Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

CD-MPM: continuum damage material point methods for dynamic fracture animation

Published: 12 July 2019 Publication History

Abstract

We present two new approaches for animating dynamic fracture involving large elastoplastic deformation. In contrast to traditional mesh-based techniques, where sharp discontinuity is introduced to split the continuum at crack surfaces, our methods are based on Continuum Damage Mechanics (CDM) with a variational energy-based formulation for crack evolution. Our first approach formulates the resulting dynamic material damage evolution with a Ginzburg-Landau type phase-field equation and discretizes it with the Material Point Method (MPM), resulting in a coupled momentum/damage solver rooted in phase field fracture: PFF-MPM. Although our PFF-MPM approach achieves convincing fracture with or without plasticity, we also introduce a return mapping algorithm that can be analytically solved for a wide range of general non-associated plasticity models, achieving more than two times speedup over traditional iterative approaches. To demonstrate the efficacy of the algorithm, we also develop a Non-Associated Cam-Clay (NACC) plasticity model with a novel fracture-friendly hardening scheme. Our NACC plasticity paired with traditional MPM composes a second approach to dynamic fracture, as it produces a breadth of organic, brittle material fracture effects on its own. Though NACC and PFF can be combined, we focus on exploring their material effects separately. Both methods can be easily integrated into any existing MPM solver, enabling the simulation of various fracturing materials with extremely high visual fidelity while requiring little additional computational overhead.

Supplementary Material

MP4 File (papers_166.mp4)

References

[1]
S. M. Allen and J. W. Cahn. 1972. Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metallurgica 20, 3 (1972), 423--433.
[2]
M. Ambati, R. Kruse, and L. De Lorenzis. 2016. A phase-field model for ductile fracture at finite strains and its experimental verification. Comp. Mech. 57, 1 (2016), 149--167.
[3]
H. Amor, J.-J. Marigo, and C. Maurini. 2009. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. of the Mech. and Phys. of Solids 57, 8 (2009), 1209--1229.
[4]
K. Aoki, N. H. Dong, T. Kaneko, and S. Kuriyama. 2004. Physically Based Simulation of Cracks on Drying 3D Solids. In Proc. of the Comp. Graph. Int. 357--364.
[5]
I. S. Aranson, V. A. Kalatsky, and V. M. Vinokur. 2000. Continuum field description of crack propagation. Physical Review Letters 85, 1 (2000), 118--121.
[6]
Z. Bao, J. M. Hong, J. Teran, and R. Fedkiw. 2007. Fracturing Rigid Materials. IEEE Trans. on Vis. and Comp. Graph. 13, 2 (2007), 370--378.
[7]
G. I. Barenblatt. 1962. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, Vol. 7. 55 -- 129.
[8]
T. Belytschko and T. Black. 1999. Elastic crack growth in finite elements with minimal remeshing. Int. J. for Num. Meth. in Eng. 45, 5 (1999), 601--620.
[9]
T. Belytschko, D. Organ, and Y. Krongauz. 1995. A coupled finite element-element-free Galerkin method. Comp. Mech. 17, 3 (1995), 186--195.
[10]
H. Bhatacharya, Y. Gao, and A. Bargteil. 2011. A Level-set Method for Skinning Animated Particle Data. In Symp. Comp. Anim. 17--24.
[11]
M. J. Borden, T. J.R. Hughes, C. M. Landis, A. Anvari, and I. J. Lee. 2016. A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comp. Meth. in Applied Mech. and Eng. 312 (2016), 130--166.
[12]
M. J. Borden, C. V. Verhoosel, M. A. Scott, T. JR. Hughes, and C. M. Landis. 2012. A phase-field description of dynamic brittle fracture. Comp. Meth. in Applied Mech. and Eng. 217 (2012), 77--95.
[13]
S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4 (2014), 154:1--154:11.
[14]
B. Bourdin, G. A. Francfort, and J-J. Marigo. 2000. Numerical experiments in revisited brittle fracture. J. of the Mech. and Phys. of Solids 48, 4 (2000), 797 -- 826.
[15]
B. Bourdin, G. A. Francfort, and J.-J. Marigo. 2008. The variational approach to fracture. Journal of elasticity 91, 1--3 (2008), 5--148.
[16]
J. Brackbill and H. Ruppel. 1986. FLIP: A method for adaptively zoned, Particle-In-Cell calculations of fluid flows in two dimensions. J Comp Phys 65 (1986), 314--343.
[17]
O. Busaryev, T. K. Dey, and H. Wang. 2013. Adaptive Fracture Simulation of Multi-layered Thin Plates. ACM Trans. Graph. 32, 4, Article 52 (2013), 6 pages.
[18]
J. W. Cahn and J. E. Hilliard. 1958. Free energy of a nonuniform system. I. interfacial free energy. The Journal of Chemical Physics 28, 2 (1958), 258--267.
[19]
M. Cervera and M. Chiumenti. 2006. Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comp. Meth. in Applied Mech. and Eng. 196, 1--3 (2006), 304--320.
[20]
F. Chen, C. Wang, B. Xie, and H. Qin. 2013. Flexible and rapid animation of brittle fracture using the smoothed particle hydrodynamics formulation. Computer Animation and Virtual Worlds 24, 3--4 (2013), 215--224.
[21]
Z. Chen, M. Yao, R. Feng, and H. Wang. 2014. Physics-inspired Adaptive Fracture Refinement. ACM Trans. Graph. 33, 4, Article 113 (2014), 7 pages.
[22]
J. Choo and W. C. Sun. 2018. Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow. Comp. Meth. in Applied Mech. and Eng. 330 (2018), 1--32.
[23]
F. Da, C. Batty, and E. Grinspun. 2014. Multimaterial Mesh-based Surface Tracking. ACM Trans. Graph. 33, 4, Article 112 (2014), 11 pages.
[24]
F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. 2016. Surface-only Liquids. ACM Trans. Graph. 35, 4, Article 78 (2016), 12 pages.
[25]
G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. Graph. 35, 4 (2016).
[26]
Y. (R.) Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Trans. Graph. 37, 4 (2018), 51:1--51:16.
[27]
G. A. Francfort and J.-J. Marigo. 1998. Revisiting brittle fracture as an energy minimization problem. J. of the Mech. and Phys. of Solids 46, 8 (1998), 1319--1342.
[28]
M. Gao, A. Pradhana, X. Han, Q. Guo, G. Kot, E. Sifakis, and C. Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. 37, 4 (2018), 149.
[29]
M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018b. GPU Optimization of Material Point Methods. ACM Trans. Graph. 37, 6, Article 254 (2018), 12 pages.
[30]
J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack propagation in snow. Nature communications 9, 1 (2018), 3047.
[31]
L. Glondu, M. Marchal, and G. Dumont. 2013. Real-Time Simulation of Brittle Fracture Using Modal Analysis. IEEE Trans. on Vis. and Comp. Graph. 19, 2 (2013), 201--209.
[32]
L. Glondu, S. C. Schvartzman, M. Marchal, G. Dumont, and M. A. Otaduy. 2014. Fast Collision Detection for Fracturing Rigid Bodies. IEEE Trans. on Vis. and Comp. Graph. 20, 1 (2014), 30--41.
[33]
P. Grassl and M. Jirásek. 2004. On mesh bias of local damage models for concrete. (2004).
[34]
A. A. Griffith and M. Eng. 1921. VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 582--593 (1921), 163--198.
[35]
Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans. Graph. 37, 4 (2018), 147.
[36]
D. Hahn and C. Wojtan. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans. Graph. 34, 4, Article 151 (2015), 12 pages.
[37]
D. Hahn and C. Wojtan. 2016. Fast approximations for boundary element based brittle fracture simulation. ACM Trans. Graph. 35, 4, Article 104 (2016), 11 pages.
[38]
X. He, H. Wang, and E. Wu. 2018. Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. on Vis. and Comp. Graph. 24, 9 (2018), 2589--2599.
[39]
X. He, H. Wang, F. Zhang, H. Wang, G. Wang, K. Zhou, and E. Wu. 2015. Simulation of fluid mixing with interface control. In Symp. Comp. Anim. 129--135.
[40]
J. Hegemann, C. Jiang, C. Schroeder, and J. Teran. 2013. A level set method for ductile fracture. In Proc ACM SIGGRAPH/Eurograp Symp Comp Anim. 193--201.
[41]
K. Hirota, Y. Tanoue, and T. Kaneko. 1998. Generation of crack patterns with a physical model. The Visual Computer 14, 3 (1998), 126--137.
[42]
K. Hirota, Y. Tanoue, and T. Kaneko. 2000. Simulation of three-dimensional cracks. The Visual Computer 16, 7 (2000), 371--378.
[43]
M. A. Homel and E. B. Herbold. 2017. Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. for Num. Meth. in Eng. 109, 7 (2017), 1013--1044.
[44]
Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37, 4 (2018), 150.
[45]
G. R. Irwin. 1957. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech. (1957).
[46]
D. L. James and D. K. Pai. 1999. ArtDefo: Accurate real time deformable objects. In Proc. of the 26th Ann. Conf. on Comp. Graph. and Inter. Tech. 65--72.
[47]
C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. 36, 4 (2017).
[48]
C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (2015), 51:1--51:10.
[49]
C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The material point method for simulating continuum materials. In SIGGRAPH Course. 24:1--24:52.
[50]
B. Jones, A. Martin, J. A. Levine, T. Shinar, and A. W. Bargteil. 2016. Ductile Fracture for Clustered Shape Matching. Proc. of the ACM SIGGRAPH symp. on Int. 3D graph. and games (2016).
[51]
L. M. Kachanov. 1999. Rupture Time Under Creep Conditions. Int. J. of Fracture 97, 1 (1999), 11--18.
[52]
P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2008. Flexible simulation of deformable models using discontinuous Galerkin FEM. In Symp. Comp. Anim. 105--116.
[53]
T. Kim, M. Henson, and M. C. Lin. 2004. A hybrid algorithm for modeling ice formation. In Symp. Comp. Anim. 305--314.
[54]
G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 35, 4 (2016), 103:1--103:12.
[55]
D. Koschier, J. Bender, and N. Thuerey. 2017. Robust eXtended finite elements for complex cutting of deformables. ACM Trans. Graph. 36, 4, Article 55 (2017), 13 pages.
[56]
L. D. Landau and E. M. Lifshitz. 1971. The classical theory of fields. (1971).
[57]
J. A. Levine, A. W. Bargteil, C. Corsi, J. Tessendorf, and R. Geist. 2014. A peridynamic perspective on spring-mass fracture. In Symp. Comp. Anim. 47--55.
[58]
X. Li, S. Andrews, B. Jones, and A. Bargteil. 2018. Energized rigid body fracture. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 9 (2018), 9 pages.
[59]
N. Liu, X. He, S. Li, and G. Wang. 2011. Meshless Simulation of Brittle Fracture. Comput. Animat. Virtual Worlds 22, 2--3 (2011), 115--124.
[60]
T. Liu, A. Bargteil, J. O'Brien, and L. Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Trans. Graph. 32, 6 (2013), 209:1--7.
[61]
T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3, Article 116a (2017).
[62]
Y. Y. Lu, T. Belytschko, and M. Tabbara. 1995. Element-free Galerkin method for wave propagation and dynamic fracture. Comp. Meth. in Applied Mech. and Eng. 126, 1 (1995), 131 -- 153.
[63]
C. Miehe, M. Hofacker, and F. Welschinger. 2010a. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comp. Meth. in Applied Mech. and Eng. 199, 45--48 (2010), 2765--2778.
[64]
C. Miehe, L. M. Schänzel, and H. Ulmer. 2015. Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comp. Meth. in Applied Mech. and Eng. 294 (2015), 449 -- 485.
[65]
C. Miehe, F. Welschinger, and M. Hofacker. 2010b. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. for Num. Meth. in Eng. 83, 10 (2010), 1273--1311.
[66]
N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis. 2015. Non-manifold level sets: A multivalued implicit surface representation with applications to self-collision processing. ACM Trans. Graph. 34, 6 (2015), 247.
[67]
N. Moës, J. Dolbow, and T. Belytschko. 1999. A finite element method for crack growth without remeshing. Int. J. for Num. Meth. in Eng. 46, 1 (1999), 131--150.
[68]
N. Molino, Z. Bao, and R. Fedkiw. 2005. A Virtual Node Algorithm for Changing Mesh Topology During Simulation. In ACM SIGGRAPH 2005 Courses. Article 4.
[69]
D. Mould. 2005. Image-guided Fracture. In Proc. of Graphics Interface 2005. 219--226.
[70]
M. Müller and M. Gross. 2004. Interactive Virtual Materials. In Proc. of Graphics Interface 2004. 239--246.
[71]
M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point Based Animation of Elastic, Plastic and Melting Objects. In Symp. Comp. Anim. 141--151.
[72]
Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden, Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: an open-source data structure and toolkit for high-resolution volumes. In Acm siggraph 2013 courses. 19.
[73]
J. A. Nairn. 2003. Material point method calculations with explicit cracks. Comp. Mod. in Eng. And Sci. 4 (2003), 649--663.
[74]
R. Narain, M. Overby, and G. E. Brown. 2016. ADMM ⊇ Projective Dynamics: Fast Simulation of General Constitutive Models. In Symp Comp Anim. 21--28.
[75]
M. Neff and E. Fiume. 1999. A Visual Model for Blast Waves and Fracture. In Proc. of the 1999 Conference on Graphics Interface '99. 193--202.
[76]
D. Ngo and A. C. Scordelis. 1967. Finite Element Analysis of Reinforced Concrete Beams. Journal Proceedings 64. Issue 3.
[77]
J. Ning, H. Xu, B. Wu, L. Zeng, S. Li, and Y. Xiong. 2013. Modeling and animation of fracture of heterogeneous materials based on CUDA. The Visual Computer 29, 4 (2013), 265--275.
[78]
A. Norton, G. Turk, B. Bacon, J. Gerth, and P. Sweeney. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 4 (1991), 210--219.
[79]
J. F. O'Brien, A. W. Bargteil, and J. K. Hodgins. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3 (2002), 291--294.
[80]
J. F. O'Brien and J. K. Hodgins. 1999. Graphical Modeling and Animation of Brittle Fracture. In Proc. of the 26th Ann. Conf. on Comp. Graph. and Inter. Tech. 137--146.
[81]
M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. J Guibas. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3 (2005), 957--964.
[82]
T. Pfaff, R. Narain, J. M. de Joya, and J. F. O'Brien. 2014. Adaptive Tearing and Cracking of Thin Sheets. ACM Trans. Graph. 33, 4, Article 110 (2014), 9 pages.
[83]
A. Pradhana, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. 36, 4 (2017).
[84]
R. Radovitzky and M. Ortiz. 1999. Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comp. Meth. in Applied Mech. and Eng. 172, 1--4 (1999), 203--240.
[85]
D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Symp. Comp. Anim. 157--163.
[86]
Y. R. Rashid. 1968. Ultimate strength analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design 7, 4 (1968), 334 -- 344.
[87]
K. Roscoe and J. Burland. 1968. On the generalised stress-strain behaviour of wet clay. Eng Plast (1968), 535--609.
[88]
P. Roy, S. P. Deepu, A. Pathrikar, D. Roy, and J. N. Reddy. 2017. Phase field based peridynamics damage model for delamination of composite structures. Composite Structures 180 (2017), 972 -- 993.
[89]
E. Sifakis, K. G. Der, and R. Fedkiw. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Symp. Comp. Anim. 73--80.
[90]
S. A. Silling. 2000. Reformulation of elasticity theory for discontinuities and long-range forces. J. of the Mech. and Phys. of Solids 48, 1 (2000), 175 -- 209.
[91]
S. A. Silling and E. Askari. 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers /& Structures 83, 17 (2005), 1526 -- 1535. Advances in Meshfree Methods.
[92]
J. C. Simo. 1988. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comp. Meth. in Applied Mech. and Eng. 66, 2 (1988), 199--219.
[93]
B. Smith, F. de Goes, and T. Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2 (2018), 12.
[94]
A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran. 2012. Energetically consistent invertible elasticity. In Symp. Comp. Anim. 25--32.
[95]
A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4 (2013), 102:1--102:10.
[96]
A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33, 4 (2014), 138:1--138:11.
[97]
N. Sukumar, N. Moës, B. Moran, and T. Belytschko. 2000. Extended finite element method for three-dimensional crack modelling. Int. J. for Num. Meth. in Eng. 48, 11 (2000), 1549--1570.
[98]
N. Sukumar, B. Moran, T. Black, and T. Belytschko. 1997. An element-free Galerkin method for three-dimensional fracture mechanics. Comp. Mech. 20, 1 (1997), 170--175.
[99]
D. Sulsky, Z. Chen, and H. L. Schreyer. 1994. A particle method for history-dependent materials. Comp. Meth. in Applied Mech. and Eng. 118, 1--2 (1994), 179--196.
[100]
D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236--252.
[101]
D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In ACM Siggraph Computer Graphics, Vol. 22. 269--278.
[102]
H. Wang and Y. Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6, Article 212 (2016), 10 pages.
[103]
Y. Wang, C. Jiang, C. Schroeder, and J. Teran. 2014. An adaptive virtual node algorithm with robust mesh cutting. In Symp. Comp. Anim. 77--85.
[104]
M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics 29, 4 (2010), 49:1--49:11.
[105]
J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: Continuum damage material point methods for dynamic fracture animation: Supplemental document. ACM Trans. Graph. (2019).
[106]
J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of crack propagation by means of an extended multi-body solver for the material point method. Computers & Graphics 69 (2017), 131 -- 139.
[107]
J. Y. Wu. 2017. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. of the Mech. and Phys. of Solids 103 (2017), 72 -- 99.
[108]
J. Y. Wu. 2018. A geometrically regularized gradient-damage model with energetic equivalence. Comp. Meth. in Applied Mech. and Eng. 328 (2018), 612 -- 637.
[109]
T. Yang, J. Chang, M. C. Lin, R. R. Martin, J. J. Zhang, and S. Hu. 2017. A Unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graph. 36, 6, Article 224 (2017), 13 pages.
[110]
T. Yang, J. Chang, B. Ren, M. C. Lin, J. J. Zhang, and S. Hu. 2015. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graph. 34, 6, Article 201 (2015), 11 pages.
[111]
J. Yu, C. Wojtan, G. Turk, and C. Yap. 2012. Explicit Mesh Surfaces for Particle Based Fluids. Comput. Graph. Forum 31, 2pt4 (2012), 815--824.
[112]
Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans. Graph. 34, 5 (2015), 160:1--160:20.
[113]
Y. Yue, B. Smith, P. Y. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. ACM Trans. Graph. 37, 6, Article 283 (2018), 19 pages.
[114]
Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (2005), 965--972.
[115]
Y. Zhu, R. Bridson, and C. Greif. 2015. Simulating rigid body fracture with surface meshes. ACM Trans. Graph. 34, 4, Article 150 (2015), 11 pages.

Cited By

View all

Index Terms

  1. CD-MPM: continuum damage material point methods for dynamic fracture animation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 38, Issue 4
    August 2019
    1480 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3306346
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 July 2019
    Published in TOG Volume 38, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. ductile fracture
    2. material damage
    3. material point method (MPM)
    4. phase-field

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1,078
    • Downloads (Last 6 weeks)164
    Reflects downloads up to 03 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Material Point Method-Based Simulation Techniques for Medical ApplicationsElectronics10.3390/electronics1307134013:7(1340)Online publication date: 2-Apr-2024
    • (2024)Simplicits: Mesh-Free, Geometry-Agnostic Elastic SimulationACM Transactions on Graphics10.1145/365818443:4(1-11)Online publication date: 19-Jul-2024
    • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
    • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
    • (2024)MPMNet: A Data-Driven MPM Framework for Dynamic Fluid-Solid InteractionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327215630:8(4694-4708)Online publication date: 1-Aug-2024
    • (2024)Transition Between Mechanical and Geometric Controls in Glacier Crevassing ProcessesGeophysical Research Letters10.1029/2024GL10820651:9Online publication date: 30-Apr-2024
    • (2024)Rod-Bonded Discrete Element MethodGraphical Models10.1016/j.gmod.2024.101218133(101218)Online publication date: Jun-2024
    • (2024)Multiple discrete crack initiation and propagation in Material Point MethodEngineering Fracture Mechanics10.1016/j.engfracmech.2024.109918301(109918)Online publication date: May-2024
    • (2024)A Reconfigurable Data Glove for Reconstructing Physical and Virtual GraspsEngineering10.1016/j.eng.2023.01.00932(202-216)Online publication date: Jan-2024
    • (2024)Diffusive-discrete crack transition without remeshing achieved by extended B-spline-based implicit material point methodComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2024.116771421(116771)Online publication date: Mar-2024
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media