Nothing Special   »   [go: up one dir, main page]

JP2011211106A5 - - Google Patents

Download PDF

Info

Publication number
JP2011211106A5
JP2011211106A5 JP2010079790A JP2010079790A JP2011211106A5 JP 2011211106 A5 JP2011211106 A5 JP 2011211106A5 JP 2010079790 A JP2010079790 A JP 2010079790A JP 2010079790 A JP2010079790 A JP 2010079790A JP 2011211106 A5 JP2011211106 A5 JP 2011211106A5
Authority
JP
Japan
Prior art keywords
magnetic material
rare earth
magnetic
powder
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010079790A
Other languages
English (en)
Other versions
JP2011211106A (ja
JP5247754B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2010079790A priority Critical patent/JP5247754B2/ja
Priority claimed from JP2010079790A external-priority patent/JP5247754B2/ja
Priority to CN201110037844.XA priority patent/CN102208235B/zh
Priority to US13/029,348 priority patent/US8821649B2/en
Publication of JP2011211106A publication Critical patent/JP2011211106A/ja
Publication of JP2011211106A5 publication Critical patent/JP2011211106A5/ja
Application granted granted Critical
Publication of JP5247754B2 publication Critical patent/JP5247754B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

他方でNd-Fe-B系磁石では、重希土類元素を含有するフッ化物を使用することで保磁力を増加させている。上記フッ化物は主相をフッ化させる反応ではなく、主相と反応あるいは拡散するのは重希土類元素である。このような重希土類元素は高価でかつ希少であるため、重希土類元素の低減が環境保護の観点からの課題になっている。重希土類元素よりも低価格である軽希土類元素は、Sc,Yおよび原子番号57から62の元素であり、その一部の元素は磁性材料に使用されている。酸化物以外の鉄系磁石で最も多く量産されている材料がNd2Fe14B系であるが、耐熱性確保のためにTbやDyなどの重希土類元素の添加が必須である。また、Sm2Fe17N系磁石は、焼結ができず一般にはボンド磁石として使用されるため、性能の面での欠点がある。R2Fe17(Rは希土類元素)系合金は、キュリー温度(Tc)が低いが、炭素あるいは窒素が侵入した化合物ではキュリー温度及び磁化が高くなることから、各種磁気回路に適用されている。
具体的にはフッ素を格子間位置に配置し、格子間位置に配置するフッ素濃度を0.1から15原子%の範囲にすること、フッ素及び鉄の規則度を高めること、粒界あるいは最表面に酸フッ化物などの主相よりもエネルギー的に安定なフッ化物を形成することが挙げられる。
侵入型フッ化物を含有する磁粉あるいは結晶粒には、侵入型フッ化物以外のフッ素含有化合物が最表面の一部または粒界の一部に形成される。これは、結晶粒あるいは磁粉が
Rel(FemM1-m)Fx 、Res(FetM1-t)Fy 及び(Re, Fe, M)aObFcから構成されており、Rel(FemM1-m)Fxが中心部、 Res(FetM1-t)Fyが外周部及び外周部の外側あるいは粒界に(Re, Fe, M)aObFcが形成されており、ReはYを含む希土類元素、Feは鉄、Fはフッ素あるいは17族の元素またはフッ素とフッ素以外の侵入型元素、Mが遷移元素であり、さらに
Rel(FemM1-m)Fx のa軸と Res(FetM1-t)Fyのa軸のなす角度が平均して45度以内
あるいは
Rel(FemM1-m)Fx のc軸と Res(FetM1-t)Fyのc軸のなす角度が平均して45度以内
の関係を保持することが高保磁力化に必須である。
上記特性を示すNdFe12F磁石は、フッ素濃度が結晶粒界と結晶粒中心部でフッ素濃度が異なる。フッ素濃度は結晶粒界近傍で高く結晶粒中心部で低く、濃度差として0.1原子%以上認められる。このフッ素濃度差は波長分散型X線分析により確認できる。また、結晶粒界あるいは磁石表面にはNdOFやNdF 3 など体心正方晶あるいは立方晶構造をもった相が成長し、主相(NdFe12F)とは異なる組成の水素、炭素や窒素などの不純物を含有するフッ化物あるいは酸フッ化物が成長する。
Figure 2011211106
Figure 2011211106
Figure 2011211106
Figure 2011211106
こうして得た磁粉を大気に曝すことなく磁界印加しつつ1 t/cm2の荷重を加え、仮成型体を作成する。これを500℃以下で圧縮成型あるいは部分焼結することで磁粉の方向がそろった異方性磁石が作成でき、20℃での磁気特性が、残留磁束密度1.5T、保磁力20kOeを示す。またフッ素化に用いることのできる化合物としてはフッ化アンモニウムのほかに、たとえばフッ化水素アンモニウム、酸性フッ化アンモニウム、トリエチルアミンやピリジンなどのアミンとフッ化水素からなる塩、フッ化セシウム、フッ化クリプトン、フッ化キセノンなどがあり、一方で使用可能な液体としてはスクアランの他に炭素数6以上のアルカン、アルケン、アルキン、カルボン酸、アルコール、ケトン、エーテル、アミン、パーフルオロアルキルエーテルなどが使用可能である。
冷却後、この混合物を1重量%水酸化カリウム水溶液中に投入するとフッ化カリウムおよびフッ化水素カリウムは水に溶解し、Sm 2 Fe 17 F X 粉末が沈降した。そして上澄み液の除去、イオン交換水の追加、撹拌、沈降の操作を5回繰り返して洗浄し真空乾燥させてSm2Fe17Fx粉末を得た。
[実施例12]
本実施例では溶液を用いたSm 2 Fe 17 F 3 磁粉を用いたボンド磁石の製造方法を説明する。
加熱およびボールによる粉砕、トリエチルアミン3フッ化水素との反応によりSm2Fe17粉のフッ素化が進行し、平均粒径が0.5から5μmのフッ化物磁性粉が得られる。フッ素化は粒子表面から進行するため、粒子表面にはSmFe12F1-3が形成されているのに対し、粉末中心部はSm2Fe12F0.01-0.1 であり、両相の結晶方位差は平均45度以内である。このフッ素化された磁性粉末をバインダーであるフェノール樹脂と共に混合し、磁場中で成型固化しボンド磁石を得る。
磁性粉は、上記のボールミリングを採用せずに前記粉砕粉とフッ化アンモニウム粉とを混合して加熱し250℃、10〜100時間の熱処理によりフッ化あるいはフッ素の拡散処理、あるいはフッ化物のアルコール膨潤溶液を塗布乾燥後200〜500℃で加熱拡散させる処理により形成可能である。
粉末あるいは結晶粒の中心部はフッ素濃度が低くNd濃度も平均的に低く、粉末外周側近傍の主相で(Nd 0.75 Zr 0.25 )(Fe0.7Co0.3)10F1-5の組成となる。主相の結晶構造は六方晶あるいは六方晶に立方晶あるいは正方晶、斜方晶、単斜方晶、菱面体晶が混在しており、粉末中心部のフッ化物よりもフッ素濃度が高濃度のフッ化物は粉末あるいは結晶粒中心部の結晶構造が相似で格子体積が異なり、高濃度のフッ化物の方が低濃度のフッ化物の格子体積よりも大きい。
レジスト剥離前にアルコールにCoを0.1原子%含有するMgF2を膨潤させた結晶粒子を含有しない溶液を塗布し200℃に加熱することでレジストと合金膜界面にもMgF2-0.1%Co膜を形成でき、10 x 100 x 10nmのFe-30%Co合金の外周に厚さ約1nmのMgF2-0.1%Co膜が付着した扁平上のリボンを形成する。
一部のフッ素原子はFe-30原子%Co合金の格子間に侵入し原子間距離を拡大することにより原子磁気モーメントを増加させる。200℃以上でフッ化させると安定なFeF2FeF 3 などの化合物が成長しやすくなる。また100℃以下の低温ではフッ化が進行しにくい。フッ素原子が侵入したFe-30原子%Co合金はフッ素濃度0.01から1原子%で原子磁気モーメントの増加や結晶異方性エネルギーの増加が見られる。フッ素濃度1〜15原子%で一軸磁気異方性エネルギーが増加するため保磁力が増加し、フッ素濃度10原子%で5kOeの保磁力が確認された。
このような添加元素の偏在化はフッ素を含有するガス成分を用いたフッ化処理により150〜200℃の低温で進行し、添加元素としてCr, Fe, Co以外の遷移金属元素や希土類元素についても粉末あるいは粒界近傍に組成が結晶粒の寸法に近い周期変調されて偏在化させることが可能であり、偏在化相の結晶磁気異方性が増加することにより、磁粉あるいは成形体の磁気異方性エネルギーあるいは異方性磁界が増加するため、保磁力が増加する。フッ化剤としてフッ化アンモニウムをKHF2に変えた場合、一部の粒界あるいは表面にKCoF3などの反強磁性相が成長し、強磁性相との交換結合が働く結果、減磁界方向の保磁力が増加する。
一部のフッ素原子はFe-30原子%Co-5原子%Zr合金の結晶粒界から結晶粒内の立方晶や六方晶の格子間や非晶質内に侵入あるいは置換し原子間距離を収縮することにより原子磁気モーメントあるいは結晶磁気異方性エネルギーを増加させる。200℃以上でフッ化させると安定な(Fe,Co)F2や(Fe,Co)F 3などの化合物が成長しやすくなる。また100℃以下の低温ではフッ化が進行しにくい。
本実施例において、Fe-30%Co-5%Zr-10%合金にCrを15原子%添加したFe-30%Co-15%Cr-5%Zr合金を上記と同様に鉱油中に急冷後加熱フッ化させることにより、Crが粉末表面のフッ素が多い領域に偏在化する傾向を示し、粉末中心がFeリッチ相、粉末外周部がCoCrリッチ相となる。Feリッチ相はFe70原子%からFe80〜90原子%の相、CoCrリッチ相はCo40〜70%Cr20〜40%F(フッ素)0.1〜15%の相であり、Crの偏在化により一部Feリッチ相とは異なる結晶構造のFeCoCrZrF系相が形成されることにより、保磁力が増加し残留磁束密度1.7T, 保磁力10.5kOeの磁気特性が確認できた。
本実施例のようなNd-Fe-B系あるいはSm-Fe-N系、Sm-Co系磁石の磁気特性を超える残留磁束密度を示す磁石は、以下のような場合に作成できる。その組成式は、
MxFeyCozNaFb (4)
であり、(4)式においてMは希土類元素以外の金属元素 Feは鉄、 Coはコバルト Nは希土類元素や鉄ならびにコバルト及びM元素以外の金属元素でフッ化物形成元素、 Fはフッ素、x+y+z+a+b=1、0.09≦x≦0.18(18原子%以下9原子%以上), y>z>a>0, b>0.001である。この組成式は磁石全体の組成を示すもので、粒界、粒界近傍、磁粉表面、磁粉表面近傍と粒中心の組成は大きく異なる。
(2)Coを使用せず、粒界近傍の磁気異方性エネルギーを高めるために、フッ素原子と鉄と電気陰性度の小さな元素の配列を一部規則化して鉄原子の電子分布に異方性を加える。このためには鉄原子からみて隣接原子位置から第5隣接原子位置(5番目の隣接サイトにある原子)以内にフッ素原子と電気陰性度3以下の1種または複数の原子を配列させ、Fe原子の電子状態密度の分布を異方的にすることが必要である。保磁力を20kOe以上にするためには前記において、鉄原子からみて隣接原子位置から第5隣接原子位置(5番目の隣接サイトにある原子)以内にフッ素原子と電気陰性度2以下の1種または複数の原子を配列させ、Fe原子の電子状態密度の分布を異方的にすることが必要である。この時フッ素原子位置と小電気陰性度元素が規則的に配列すること、及び小電気陰性度元素はフッ素原子の最隣接原子位置に配置していないことが重要である。このような元素の電気陰性度差を利用して鉄の電子状態密度分布を変えることにより磁気異方性エネルギーを増加させる手法は、フッ素以外にも酸素よりも電気陰性度の大きいハロゲン元素などで実現でき、残留磁束密度1.0T以上の磁性材料が実現でき、電気陰性度差を利用しFe以外のMnやCrなどの金属元素の電子状態密度を変えてスピン間の磁気的配列ならびに結合状態を変えることが可能である。Mnを使用した場合、MnとFの間にはMnn+ - F- Mnm+という交換相互作用(m, nは異なる正数)が働き反強磁性あるいは強磁性状態になることで磁化反転制御及び磁化増加に寄与する。
微粒子の表面には(Mn0.8Sr0.2)(O,F)2が成長し、その内側ではフッ素原子がMn-Sr合金の格子間位置にあるいは置換位置に配置し、Mn-F, Mn-N, Sr-F, Sr-NあるいはMn-H, Sr-Hの結合が形成され、一部Mn2+- F - Mn3+やSr2+ - F - Mn3+などの超交換結合も確認できる。フッ素濃度は加熱拡散時間により異なり、拡散時間が長いほど濃度が高くなる傾向があり、加熱時間10時間で平均フッ素濃度5原子%である。不純物である酸素はMnlSrmOnやMnlSrmOnFp(l,n,m,pは正数)を形成し酸素の原子位置の一部がフッ素で置換される。これらのフッ化物はFの原子位置により強磁性を示し、フッ素原子の最隣接から第三隣接原子位置にMn原子及びSrが配置していることでMnのスピンが平行方向にそろい、飽和磁束密度0.8T, キュリー温度650K、異方性磁界6MA/mの硬質磁性材料が形成できる。
ここで、AはMnあるいはCr, Bは電気陰性度が3以下の元素、Cは酸素、窒素、水素、ホウ素、塩素のいずれかの元素、Fはフッ素、h i j kはいずれも正数であり、h+i+j+k=1.0, h>i>j, 0.0001<k<0.3であり、フッ素の隣接原子位置から第三隣接原子位置にA及びB元素が配置している構造が材料の一部に認められる。Bの元素が電気陰性度3を超えた場合、MnやCrの電子分布の偏りが変化し磁化が非常に小さくなる。また、フッ素が0.3(30原子%)を超えると安定な酸フッ化物やフッ化物が成長し、フッ素の隣接原子位置から第三隣接原子位置にA及びB元素が配置している構造の割合が小さくなるため、飽和磁束密度は0.1〜0.5Tとなる。
[実施例30]
Fe及びCoを秤量し、Fe-60%Co合金を作成する。この合金にSmを1原子%添加し、Sm0.01(Fe0.4Co0.6)0.99を作成する。この合金とフッ化アンモニア粉末を混合後、加熱粉砕する。加熱温度200℃でフッ化アンモニアの分解生成ガスにSm0.01(Fe0.4Co0.6)0.99粉末が曝されることにより、粉砕とフッ化が進行する。フッ化はSm0.01(Fe0.4Co0.6)0.99粉の粒界で生じ、粒界を脆化させるためさらに粉砕が進行し、平均粒径が0.1から2μmにする。この磁粉の表面にはSmOFやSmF3などのフッ化物が成長し、これらのフッ化物が形成された磁粉の内周側にTh2Zn17構造あるいは六方晶のフッ化物が成長する。Th2Zn17構造のフッ化物の格子定数はa=0.85〜0.95nm, c=1.24〜1.31nmである。また六方晶の格子定数はa=0.49〜0.52nm, c=0.41〜0.45nmである。前記Th2Zn17構造あるいは六方晶のフッ化物が厚さ1〜500nmの範囲で磁粉の最表面に成長したフッ化物の内側に成長し、さらに内側にはbcc及びfccあるいはhcp構造のFe-Co相が成長する。
[実施例33]
Fe、Mn、Tiの不純物を除去し、純度99.99%にした母合金を用いて秤量し、Fe0.8Mn0.1Ti0.1合金を真空溶解後水素還元後Arガス雰囲気中で粉砕する。粉末径が100μmの粉末を酸性フッ化アンモニウム溶液と混合し、150℃に加熱してボールミルにより粉砕する。ボールミルによりFe0.8Mn0.1Ti0.1合金は粉砕されると同時にフッ化が進行する。150℃で100時間のボールミル工程により、粉末径0.1〜5μmとなる。
電気陰性度の小さいTiにより、Ti原子に隣接するFeやMn原子の電子状態密度がFの影響を受けて変化する。Tiの隣接位置にMnが配置した場合、Mnの電子はF原子に近いFe原子に引き寄せられ、Mn及びFeの電子状態密度に偏りが生じる。このような電子状態密度の偏りはMnやFeの物性に大きく影響し、Fe及びMnに磁気的な異方性が発現するとともに、スピン間結合状態も原子配置に依存して変化する。規則格子の形成により、規則格子の構成元素による原子配置と規則度に依存して保磁力が変化する。
この溶液フッ化工程を経て作成したFe-10%Co-10%F合金粉を磁場中成形後300℃に加熱成形することで、bctあるいはfct構造のFe-Co-F合金と合金粉の表面に(Fe,Co)(F,C)2あるいは(Fe,Co)(C,F)3が成長した粉末が密度98%で成形され、粉末表面の一部に酸フッ化物が成長する。この時、飽和磁束密度は2.3T, 残留磁束密度が1.6Tの磁石を作成可能である。
添加元素としてCr, Fe, Co以外の遷移金属元素や希土類元素についても粉末あるいは粒界近傍に組成が結晶粒の寸法に近い周期変調されて偏在化させることが可能であり、偏在化相の結晶磁気異方性が増加することにより、磁粉あるいは成形体の磁気異方性エネルギーあるいは異方性磁界が増加するため、保磁力が増加する。
本実施例においてアルコール溶媒に変えて沸点が200℃以上の鉱油を使用することにより、鉱油中にFeF1.7、CoF1.6の組成物のコロイドを作成しさらにSmF2の組成のコロイドと混合することで、固体強磁性粉末を使用せずにSm2(Fe0.7Co0.3)17F3相を平均粒径1〜100nmで成長させることが可能である。さらにカーボンナノチューブなどの中空体の中にフッ化物組成の溶液を入れて結晶を成長させた後、磁場印加させることで配向させ、他の溶液や薬品でチューブを消失させた後、種々の成形手法で高密度化することにより磁石を形成できる。
[実施例36]
アルコール溶媒に溶解した鉄フッ化物からFe-F系ナノ粒子を作成する。鉄フッ化物の組成を調整し、溶液中の高次構造をもった固体粉末ではなく透明に近いフッ化物から非晶質構造を経て溶媒中にナノ粒子を形成する。ナノ粒子形成過程において溶液に10kOeの磁場を印加し、磁場印加方向に異方性を付加する。FeF2.3の組成のコロイドが溶解したアルコール溶液を磁場中加熱することにより10kOe, 150℃で非晶質粒子が成長し、300℃で平均粒径1〜10nmのナノ粒子が容易磁化方向をもって成長する。
[実施例37]
鉱油に溶解した鉄フッ化物非晶質とコバルトフッ化物非晶質からFe-Co-F系ナノ粒子を作成する。非晶質構造の各フッ化物の組成を調整し、鉱油中の短距離秩序をもったフッ化物から微結晶の核発生を経て鉱油中にナノ粒子を形成する。上記ナノ粒子形成過程においてに100kOeの磁場を印加し、磁場印加方向にFe-F-FeあるいはFe-F-Coのようなフッ素原子とFeあるいはCo原子の配列が平行配列した構造の異方性を形成することで磁気異方性を付加する。FeF1.5、CoF1.4の組成が混合した鉱油またはコロイド状鉱油を磁場中加熱することにより100kOe, 150℃で結晶核が成長し、200℃で平均粒径5〜100nmのナノ粒子が容易磁化方向をもって成長する。
Ce2Fe17F0.2, Ce2Fe17F2, Ce2Fe17C1F1, Pr2Fe17F2, Pr2Fe17C2F2, Nd2Fe17F2, Nd2Fe17C1F1, Sm2Fe17F0.001, Sm2Fe17F0.02, Sm2Fe17F0.1, Sm2Fe17F0.2, Sm2Fe17F0.3, Sm2Fe17F2, Sm2Fe17F2.9, Sm2Fe17F3.0, Sm2Fe17F3.5, Sm2Fe17(H0.1F0.9)3.0, Sm2Fe17(C0.1F0.9)3.0,Sm2Fe17(B0.1F0.9)3.0, Sm2Fe17F3N0.1, Sm2Fe17(N0.1F0.9)3.0, Sm2Fe17(H0.05C0.05F0.9)3.0, Sm2Fe17(N0.05C0.01F0.94)3.0 , Sm2Fe17.2F3.0, Sm2Fe16.8F3.0, Sm2.1Fe17F3.0, Sm2Fe17H0.2F0.1, Sm2Fe17B0.1F0.1, Sm2Fe17C0.2F0.2, Sm2Fe17Al0.05F2.9, Sm2(Fe0.95Mn0.05)17F3, Sm2(Fe0.95Mn0.05)17F0.5, Sm2Fe17Ca0.05F2.9, Sm2(Fe0.9,Ga0.1)17F2.9, Sm2(Fe0.99Ga0.01)17F0.9, Sm2(Fe0.99Zr0.01)17F1.9, Sm2(Fe0.99Nb0.01)17F2.9, Sm2(Fe0.99V0.01)17F3.0, Sm2(Fe0.99W0.01)17F3.0, Sm2(Fe0.98Zr0.01Cu0.01)17F1.9, Sm2(Fe0.98Zr0.01Al0.01)17F1.9, Sm2(Fe0.95Zr0.04Cu0.01)19F2.9, Sm2(Fe0.7Co0.2Zr0.05Cu0.05)19F1.5, Sm2(Fe0.99Ga0.01)17F0.9, Sm2Fe17C0.3F1, Sm2Fe17C0.9F2, Sm2Fe17C2.5F3, (Sm0.9Pr0.1)2Fe17F3.0, (Sm0.9La0.1)2Fe17F3.0, (Sm0.9Nd0.1)2Fe17F3.0, (Sm0.9Ce0.1)2Fe17F3.0, Gd2Fe17F2, Gd2Fe17C2F1.3, Tb2Fe17F2, Tb 2 Fe 17 C 1 F 1.1 , Dy2Fe17F2, Ho2Fe17F2.9, Er2Fe17F2, Er2Fe17C0.3F1, Tm2Fe17F2.9, Tm2Fe17C0.9F1, Yb2Fe17F2, Yb2Fe17C0.3F1, Y2Fe17F2, Y2Fe17F3,Y2(Fe0.9Cr0.1)17F2,Th2Fe17F2, Sm2(Fe0.7Co0.3)17F2,Sm2(Fe0.65Co0.3Mn0.05)17F3,Sm2(Fe0.1Co0.9)17F2,Sm2(Fe0.7Co0.3)17HF2, Sm2(Fe0.7Co0.3)17C0.1H0.2F2, (Sm0.9Pr0.1)2(Fe0.7Co0.3)17F2, (Sm0.9La0.1)2(Fe0.7Co0.3)17F2, YFe11TiF0.01-3, YFe11VF0.01-3, YFe11TiN0.2F0.01-2, CeFe11TiF0.01-3, CeFe11VF0.01-3, CeFe11TiN0.2F0.01-2, NdFe11TiF0.01-3, NdFe11VF0.01-3, NdFe11TiN0.2F0.01-2, SmFe11TiF0.01-3, SmFe13TiF0.01-3, SmFe15TiF0.01-3, SmFe11VF0.01-3.3, SmFe13VF0.01-3, SmFe11TiN0.2F0.01-2.7, SmFe11TiN0.01F0.01-2.7, Sm(Fe0.9Co0.1)11TiN0.2F0.01-2.7, Sm(Fe0.4Co0.6)11TiN0.2F0.01-2.7, Sm(Fe0.4Co0.6)13TiN0.2F0.01-2.7, Sm(Fe0.4Co0.6)15TiF0.01-2.7, Sm3(Fe0.4Co0.6)29TiF0.1-3, Sm2(Fe0.4Co0.6)29TiF0.1-4, Sm1(Fe0.4Co0.6)29TiF0.1-4, Sm2(Fe0.4Co0.6)29ZrF0.1-4, Sm2(Fe0.4Co0.6)29AlF0.1-4, Sm2(Fe0.4Co0.6)29CaF0.1-4, Sm2(Fe0.4Co0.6)29BiF0.1-4, Sm2(Fe0.4Co0.6)29LiF0.1-4, Sm2(Fe0.4Co0.6)29AsF0.1-4, SmFe11MoF0.01-2.7, SmFe11MoH0.1F0.01-2.7, GdFe11TiF0.01-3, GdFe11VF0.01-3, GdFe11TiN0.2F0.01-2, TbFe11TiF0.01-3, TbFe11VF0.01-3, TbFe11TiN0.2F0.01-2, DyFe11TiF0.01-3, DyFe11VF0.01-3, DyFe11TiN0.2F0.01-2, ErFe11TiF0.01-3, ErFe11VF0.01-3, ErFe11TiN0.2F0.01-2, YFe10Si2F0.01-3, YFe10Si2C0.3F0.01-3

Claims (11)

  1. フッ素を含有する主相を有し、結晶粒または磁粉の中心部と表面での結晶系が同一であり、中心部と表面との結晶方位の角度差が平均45度以内であることを特徴とする磁性材料。
  2. 結晶粒または磁粉の結晶格子の侵入位置にフッ素原子の一部が配置され、結晶粒または磁粉の中心部より表面のフッ素濃度が高いか、あるいは結晶格子の大きさが中心部より表面で大きいことを特徴とする請求項1に記載の磁性材料。
  3. 請求項1において前記磁性材料が遷移金属元素を含む主相を有することを特徴とする磁性材料。
  4. 請求項3において前記遷移金属元素がTi,V,Cr,Mn,Fe,Co,Ni,Cu,Zr,Nb,Moのうち少なくとも1種類以上であることを特徴とする磁性材料。
  5. 請求項1に記載の磁性材料において結晶粒または磁粉に少なくとも2種類の組成のフッ化物が形成され、フッ素原子の一部が鉄の格子間位置あるいは鉄および希土類元素以外の遷移金属元素の格子間位置に配置し、希土類元素をRE、鉄および希土類元素以外の遷移金属元素をM、フッ素をFとして、正数であるX, Y, Z, S, T, U, V, Wを用いて
    REx(FesMT)YFZ+ REU(FeSMT)VFW
    で与えられる組成式で表現し、第一項の(FeSMT)YFzを磁粉または結晶粒の中央部に対応させ、第二項の(Fe S M T ) V F W を磁粉または結晶粒の表面の組成に対応させたときにX<Y, Z<Y, S>T, U<V, W<V, Z<Wであることを特徴とする磁性材料。
  6. 請求項5において前記フッ化物の組成がX<Y/10, Z<3, Z<Y/4, T<0.4, S>Tであり、主相以外の強磁性を示さないフッ化物や酸フッ化物の体心正方晶あるいは六方晶構造を有する相の主相に対する体積比率が0.01から10%であることを特徴とする磁性材料。
  7. 請求項1に記載の磁性材料において磁粉または結晶粒に少なくとも二種類の組成のフッ化物が形成され、フッ素原子の一部が鉄あるいは鉄および希土類元素以外の遷移金属元素の格子間位置に配置し、鉄および希土類元素以外の遷移金属元素をM、フッ素をFとして
    (FeSMT)YFZ + (FeUMV)WFX
    で与えられる組成式で表現し、第一項の(FeSMT)YFZを磁粉または結晶粒の中央部、第二項の(FeUMV)WFXを磁粉または結晶粒の表面の組成に対応させたときにZ<Y, X<W, Z<Xとなることを特徴とする磁性材料。
  8. 請求項7において、前記フッ化物の組成がS>T, U>Vであることを特徴とする磁性材料。
  9. 請求項1に記載の磁性材料において主相がRelFemNn(Reは希土類元素,l,m,nは正の整数)、RelFemCn(Reは希土類元素,l,m,nは正の整数)、RelFemBn(Reは希土類元素,l,m,nは正の整数)、RelFem(Reは希土類元素、l及びmは正の整数)又はMlFem(Mは少なくとも1種のFe以外の遷移元素、Feは鉄、l, mは正の整数)であることを特徴とする磁性材料。
  10. 請求項9に記載の磁性材料において主相の結晶粒または粉末表面に希土類元素を含有する酸フッ化物が存在することを特徴とする磁性材料。
  11. 請求項1に記載の磁性材料を用いたことを特徴とするモータ。
JP2010079790A 2010-03-30 2010-03-30 磁性材料及びその磁性材料を用いたモータ Expired - Fee Related JP5247754B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010079790A JP5247754B2 (ja) 2010-03-30 2010-03-30 磁性材料及びその磁性材料を用いたモータ
CN201110037844.XA CN102208235B (zh) 2010-03-30 2011-02-15 磁性材料及使用该磁性材料的电动机
US13/029,348 US8821649B2 (en) 2010-03-30 2011-02-17 Magnetic material and motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079790A JP5247754B2 (ja) 2010-03-30 2010-03-30 磁性材料及びその磁性材料を用いたモータ

Publications (3)

Publication Number Publication Date
JP2011211106A JP2011211106A (ja) 2011-10-20
JP2011211106A5 true JP2011211106A5 (ja) 2012-01-26
JP5247754B2 JP5247754B2 (ja) 2013-07-24

Family

ID=44697024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079790A Expired - Fee Related JP5247754B2 (ja) 2010-03-30 2010-03-30 磁性材料及びその磁性材料を用いたモータ

Country Status (3)

Country Link
US (1) US8821649B2 (ja)
JP (1) JP5247754B2 (ja)
CN (1) CN102208235B (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055345B2 (ja) * 2009-11-30 2012-10-24 株式会社日立製作所 強磁性化合物磁石
US9372244B2 (en) * 2010-02-10 2016-06-21 Hitachi Metals, Ltd. Magnetic force characteristic computing method, magnetic force characteristic computing device and computer program
JP2013254756A (ja) * 2010-08-30 2013-12-19 Hitachi Ltd 焼結磁石
JP5752425B2 (ja) * 2011-01-11 2015-07-22 株式会社日立製作所 希土類磁石
JP5759869B2 (ja) * 2011-11-04 2015-08-05 株式会社日立製作所 鉄系磁性材料及びその製造方法
JP5708454B2 (ja) * 2011-11-17 2015-04-30 日立化成株式会社 アルコール系溶液および焼結磁石
JP2013211300A (ja) * 2012-03-30 2013-10-10 Hitachi Ltd 磁性材料及びその製造方法
EP2858074A4 (en) * 2012-05-30 2016-02-17 Hitachi Ltd SINTER MAGNET AND METHOD FOR THE PRODUCTION THEREOF
EP2863399A4 (en) * 2012-06-13 2016-02-17 Hitachi Ltd SINTERED MAGNET AND MANUFACTURING METHOD THEREFOR
CN103219117B (zh) * 2013-05-05 2016-04-06 沈阳中北真空磁电科技有限公司 一种双合金钕铁硼稀土永磁材料及制造方法
WO2014190558A1 (zh) * 2013-05-31 2014-12-04 北京有色金属研究总院 稀土永磁粉、包括其的粘结磁体及应用该粘结磁体的器件
JP5936688B2 (ja) * 2013-07-31 2016-06-22 株式会社日立製作所 永久磁石材料
JP6653420B2 (ja) * 2014-07-22 2020-02-26 パナソニックIpマネジメント株式会社 複合磁性材料とこれを用いたコイル部品ならびに複合磁性材料の製造方法
CN105723476B (zh) * 2014-09-19 2018-03-27 株式会社东芝 永磁体、电动机及发电机
WO2016084118A1 (ja) * 2014-11-28 2016-06-02 株式会社 東芝 永久磁石、モータ、および発電機
JP6256360B2 (ja) * 2015-01-23 2018-01-10 株式会社豊田中央研究所 永久磁石およびその製造方法
US9817254B2 (en) 2015-02-23 2017-11-14 Honeywell International Inc. Stabilization gas environments in a proton-exchanged lithium niobate optical chip
JP6631029B2 (ja) 2015-04-21 2020-01-15 Tdk株式会社 永久磁石、及び、それを備えた回転機
US10090088B2 (en) * 2015-09-14 2018-10-02 Kabushiki Kaisha Toshiba Soft magnetic material, rotating electric machine, motor, and generator
CN105489367B (zh) * 2015-12-25 2017-08-15 宁波韵升股份有限公司 一种提高烧结钕铁硼磁体磁性能的方法
AR109900A1 (es) * 2016-10-07 2019-02-06 Univ Minnesota Nanopartículas y granos a base de hierro
CN109524227A (zh) * 2017-09-20 2019-03-26 江民德 一种钕铁硼复合磁性材料的生产方法
JP2019080055A (ja) * 2017-10-20 2019-05-23 キヤノン株式会社 複合磁性材料、磁石、モータ、および複合磁性材料の製造方法
KR102411584B1 (ko) * 2018-10-22 2022-06-20 주식회사 엘지화학 소결 자석의 제조 방법 및 소결 자석
EP3675143B1 (en) * 2018-12-28 2024-02-14 Nichia Corporation Method of preparing bonded magnet
US12121963B2 (en) * 2019-03-14 2024-10-22 National Institute Of Advanced Industrial Science And Technology Metastable single-crystal rare earth magnet fine powder and method for producing same
CN110176351A (zh) * 2019-06-24 2019-08-27 中钢集团安徽天源科技股份有限公司 一种高效电机用钕铁硼磁体的制备方法
CN110783052B (zh) * 2019-11-06 2021-11-05 有研稀土新材料股份有限公司 一种复合稀土类异方性粘结磁体及其制备方法
CN111243846B (zh) * 2020-01-19 2021-12-24 北京工业大学 一种可同时提高NdFeB粉末和磁体的抗氧化腐蚀性的方法
CN111800032B (zh) * 2020-07-28 2023-10-20 大连海事大学 一种三维密集摩擦纳米发电模块及系统
CN112505093B (zh) * 2020-11-09 2022-03-29 华南理工大学 一种可变频率的磁热效应测量装置及方法
CN112802650B (zh) * 2020-12-30 2023-01-10 包头天和磁材科技股份有限公司 钐钴磁体及其制备方法和钛的用途
CN112820529A (zh) * 2020-12-31 2021-05-18 宁波松科磁材有限公司 一种高性能烧结钕铁硼的制备方法
CN113096911B (zh) * 2021-04-09 2022-11-29 赣州嘉通新材料有限公司 一种高性能多层式烧结钕铁硼永磁体及其制备方法
CN115472409A (zh) 2021-06-10 2022-12-13 日亚化学工业株式会社 SmFeN系稀土磁体的制造方法
CN113851318B (zh) * 2021-08-26 2024-06-11 杭州永磁集团有限公司 一种高性能粘接磁钢组件的制备方法
CN115881415A (zh) 2021-09-27 2023-03-31 日亚化学工业株式会社 SmFeN系稀土类磁体的制造方法
CN115682459A (zh) * 2022-10-18 2023-02-03 大连理工大学 一种用于绝热去磁制冷系统的盐柱及其制备方法
CN116988137A (zh) * 2023-09-05 2023-11-03 南京大学 一种CoMnSi球形单晶颗粒的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142560C (zh) * 1999-09-14 2004-03-17 北京大学 多元间隙型永磁材料及其磁粉、磁体的制造工艺
JP2003282312A (ja) 2002-03-22 2003-10-03 Inter Metallics Kk 着磁性が改善されたR−Fe−(B,C)系焼結磁石およびその製造方法
KR100516512B1 (ko) 2003-10-15 2005-09-26 자화전자 주식회사 본드자석용 마이크로 결정구조의 고보자력 자석분말제조방법 및 이에 의해 제조된 자석분말
JP4702548B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 傾斜機能性希土類永久磁石
JP4702546B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 希土類永久磁石
JP4702549B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 希土類永久磁石
JP4702547B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 傾斜機能性希土類永久磁石
JP4797906B2 (ja) * 2005-09-26 2011-10-19 株式会社日立製作所 磁性材料,磁石及び回転機
US7806991B2 (en) * 2005-12-22 2010-10-05 Hitachi, Ltd. Low loss magnet and magnetic circuit using the same
JP4867632B2 (ja) * 2005-12-22 2012-02-01 株式会社日立製作所 低損失磁石とそれを用いた磁気回路
JP4415980B2 (ja) * 2006-08-30 2010-02-17 株式会社日立製作所 高抵抗磁石およびそれを用いたモータ
JP2009153356A (ja) * 2007-12-25 2009-07-09 Hitachi Ltd 自己始動式永久磁石同期電動機
JP2010022147A (ja) * 2008-07-11 2010-01-28 Hitachi Ltd 焼結磁石モータ
JP4790769B2 (ja) * 2008-07-30 2011-10-12 株式会社日立製作所 希土類磁石及びそれを用いた回転機

Similar Documents

Publication Publication Date Title
JP2011211106A5 (ja)
JP5247754B2 (ja) 磁性材料及びその磁性材料を用いたモータ
JP4564993B2 (ja) 希土類磁石及びその製造方法
JP4900121B2 (ja) フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
US10332661B2 (en) Rare earth-free permanent magnetic material
JP4415980B2 (ja) 高抵抗磁石およびそれを用いたモータ
JP4659780B2 (ja) 希土類異方性永久磁石材料、その磁気粉末およびそれからなる磁石の製造方法
Zeng et al. Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials
US20120111232A1 (en) Treating solution for forming fluoride coating film and method for forming fluoride coating film
JPH0510807B2 (ja)
JP4902677B2 (ja) 希土類磁石
JP5948033B2 (ja) 焼結磁石
JPH0510806B2 (ja)
JP2013135542A (ja) 焼結磁石モータ
WO2012029738A1 (ja) 焼結磁石
WO2012176655A1 (ja) 焼結磁石
JP2012124189A (ja) 焼結磁石
JP2012164764A (ja) 磁性体およびその製造方法
WO2009117718A1 (en) Direct chemical synthesis of rare earth-transition metal alloy magnetic materials
JP7309260B2 (ja) 焼結磁石の製造方法
JPH06207204A (ja) 希土類永久磁石の製造方法
JP6047328B2 (ja) 焼結磁石用塗布材料
JPH0536495B2 (ja)
JPS59219453A (ja) 永久磁石材料の製造方法
Lewis et al. Rare earth-free permanent magnetic material