates the substrate 22 is provided outside the edge portion 26 a of the mounting through hole 26 of the substrate 22, and a conductor is provided on the inner peripheral surface of the through hole 30. The circuit patterns 24 on the side surface 22a and the back side surface 22b are electrically connected. Various electronic components 32 and 34 are connected and attached to the circuit pattern 24 at predetermined positions on the front side surface 22 a and the back side surface 22 b of the substrate 22.
[0011]
A coil component 35 is dropped into the mounting through hole 26. The coil component 35 is provided in a cylindrical shape by superposing a plurality of air-core coils 36 around which coil windings 37 are wound. The air-core coil 36 may be a fused coil to prevent deformation. An E-type core 38 is attached to the center of the overlapped air-core coil 36 so as to penetrate from the front and back of the substrate 22. The E-shaped core 38 is provided by attaching a pair of the same shape in the direction of the central axis of the air-core coil 36 and connecting the end faces to each other and magnetically coupling to constitute one coil component 35. Each lead wire 40 of the plurality of air-core coils 36 is connected to a predetermined electrode terminal 28 through the mounting through hole 26. The connection of the electrode terminal 28 is appropriately selected by soldering or the like.
[0012]
Next, the mounting structure 21 is assembled by dropping the coil component 35 so that the axial direction of the air-core coil 23 coincides with the direction of insertion of the mounting through-hole 26, and the lead wire 40 passes through the mounting through-hole 26 and the electrode terminal 28. Then, the E-type core 38 is attached to the air-core coil 36. Alternatively, the lead wire 40 may be connected to the electrode terminal 28 after the E-type core 38 is attached to the air-core coil 36 in advance. Furthermore, the E-shaped core 38 may be appropriately fixed to the inner peripheral surface of the mounting through hole 26 with an adhesive 42.
[0013]
According to the mounting structure 21 of this embodiment, the lead wire 40 is placed on the surface of the substrate 22 on the side where the predetermined electronic components 32 and 34 are located so that a large current does not flow into the through hole 30. The electrode terminals 28 on the front side surface 22a and the back side surface 22b of the substrate 22 can be selected. As a result, a large current from the air-core coil 36 does not need to flow through the through hole 30, heat generation in the through hole 30 is suppressed, energy loss is reduced, and reliability is improved. Furthermore, since the number of electrode terminals 28 can be increased to about twice that of a single side, a multi-function transformer with a large number of circuits can be realized with a small substrate. For example, it is possible to extract many outputs with one transformer, and a multi-output power supply device can be easily configured. In addition, since a large number of auxiliary control coils can be integrally provided, circuit components can be reduced, and the power supply device can be reduced in size.
[0014]
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same components as those in the above embodiment are denoted by the same reference numerals, and description thereof is omitted. In the mounting structure 44 of this embodiment, the coil component 46 is dropped into the mounting through hole 26 of the substrate 22 and attached. The coil component 46 includes a pair of bobbins 48 and 50 arranged in the axial direction, and coil windings 37 are wound around the shafts of the bobbins 48 and 50, respectively.
[0015]
On the sides of the bobbins 48 and 50, a plurality of plate-like terminals 52 projecting laterally on both sides are integrally provided. The lead wire 40 of the coil winding 37 is drawn outside the bobbins 48 and 50, inserted through the mounting through holes 26, wound around the terminals 52, and connected. Each terminal 52 is connected to the electrode of the circuit pattern 24 on the front side surface 22a and the back side surface 22b of the substrate 22 and fixed by soldering or the like. The pair of bobbins 48 and 50 are stacked in the axial direction, and an E-type core 38 is attached from the outside of the bobbins 48 and 50. The E-type core 38 passes through the centers of the bobbins 48 and 50, is provided with end faces connected to each other, and is magnetically coupled to form one coil component 46.
[0016]
The mounting structure 44 of this embodiment also has the same effect as that of the above embodiment, can be reduced in size and thickness, and can improve reliability.
[0017]
Next, a third embodiment of the present invention will be described with reference to FIGS. Here, the same components as those in the above embodiment are denoted by the same reference numerals, and description thereof is omitted. In the mounting structure 54 of this embodiment, the coil component 56 is dropped into the attachment through hole 26 of the substrate 22 and attached. The coil component 56 is provided in a cylindrical shape by overlapping a plurality of air-core coils 60 made of a rectangular wire 58. An E-shaped core 38 is attached to the outside of the stacked air-core coils 60. The E-shaped core 38 is provided by attaching a pair of the same shape in the direction of the central axis of the air-core coil 60 and connecting the end faces to each other and magnetically coupling to constitute one coil component 56.
[0018]
The coil component 56 is provided by being dropped with the axial direction of the air core coil 60 aligned with the insertion direction of the mounting through hole 26, and each lead wire 62 of the plurality of air core coils 60 is attached to a predetermined electrode terminal 28. The through-hole 26 is inserted and connected by spot welding or the like.
[0019]
According to the mounting structure 54 of this embodiment, the coil 60 of the rectangular wire 58 has the same effect as that of the above embodiment, and can be reduced in size and thickness, and the reliability can be improved. .
[0020]
In addition, the board | substrate mounting structure of the coil components for power supply devices of this invention is not limited to said each embodiment, It can change suitably. The material, shape, and number of coils of the coil component winding can be freely set.
[0021]
【The invention's effect】
In the power supply device coil component mounting structure according to the present invention, since the lead wire of the winding is attached to the electrode terminal so as to be inserted through the mounting hole of the coil component, the substrate does not pass through the through hole. It is possible to connect the lead wire of the coil winding to the electronic component on the opposite side, and with a simple structure, the reliability is high and the substrate mounting structure can be made thin. Furthermore, since the number of electrode terminals attached to the substrate can be increased as compared with the case of only one side, a multi-function power supply device with a large number of circuits can be realized.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a substrate mounting structure of a coil component for a power supply device according to an embodiment of the present invention.
FIG. 2 is a plan view of a substrate mounting structure of a coil component for a power supply device according to this embodiment.
FIG. 3 is a longitudinal sectional view of a substrate mounting structure of a coil component for a power supply device according to a second embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of a substrate mounting structure of a coil component for a power supply device according to a third embodiment of the present invention.
FIG. 5 is a plan view of a substrate mounting structure of a coil component for a power supply device according to this embodiment.
FIG. 6 is a longitudinal sectional view of a substrate mounting structure of a coil component for a power supply device according to the prior art.
FIG. 7 is a longitudinal sectional view of a substrate mounting structure of a conventional coil component for a power supply device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 Board mounting structure 22 Board | substrate 24 Circuit pattern 26 Mounting through-hole 28 Electrode terminal 30 Through-hole 32,34 Electronic component 35 Coil component 36 Air core coil 37 Coil winding 38 E core 40 Leader line

Claims (1)

所定形状の回路パターンが表裏面に設けられた絶縁性の基板と、上記基板の所定位置に形成された取付用透孔と、上記取付用透孔にゆとりを有して嵌合されるコイル部品とから成り、上記コイル部品は、各々複数の端子を備えた複数のボビンが上記基板の取付用透孔に挿入されて配置され、複数のコイル巻線の各引出線が上記取付用透孔に挿通されて上記ボビンの各端子に巻き付けられ、上記複数のボビンの各端子が上記取付用孔の周囲の上記基板表裏の電極に各々接続されて固定され、上記複数のボビンのコイル巻線に上記基板表裏面側からE型コアが貫通し磁気結合して閉磁路を形成し、一つのコイル部品に形成されていることを特徴とする電源装置用コイル部品の基板実装構造。An insulating substrate having a circuit pattern of a predetermined shape provided on the front and back surfaces, a mounting through hole formed at a predetermined position of the substrate, and a coil component fitted with a clearance in the mounting through hole The coil component is configured such that a plurality of bobbins each having a plurality of terminals are inserted into the mounting through holes of the substrate, and each lead wire of the plurality of coil windings is disposed in the mounting through holes. is inserted is wound to each terminal of the bobbin, each terminal of the plurality of bobbins are fixed are respectively connected to the substrate front and back surfaces of electrodes around the attachment permeable holes, the coil windings of the plurality of bobbins A board mounting structure for a coil component for a power supply device, wherein an E-type core penetrates from the front and back sides of the substrate and is magnetically coupled to form a closed magnetic circuit, which is formed into one coil component.
JP2002336342A 2002-11-20 2002-11-20 Circuit board mounting structure for power supply coil components Expired - Fee Related JP4021746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336342A JP4021746B2 (en) 2002-11-20 2002-11-20 Circuit board mounting structure for power supply coil components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336342A JP4021746B2 (en) 2002-11-20 2002-11-20 Circuit board mounting structure for power supply coil components

Publications (2)

Publication Number Publication Date
JP2004172361A JP2004172361A (en) 2004-06-17
JP4021746B2 true JP4021746B2 (en) 2007-12-12

Family

ID=32700210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336342A Expired - Fee Related JP4021746B2 (en) 2002-11-20 2002-11-20 Circuit board mounting structure for power supply coil components

Country Status (1)

Country Link
JP (1) JP4021746B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223253B1 (en) 2010-04-19 2013-01-17 리엔 창 일렉트로닉 엔터프라이즈 컴퍼니 리미티드 movable transformer embedded into an opening of a PCB and a method of installing the same
JP5591381B2 (en) * 2013-07-24 2014-09-17 三菱電機株式会社 Circuit board
JP5676700B2 (en) * 2013-07-24 2015-02-25 三菱電機株式会社 Circuit board

Also Published As

Publication number Publication date
JP2004172361A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP3484971B2 (en) Common mode choke coil
US8564394B2 (en) Power module and circuit board assembly thereof
JP4306666B2 (en) Surface mount type inductor
JP6572871B2 (en) Transformer device and assembly method thereof
US7411477B2 (en) Inductor
JP2008021788A (en) Multilayer inductor
US10405429B2 (en) Transformer integrated type printed circuit board
JP2012038941A (en) Transformer
JP2770750B2 (en) Inductance element
JP4021746B2 (en) Circuit board mounting structure for power supply coil components
JP2008205350A (en) Magnetic device
JP2005150195A (en) Transformer
JPH07312313A (en) Toroidal transformer and its assembling method
WO2022007706A1 (en) Winding assembly, on-board charger, and vehicle
JP2009027045A (en) Transformer
JP5104933B2 (en) Transformer parts
JPH11186055A (en) Composite magnetic parts
JP2971943B2 (en) Thin transformer
JPH09270343A (en) Sheet coil stacked type transformer and structure of its terminal
JP5544180B2 (en) Transformer module and electronic device
JP2500987Y2 (en) Thin transformer
TWI423278B (en) In-line positioning structure of conductive sheet for planar
JP2510366Y2 (en) Thin transformer
JP3647133B2 (en) Inductance element
JP2001285005A (en) Noise filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees