Nothing Special   »   [go: up one dir, main page]

Zylbertal A, Yarom Y, Wagner S. (2017). The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study Frontiers in computational neuroscience. 11 [PubMed]

See more from authors: Zylbertal A · Yarom Y · Wagner S

References and models cited by this paper

Bahl A, Stemmler MB, Herz AV, Roth A. (2012). Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. Journal of neuroscience methods. 210 [PubMed]

Barreto E, Cressman JR. (2011). Ion concentration dynamics as a mechanism for neuronal bursting. Journal of biological physics. 37 [PubMed]

Ben-Ari Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nature reviews. Neuroscience. 3 [PubMed]

Blaustein MP, Lederer WJ. (1999). Sodium/calcium exchange: its physiological implications. Physiological reviews. 79 [PubMed]

Bush PC, Sejnowski TJ. (1994). Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. Journal of neurophysiology. 71 [PubMed]

Carafoli E. (1991). Calcium pump of the plasma membrane. Physiological reviews. 71 [PubMed]

Carter BC, Bean BP. (2009). Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron. 64 [PubMed]

Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]

Colbert CM, Pan E. (2002). Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nature neuroscience. 5 [PubMed]

Courtemanche M, Ramirez RJ, Nattel S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. The American journal of physiology. 275 [PubMed]

Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of computational neuroscience. 26 [PubMed]

Deb K. (2001). Multi-objective optimization using evolutionary algorithms. xix

Eilers J, Augustine GJ, Konnerth A. (1995). Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature. 373 [PubMed]

Fierro L, DiPolo R, Llano I. (1998). Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. The Journal of physiology. 510 ( Pt 2) [PubMed]

Fleidervish IA, Lasser-Ross N, Gutnick MJ, Ross WN. (2010). Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nature neuroscience. 13 [PubMed]

Forrest MD. (2014). The sodium-potassium pump is an information processing element in brain computation. Frontiers in physiology. 5 [PubMed]

Forrest MD, Wall MJ, Press DA, Feng J. (2012). The sodium-potassium pump controls the intrinsic firing of the cerebellar Purkinje neuron. PloS one. 7 [PubMed]

Hay E, Hill S, Schürmann F, Markram H, Segev I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS computational biology. 7 [PubMed]

Hay E, Segev I. (2015). Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cerebral cortex (New York, N.Y. : 1991). 25 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Hines ML, Davison AP, Muller E. (2009). NEURON and Python. Frontiers in neuroinformatics. 3 [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. (2004). ModelDB: A Database to Support Computational Neuroscience. Journal of computational neuroscience. 17 [PubMed]

Jeon D et al. (2003). Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron. 38 [PubMed]

Kaczmarek LK. (2013). Slack, Slick and Sodium-Activated Potassium Channels. ISRN neuroscience. 2013 [PubMed]

Kiedrowski L, Brooker G, Costa E, Wroblewski JT. (1994). Glutamate impairs neuronal calcium extrusion while reducing sodium gradient. Neuron. 12 [PubMed]

Korngreen A, Kaiser KM, Zilberter Y. (2005). Subthreshold inactivation of voltage-gated K+ channels modulates action potentials in neocortical bitufted interneurones from rats. The Journal of physiology. 562 [PubMed]

Larkum ME, Zhu JJ, Sakmann B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398 [PubMed]

Larkum ME, Zhu JJ, Sakmann B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. The Journal of physiology. 533 [PubMed]

Lazarewicz MT, Migliore M, Ascoli GA. (2002). A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Bio Systems. 67 [PubMed]

Le Bé JV, Silberberg G, Wang Y, Markram H. (2007). Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]

Ma J, Lowe G. (2004). Action potential backpropagation and multiglomerular signaling in the rat vomeronasal system. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Mainen ZF, Sejnowski TJ. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 382 [PubMed]

Martin KC, Kosik KS. (2002). Synaptic tagging -- who's it? Nature reviews. Neuroscience. 3 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Mondragão MA et al. (2016). Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons. The Journal of physiology. 594 [PubMed]

Moody WJ, Futamachi KJ, Prince DA. (1974). Extracellular potassium activity during epileptogenesis. Experimental neurology. 42 [PubMed]

Myatt DR, Hadlington T, Ascoli GA, Nasuto SJ. (2012). Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in neuroinformatics. 6 [PubMed]

Powell K, Mathy A, Duguid I, Häusser M. (2015). Synaptic representation of locomotion in single cerebellar granule cells. eLife. 4 [PubMed]

Pulver SR, Griffith LC. (2010). Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics. Nature neuroscience. 13 [PubMed]

Rah JC et al. (2013). Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography. Frontiers in neural circuits. 7 [PubMed]

Rapp M, Segev I, Yarom Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. The Journal of physiology. 474 [PubMed]

Rose CR, Konnerth A. (2001). NMDA receptor-mediated Na+ signals in spines and dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Rose CR, Kovalchuk Y, Eilers J, Konnerth A. (1999). Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Archiv : European journal of physiology. 439 [PubMed]

Santamaria F, Wils S, De Schutter E, Augustine GJ. (2011). The diffusional properties of dendrites depend on the density of dendritic spines. The European journal of neuroscience. 34 [PubMed]

Scheuss V, Yasuda R, Sobczyk A, Svoboda K. (2006). Nonlinear [Ca2+] signaling in dendrites and spines caused by activity-dependent depression of Ca2+ extrusion. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Schäfer C et al. (2001). Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovascular research. 51 [PubMed]

Smith CP et al. (2017). SymPy: symbolic computing in Python Peerj Computer Science. 3

Spruston N, Jonas P, Sakmann B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. The Journal of physiology. 482 ( Pt 2) [PubMed]

Swensen AM, Bean BP. (2003). Ionic mechanisms of burst firing in dissociated Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Swietach P, Spitzer KW, Vaughan-Jones RD. (2015). Na? ions as spatial intracellular messengers for co-ordinating Ca²? signals during pH heterogeneity in cardiomyocytes. Cardiovascular research. 105 [PubMed]

Takechi H, Eilers J, Konnerth A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature. 396 [PubMed]

Wadiche JI, Jahr CE. (2001). Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 32 [PubMed]

Wagner S, Castel M, Gainer H, Yarom Y. (1997). GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature. 387 [PubMed]

Yarom Y, Spira ME. (1982). Extracellular potassium ions mediate specific neuronal interaction. Science (New York, N.Y.). 216 [PubMed]

Zhang HY, Sillar KT. (2012). Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function. Current biology : CB. 22 [PubMed]

Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S. (2015). Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells. PLoS biology. 13 [PubMed]

Zylbertal A, Yarom Y, Wagner S. (2017). Synchronous Infra-Slow Bursting in the Mouse Accessory Olfactory Bulb Emerge from Interplay between Intrinsic Neuronal Dynamics and Network Connectivity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]

References and models that cite this paper

Sætra MJ, Einevoll GT, Halnes G. (2021). An electrodiffusive neuron-extracellular-glia model for exploring the genesis of slow potentials in the brain PLoS computational biology. 17 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.