Nothing Special   »   [go: up one dir, main page]

JP2001119587A - マルチスペクトル画像の画像圧縮方法および画像圧縮装置 - Google Patents

マルチスペクトル画像の画像圧縮方法および画像圧縮装置

Info

Publication number
JP2001119587A
JP2001119587A JP29789599A JP29789599A JP2001119587A JP 2001119587 A JP2001119587 A JP 2001119587A JP 29789599 A JP29789599 A JP 29789599A JP 29789599 A JP29789599 A JP 29789599A JP 2001119587 A JP2001119587 A JP 2001119587A
Authority
JP
Japan
Prior art keywords
image
principal component
tile
multispectral
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29789599A
Other languages
English (en)
Other versions
JP2001119587A5 (ja
JP3986221B2 (ja
Inventor
Hideyasu Ishibashi
磴  秀康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP29789599A priority Critical patent/JP3986221B2/ja
Priority to US09/692,043 priority patent/US6879716B1/en
Publication of JP2001119587A publication Critical patent/JP2001119587A/ja
Publication of JP2001119587A5 publication Critical patent/JP2001119587A5/ja
Application granted granted Critical
Publication of JP3986221B2 publication Critical patent/JP3986221B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/7715Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/64Systems for the transmission or the storage of the colour picture signal; Details therefor, e.g. coding or decoding means therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Astronomy & Astrophysics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Image Processing (AREA)

Abstract

(57)【要約】 【課題】撮影波長帯域を複数のバンド帯域に分割するこ
とで得られる複数のスペクトル画像に対して、視覚的に
劣化することが少なく画像圧縮の際の圧縮率を高め、画
像データの取り扱いの向上するマルチスペクトル画像の
画像圧縮方法および画像圧縮装置の提供を課題とする。 【解決手段】マルチスペクトル画像を複数のタイル画像
に分割し、このタイル画像各々に対して主成分分析を行
い、各タイル画像毎にマルチスペクトル画像の主成分ベ
クトルと主成分画像の複数の対を得、この複数の対の中
から、マルチスペクトル画像の画像情報を最適に代表す
る最適主成分数を求め、最適主成分ベクトルとこれに対
応する最適主成分画像を各タイル画像毎に得ることによ
って、マルチスペクトル画像の画像データを、各タイル
画像の前記最適主成分数、前記最適主成分画像、前記最
適主成分ベクトルおよび前記タイル画像情報に圧縮する
ことで前記課題を解決する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、被写体を撮影する
際の撮影波長領域を複数のバンド帯域に分割して撮影さ
れた複数のバンド画像を用いて得られるマルチスペクト
ル画像の画像データに対して、画像品質を損なうことな
く効率的に圧縮することのできる画像データの圧縮処理
の技術分野に関する。
【0002】
【従来の技術】今日、デジタル画像処理の進歩によっ
て、画像の色情報(明度、色相、彩度)を完全に表現す
る手段として、画像の各画素毎に分光情報(スペクトル
画像)を備える画像、すなわちマルチスペクトル画像が
利用されている。このマルチスペクトル画像は、撮影被
写体を、複数のバンド帯域に分割して各バンド帯域毎に
撮影した複数のバンド画像から構成されるマルチバンド
画像に基づいて分光反射率分布を各画像毎に推定して得
られるものである。このマルチバンド画像は、赤
(R)、緑(G)および青(B)画像からなる従来のR
GBカラー画像では十分に表現できない色情報を再現す
ることができ、例えばより正確な色再現が望まれる絵画
の世界にとって有効である。そこで、この色情報を正確
に再現するといった特徴を生かすために、例えば380
〜780nmの撮影波長帯域を10nm帯域毎に区切っ
て21バンドさらには5nm帯域毎に区切って41バン
ドといった多くのバンド数を備えたマルチバンド画像に
基づいてマルチスペクトル画像を得ることが望まれる。
【0003】しかし、画素毎に分光情報を備えるマルチ
スペクトル画像は、撮影波長帯域を分割した各帯域(チ
ャンネル)毎に、例えば41チャンネル毎に分光反射率
データを有するため、従来から用いられてきた3チャン
ネルのRGBカラー画像に比べ、例えば約13倍(41
チャンネル/3チャンネル)の画像データ量を備えなけ
ればならない。そのため、得られたマルチスペクトル画
像の画像データを保存する場合、大きな記憶容量が必要
となり、保存に要する時間も長い。また、画像データを
ネットワークを介して転送する際にも多大の時間がかか
り、取り扱いが困難になる。
【0004】このような問題に対して、マルチスペクト
ル画像の各画素ごとの分光情報から得られるスペクトル
波形を3つの等色関数、例えばRGB表色形の等色関数
で展開するとともに、等色関数で表されないスペクトル
波形の部分を、主成分分析法を用いて、主成分基底ベク
トルで展開し、その中からスペクトル画像の画像情報を
代表する主成分を抽出して採用し、それ以外の主成分は
取り除き、最終的に等色関数を含め合計6〜8個の基底
ベクトルで上記スペクトル波形を表現する方法が提案さ
れている(Th.Keusen ,Multispectoral Color System w
uth an Encoding Format Compatible with the Convent
ional Tristimulus Model ,Journal ofImaging Science
and Technology 40: 510-515 (1996) ) 。これを用い
て、上記スペクトル波形を6〜8個の基底ベクトルとそ
れに対応した係数の対とで表わすことによって、マルチ
スペクトル画像の画像データを圧縮することができる。
特に、RGB表色形の等色関数で表される場合、等色関
数の係数は、R、GおよびBの三刺激値となるので、
R、GおよびB画素による3刺激値に基づいて画像処理
や画像表示等が行われる従来の画像処理装置や画像表示
装置に対応して適合するように特別な変換を施す必要が
なく、直接画像データを送ることができるといった処理
の低減に対して優れた効果を備える。
【0005】
【発明が解決しようとする課題】このような方法によっ
て得られる画像データは、例えば41個のスペクトル画
像から構成されるマルチスペクトル画像の場合、例えば
8個の基底ベクトルとその係数によって表すことによっ
て、マルチスペクトル画像の画像データ量の約20%
(8個/41個×100)に圧縮することができる。し
かし、41個のスペクトル画像から構成されるマルチス
ペクトル画像の場合、RGBカラー画像の画像データ量
に比べて約13倍も大きく、上記方法で約30%に圧縮
できたとしても、RGBカラー画像の画像データ量に対
して、依然として約2.5倍(13×20/100)も
のデータ量を有することになる。そのため、上述したよ
うに記録メディア等に記録保存する際の記録時間や画像
データをネットワークを介して転送する際の転送時間も
長く、依然として取り扱いが困難である。
【0006】そこで、本発明は、上記問題点を解決し、
被写体を撮影する際の撮影波長帯域を複数のバンド帯域
に分割することで得られる複数のスペクトル画像に対し
て、視覚的に劣化することが少なく画像圧縮の際の圧縮
率を高め、画像データの取り扱いが向上するマルチスペ
クトル画像の画像圧縮方法および画像圧縮装置を提供す
ることを目的とする。
【0007】
【課題を解決するための手段】上記目的を達成するため
に、本発明は、被写体を撮影する際に撮影波長帯域を複
数のバンド帯域に分割して撮影された複数のバンド画像
を用いて得られた複数のスペクトル画像から成るマルチ
スペクトル画像を画像圧縮する方法であって、前記マル
チスペクトル画像を複数のタイル画像に分割し、このタ
イル画像それぞれに対して主成分分析を行い、各タイル
画像毎にマルチスペクトル画像の主成分ベクトルと主成
分画像の複数の対を得、この複数の対の中から、マルチ
スペクトル画像の画像情報を最適に代表する最適主成分
数を求め、最適主成分ベクトルとこれに対応する最適主
成分画像を各タイル画像毎に得、前記マルチスペクトル
画像の圧縮画像データを、前記最適主成分画像および前
記最適主成分ベクトルおよび前記最適主成分数を少なく
とも用いて表すことを特徴とするマルチスペクトル画像
の画像圧縮方法を提供するものである。
【0008】ここで、前記マルチスペクトル画像の圧縮
画像データは、前記最適主成分画像、前記最適主成分ベ
クトルおよび前記最適主成分数の他に、前記タイル画像
のタイル番号、タイル位置および前記タイル画像の画像
サイズの情報を有するタイル画像情報を用いて表される
のが好ましい。また、前記最適主成分数は、色空間上の
測色値に基づいて決定されるのが好ましく、前記最適主
成分数は、前記主成分ベクトルと前記主成分画像の中か
ら選ばれて構成される合成画像の画像情報の、前記マル
チスペクトル画像に基づいて構成されるオリジナル画像
の画像情報に対する誤差の値が、所定値以下となる最小
の主成分数であり、あるいは、前記マルチスペクトル画
像に対する寄与の大きい主成分ベクトルを、主成分ベク
トルの寄与の大きい順に、順次含めて前記合成画像を求
めた時の前記オリジナル画像に対する誤差の変動が、所
定値以下に収まる最小の主成分数であるのが好ましい。
また、前記タイル画像の画素サイズは、縦方向および横
方向ともに2の巾乗であるのが好ましく、また、前記タ
イル画像の画素サイズは、すべて同一サイズであるのが
好ましい。
【0009】被写体を撮影する際に撮影波長帯域を複数
のバンド帯域に分割したバンド画像を用いて得られるマ
ルチスペクトル画像を画像圧縮するマルチスペクトル画
像の画像圧縮装置であって、マルチスペクトル画像を複
数のタイル画像に分割する画像分割部と、画像分割部で
得られたタイル画像それぞれに対して、主成分分析を行
って、各タイル画像毎に、マルチスペクトル画像の主成
分ベクトルと主成分画像の複数の対を得る主成分分析部
と、この主成分分析部で得られた主成分ベクトルと主成
分画像の複数の対の中から、マルチスペクトル画像の画
像情報を最適に代表する最適主成分数を求めて、最適主
成分ベクトルと最適主成分画像を得る最適主成分ベクト
ル・画像抽出部とを備え、前記マルチスペクトル画像の
画像データを、少なくとも前記最適成分ベクトル・画像
抽出部で得られた各タイル画像の最適主成分ベクトル
と、最適主成分画像の画像データとを用いて圧縮するこ
とを特徴とするマルチスペクトル画像の画像圧縮装置を
提供するものである。
【0010】
【発明の実施の形態】以下、本発明のマルチスペクトル
画像の画像圧縮方法を実施するマルチスペクトル画像取
得システムについて、添付の図面に示される好適実施例
を基に詳細に説明する。
【0011】図1は、本発明のマルチスペクトル画像の
画像圧縮方法を実施し、本発明のマルチスペクトル画像
の画像圧縮装置を含むマルチスペクトル画像取得システ
ム(以下、本システムという)10を示す。本システム
10は、撮影被写体Oを撮影し、得られたマルチスペク
トル画像M S の画像データを記録メディアに保存するも
のであって、撮影被写体Oを照らす光源12と、撮影波
長帯域を複数のバンド帯域に分割する可変フィルタ14
と、撮影被写体Oを撮影してマルチバンド画像MB を得
るCCDカメラ16と、画像データを一時保持するマル
チバンド画像記憶部18と、マルチバンド画像から各画
素毎に分光反射率分布を推定してマルチスペクトル画像
S を得るマルチスペクトル画像取得装置20と、マル
チスペクトル画像MS の画像データを、視覚的な劣化が
少なく、圧縮率を高くして圧縮するマルチスペクトル画
像圧縮装置22と、得られた圧縮画像データを保存する
記録メディアドライブ装置24とを主に有して構成され
る。なお、本発明において、マルチスペクトル画像Ms
は、少なくとも6チャンネル以上のスペクトル画像を備
え、すなわち、分光反射率分布において構成波長数が6
以上であるのが好ましい。
【0012】光源12は、撮影被写体Oを撮影するもの
であって、光源の種類等は特に制限されないが、撮影さ
れたマルチバンド画像MB から分光反射率を推定し、マ
ルチスペクトル画像MS を取得するために、分光強度分
布が既知の光源であることが好ましい。可変フィルタ1
4は、撮影被写体Oを撮影してマルチバンド画像MB
得るために、撮影波長帯域を分割するバンド帯域が可変
に設定可能なバンドパスフィルタであり、例えば16バ
ンド、21バンドや41バンド等に分割することができ
る。このような可変フィルタとして、例えば液晶チュー
ナブルフィルタが挙げられる。
【0013】CCDカメラ16は、撮影被写体Oの反射
光を可変フィルタ14を介して所望の波長帯域に分光さ
れた透過光によって結像される像を黒白のバンド画像と
して撮影するカメラであって、受光面には、エリアセン
サとしてCCD(charge coupled device ) 撮像素子が
面状に配置されている。また、CCDカメラ16には、
撮影される画像の明度値のダイナミックレンジを適切に
定めるため、撮影被写体Oの撮影前に行うホワイトバラ
ンスの調整機構を備える。
【0014】マルチバンド画像データ記憶装置18は、
撮影波長帯域を複数のバンド帯域に分割して撮影され、
各バンドに対応するホワイトバランスの調整された複数
のバンド画像からなるマルチバンド画像MB を一時記憶
保持する部分である。マルチスペクトル取得装置20
は、CCDカメラ16で撮影された分光反射率の既知の
撮影被写体の画像データ、例えばマクベスチャートのグ
レーパッチの画像データとその既知の分光反射率の値と
の対応関係から予め作成された1次元ルックアップテー
ブル(1次元LUT)を備え、この1次元LUTを用い
て、マルチバンド画像データ記憶装置18より呼び出さ
れた撮影被写体Oのマルチバンド画像MB の画像データ
から各画素毎の撮影被写体Oの分光反射率を推定し、マ
ルチスペクトル画像MS を取得する部分である。撮影被
写体Oの分光反射率の推定において、可変フィルタ14
のフィルタ特性、すなわち可変フィルタ14の分光透過
率分布がバンド間で一部分が重なった特性を有する場
合、得られるマルチスペクトル画像MS の分光反射率分
布は鈍り、精度の高い分光反射率分布を推定することが
できないため、マトリクス演算やフーリエ変換を用い
て、上記フィルタ特性を排除するデコンボリューション
処理を施してもよい。このようにして、可変フィルタ1
4を用いて、n個のバンド帯域に分割したマルチバンド
画像MB から、分光情報として、n個の構成波長からな
る分光反射率を備えるマルチスペクトル画像MS を取得
する。
【0015】記録メディアドライブ装置24は、ハード
ディスクやフロッピー(登録商標)ディスクやMOやC
D−RやDVD等の記録メディアに記録するドライブ装
置であり、マルチスペクトル画像MS の画像データを後
述するマルチスペクトル画像圧縮装置22で圧縮した圧
縮マルチスペクトル画像データを記録することができ
る。また、記録メディアドライブ装置24と共に、また
これに替えて、後述する圧縮マルチスペクトル画像デー
タを各種ネットワークを介して転送するために、ネット
ワーク接続装置を備えてもよい。
【0016】マルチスペクトル画像圧縮装置22は、マ
ルチスペクトル取得装置20で得られたマルチスペクト
ル画像MS を構成するマルチスペクトル画像データに対
して、視覚的な劣化が少なく画像圧縮率の高い圧縮マル
チスペクトル画像データを求める部分であり、図2に示
すように、画像分割部22a、主成分分析部22bおよ
び最適主成分ベクトル・画像抽出部22cとを備える。
また、本装置は、以下に示すような機能を備えるソフト
ウェアで構成してもよく、また1つのハードウェアとし
て構成してもよい。
【0017】画像分割部22aは、マルチスペクトル画
像取得部20で得られた画像を、n t 個のタイル画像T
l (l=1〜nt )に分割する部分である。例えば、マ
ルチスペクトル画像Ms の画像サイズが1024×10
24画素の場合、タイル画像Tl の画像サイズを16×
16画素等に分割する。ここで、タイル画像Tl の画像
サイズについては、タイル画像Tl の総画像数が少なく
とも、マルチスペクトル画像MS の各画素毎の分光反射
率分布の構成波長数より大きいことが必要である。タイ
ル画像Tl の総画素数を構成波長数より大きくしなけれ
ば、後述する主成分分析において、精度の高い主成分ベ
クトルを求めることができないからである。
【0018】図3は、タイル画像Tl の分割の一例が示
されており、タイル画像Tl は、縦方向に7分割、横方
向に8分割し、合計56個のタイル画像Tl に分割し、
すべて同一の画像サイズである。すべて同一の画像サイ
ズとすることで、以降で述べる主成分分析や画像情報の
作成における処理が容易となるためである。また、タイ
ル画像Tl の縦方向および横方向の画像サイズとも、画
素数を2の巾乗とするのが好ましい。圧縮した画像を再
度呼び出して処理を行う際の便宜をはかるためである。
【0019】本実施例では、タイル画像Tl はすべて同
一の画像サイズであるが、必ずしも同一の画像サイズで
ある必要はなく、例えば、背景が空や地面等であって、
色相、明度や彩度の変化の少ない部分は、タイル画像T
l の画像サイズを大きくし、一方、被写体等を含み、色
相、明度や彩度の変化の激しい部分は、画像サイズを小
さくするといったように、画像内容に応じて適宜タイル
画像Tl の画像サイズを変えてもよく、このように画像
サイズを変えることによって圧縮率を高めることができ
る。また、タイル画像Tl の総画像数が少なくとも構成
波長数より大きい限りにおいて、タイル画像Tl の画像
サイズや縦横比等は、特に制限されない。
【0020】主成分分析部22bは、マルチスペクトル
画像MS を分割してタイル画像Tl(i=1〜nt )の
各画素毎に備える分光反射率分布の主成分分析を行い、
各画素ごとに分光反射率分布を主成分に展開する部分で
ある。なお、以降では、バンド数をnとして説明する。
本発明における主成分分析法は、観測波形データ群を正
規直交展開して標本化する方法の一つで、最適標本化と
いわれるものである。即ち、最も少ない数の直交基底関
数の加重平均で、観測波形データを最も精度良く表現す
るための方法である。ここでは、直交基底関数を主成分
ベクトルと呼ぶ。本発明における主成分分析として具体
的には、マルチスペクトル画像MS のタイル画像T
l (l=1〜nt )の画素毎の観測波形から、統計的手
法および固有値解析法を用いて、観測波形に固有の1次
独立な固有ベクトルを主成分ベクトルとして求め、この
主成分ベクトルから、本来観測波形に雑音成分が無けれ
ば、固有値が0となる固有値の小さな主成分ベクトルを
取り除き、バンド数nより少ない数の最適主成分ベクト
ルを求め、この最適主成分ベクトルによって観測波形を
線型的に表す、南茂夫著、「科学計測のための波形デー
タ処理」、220−225頁に記載の方法が挙げられ
る。この分析方法は、主成分分析部22aおよび後述す
る最適主成分ベクトル・画像抽出部22bにおいて主に
行われる。主成分分析法を用いる場合には、観測波形で
あるマルチスペクトル画像MS のタイル画像Tl (l=
1〜nt )の画素毎の分光反射率波形が、線型的に表す
ことができ、また分光反射率波形に含まれる雑音成分
も、分光反射率の値と無関係な雑音であることが好まし
い。
【0021】本実施例に沿って説明すると、マルチスペ
クトル画像MS のタイル画像Tl (l=1〜nt )は、
各画素毎に、可変フィルタ14を用いて被写体の撮影波
長帯域を分割したバンドの数nだけ分光反射率分布Rの
値を有する。すなわちnバンドの数に相当するn個の構
成波長を持ち、n個の分光反射率の値からなる分光反射
率分布Rを有する。しかも、マルチスペクトル画像MS
の各画素は、例えば16×16画素、すなわち256個
の画素で構成され、この総画素数は、構成波長数である
nよりも大きいため、画像の画素位置によらない統計的
処理、すなわち、後述するように、n次元ベクトルの形
式で表された分光反射率分布R (i,j ,λ) =( R (i,
j ,λ1),R(i,j,λ2),R(i,j,λ3),・・・,R
(i,j ,λ n ) )T (小文字T は転置を示し、(i,j)
は、注目画素の画素位置であり、λは分光波長を示す)
の、タイル画像Tl の画像領域全体の画素に関する自己
相関行列Tを求めて、統計的に分光反射率の主成分分析
を行うことができる。
【0022】ここで、主成分分析されて求められる主成
分は、統計的処理を用いて得られるもので、例えばnバ
ンドの数に相当するn個の分光反射率の値からなる正規
直交化された自己相関行列Tの固有ベクトルである主成
分ベクトルpk (λ)(k=1〜n)と自己相関行列T
の固有値uk (k=1〜n(kは1以上n以下の整数を
示す))の対が求められる。また、主成分ベクトルpk
(λ)(k=1〜n)を用いて、タイル画像Tl の画素
位置(i,j) での分光反射率分布R(i,j,λ) を線型展開
し、その際得られる各主成分ベクトルpk (λ)(k=
1〜n)に係る係数sk (i,j) (k=1〜n)を求め、
これを画素位置(i,j) での画像データとする主成分画像
k (k=1〜n)を得ることができる。主成分分析
は、タイル画像Tl (l=1〜nt )おのおのについて
行われ、得られたタイル画像Tl (l=1〜nt )毎の
主成分ベクトルpk (λ)(k=1〜n)および主成分
画像Sk (k=1〜n)は、最適主成分ベクトル・画像
抽出部22cに送られる。
【0023】最適主成分ベクトル・画像抽出部22c
は、主成分分析部22bで得られた各タイル画像T
l (l=1〜nt )の主成分ベクトルpk (λ)(k=
1〜n)とそれに対応した主成分画像Sk (k=1〜
n)とを用いて、各タイル画像Tl (l=1〜nt )毎
に最適主成分数m1 を定め、各タイル画像Tl (l=1
〜nt)毎に、最適主成分ベクトルpk (λ)(k=1
〜m1 )および最適主成分画像のSk (k=1〜m1
を抽出する部分である。すなわち、タイル画像Tl のn
個の主成分ベクトルpk (λ)(k=1〜n)とそれに
対応した主成分画像Sk (k=1〜n)の対の中から、
それより少ないm(m<n)個の主成分ベクトルp
k (λ)(k=1〜m)とそれに対応した主成分画像S
k (k=1〜m)の対を用いて合成画像Gを求め、この
合成画像Gの画像情報の、タイル画像Tl に基づくオリ
ジナル画像の画像情報に対する誤差を用いて、m個の主
成分ベクトルpk (λ)(k=1〜m)とそれに対応し
た主成分画像Sk (k=1〜m)が最適な主成分である
かどうか判断する。
【0024】ここで、タイル画像Tl の主成分ベクトル
k (λ)は、対応した固有値ukが大きい程、タイル
画像Tl の分光反射率分布における主成分の寄与は大き
い。そこで、主成分ベクトルpk (λ)を、固有値uk
の大きい順に並べ、合成画像Gを求めるために採用する
主成分ベクトルを、固有値uk の大きい順に、順次増や
し、一定の照明光源下で再構成された合成画像Gを求め
ていくと、n個の主成分ベクトルから構成されるタイル
画像Tl に基づくオリジナル画像に対する合成画像Gの
画像情報の誤差が、採用する主成分ベクトル数mの増加
に伴って単調減少する。そのため、この誤差が予め定め
た所定値以下に減少する最初の主成分ベクトル数mを求
めることによって、最小の最適主成分数m1 を求めるこ
とができる。これによって、最適主成分数m1 で合成画
像Gを求める際に採用した主成分ベクトルおよびこれに
基づいて得られる主成分画像を、それぞれ、タイル画像
l における最適主成分ベクトルpk (λ)(k=1〜
1 )および最適主成分画像Sk (k=1〜m1 )とし
て抽出することができる。この最適主成分ベクトルpk
(λ)(k=1〜m1 )および最適主成分画像Sk (k
=1〜m1 )は、タイル画像Tl 毎に求められる。
【0025】ここで、上記画像情報とは、例えば、CI
EL* * * 色空間に於ける一定の光源下の測色値L
* 、a* およびb* 、例えばCIED65の標準光条件下
の測色値L* 、a* およびb* であり、その際、上記誤
差とは下記式(1) で表される色差ΔE0 である。この場
合、この色差ΔE0 が例えば1.0以下となるような主
成分画像の数mを見出すことによって最適主成分数m1
を求めることができる。 ΔE0 ={(ΔL* 2 +(Δa* 2 +(Δb* 2 1/2 (1) ここで、ΔL* 、Δa* およびΔb* は、上記合成画像
Gとタイル画像Tl の画像全体または一部分における平
均測色値L* 、a* およびb* の差分である。このよう
にして、最適主成分数m1 は、合成画像Gの色空間上の
測色値とオリジナル画像の測色値の色差ΔE0 に基づい
て適応的に決定される。
【0026】また、上記画像情報の誤差、すなわち、オ
リジナル画像に対するm個の主成分ベクトルpk によっ
て再構成される合成画像Gの、画像全体または一部分の
画素のスペクトルの自乗誤差E1 であってもよい。合成
画像Gのバンド帯域に対応して分光情報を持つスペクト
ルの画像データについても、測色値の一例と見なすこと
ができ、合成画像Gの色空間上の測色値であるスペクト
ルの画像データとオリジナル画像の測色値であるスペク
トルの画像データの自乗誤差E1 に基づいて、最適主成
分数m1 を適応的に決定してもよい。この場合、この自
乗誤差E1 またはLog(E1 )は、主成分ベクトル数
mに対して単調減少となるため、mを増やすことによっ
て、自乗誤差E1 またはLog(E1 )の減少幅が予め
定められた所定値より小さくなるmの値、すなわちmの
増加に対して自乗誤差Eの減少が所定値以下で飽和する
時の最小のmの値を求めればよい。
【0027】得られた最適主成分数m1 、最適主成分ベ
クトルpk (λ)(k=1〜m1 )および最適主成分画
像Sk (k=1〜m1 )のタイル情報は、画像分割部2
2aでタイル画像Tl に分割される際に作成されるタイ
ル画像情報、すなわちタイル画像Tl のタイル番号、マ
ルチスペクトル画像MS 上のタイル位置、タイル画像T
l のタイルサイズ(画像サイズ)および上記タイル情報
のポインタ(アドレス)とともに圧縮マルチスペクトル
画像データとして記録メディアドライブ装置24に送ら
れる。
【0028】本システム10は、以上のように構成され
る。次に、本発明のマルチスペクトル画像の画像圧縮方
法について、本システム10に沿った画像圧縮方法の流
れを、図4を参照しつつ説明する。
【0029】まず、光源12、可変フィルタ14および
CCDカメラ16によって形成されるマルチバンドカメ
ラによって撮影被写体Oを撮影し、n個のバンド帯域に
分割された複数のバンド画像からなるマルチバンド画像
B を取得する(ステップ100)。得られたマルチバ
ンド画像MB は、マルチバンド画像データ記憶装置18
に一時記憶されると共に、マルチスペクトル画像取得装
置20に送られる。
【0030】マルチスペクトル画像取得装置20では、
例えばマクベスチャートのグレーパッチの画像データと
その分光反射率の値との関係から作成された1次元ルッ
クアップテーブル(1次元LUT)が備えられており、
この1次元LUTを用いて、マルチバンド画像データ記
憶装置18から呼び出された撮影被写体Oのマルチバン
ド画像MB の画像データを用いて各画素毎の撮影被写体
Oの分光反射率を推定しマルチスペクトル画像MS の画
像データを取得する(ステップ102)。この撮影被写
体Oの分光反射率の推定において、精度の高い分光反射
率分布を推定するために、マトリクス演算やフーリエ変
換を用いたデコンボリューション処理が付加されてもよ
い。
【0031】次に、マルチスペクトル画像Ms の画像デ
ータをタイル構造に分割(ステップ104)し、タイル
画像Tl (l=1〜nt )を得る。また、その際、タイ
ル画像Tl のタイル番号と、マルチスペクトル画像MS
上のタイル位置と、タイル画像Tl のタイルサイズ(画
像サイズ)と、後述する最適主成分数m1 、最適主成分
ベクトルpk (λ)および最適主成分画像Sk の画像デ
ータから成るタイル画像情報のポインタ(アドレス)を
備えるヘッダ情報としてのタイル画像情報とを作成す
る。タイル画像Tl (l=1〜nt )は、処理の容易さ
から図3に示すように、画像サイズはすべて同じである
が、圧縮率を高めるために、画像内容に応じて適宜、タ
イル画像Tl の画像サイズを変えてもよい。
【0032】次に、タイル画像Tl (l=1〜nt
は、タイル画像Tl 毎に主成分分析を行い(ステップ1
06)、主成分画像Sk (k=1〜n)および主成分ベ
クトルpk (λ)(k=1〜n)を求める。以下、主成
分分析法について説明する。
【0033】タイル画像Tl は、画素位置(i,j) におい
てそれぞれn個の分光反射率の値を持つ分光反射率分布
を有し、この分光反射率分布をR (i,j ,λ) =( R
(i,j,λ1),R(i,j,λ2),R(i,j ,λ3),・・・,
R(i,j ,λn ) )T (小文字T は転置を示す))とし
て、画像全体の画素または画像の一部分、例えば画像全
体の画素から一定間隔で画素を間引いた残りの画素にお
ける自己相関行列T(Tの(i,j ) 成分TijはRT ・R
/nである)を求める。
【0034】得られた自己相関行列Tはn×nの正方行
列であり、この自己相関行列Tを用いて、下記式(2)
を満足する固有値uk (u1 >u2 >・・・>un ,k
=1〜n)および正規直交化された固有ベクトルである
主成分ベクトルpk (λ)=( pk (i,j ,λ1),pk
(i,j,λ2),pk (i,j ,λ3),・・・,pk (i,j,
λn ) )T (k=1〜n)を求める。固有値および固有
ベクトルを求める方法は、jacobi法やパワー法等
の公知の方法であればよく、特に制限されない。 T・pk (λ)= uk k (λ) (2) また、画素位置(i,j) における分光反射率分布R (i,j
,λ) が下記式(3)のように、固有ベクトルである
主成分ベクトルpk (λ)(k=1〜n)で表されるた
め、
【数1】 下記式(4)に従って、主成分ベクトルpk (λ)(k
=1〜n)がお互いに正規直行関係にあることを利用し
て、sk (i,j) 求める。 sk (i,j) =R(i,j,λ) ・pk (λ) (4) ここで、記号・は、n個の成分から成るバンド帯域の分
光反射率の値についてのベクトルの内積であり、s
k (i,j) は、マルチスペクトル画像の画素位置(i,j) で
の分光反射率R(i,j,λ) に含まれる第k主成分ベクト
ルpk の大きさを示す量である。また、このsk (i,j)
を各画素位置で求め、その値を各々の画素位置での画像
データとする第k主成分画像Sk (k=1〜n)を求め
る。
【0035】ところで、分光反射率分布R(i,j,λ) に
おける第1〜第nの各主成分の寄与は、上述したよう
に、各主成分に付随した固有値uk の値が小さくなるに
連れて小さくなることから、分光反射率分布R(i,j,
λ) は、画像情報を最適に保持する限りにおいて、小さ
な固有値uk を持つ主成分ベクトルpk を省略して近似
することができる。すなわち、下記式(5)に示すよう
に、固有値uk (k=1〜n)を大きい順に並べた際
の、上からm番目以内の固有値uk (k=1〜m)に対
応する固有ベクトルpk (λ) (k=1〜m)を採用
し、それ以外の固有値uk の小さい固有ベクトルp
k (λ) (k=m+1〜n)を切り捨てることによっ
て、分光反射率分布R(i,j,λ) を近似し、画像データ
を圧縮することができる。
【数2】
【0036】そこで、画像情報を最適に保持した状態
で、分光反射率分布R(i,j,λ) が、画像情報を損なう
ことなく、近似的に表されるような主成分ベクトルpk
の採用数、すなわち最適主成分数m1 を見いだし、これ
を用いて、タイル画像Tl を圧縮する。これによって、
マルチスペクトル画像Ms の画質を劣化させることな
く、画像データを圧縮することができる。ここで、固有
値uk の大きい固有ベクトルである主成分ベクトルpk
(λ)(k=1〜m1 )を採用し、小さい固有ベクトル
k (λ)(k=m1 +1〜n)を切り捨てるための閾
値となる最適主成分数m1 の設定を以下の判断基準によ
って行なう(ステップ108)。
【0037】まず、固有値uk の大きい順に主成分ベク
トルpk (λ)を順次式(4)の主成分ベクトルp
k (λ)に含め、下記式(6)で示されるマルチスペク
トル画像に対応する近似分光反射率分布R’(i,j,λ)
を求める。
【数3】 近似分光反射率分布R’(i,j,λ) は、分光反射率分布
R(i,j,λ) を近似しているため誤差が存在するが、こ
の近似分光反射率分布R’(i,j,λ) から、一定の分光
強度分布を掛け合わせて得られる合成画像Gの画像情報
の、タイル画像Tl に上記分光強度分布を掛け合わせて
得られるオリジナル画像の画像情報に対する誤差は、主
成分数mが大きくなるに連れて減少する。そこで、判断
基準として、所定値を予め定め、近似分光反射率分布
R’(i,j,λ) に分光強度分布を掛け合わせて得られる
合成画像Gの画像情報の上記オリジナル画像の画像情報
に対する誤差が、上記判断基準として定めた所定値より
小さくなる最初の主成分数mを求めることによって、最
小の最適主成分数m1 を取得する。
【0038】たとえば、合成画像Gの画像情報のマルチ
スペクトル画像MS の画像情報に対する誤差を、CIE
65の標準光条件下のCIEL* * * 色空間におけ
る測色値L* 、a* およびb* の色差ΔE0 として、こ
の色差ΔE0 に対する上記所定値を定め、最小の最適主
成分数m1 を求める。また、上記誤差は、合成画像Gの
画像全体または一部分のスペクトルの自乗誤差E1 であ
ってもよく、その際、主成分数mの増加に対して自乗誤
差E1 の減少量が所定値以内に飽和する時の最小の最適
主成分数m1 の値を求めてもよい。
【0039】このようにして、タイル画像Tl 毎の画像
情報を保持し最適に代表する最小の最適主成分数m1
求め、これによって、固有値u1 〜um1(u1 〜um1
m1>um1+1>・・・>un )に対応するm1 個の最適
主成分ベクトルpk (λ)(k=1〜m1 )および最適
主成分画像Sk (k=1〜m1 )を取得する。ここで、
取り除かれる主成分ベクトルpk (λ)(k=m1 +1
〜n)は、タイル画像Tl に含まれるノイズ成分が支配
的な場合が比較的多く、タイル画像Tl から寄与の小さ
な主成分ベクトルpk (λ)(k=m1 +1〜n)を除
去することで、マルチスペクトル画像Ms に含まれるノ
イズ成分の抑制も行うことができる。
【0040】このようにして、ステップ108でタイル
画像Tl (l=1〜nt )毎に、最適主成分数、最適主
成分ベクトルpk (λ)と最適主成分画像Sk の画像デ
ータを得、ステップ104で作成されたタイル画像情報
とともに、記録メディアドライブ装置24に送られて、
ハードディスクやフロッピーディスクやMOやCD−R
やDVD等の記録メディアに記録保存される(ステップ
110)。特に、マルチスペクトル画像MS をタイル画
像Tl に分割し、タイル画像Tl ごとに主成分分析を行
っているので、色相、明度や彩度の変化の少ないタイル
画像Tl の場合、最適主成分数m1 は1または2で済
み、すなわち、1個または2個の最適主成分ベクトルp
k によって画像情報を保持し最適に代表することができ
る。そのため、マルチスペクトル画像MS の画像品質を
落すことなく画像データの画像圧縮率を高めることがで
きる。
【0041】なお、ステップ108で最適主成分数m1
を決定して、最適主成分ベクトルp k (λ)(k=1〜
1 )および最適主成分画像Sk (k=1〜m1 )を求
めたのち、最適主成分画像Sk (k=1〜m1 )につい
て、さらにJPEG(JointPhotographics Expert Grou
p) 方式等によって更に画像圧縮を行ってもよく、ハフ
マン符号化や公知の算術符号化によって、さらに画像圧
縮を行ってもよい。
【0042】このようなマルチスペクトル画像の画像圧
縮方法および画像圧縮装置において、以下のようなマル
チスペクトル画像の圧縮を行った。CCDカメラ16と
して、DALSA社製 CA-D4-1024A(画素数1024×
1024、ピクセルサイズ12×12ミクロン、PCI
インターフェース付き、モノクロ)を用い、可変フィル
タ14として、CRI社製Varispec Tunable Filter
(液晶チューナブルフィルタ)を用いた。この液晶チュ
ーナブルフィルタによって、380〜780nmの撮影
波長帯域を、バンド帯域幅を5nmずつに分割し、41
バンド(n=41)とした。屋外の人物を撮影被写体O
とし、41画像から成る人物画のマルチバンド画像MB
を得た。マルチバンド画像記憶部18、マルチスペクト
ル画像取得装置20およびマルチスペクトル画像圧縮装
置22は、PROSIDE社製ブック型PC(パーソナ
ルコンピュータ)を用いて構成し、Windows 95上でC
++言語によるソフトウェア処理を行った。なお、PRO
SIDE社製ブック型PCは、CPUが166MHz であ
り、RAMは128Mbyte であった。なお、前処理とし
て、ソフトウェア処理の都合上から、画像データの量子
化数を2バイトから1バイトに変換した。この前処理
は、以降で述べる画像データ量の圧縮には含まれていな
いものである。
【0043】まず、マルチスペクトル画像取得装置20
において、マルチバンド画像MB から構成波長数41の
マルチスペクトル画像MS を抽出し、得られた1024
×1024画素の画像サイズのマルチスペクトル画像M
S を16×16画素の画像サイズのタイル画像Tl (l
=1〜4096)に分割した。各タイル画像Tl (l=
1〜4096)に対して主成分分析を行い、主成分ベク
トルpk (λ)(k=1〜41)および主成分画像Sk
(k=1〜41)を求めた。
【0044】次に、最適主成分数m1 を求めるために、
判断基準として、CIED65の標準光源下のCIED1
976L* * * 色空間における色度に基づく平均色
差を1.5とした。さらに、上述した主成分分析法によ
って得られた固有値uk の大きい順に、固有値uk に対
応した主成分ベクトルpk を順次採用し、採用されたm
個の主成分ベクトルpk (λ)(k=1〜m)によって
再構成される合成画像Gと各タイル画像Tl から得られ
るオリジナル画像との上記平均色差を求め、平均色差が
1.5以下となる最適主成分数m1 を決定した。
【0045】その結果、タイル画像Tl (l=1〜40
96)の最適主成分数m1 は2〜6であった。特に、図
3で示されるタイル画像TB のような色相、明度や彩度
の変化が小さく、撮影被写体Oである人物の背景として
の空部分のタイル画像Tl や同一色相、明度や彩度を有
するタイル画像Tl は、タイル画像TA に比べて最適主
成分数m1 は小さく、値として2でよく、つまり第1主
成分ベクトルp1 (λ)および第2主成分ベクトルp2
(λ)でタイル画像Tl を表すことができた。さらに、
上述した平均色差1.5の基準を緩和した場合でも、第
1主成分ベクトルp1 (λ)のみでも十分に画像情報を
最適に保持し代表できることがわかった。
【0046】次に、各タイル画像Tl の最適主成分数m
1 、最適主成分ベクトルp(λ)および最適主成分画像
k にタイル画像情報、すなわち、タイル画像Tl のタ
イル番号と、マルチスペクトル画像MS 上のタイル位置
と、タイル画像Tl のタイルサイズ(画像サイズ)と、
上記最適主成分数m1 、最適主成分ベクトルpk (λ)
および最適主成分画像Sk の画像データから成るタイル
情報のポインタ(アドレス)とを付加し、記録メディア
ドライブ装置24を介して、記録保存した。その結果、
画像データは、約41Mバイトから4Mバイトに低減
し、画像データは約10分の1に圧縮された。さらに、
この圧縮された画像データを再度呼び出して画像を再構
成してみたが、視覚的に画質の劣化は認められなかっ
た。
【0047】このように、本発明の画像圧縮方法および
これを用いた画像圧縮装置は、複数のスペクトル画像に
対して、視覚的な劣化が少なく画像圧縮の際の圧縮率を
高め、例えば1/10程度に高め、画像データの取り扱
いを向上するのは明らかである。
【0048】以上、本発明のマルチスペクトル画像の画
像圧縮方法および画像圧縮装置について詳細に説明した
が、本発明は上記実施例に限定はされず、本発明の要旨
を逸脱しない範囲において、各種の改良および変更を行
ってもよいのはもちろんである。
【0049】
【発明の効果】以上、詳細に説明したように、本発明に
よれば、画像データ量の大きなマルチスペクトル画像を
タイル画像に分割し、タイル画像毎に主成分分析を行
い、画像情報を最適に保持し代表するタイル画像毎の最
適主成分ベクトルおよび最適主成分画像を求めることに
よって、画像品質を損なうことなく、画像データの圧縮
率を高めることができ、画像データの取り扱いを向上さ
せることができる。また、マルチスペクトル画像に含ま
れる主成分ベクトルからノイズ成分が支配的な主成分ベ
クトルを除去することができ、ノイズ成分の抑制も行う
ことができる。
【図面の簡単な説明】
【図1】 本発明のマルチスペクトル画像圧縮装置を含
むマルチスペクトル画像取得システムの一例を示す概念
図である。
【図2】 本発明に係るマルチスペクトル画像圧縮装置
の一例を示すブロック図である。
【図3】 本発明のマルチスペクトル画像圧縮方法で行
う画像分割の一例を示す説明図である。
【図4】 本発明のマルチスペクトル画像圧縮方法のフ
ローの一例を示すフローチャートである。
【符号の説明】
10 マルチスペクトル画像取得システム 12 光源 14 可変フィルタ 16 CCDカメラ 18 マルチバンド画像データ記憶装置 20 マルチスペクトル画像取得装置 22 マルチスペクトル画像圧縮装置 22a 画像分割部 22b 主成分分析部 22c 最適主成分ベクトル・画像抽出部 24 記録メディアドライブ装置

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】被写体を撮影する際に撮影波長帯域を複数
    のバンド帯域に分割して撮影された複数のバンド画像を
    用いて得られた複数のスペクトル画像から成るマルチス
    ペクトル画像を画像圧縮する方法であって、 前記マルチスペクトル画像を複数のタイル画像に分割
    し、 このタイル画像それぞれに対して主成分分析を行い、各
    タイル画像毎にマルチスペクトル画像の主成分ベクトル
    と主成分画像の複数の対を得、 この複数の対の中から、マルチスペクトル画像の画像情
    報を最適に代表する最適主成分数を求め、最適主成分ベ
    クトルとこれに対応する最適主成分画像を各タイル画像
    毎に得、 前記マルチスペクトル画像の圧縮画像データを、前記最
    適主成分画像および前記最適主成分ベクトルおよび前記
    最適主成分数を少なくとも用いて表すことを特徴とする
    マルチスペクトル画像の画像圧縮方法。
  2. 【請求項2】前記マルチスペクトル画像の圧縮画像デー
    タは、前記最適主成分画像、前記最適主成分ベクトルお
    よび前記最適主成分数の他に、前記タイル画像のタイル
    番号、タイル位置および前記タイル画像の画像サイズの
    情報を有するタイル画像情報を用いて表される請求項1
    に記載のマルチスペクトル画像の画像圧縮方法。
  3. 【請求項3】前記最適主成分数は、色空間上の測色値に
    基づいて決定される請求項1または2に記載のマルチス
    ペクトル画像の画像圧縮方法。
  4. 【請求項4】前記最適主成分数は、前記主成分ベクトル
    と前記主成分画像の中から選ばれて構成される合成画像
    の画像情報の、前記マルチスペクトル画像に基づいて構
    成されるオリジナル画像の画像情報に対する誤差の値
    が、所定値以下となる最小の主成分数であり、あるい
    は、前記マルチスペクトル画像に対する寄与の大きい主
    成分ベクトルを、主成分ベクトルの寄与の大きい順に、
    順次含めて前記合成画像を求めた時の前記オリジナル画
    像に対する誤差の変動が、所定値以下に収まる最小の主
    成分数である請求項1〜3のいずれかに記載のマルチス
    ペクトル画像の画像圧縮方法。
  5. 【請求項5】前記タイル画像の画素サイズは、縦方向お
    よび横方向ともに2の巾乗である請求項1〜4のいずれ
    かに記載のマルチスペクトル画像の画像圧縮方法。
  6. 【請求項6】前記タイル画像の画素サイズは、すべて同
    一サイズである請求項1〜5のいずれかに記載のマルチ
    スペクトル画像の画像圧縮方法。
  7. 【請求項7】被写体を撮影する際に撮影波長帯域を複数
    のバンド帯域に分割したバンド画像を用いて得られるマ
    ルチスペクトル画像を画像圧縮するマルチスペクトル画
    像の画像圧縮装置であって、 マルチスペクトル画像を複数のタイル画像に分割する画
    像分割部と、 画像分割部で得られたタイル画像それぞれに対して、主
    成分分析を行って、各タイル画像毎に、マルチスペクト
    ル画像の主成分ベクトルと主成分画像の複数の対を得る
    主成分分析部と、 この主成分分析部で得られた主成分ベクトルと主成分画
    像の複数の対の中から、マルチスペクトル画像の画像情
    報を最適に代表する最適主成分数を求めて、最適主成分
    ベクトルと最適主成分画像を得る最適主成分ベクトル・
    画像抽出部とを備え、 前記マルチスペクトル画像の画像データを、少なくとも
    前記最適成分ベクトル・画像抽出部で得られた各タイル
    画像の最適主成分ベクトルと、最適主成分画像の画像デ
    ータとを用いて圧縮することを特徴とするマルチスペク
    トル画像の画像圧縮装置。
JP29789599A 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置 Expired - Fee Related JP3986221B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29789599A JP3986221B2 (ja) 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置
US09/692,043 US6879716B1 (en) 1999-10-20 2000-10-20 Method and apparatus for compressing multispectral images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29789599A JP3986221B2 (ja) 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置

Publications (3)

Publication Number Publication Date
JP2001119587A true JP2001119587A (ja) 2001-04-27
JP2001119587A5 JP2001119587A5 (ja) 2005-06-02
JP3986221B2 JP3986221B2 (ja) 2007-10-03

Family

ID=17852508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29789599A Expired - Fee Related JP3986221B2 (ja) 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置

Country Status (2)

Country Link
US (1) US6879716B1 (ja)
JP (1) JP3986221B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101512A (ja) * 2005-09-21 2006-04-13 Matsushita Electric Ind Co Ltd 画像圧縮装置および画像送受信装置
WO2009017940A2 (en) * 2007-07-31 2009-02-05 Microsoft Corporation Tiled packaging of vector image data
US8929654B2 (en) 2011-12-28 2015-01-06 Dolby Laboratories Licensing Corporation Spectral image processing

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580488B2 (en) * 2000-11-29 2009-08-25 The Penn State Research Foundation Broadband modulation/demodulation apparatus and a method thereof
US7113654B2 (en) * 2002-01-31 2006-09-26 Bae Systems Information And Electronic Systems Integration Inc. Computationally efficient modeling of imagery using scaled, extracted principal components
US7224845B1 (en) * 2002-02-28 2007-05-29 Bae Systems Information And Electric Systems Integration Inc. Bijection mapping for compression/denoising of multi-frame images
US7755676B2 (en) * 2002-08-30 2010-07-13 Fujifilm Corporation Multi-band image photographing method and apparatus, and program for executing the method
US7916173B2 (en) * 2004-06-22 2011-03-29 Canon Kabushiki Kaisha Method for detecting and selecting good quality image frames from video
JP4645581B2 (ja) * 2006-11-30 2011-03-09 富士ゼロックス株式会社 画像処理装置、画像読取装置及び画像形成装置
JP4677435B2 (ja) * 2007-10-30 2011-04-27 キヤノン株式会社 画像処理装置および方法
JP4677434B2 (ja) * 2007-10-30 2011-04-27 キヤノン株式会社 画像処理装置および方法
JP2014016746A (ja) * 2012-07-06 2014-01-30 Sony Computer Entertainment Inc 画像処理装置および画像処理方法
US8717457B2 (en) * 2012-08-14 2014-05-06 Canon Kabushiki Kaisha Adaptive spectral imaging for video capture
JP6299180B2 (ja) * 2013-11-27 2018-03-28 株式会社リコー 撮像装置、撮像システムおよび当該撮像装置による撮像方法
CN111126452B (zh) * 2019-12-03 2023-05-23 中国科学院国家空间科学中心 一种基于主成分分析的地物光谱曲线扩展方法及系统
US12033329B2 (en) * 2021-07-22 2024-07-09 X Development Llc Sample segmentation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513128A (en) * 1993-09-14 1996-04-30 Comsat Corporation Multispectral data compression using inter-band prediction
US5793884A (en) * 1995-12-19 1998-08-11 Hewlett-Packard Company Spectral based color image editing
CA2219809A1 (en) * 1997-10-31 1999-04-30 Shen-En Qian System for interactive visualization and analysis of imaging spectrometry datasets over a wide-area network

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101512A (ja) * 2005-09-21 2006-04-13 Matsushita Electric Ind Co Ltd 画像圧縮装置および画像送受信装置
WO2009017940A2 (en) * 2007-07-31 2009-02-05 Microsoft Corporation Tiled packaging of vector image data
WO2009017940A3 (en) * 2007-07-31 2009-03-19 Microsoft Corp Tiled packaging of vector image data
US7925100B2 (en) 2007-07-31 2011-04-12 Microsoft Corporation Tiled packaging of vector image data
US8929654B2 (en) 2011-12-28 2015-01-06 Dolby Laboratories Licensing Corporation Spectral image processing
US8947549B2 (en) 2011-12-28 2015-02-03 Dolby Laboratories Licensing Corporation Spectral synthesis for image capturing device processing
US9077942B2 (en) 2011-12-28 2015-07-07 Dolby Laboratories Licensing Corporation Spectral synthesis for image capture device processing
US9479750B2 (en) 2011-12-28 2016-10-25 Dolby Laboratories Licensing Corporation Spectral synthesis for image capture device processing

Also Published As

Publication number Publication date
US6879716B1 (en) 2005-04-12
JP3986221B2 (ja) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4097873B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
JP3986221B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
JP3736394B2 (ja) 画像圧縮装置
KR20070091853A (ko) 영상 적응적인 색 재현 장치 및 방법
JP2001119587A5 (ja)
JP4097874B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
US20150326878A1 (en) Selective perceptual masking via scale separation in the spatial and temporal domains using intrinsic images for use in data compression
JP2004310475A (ja) 画像処理装置、画像処理を行う携帯電話、および画像処理プログラム
JP2014519727A (ja) デジタル病理画像におけるカラー画素データの効率的な表現及び処理方法
JP3986219B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
JP3743389B2 (ja) 画像圧縮装置および画像圧縮プログラム
US20020063899A1 (en) Imaging device connected to processor-based system using high-bandwidth bus
US8150150B2 (en) Method and system of extracting a perceptual feature set
US8180149B2 (en) Image processing apparatus and method
US7146055B2 (en) Image processing decompression apparatus and method of using same different scaling algorithms simultaneously
US20140270567A1 (en) Selective perceptual masking via scale separation in the spatial and temporal domains using intrinsic images for use in data compression
JP4400146B2 (ja) 分光画像データ処理方法および分光画像データ処理装置
JPH11261740A (ja) 画像評価方法、装置および記録媒体
US20150350647A1 (en) Selective perceptual masking via downsampling in the spatial and temporal domains using intrinsic images for use in data compression
JP2006101512A (ja) 画像圧縮装置および画像送受信装置
US8553282B2 (en) Image processing apparatus and method for processing image data including a fundamental stimulus value and spectral auxiliary coefficient
Ciprian et al. Colorimetric–spectral clustering: a tool for multispectral image compression
JP3977291B2 (ja) 画像再生方法及び画像処理装置
JP2004348293A (ja) 画像品質計算装置および方法、そのプログラム並びに記録媒体
CN118015474B (zh) 面向高位宽航天侦察影像情报分析的数据智能重量化方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees