Nothing Special   »   [go: up one dir, main page]

JP3986221B2 - マルチスペクトル画像の画像圧縮方法および画像圧縮装置 - Google Patents

マルチスペクトル画像の画像圧縮方法および画像圧縮装置 Download PDF

Info

Publication number
JP3986221B2
JP3986221B2 JP29789599A JP29789599A JP3986221B2 JP 3986221 B2 JP3986221 B2 JP 3986221B2 JP 29789599 A JP29789599 A JP 29789599A JP 29789599 A JP29789599 A JP 29789599A JP 3986221 B2 JP3986221 B2 JP 3986221B2
Authority
JP
Japan
Prior art keywords
image
principal component
tile
multispectral
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29789599A
Other languages
English (en)
Other versions
JP2001119587A (ja
JP2001119587A5 (ja
Inventor
磴  秀康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP29789599A priority Critical patent/JP3986221B2/ja
Priority to US09/692,043 priority patent/US6879716B1/en
Publication of JP2001119587A publication Critical patent/JP2001119587A/ja
Publication of JP2001119587A5 publication Critical patent/JP2001119587A5/ja
Application granted granted Critical
Publication of JP3986221B2 publication Critical patent/JP3986221B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/7715Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/64Systems for the transmission or the storage of the colour picture signal; Details therefor, e.g. coding or decoding means therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Astronomy & Astrophysics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Image Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被写体を撮影する際の撮影波長領域を複数のバンド帯域に分割して撮影された複数のバンド画像を用いて得られるマルチスペクトル画像の画像データに対して、画像品質を損なうことなく効率的に圧縮することのできる画像データの圧縮処理の技術分野に関する。
【0002】
【従来の技術】
今日、デジタル画像処理の進歩によって、画像の色情報(明度、色相、彩度)を完全に表現する手段として、画像の各画素毎に分光情報(スペクトル画像)を備える画像、すなわちマルチスペクトル画像が利用されている。
このマルチスペクトル画像は、撮影被写体を、複数のバンド帯域に分割して各バンド帯域毎に撮影した複数のバンド画像から構成されるマルチバンド画像に基づいて分光反射率分布を各画像毎に推定して得られるものである。このマルチバンド画像は、赤(R)、緑(G)および青(B)画像からなる従来のRGBカラー画像では十分に表現できない色情報を再現することができ、例えばより正確な色再現が望まれる絵画の世界にとって有効である。そこで、この色情報を正確に再現するといった特徴を生かすために、例えば380〜780nmの撮影波長帯域を10nm帯域毎に区切って41バンドさらには5nm帯域毎に区切って81バンドといった多くのバンド数を備えたマルチバンド画像に基づいてマルチスペクトル画像を得ることが望まれる。
【0003】
しかし、画素毎に分光情報を備えるマルチスペクトル画像は、撮影波長帯域を分割した各帯域(チャンネル)毎に、例えば41チャンネル毎に分光反射率データを有するため、従来から用いられてきた3チャンネルのRGBカラー画像に比べ、例えば約13倍(41チャンネル/3チャンネル)の画像データ量を備えなければならない。
そのため、得られたマルチスペクトル画像の画像データを保存する場合、大きな記憶容量が必要となり、保存に要する時間も長い。また、画像データをネットワークを介して転送する際にも多大の時間がかかり、取り扱いが困難になる。
【0004】
このような問題に対して、マルチスペクトル画像の各画素ごとの分光情報から得られるスペクトル波形を3つの等色関数、例えばRGB表色形の等色関数で展開するとともに、等色関数で表されないスペクトル波形の部分を、主成分分析法を用いて、主成分基底ベクトルで展開し、その中からスペクトル画像の画像情報を代表する主成分を抽出して採用し、それ以外の主成分は取り除き、最終的に等色関数を含め合計6〜8個の基底ベクトルで上記スペクトル波形を表現する方法が提案されている(Th.Keusen ,Multispectoral Color System wuth an Encoding Format Compatible with the Conventional Tristimulus Model ,Journal of Imaging Science and Technology 40: 510-515 (1996) ) 。これを用いて、上記スペクトル波形を6〜8個の基底ベクトルとそれに対応した係数の対とで表わすことによって、マルチスペクトル画像の画像データを圧縮することができる。特に、RGB表色形の等色関数で表される場合、等色関数の係数は、R、GおよびBの三刺激値となるので、R、GおよびB画素による3刺激値に基づいて画像処理や画像表示等が行われる従来の画像処理装置や画像表示装置に対応して適合するように特別な変換を施す必要がなく、直接画像データを送ることができるといった処理の低減に対して優れた効果を備える。
【0005】
【発明が解決しようとする課題】
このような方法によって得られる画像データは、例えば41個のスペクトル画像から構成されるマルチスペクトル画像の場合、例えば8個の基底ベクトルとその係数によって表すことによって、マルチスペクトル画像の画像データ量の約20%(8個/41個×100)に圧縮することができる。
しかし、41個のスペクトル画像から構成されるマルチスペクトル画像の場合、RGBカラー画像の画像データ量に比べて約13倍も大きく、上記方法で約30%に圧縮できたとしても、RGBカラー画像の画像データ量に対して、依然として約2.5倍(13×20/100)ものデータ量を有することになる。そのため、上述したように記録メディア等に記録保存する際の記録時間や画像データをネットワークを介して転送する際の転送時間も長く、依然として取り扱いが困難である。
【0006】
そこで、本発明は、上記問題点を解決し、被写体を撮影する際の撮影波長帯域を複数のバンド帯域に分割することで得られる複数のスペクトル画像に対して、視覚的に劣化することが少なく画像圧縮の際の圧縮率を高め、画像データの取り扱いが向上するマルチスペクトル画像の画像圧縮方法および画像圧縮装置を提供することを目的とする。
【0007】
上記目的を達成するために、本発明は、被写体を撮影する際に撮影波長帯域を複数のバンド帯域に分割して撮影された複数のバンド画像を用いて得られた複数のスペクトル画像から成るマルチスペクトル画像を画像圧縮する方法であって、
前記マルチスペクトル画像を複数のタイル画像に分割し、
このタイル画像それぞれに対して主成分分析を行い、各タイル画像毎にマルチスペクトル画像の主成分ベクトルと主成分画像の複数の対を得、
この複数の対の中から、マルチスペクトル画像の画像情報を最適に代表する最適主成分数を求め、最適主成分ベクトルとこれに対応する最適主成分画像を各タイル画像毎に得、
タイル画像毎に得られた各最適主成分画像に対し画像圧縮を行い最適主成分圧縮画像データを得ることを特徴とするマルチスペクトル画像の画像圧縮方法を提供するものである。
【0008】
ここで、前記マルチスペクトル画像の圧縮画像データは、前記最適主成分画像、前記最適主成分ベクトルおよび前記最適主成分数の他に、前記タイル画像のタイル番号、タイル位置および前記タイル画像の画像サイズの情報を有するタイル画像情報を用いて表されるのが好ましい。
また、前記最適主成分数は、色空間上の測色値に基づいて決定されるのが好ましく、前記最適主成分数は、前記主成分ベクトルと前記主成分画像の中から選ばれて構成される合成画像の画像情報の、前記マルチスペクトル画像に基づいて構成されるオリジナル画像の画像情報に対する誤差の値が、所定値以下となる最小の主成分数であり、あるいは、前記マルチスペクトル画像に対する寄与の大きい主成分ベクトルを、主成分ベクトルの寄与の大きい順に、順次含めて前記合成画像を求めた時の前記オリジナル画像に対する誤差の変動が、所定値以下に収まる最小の主成分数であるのが好ましい。
また、前記タイル画像の画素サイズは、縦方向および横方向ともに2の巾乗であるのが好ましく、また、前記タイル画像の画素サイズは、すべて同一サイズであるのが好ましい。
また、前記最適主成分数は、色空間における色度差を所定値以下とする最小の主成分数であるのが好ましく、また、前記色空間は、CIED 65 の標準光源下のCIED1976L * * * 色空間であり、前記所定値は、この色空間における色度に基づく平均色差が1.5であるのが好ましい。
【0009】
被写体を撮影する際に撮影波長帯域を複数のバンド帯域に分割したバンド画像を用いて得られるマルチスペクトル画像を画像圧縮するマルチスペクトル画像の画像圧縮装置であって、
マルチスペクトル画像を複数のタイル画像に分割する画像分割部と、
画像分割部で得られたタイル画像それぞれに対して、主成分分析を行って、各タイル画像毎に、マルチスペクトル画像の主成分ベクトルと主成分画像の複数の対を得る主成分分析部と、
この主成分分析部で得られた主成分ベクトルと主成分画像の複数の対の中から、マルチスペクトル画像の画像情報を最適に代表する最適主成分数を求めて、最適主成分ベクトルと最適主成分画像を得る最適主成分ベクトル・画像抽出部とを備え、
前記最適成分ベクトル・画像抽出部で得られた各タイル画像の最適主成分画像に対し画像圧縮を行い最適主成分圧縮画像データを得ることを特徴とするマルチスペクトル画像の画像圧縮装置を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明のマルチスペクトル画像の画像圧縮方法を実施するマルチスペクトル画像取得システムについて、添付の図面に示される好適実施例を基に詳細に説明する。
【0011】
図1は、本発明のマルチスペクトル画像の画像圧縮方法を実施し、本発明のマルチスペクトル画像の画像圧縮装置を含むマルチスペクトル画像取得システム(以下、本システムという)10を示す。
本システム10は、撮影被写体Oを撮影し、得られたマルチスペクトル画像MS の画像データを記録メディアに保存するものであって、撮影被写体Oを照らす光源12と、撮影波長帯域を複数のバンド帯域に分割する可変フィルタ14と、撮影被写体Oを撮影してマルチバンド画像MB を得るCCDカメラ16と、画像データを一時保持するマルチバンド画像記憶部18と、マルチバンド画像から各画素毎に分光反射率分布を推定してマルチスペクトル画像MS を得るマルチスペクトル画像取得装置20と、マルチスペクトル画像MS の画像データを、視覚的な劣化が少なく、圧縮率を高くして圧縮するマルチスペクトル画像圧縮装置22と、得られた圧縮画像データを保存する記録メディアドライブ装置24とを主に有して構成される。なお、本発明において、マルチスペクトル画像Ms は、少なくとも6チャンネル以上のスペクトル画像を備え、すなわち、分光反射率分布において構成波長数が6以上であるのが好ましい。
【0012】
光源12は、撮影被写体Oを撮影するものであって、光源の種類等は特に制限されないが、撮影されたマルチバンド画像MB から分光反射率を推定し、マルチスペクトル画像MS を取得するために、分光強度分布が既知の光源であることが好ましい。
可変フィルタ14は、撮影被写体Oを撮影してマルチバンド画像MB を得るために、撮影波長帯域を分割するバンド帯域が可変に設定可能なバンドパスフィルタであり、例えば16バンド、21バンドや41バンド等に分割することができる。このような可変フィルタとして、例えば液晶チューナブルフィルタが挙げられる。
【0013】
CCDカメラ16は、撮影被写体Oの反射光を可変フィルタ14を介して所望の波長帯域に分光された透過光によって結像される像を黒白のバンド画像として撮影するカメラであって、受光面には、エリアセンサとしてCCD(charge coupled device ) 撮像素子が面状に配置されている。
また、CCDカメラ16には、撮影される画像の明度値のダイナミックレンジを適切に定めるため、撮影被写体Oの撮影前に行うホワイトバランスの調整機構を備える。
【0014】
マルチバンド画像データ記憶装置18は、撮影波長帯域を複数のバンド帯域に分割して撮影され、各バンドに対応するホワイトバランスの調整された複数のバンド画像からなるマルチバンド画像MB を一時記憶保持する部分である。
マルチスペクトル取得装置20は、CCDカメラ16で撮影された分光反射率の既知の撮影被写体の画像データ、例えばマクベスチャートのグレーパッチの画像データとその既知の分光反射率の値との対応関係から予め作成された1次元ルックアップテーブル(1次元LUT)を備え、この1次元LUTを用いて、マルチバンド画像データ記憶装置18より呼び出された撮影被写体Oのマルチバンド画像MB の画像データから各画素毎の撮影被写体Oの分光反射率を推定し、マルチスペクトル画像MS を取得する部分である。
撮影被写体Oの分光反射率の推定において、可変フィルタ14のフィルタ特性、すなわち可変フィルタ14の分光透過率分布がバンド間で一部分が重なった特性を有する場合、得られるマルチスペクトル画像MS の分光反射率分布は鈍り、精度の高い分光反射率分布を推定することができないため、マトリクス演算やフーリエ変換を用いて、上記フィルタ特性を排除するデコンボリューション処理を施してもよい。
このようにして、可変フィルタ14を用いて、n個のバンド帯域に分割したマルチバンド画像MB から、分光情報として、n個の構成波長からなる分光反射率を備えるマルチスペクトル画像MS を取得する。
【0015】
記録メディアドライブ装置24は、ハードディスクやフロッピーディスクやMOやCD−RやDVD等の記録メディアに記録するドライブ装置であり、マルチスペクトル画像MS の画像データを後述するマルチスペクトル画像圧縮装置22で圧縮した圧縮マルチスペクトル画像データを記録することができる。また、記録メディアドライブ装置24と共に、またこれに替えて、後述する圧縮マルチスペクトル画像データを各種ネットワークを介して転送するために、ネットワーク接続装置を備えてもよい。
【0016】
マルチスペクトル画像圧縮装置22は、マルチスペクトル取得装置20で得られたマルチスペクトル画像MS を構成するマルチスペクトル画像データに対して、視覚的な劣化が少なく画像圧縮率の高い圧縮マルチスペクトル画像データを求める部分であり、図2に示すように、画像分割部22a、主成分分析部22bおよび最適主成分ベクトル・画像抽出部22cとを備える。また、本装置は、以下に示すような機能を備えるソフトウェアで構成してもよく、また1つのハードウェアとして構成してもよい。
【0017】
画像分割部22aは、マルチスペクトル画像取得部20で得られた画像を、nt 個のタイル画像Tl (l=1〜nt )に分割する部分である。例えば、マルチスペクトル画像Ms の画像サイズが1024×1024画素の場合、タイル画像Tl の画像サイズを16×16画素等に分割する。ここで、タイル画像Tl の画像サイズについては、タイル画像Tl の総画像数が少なくとも、マルチスペクトル画像MS の各画素毎の分光反射率分布の構成波長数より大きいことが必要である。タイル画像Tl の総画素数を構成波長数より大きくしなければ、後述する主成分分析において、精度の高い主成分ベクトルを求めることができないからである。
【0018】
図3は、タイル画像Tl の分割の一例が示されており、タイル画像Tl は、縦方向に分割、横方向に分割し、合計42個のタイル画像Tl に分割し、すべて同一の画像サイズである。すべて同一の画像サイズとすることで、以降で述べる主成分分析や画像情報の作成における処理が容易となるためである。また、タイル画像Tl の縦方向および横方向の画像サイズとも、画素数を2の巾乗とするのが好ましい。圧縮した画像を再度呼び出して処理を行う際の便宜をはかるためである。
【0019】
本実施例では、タイル画像Tl はすべて同一の画像サイズであるが、必ずしも同一の画像サイズである必要はなく、例えば、背景が空や地面等であって、色相、明度や彩度の変化の少ない部分は、タイル画像Tl の画像サイズを大きくし、一方、被写体等を含み、色相、明度や彩度の変化の激しい部分は、画像サイズを小さくするといったように、画像内容に応じて適宜タイル画像Tl の画像サイズを変えてもよく、このように画像サイズを変えることによって圧縮率を高めることができる。
また、タイル画像Tl の総画像数が少なくとも構成波長数より大きい限りにおいて、タイル画像Tl の画像サイズや縦横比等は、特に制限されない。
【0020】
主成分分析部22bは、マルチスペクトル画像MSを分割してタイル画像Tl=1〜nt)の各画素毎に備える分光反射率分布の主成分分析を行い、各画素ごとに分光反射率分布を主成分に展開する部分である。なお、以降では、バンド数をnとして説明する。
本発明における主成分分析法は、観測波形データ群を正規直交展開して標本化する方法の一つで、最適標本化といわれるものである。即ち、最も少ない数の直交基底関数の加重平均で、観測波形データを最も精度良く表現するための方法である。ここでは、直交基底関数を主成分ベクトルと呼ぶ。
本発明における主成分分析として具体的には、マルチスペクトル画像MS のタイル画像Tl(l=1〜nt)の画素毎の観測波形から、統計的手法および固有値解析法を用いて、観測波形に固有の1次独立な固有ベクトルを主成分ベクトルとして求め、この主成分ベクトルから、本来観測波形に雑音成分が無ければ、固有値が0となる固有値の小さな主成分ベクトルを取り除き、バンド数nより少ない数の最適主成分ベクトルを求め、この最適主成分ベクトルによって観測波形を線型的に表す、南茂夫著、「科学計測のための波形データ処理」、220−225頁に記載の方法が挙げられる。この分析方法は、主成分分析部22および後述する最適主成分ベクトル・画像抽出部22において主に行われる。
主成分分析法を用いる場合には、観測波形であるマルチスペクトル画像MSのタイル画像Tl(l=1〜nt)の画素毎の分光反射率波形が、線型的に表すことができ、また分光反射率波形に含まれる雑音成分も、分光反射率の値と無関係な雑音であることが好ましい。
【0021】
本実施例に沿って説明すると、マルチスペクトル画像MS のタイル画像Tl (l=1〜nt )は、各画素毎に、可変フィルタ14を用いて被写体の撮影波長帯域を分割したバンドの数nだけ分光反射率分布Rの値を有する。すなわちnバンドの数に相当するn個の構成波長を持ち、n個の分光反射率の値からなる分光反射率分布Rを有する。しかも、マルチスペクトル画像MS の各画素は、例えば16×16画素、すなわち256個の画素で構成され、この総画素数は、構成波長数であるnよりも大きいため、画像の画素位置によらない統計的処理、すなわち、後述するように、n次元ベクトルの形式で表された分光反射率分布R (i,j ,λ) =( R (i,j ,λ1),R(i,j,λ2),R(i,j,λ3),・・・,R(i,j ,λn ) )T (小文字T は転置を示し、(i,j) は、注目画素の画素位置であり、λは分光波長を示す)の、タイル画像Tl の画像領域全体の画素に関する自己相関行列Tを求めて、統計的に分光反射率の主成分分析を行うことができる。
【0022】
ここで、主成分分析されて求められる主成分は、統計的処理を用いて得られるもので、例えばnバンドの数に相当するn個の分光反射率の値からなる正規直交化された自己相関行列Tの固有ベクトルである主成分ベクトルpk (λ)(k=1〜n)と自己相関行列Tの固有値uk (k=1〜n(kは1以上n以下の整数を示す))の対が求められる。また、主成分ベクトルpk (λ)(k=1〜n)を用いて、タイル画像Tl の画素位置(i,j) での分光反射率分布R(i,j,λ) を線型展開し、その際得られる各主成分ベクトルpk (λ)(k=1〜n)に係る係数sk (i,j) (k=1〜n)を求め、これを画素位置(i,j) での画像データとする主成分画像Sk (k=1〜n)を得ることができる。
主成分分析は、タイル画像Tl (l=1〜nt )おのおのについて行われ、得られたタイル画像Tl (l=1〜nt )毎の主成分ベクトルpk (λ)(k=1〜n)および主成分画像Sk (k=1〜n)は、最適主成分ベクトル・画像抽出部22cに送られる。
【0023】
最適主成分ベクトル・画像抽出部22cは、主成分分析部22bで得られた各タイル画像Tl (l=1〜nt )の主成分ベクトルpk (λ)(k=1〜n)とそれに対応した主成分画像Sk (k=1〜n)とを用いて、各タイル画像Tl (l=1〜nt )毎に最適主成分数m1 を定め、各タイル画像Tl (l=1〜nt )毎に、最適主成分ベクトルpk (λ)(k=1〜m1 )および最適主成分画像のSk (k=1〜m1 )を抽出する部分である。
すなわち、タイル画像Tl のn個の主成分ベクトルpk (λ)(k=1〜n)とそれに対応した主成分画像Sk (k=1〜n)の対の中から、それより少ないm(m<n)個の主成分ベクトルpk (λ)(k=1〜m)とそれに対応した主成分画像Sk (k=1〜m)の対を用いて合成画像Gを求め、この合成画像Gの画像情報の、タイル画像Tl に基づくオリジナル画像の画像情報に対する誤差を用いて、m個の主成分ベクトルpk (λ)(k=1〜m)とそれに対応した主成分画像Sk (k=1〜m)が最適な主成分であるかどうか判断する。
【0024】
ここで、タイル画像Tl の主成分ベクトルpk (λ)は、対応した固有値uk が大きい程、タイル画像Tl の分光反射率分布における主成分の寄与は大きい。そこで、主成分ベクトルpk (λ)を、固有値uk の大きい順に並べ、合成画像Gを求めるために採用する主成分ベクトルを、固有値uk の大きい順に、順次増やし、一定の照明光源下で再構成された合成画像Gを求めていくと、n個の主成分ベクトルから構成されるタイル画像Tl に基づくオリジナル画像に対する合成画像Gの画像情報の誤差が、採用する主成分ベクトル数mの増加に伴って単調減少する。そのため、この誤差が予め定めた所定値以下に減少する最初の主成分ベクトル数mを求めることによって、最小の最適主成分数m1 を求めることができる。これによって、最適主成分数m1 で合成画像Gを求める際に採用した主成分ベクトルおよびこれに基づいて得られる主成分画像を、それぞれ、タイル画像Tl における最適主成分ベクトルpk (λ)(k=1〜m1 )および最適主成分画像Sk (k=1〜m1 )として抽出することができる。この最適主成分ベクトルpk (λ)(k=1〜m1 )および最適主成分画像Sk (k=1〜m1 )は、タイル画像Tl 毎に求められる。
【0025】
ここで、上記画像情報とは、例えば、CIEL* * * 色空間に於ける一定の光源下の測色値L* 、a* およびb* 、例えばCIED65の標準光条件下の測色値L* 、a* およびb* であり、その際、上記誤差とは下記式(1) で表される色差ΔE0 である。この場合、この色差ΔE0 が例えば1.0以下となるような主成分画像の数mを見出すことによって最適主成分数m1 を求めることができる。
ΔE0 ={(ΔL* 2 +(Δa* 2 +(Δb* 2 1/2 (1)
ここで、ΔL* 、Δa* およびΔb* は、上記合成画像Gとタイル画像Tl の画像全体または一部分における平均測色値L* 、a* およびb* の差分である。このようにして、最適主成分数m1 は、合成画像Gの色空間上の測色値とオリジナル画像の測色値の色差ΔE0 に基づいて適応的に決定される。
【0026】
また、上記画像情報の誤差、すなわち、オリジナル画像に対するm個の主成分ベクトルpkによって再構成される合成画像Gの、タイル画像全体または一部分の画素のスペクトルの自乗誤差E1であってもよい。合成画像Gのバンド帯域に対応して分光情報を持つスペクトルの画像データについても、測色値の一例と見なすことができ、合成画像Gの色空間上の測色値であるスペクトルの画像データとオリジナル画像の測色値であるスペクトルの画像データの自乗誤差E1に基づいて、最適主成分数m1を適応的に決定してもよい。この場合、この自乗誤差E1またはLog(E1)は、主成分ベクトル数mに対して単調減少となるため、mを増やすことによって、自乗誤差E1またはLog(E1)の減少幅が予め定められた所定値より小さくなるmの値、すなわちmの増加に対して自乗誤差Eの減少が所定値以下で飽和する時の最小のmの値を求めればよい。
【0027】
得られた最適主成分数m1 、最適主成分ベクトルpk (λ)(k=1〜m1 )および最適主成分画像Sk (k=1〜m1 )のタイル情報は、画像分割部22aでタイル画像Tl に分割される際に作成されるタイル画像情報、すなわちタイル画像Tl のタイル番号、マルチスペクトル画像MS 上のタイル位置、タイル画像Tl のタイルサイズ(画像サイズ)および上記タイル情報のポインタ(アドレス)とともに圧縮マルチスペクトル画像データとして記録メディアドライブ装置24に送られる。
【0028】
本システム10は、以上のように構成される。
次に、本発明のマルチスペクトル画像の画像圧縮方法について、本システム10に沿った画像圧縮方法の流れを、図4を参照しつつ説明する。
【0029】
まず、光源12、可変フィルタ14およびCCDカメラ16によって形成されるマルチバンドカメラによって撮影被写体Oを撮影し、n個のバンド帯域に分割された複数のバンド画像からなるマルチバンド画像MB を取得する(ステップ100)。得られたマルチバンド画像MB は、マルチバンド画像データ記憶装置18に一時記憶されると共に、マルチスペクトル画像取得装置20に送られる。
【0030】
マルチスペクトル画像取得装置20では、例えばマクベスチャートのグレーパッチの画像データとその分光反射率の値との関係から作成された1次元ルックアップテーブル(1次元LUT)が備えられており、この1次元LUTを用いて、マルチバンド画像データ記憶装置18から呼び出された撮影被写体Oのマルチバンド画像MB の画像データを用いて各画素毎の撮影被写体Oの分光反射率を推定しマルチスペクトル画像MS の画像データを取得する(ステップ102)。この撮影被写体Oの分光反射率の推定において、精度の高い分光反射率分布を推定するために、マトリクス演算やフーリエ変換を用いたデコンボリューション処理が付加されてもよい。
【0031】
次に、マルチスペクトル画像Ms の画像データをタイル構造に分割(ステップ104)し、タイル画像Tl (l=1〜nt )を得る。また、その際、タイル画像Tl のタイル番号と、マルチスペクトル画像MS 上のタイル位置と、タイル画像Tl のタイルサイズ(画像サイズ)と、後述する最適主成分数m1 、最適主成分ベクトルpk (λ)および最適主成分画像Sk の画像データから成るタイル画像情報のポインタ(アドレス)を備えるヘッダ情報としてのタイル画像情報とを作成する。
タイル画像Tl (l=1〜nt )は、処理の容易さから図3に示すように、画像サイズはすべて同じであるが、圧縮率を高めるために、画像内容に応じて適宜、タイル画像Tl の画像サイズを変えてもよい。
【0032】
次に、タイル画像Tl (l=1〜nt )は、タイル画像Tl 毎に主成分分析を行い(ステップ106)、主成分画像Sk (k=1〜n)および主成分ベクトルpk (λ)(k=1〜n)を求める。以下、主成分分析法について説明する。
【0033】
タイル画像Tl は、画素位置(i,j) においてそれぞれn個の分光反射率の値を持つ分光反射率分布を有し、この分光反射率分布をR (i,j ,λ) =( R (i,j ,λ1),R(i,j,λ2),R(i,j ,λ3),・・・,R(i,j ,λn ) )T (小文字T は転置を示す))として、画像全体の画素または画像の一部分、例えば画像全体の画素から一定間隔で画素を間引いた残りの画素における自己相関行列T(Tの(i,j ) 成分TijはRT ・R/nである)を求める。
【0034】
得られた自己相関行列Tはn×nの正方行列であり、この自己相関行列Tを用いて、下記式(2)を満足する固有値uk (u1 >u2 >・・・>un ,k=1〜n)および正規直交化された固有ベクトルである主成分ベクトルpk (λ)=( pk (i,j ,λ1),pk (i,j,λ2),pk (i,j ,λ3),・・・,pk (i,j ,λn ) )T (k=1〜n)を求める。固有値および固有ベクトルを求める方法は、jacobi法やパワー法等の公知の方法であればよく、特に制限されない。
T・pk (λ)= uk k (λ) (2)
また、画素位置(i,j) における分光反射率分布R (i,j ,λ) が下記式(3)のように、固有ベクトルである主成分ベクトルpk (λ)(k=1〜n)で表されるため、
【数1】
Figure 0003986221
下記式(4)に従って、主成分ベクトルpk (λ)(k=1〜n)がお互いに正規直行関係にあることを利用して、sk (i,j) 求める。
k (i,j) =R(i,j,λ) ・pk (λ) (4)
ここで、記号・は、n個の成分から成るバンド帯域の分光反射率の値についてのベクトルの内積であり、sk (i,j) は、マルチスペクトル画像の画素位置(i,j) での分光反射率R(i,j,λ) に含まれる第k主成分ベクトルpk の大きさを示す量である。また、このsk (i,j) を各画素位置で求め、その値を各々の画素位置での画像データとする第k主成分画像Sk (k=1〜n)を求める。
【0035】
ところで、分光反射率分布R(i,j,λ) における第1〜第nの各主成分の寄与は、上述したように、各主成分に付随した固有値uk の値が小さくなるに連れて小さくなることから、分光反射率分布R(i,j,λ) は、画像情報を最適に保持する限りにおいて、小さな固有値uk を持つ主成分ベクトルpk を省略して近似することができる。
すなわち、下記式(5)に示すように、固有値uk (k=1〜n)を大きい順に並べた際の、上からm番目以内の固有値uk (k=1〜m)に対応する固有ベクトルpk (λ) (k=1〜m)を採用し、それ以外の固有値uk の小さい固有ベクトルpk (λ) (k=m+1〜n)を切り捨てることによって、分光反射率分布R(i,j,λ) を近似し、画像データを圧縮することができる。
【数2】
Figure 0003986221
【0036】
そこで、画像情報を最適に保持した状態で、分光反射率分布R(i,j,λ) が、画像情報を損なうことなく、近似的に表されるような主成分ベクトルpk の採用数、すなわち最適主成分数m1 を見いだし、これを用いて、タイル画像Tl を圧縮する。これによって、マルチスペクトル画像Ms の画質を劣化させることなく、画像データを圧縮することができる。
ここで、固有値uk の大きい固有ベクトルである主成分ベクトルpk (λ)(k=1〜m1 )を採用し、小さい固有ベクトルpk (λ)(k=m1 +1〜n)を切り捨てるための閾値となる最適主成分数m1 の設定を以下の判断基準によって行なう(ステップ108)。
【0037】
まず、固有値uk の大きい順に主成分ベクトルpk (λ)を順次式(4)の主成分ベクトルpk (λ)に含め、下記式(6)で示されるマルチスペクトル画像に対応する近似分光反射率分布R’(i,j,λ) を求める。
【数3】
Figure 0003986221
近似分光反射率分布R’(i,j,λ) は、分光反射率分布R(i,j,λ) を近似しているため誤差が存在するが、この近似分光反射率分布R’(i,j,λ) から、一定の分光強度分布を掛け合わせて得られる合成画像Gの画像情報の、タイル画像Tl に上記分光強度分布を掛け合わせて得られるオリジナル画像の画像情報に対する誤差は、主成分数mが大きくなるに連れて減少する。そこで、判断基準として、所定値を予め定め、近似分光反射率分布R’(i,j,λ) に分光強度分布を掛け合わせて得られる合成画像Gの画像情報の上記オリジナル画像の画像情報に対する誤差が、上記判断基準として定めた所定値より小さくなる最初の主成分数mを求めることによって、最小の最適主成分数m1 を取得する。
【0038】
たとえば、合成画像Gの画像情報のマルチスペクトル画像MS の画像情報に対する誤差を、CIED65の標準光条件下のCIEL* * * 色空間における測色値L* 、a* およびb* の色差ΔE0 として、この色差ΔE0 に対する上記所定値を定め、最小の最適主成分数m1 を求める。
また、上記誤差は、合成画像Gの画像全体または一部分のスペクトルの自乗誤差E1 であってもよく、その際、主成分数mの増加に対して自乗誤差E1 の減少量が所定値以内に飽和する時の最小の最適主成分数m1 の値を求めてもよい。
【0039】
このようにして、タイル画像Tl 毎の画像情報を保持し最適に代表する最小の最適主成分数m1 を求め、これによって、固有値u1 〜um1(u1 〜um1>um1>um1+1>・・・>un )に対応するm1 個の最適主成分ベクトルpk (λ)(k=1〜m1 )および最適主成分画像Sk (k=1〜m1 )を取得する。ここで、取り除かれる主成分ベクトルpk (λ)(k=m1 +1〜n)は、タイル画像Tl に含まれるノイズ成分が支配的な場合が比較的多く、タイル画像Tl から寄与の小さな主成分ベクトルpk (λ)(k=m1 +1〜n)を除去することで、マルチスペクトル画像Ms に含まれるノイズ成分の抑制も行うことができる。
【0040】
このようにして、ステップ108でタイル画像Tl (l=1〜nt )毎に、最適主成分数、最適主成分ベクトルpk (λ)と最適主成分画像Sk の画像データを得、ステップ104で作成されたタイル画像情報とともに、記録メディアドライブ装置24に送られて、ハードディスクやフロッピーディスクやMOやCD−RやDVD等の記録メディアに記録保存される(ステップ110)。特に、マルチスペクトル画像MS をタイル画像Tl に分割し、タイル画像Tl ごとに主成分分析を行っているので、色相、明度や彩度の変化の少ないタイル画像Tl の場合、最適主成分数m1 は1または2で済み、すなわち、1個または2個の最適主成分ベクトルpk によって画像情報を保持し最適に代表することができる。そのため、マルチスペクトル画像MS の画像品質を落すことなく画像データの画像圧縮率を高めることができる。
【0041】
なお、ステップ108で最適主成分数m1 を決定して、最適主成分ベクトルpk (λ)(k=1〜m1 )および最適主成分画像Sk (k=1〜m1 )を求めたのち、最適主成分画像Sk (k=1〜m1 )について、さらにJPEG(Joint Photographics Expert Group) 方式等によって更に画像圧縮を行ってもよく、ハフマン符号化や公知の算術符号化によって、さらに画像圧縮を行ってもよい。
【0042】
このようなマルチスペクトル画像の画像圧縮方法および画像圧縮装置において、以下のようなマルチスペクトル画像の圧縮を行った。
CCDカメラ16として、DALSA社製 CA-D4-1024A(画素数1024×1024、ピクセルサイズ12×12ミクロン、PCIインターフェース付き、モノクロ)を用い、可変フィルタ14として、CRI社製Varispec Tunable Filter (液晶チューナブルフィルタ)を用いた。この液晶チューナブルフィルタによって、380〜780nmの撮影波長帯域を、バンド帯域幅を5nmずつに分割し、81バンド(n=81)とした。屋外の人物を撮影被写体Oとし、81画像から成る人物画のマルチバンド画像MBを得た。
マルチバンド画像記憶部18、マルチスペクトル画像取得装置20およびマルチスペクトル画像圧縮装置22は、PROSIDE社製ブック型PC(パーソナルコンピュータ)を用いて構成し、WindowsR95上でC++言語によるソフトウェア処理を行った。なお、PROSIDE社製ブック型PCは、CPUが166MHzであり、RAMは128Mbyteであった。
なお、前処理として、ソフトウェア処理の都合上から、画像データの量子化数を2バイトから1バイトに変換した。この前処理は、以降で述べる画像データ量の圧縮には含まれていないものである。
【0043】
まず、マルチスペクトル画像取得装置20において、マルチバンド画像MBから構成波長数81のマルチスペクトル画像MSを抽出し、得られた1024×1024画素の画像サイズのマルチスペクトル画像MSを16×16画素の画像サイズのタイル画像Tl(l=1〜4096)に分割した。
各タイル画像Tl(l=1〜4096)に対して主成分分析を行い、主成分ベクトルpk(λ)(k=1〜81)および主成分画像Sk(k=1〜81)を求めた。
【0044】
次に、最適主成分数m1 を求めるために、判断基準として、CIED65の標準光源下のCIED1976L* * * 色空間における色度に基づく平均色差を1.5とした。さらに、上述した主成分分析法によって得られた固有値uk の大きい順に、固有値uk に対応した主成分ベクトルpk を順次採用し、採用されたm個の主成分ベクトルpk (λ)(k=1〜m)によって再構成される合成画像Gと各タイル画像Tl から得られるオリジナル画像との上記平均色差を求め、平均色差が1.5以下となる最適主成分数m1 を決定した。
【0045】
その結果、タイル画像Tl (l=1〜4096)の最適主成分数m1 は2〜6であった。特に、図3で示されるタイル画像TB のような色相、明度や彩度の変化が小さく、撮影被写体Oである人物の背景としての空部分のタイル画像Tl や同一色相、明度や彩度を有するタイル画像Tl は、タイル画像TA に比べて最適主成分数m1 は小さく、値として2でよく、つまり第1主成分ベクトルp1 (λ)および第2主成分ベクトルp2 (λ)でタイル画像Tl を表すことができた。さらに、上述した平均色差1.5の基準を緩和した場合でも、第1主成分ベクトルp1 (λ)のみでも十分に画像情報を最適に保持し代表できることがわかった。
【0046】
次に、各タイル画像Tl の最適主成分数m1 、最適主成分ベクトルp(λ)および最適主成分画像Sk にタイル画像情報、すなわち、タイル画像Tl のタイル番号と、マルチスペクトル画像MS 上のタイル位置と、タイル画像Tl のタイルサイズ(画像サイズ)と、上記最適主成分数m1 、最適主成分ベクトルpk (λ)および最適主成分画像Sk の画像データから成るタイル情報のポインタ(アドレス)とを付加し、記録メディアドライブ装置24を介して、記録保存した。
その結果、画像データは、約41Mバイトから4Mバイトに低減し、画像データは約10分の1に圧縮された。さらに、この圧縮された画像データを再度呼び出して画像を再構成してみたが、視覚的に画質の劣化は認められなかった。
【0047】
このように、本発明の画像圧縮方法およびこれを用いた画像圧縮装置は、複数のスペクトル画像に対して、視覚的な劣化が少なく画像圧縮の際の圧縮率を高め、例えば1/10程度に高め、画像データの取り扱いを向上するのは明らかである。
【0048】
以上、本発明のマルチスペクトル画像の画像圧縮方法および画像圧縮装置について詳細に説明したが、本発明は上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
【0049】
【発明の効果】
以上、詳細に説明したように、本発明によれば、画像データ量の大きなマルチスペクトル画像をタイル画像に分割し、タイル画像毎に主成分分析を行い、画像情報を最適に保持し代表するタイル画像毎の最適主成分ベクトルおよび最適主成分画像を求めることによって、画像品質を損なうことなく、画像データの圧縮率を高めることができ、画像データの取り扱いを向上させることができる。
また、マルチスペクトル画像に含まれる主成分ベクトルからノイズ成分が支配的な主成分ベクトルを除去することができ、ノイズ成分の抑制も行うことができる。
【図面の簡単な説明】
【図1】 本発明のマルチスペクトル画像圧縮装置を含むマルチスペクトル画像取得システムの一例を示す概念図である。
【図2】 本発明に係るマルチスペクトル画像圧縮装置の一例を示すブロック図である。
【図3】 本発明のマルチスペクトル画像圧縮方法で行う画像分割の一例を示す説明図である。
【図4】 本発明のマルチスペクトル画像圧縮方法のフローの一例を示すフローチャートである。
【符号の説明】
10 マルチスペクトル画像取得システム
12 光源
14 可変フィルタ
16 CCDカメラ
18 マルチバンド画像データ記憶装置
20 マルチスペクトル画像取得装置
22 マルチスペクトル画像圧縮装置
22a 画像分割部
22b 主成分分析部
22c 最適主成分ベクトル・画像抽出部
24 記録メディアドライブ装置

Claims (6)

  1. 被写体を撮影する際に撮影波長帯域を複数のバンド帯域に分割して撮影された複数のバンド画像を用いて得られた複数のスペクトル画像から成るマルチスペクトル画像を画像圧縮する方法であって、
    前記マルチスペクトル画像を複数のタイル画像に分割し、
    このタイル画像それぞれに対して主成分分析を行い、各タイル画像毎にマルチスペクトル画像の主成分ベクトルと主成分画像の複数の対を得、
    この複数の対の中から、マルチスペクトル画像の画像情報を最適に代表する最適主成分数を求め、最適主成分ベクトルとこれに対応する最適主成分画像を各タイル画像毎に得、
    タイル画像毎に得られた各最適主成分画像に対し画像圧縮を行い最適主成分圧縮画像データを得ることを特徴とするマルチスペクトル画像の画像圧縮方法。
  2. 前記タイル画像の画素サイズは、縦方向および横方向ともに2の巾乗である請求項1に記載のマルチスペクトル画像の画像圧縮方法。
  3. 前記タイル画像の画素サイズは、すべて同一サイズである請求項1または2に記載のマルチスペクトル画像の画像圧縮方法。
  4. 前記最適主成分数は、色空間における色度差を所定値以下とする最小の主成分数である請求項1〜3のいずれかに記載のマルチスペクトル画像の画像圧縮方法。
  5. 前記色空間は、CIED 65 の標準光源下のCIED1976L * * * 色空間であり、
    前記所定値は、この色空間における色度に基づく平均色差が1.5である請求項4に記載のマルチスペクトル画像の画像圧縮方法。
  6. 被写体を撮影する際に撮影波長帯域を複数のバンド帯域に分割したバンド画像を用いて得られるマルチスペクトル画像を画像圧縮するマルチスペクトル画像の画像圧縮装置であって、
    マルチスペクトル画像を複数のタイル画像に分割する画像分割部と、
    画像分割部で得られたタイル画像それぞれに対して、主成分分析を行って、各タイル画像毎に、マルチスペクトル画像の主成分ベクトルと主成分画像の複数の対を得る主成分分析部と、
    この主成分分析部で得られた主成分ベクトルと主成分画像の複数の対の中から、マルチスペクトル画像の画像情報を最適に代表する最適主成分数を求めて、最適主成分ベクトルと最適主成分画像を得る最適主成分ベクトル・画像抽出部とを備え、
    前記最適成分ベクトル・画像抽出部で得られた各タイル画像の最適主成分画像に対し画像圧縮を行い最適主成分圧縮画像データを得ることを特徴とするマルチスペクトル画像の画像圧縮装置。
JP29789599A 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置 Expired - Fee Related JP3986221B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29789599A JP3986221B2 (ja) 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置
US09/692,043 US6879716B1 (en) 1999-10-20 2000-10-20 Method and apparatus for compressing multispectral images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29789599A JP3986221B2 (ja) 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置

Publications (3)

Publication Number Publication Date
JP2001119587A JP2001119587A (ja) 2001-04-27
JP2001119587A5 JP2001119587A5 (ja) 2005-06-02
JP3986221B2 true JP3986221B2 (ja) 2007-10-03

Family

ID=17852508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29789599A Expired - Fee Related JP3986221B2 (ja) 1999-10-20 1999-10-20 マルチスペクトル画像の画像圧縮方法および画像圧縮装置

Country Status (2)

Country Link
US (1) US6879716B1 (ja)
JP (1) JP3986221B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580488B2 (en) * 2000-11-29 2009-08-25 The Penn State Research Foundation Broadband modulation/demodulation apparatus and a method thereof
US7113654B2 (en) * 2002-01-31 2006-09-26 Bae Systems Information And Electronic Systems Integration Inc. Computationally efficient modeling of imagery using scaled, extracted principal components
US7224845B1 (en) * 2002-02-28 2007-05-29 Bae Systems Information And Electric Systems Integration Inc. Bijection mapping for compression/denoising of multi-frame images
US7755676B2 (en) * 2002-08-30 2010-07-13 Fujifilm Corporation Multi-band image photographing method and apparatus, and program for executing the method
US7916173B2 (en) * 2004-06-22 2011-03-29 Canon Kabushiki Kaisha Method for detecting and selecting good quality image frames from video
JP2006101512A (ja) * 2005-09-21 2006-04-13 Matsushita Electric Ind Co Ltd 画像圧縮装置および画像送受信装置
JP4645581B2 (ja) * 2006-11-30 2011-03-09 富士ゼロックス株式会社 画像処理装置、画像読取装置及び画像形成装置
US7925100B2 (en) * 2007-07-31 2011-04-12 Microsoft Corporation Tiled packaging of vector image data
JP4677435B2 (ja) * 2007-10-30 2011-04-27 キヤノン株式会社 画像処理装置および方法
JP4677434B2 (ja) * 2007-10-30 2011-04-27 キヤノン株式会社 画像処理装置および方法
US8929654B2 (en) 2011-12-28 2015-01-06 Dolby Laboratories Licensing Corporation Spectral image processing
JP2014016746A (ja) * 2012-07-06 2014-01-30 Sony Computer Entertainment Inc 画像処理装置および画像処理方法
US8717457B2 (en) * 2012-08-14 2014-05-06 Canon Kabushiki Kaisha Adaptive spectral imaging for video capture
JP6299180B2 (ja) * 2013-11-27 2018-03-28 株式会社リコー 撮像装置、撮像システムおよび当該撮像装置による撮像方法
CN111126452B (zh) * 2019-12-03 2023-05-23 中国科学院国家空间科学中心 一种基于主成分分析的地物光谱曲线扩展方法及系统
US12033329B2 (en) * 2021-07-22 2024-07-09 X Development Llc Sample segmentation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513128A (en) * 1993-09-14 1996-04-30 Comsat Corporation Multispectral data compression using inter-band prediction
US5793884A (en) * 1995-12-19 1998-08-11 Hewlett-Packard Company Spectral based color image editing
CA2219809A1 (en) * 1997-10-31 1999-04-30 Shen-En Qian System for interactive visualization and analysis of imaging spectrometry datasets over a wide-area network

Also Published As

Publication number Publication date
US6879716B1 (en) 2005-04-12
JP2001119587A (ja) 2001-04-27

Similar Documents

Publication Publication Date Title
JP4097873B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
JP3986221B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
US7116838B2 (en) Enhancing the tonal and spatial characteristics of digital images using selective spatial filters
US20060140476A1 (en) Image compression apparatus and image compression program
US8660345B1 (en) Colorization-based image compression using selected color samples
JP3736394B2 (ja) 画像圧縮装置
JP2005318523A (ja) 画像処理装置、画像処理方法、および、画像処理プログラム
US7830568B2 (en) Color processing apparatus and color processing method
KR20070091853A (ko) 영상 적응적인 색 재현 장치 및 방법
JP4097874B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
US20170094281A1 (en) Compressing high dynamic range images
JP2001119587A5 (ja)
US20150326878A1 (en) Selective perceptual masking via scale separation in the spatial and temporal domains using intrinsic images for use in data compression
US8433132B2 (en) Method for efficient representation and processing of color pixel data in digital pathology images
JP3986219B2 (ja) マルチスペクトル画像の画像圧縮方法および画像圧縮装置
JP3743389B2 (ja) 画像圧縮装置および画像圧縮プログラム
US20020063899A1 (en) Imaging device connected to processor-based system using high-bandwidth bus
US7146055B2 (en) Image processing decompression apparatus and method of using same different scaling algorithms simultaneously
US8897378B2 (en) Selective perceptual masking via scale separation in the spatial and temporal domains using intrinsic images for use in data compression
Le et al. Improving color space conversion for camera-captured images via wide-gamut metadata
JPH11261740A (ja) 画像評価方法、装置および記録媒体
JP2005078171A (ja) 分光画像データ処理方法および分光画像データ処理装置
JP2006101512A (ja) 画像圧縮装置および画像送受信装置
JP2004348293A (ja) 画像品質計算装置および方法、そのプログラム並びに記録媒体
JP4101438B2 (ja) 色調整装置および色調整方法並びにその方法を実行するためのプログラムを記録した記録媒体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees