Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new cellular mechanism for coupling inputs arriving at different cortical layers

Abstract

Pyramidal neurons in layer 5 of the neocortex of the brain extend their axons and dendrites into all layers. They are also unusual in having both an axonal and a dendritic zone for the initiation of action potentials1,2,3,4,5,6. Distal dendritic inputs, which normally appear greatly attenuated at the axon, must cross a high threshold at the dendritic initiation zone to evoke calcium action potentials1,7 but can then generate bursts of axonal action potentials. Here we show that a single back-propagating sodium action potential generated in the axon8 facilitates the initiation of these calcium action potentials when it coincides with distal dendritic input within a time window of several milliseconds. Inhibitory dendritic input can selectively block the initiation of dendritic calcium action potentials, preventing bursts of axonal action potentials. Thus, excitatory and inhibitory postsynaptic potentials arising in the distal dendrites can exert significantly greater control over action potential initiation in the axon than would be expected from their electrotonically isolated locations. The coincidence of a single back-propagating action potential with a subthreshold distal excitatory postsynaptic potential to evoke a burst of axonal action potentials represents a new mechanism by which the main cortical output neurons can associate inputs arriving at different cortical layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupling of a back-propagating action potential (AP) with distal subthreshold current injection.
Figure 2: Precision of timing required.
Figure 3: Extracellularly evoked BAC-firing.
Figure 4: Inhibition of BAC firing.

Similar content being viewed by others

References

  1. Schiller, J., Schiller, Y., Stuart G. & Sakmann, B. Calcium action potentials restricted to the distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).

    Article  CAS  Google Scholar 

  2. Spencer, W. A. & Kandel, E. R. Electrophysiology of hippocampal neurons IV. Fast prepotentials. J. Neurophys. 24, 272–295 (1961).

    Article  CAS  Google Scholar 

  3. Magee, J., Hoffman, D., Colbert, C. & Johnston, D. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346 (1998).

    Article  CAS  Google Scholar 

  4. Kim, H. G. & Connors, B. W. Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J. Neurosci. 13, 5301–5311 (1993).

    Article  CAS  Google Scholar 

  5. Hirsch, J. A., Alonso, J. M. & Reid, C. R. Visually evoked calcium action potentials in cat striate cortex. Nature 378, 612–616 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Rhodes, P. A. Functional Implications of Active Currents in the Dendrites of Pyramidal Neuronsin Cerebral Cortex(eds Ulinski, P. & Jones, E. G.) Vol. 13, 139–200 (Plenum, New York, (1999).

    Article  Google Scholar 

  7. Zhu, J. J. & Sakmann, B. Postnatal development of Ca2+-mediated action potentials in dendritic tufts of rat neocortical pyramidal neurons. Soc. Neurosci. Abstr. 23, 2283 (1997).

    Google Scholar 

  8. Stuart, G. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Markram, H., Helm, P. J. & Sakmann, B. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol (Lond.) 485, 1–20 (1995).

    Article  CAS  Google Scholar 

  10. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    Article  CAS  Google Scholar 

  11. Miles, R., Toth, K., Gulyas, A. I., Hajos, N. & Freund, T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    Article  CAS  Google Scholar 

  12. Buzsáki, G., Penttonen, M., Nádasdy, Z. & Bragin, A. Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc. Natl Acad. Sci. USA 93, 9921–9925 (1996).

    Article  ADS  Google Scholar 

  13. Tsubokawa, H. & Ross, W. N. IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophys. 76, 2896–906 (1996).

    Article  CAS  Google Scholar 

  14. Chen, H. & Lambert, N. A. Inhibition of dendritic calcium influx by activation of G-protein-coupled receptors in the hippocampus. J. Neurophysiol. 78, 3484–3488 (1997).

    Article  CAS  Google Scholar 

  15. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  16. Llinás, R., Ribary, U., Joliot, M. & Wang, X. -J. in Temporal Coding in the Brain(eds Buzsáki, G. et al.) 251–272 (Springer, Berlin, (1994).

    Book  Google Scholar 

  17. Heilman, K. M. & Valenstein, E. Clinical Neuropsycology(Oxford Univ. Press, New York, (1993).

    Google Scholar 

  18. Cauller, L. J. & Kulics, A. T. The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation. Exp. Brain Res. 84, 607–618 (1991).

    Article  CAS  Google Scholar 

  19. Zhu, J. J. & Sakmann, B. Whisker-evoked slow oscillation (7–12 Hz) in single neurons of the rat barrel cortex. Soc. Neurosci. Abstr. 24, 1512 (1998).

    Google Scholar 

  20. Zhu, J. J. & Connors, B. W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    Article  CAS  Google Scholar 

  21. Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).

    Article  CAS  Google Scholar 

  22. Dodt, H. U. Infrared-interference videomicroscopy of living brain slices. Adv. Exp. Med. Biol. 333, 245–249 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Katz, A. Korngreen, G. Borst and A. Silver for their helpful comments. M.E.L. was supported by an Alexander von Humboldt scholarship and J.J.Z. was supported by a Max-Planck Gesellschaft fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkum, M., Zhu, J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999). https://doi.org/10.1038/18686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18686

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing